D-SEND#1 形状に対する機体近傍場圧力波形推算手法検証

牧野好和,野口正芳,村上桂一,橋本敦,金森正史 宇宙航空研究開発機構

> 石川敬掲 三向ソフトウェア開発

牧本卓也 菱友システムズ

内田貴也,大林茂 東北大学流体科学研究所

今泉貴博, 鈴木角栄, 豊田篤, 佐宗章弘 名古屋大学

Validation of Near-field Pressure Signature Prediction Methods Using D-SEND#1 Models

by

Yoshikazu Makino, Masayoshi Noguchi, Keiichi Murakami, Atsushi Hashimoto, Masashi Kanamori, Hiroaki Ishikawa, Takuya Makimoto, Takaya Uchida, Shigeru Obayashi, Takahiro Imaizumi, Kakuei Suzuki, Atsushi Toyoda, Akihiro Sasoh

ABSTRACT

Some numerical analysis tools for predicting near-field pressure signatures of a supersonic airplane are validated with wind tunnel test data and ballistic range test data. Two model configurations of the first phase of JAXA's low-sonic-boom concept demonstration project(D-SEND#1) are used in this study. Five kinds of numerical analysis tools, a panel analysis with aging modification, an axisymmetric Euler CFD, an unstructured grid Euler CFD, a structured/unstructured overset grids Euler CFD, and a hexagrid Euler CFD, are applied to these models for predicting their near-field pressure signatures at Mach number of 1.4 and 1.7. The predicted signatures are compared with the supersonic wind tunnel data of the 5% models and the ballistic range data of the 1.6% models.

1. はじめに

宇宙航空研究開発機構では低ソニックブーム設計概念実 証プロジェクト D-SEND(Drop test for Simplified Evaluation of Non-symmetrically Distributed sonic boom)を進めており, その第1フェーズとして低ソニックブーム設計概念実証技 術の確立を目的とした落下試験(D-SEND#1)を 2011 年 5 月にスウェーデンのキルナ近郊のエスレンジ宇宙センター で実施した¹⁾. この落下試験では一般的な N 型波形のソニ ックブームを発生する軸対称形状(NWM:N-Wave Model)と,同じ最大断面積で低ソニックブーム設計され た断面積分布を有する低ブーム軸対称形状(LBM:Low Boom Model)の 2 種類の供試体(図 1)から発生するソニ ックブームを空中において計測し,両者の計測ソニックブ ーム波形の比較により LBM の低ソニックブーム設計効果 を確認した.

軸対称物体による低ソニックブーム設計概念実証は世界 初であり,推進系も有さないシンプルな形状であることか ら,D-SEND#1の試験データはソニックブーム推算手法の 検証データとして貴重であると考え,JAXA は D-SEND#1 試験後にデータをまとめ,D-SEND データベース²⁾として 公開した.D-SEND データベースには,NWM と LBMの形 状データの他,試験時の両供試体の落下軌道データや当日 の気象データ,空中と地上において計測されたソニックブ ームデータ等が含まれている.これらのデータを用いれば, 供試体形状に対して落下軌道データから与えられるマッハ 数等の飛行条件での数値解析により機体近傍場圧力波形を 求め,その波形を入力として気象データを考慮した伝播解 析によりソニックブーム波形を推算して,実計測ソニック ブーム波形との比較により推算手法の検証をすることが可 能となる.

本研究では、ソニックブーム推算のための近傍場圧力 波形推算手法の検証を目的として、D-SEND#1 供試体形状 に対して各種数値解析手法を適用し、風洞試験データとの 比較を実施した.本検証は複数のチームの参加によるワー クショップ形式で実施され、非構造格子法や、構造/非構 造重合格子法、及びハイブリッド格子法による CFD 解析の 他、線形パネル法に衝撃波に起因する非線形修正を加える 簡易推算手法や、軸対称 CFD 解析等もよる解析も適用し、 解析手法同士の比較も行った.また、風試データの他にも、 バリスティックレンジによる自由飛行試験データとの比較 も実施した.

2. D-SEND#1 近傍場圧力波形計測

2. 1 バリスティックレンジ

本研究では名古屋大学が所有するバリスティックレンジ(図 2)を用いた³⁾.本装置は駆動部(1.9m),加速管(3.0m),排気部(1.8m),分離管(1.4m)と試験部(3.2m)から構成される.加速管断面は 25mm x 25mm の正方形であり,管内部にて試験模型のロール回転を防ぐことを意図している.試験部(図 3)では time of flight 法を用いた速度測定,高速度カメラを用いたシュリーレン可視化,および試験模型近傍の圧力測定を行う.圧力計は理想的な飛行経路から150mm 上方(Top)と下方(Bottom)の鉄板に取り付けられ,近傍場圧力の計測が可能となっている.

本研究では D-SEND#1 供試体の 1/63 の試験模型を製作 した.図4は試験模型の写真と寸法である.NWMとLBM の試験模型は後端から 38.2mm の部分まで同じ形状で,先 頭の形状が異なる.この試験模型には後方にフィンが4枚 ついているが、1/63 で製作した場合の厚みが約 0.35mm に なり強度が不足する可能性がある為に等スケールではなく, 0.8mm とした. 図 5 はマッハ数 1.71 で自由飛行する NWM と LBM を高速度カメラで撮影したものである.フィ ンのオリエンテーションは、NWM が後方から見て+字の状 態で, LBM は×字の状態である. また, 画像解析から判断 されるそれぞれの迎角は, NWM が+1.1deg, LBM が-0.2deg であった. 先頭部では, 模型先端から先頭衝撃波が発生し ており、その後方の円筒胴体部で膨張波が発生しているの が分かる.また模型後部では3つの衝撃波が観測されてい るが,これらは先頭方向から順に,試験模型のフィンの付 根から発生したもの、フィン付根から発生した衝撃波が隣 り合うフィンの表面で反射したもの、模型後端から発生し たものであると考えられる.

図4 バリスティックレンジ使用模型

0000320

(a) NWM (M=1.71, B120313-03)

(b) LBM (M=1.71, B120313-02)図 5 バリスティックレンジ試験の様子

2. 2 超音速風洞試験

本研究における近傍場圧力波形推算手法検証データには, 上述のバリスティックレンジ自由飛行データの他に、超音 速風洞における近傍場圧力波形計測試験データも用いた. JAXA では、これまでに静圧レールを用いた近傍場圧力波 形計測手法の研究開発を進めており4),その知見から今回 は風洞壁で波形計測を実施することとした. 図 6 に今回用 いた JAXA 風洞技術開発センターの 1m×1m 超音速風洞に, 5%の LBM 模型をセットアップした様子を示す. 風洞下壁 の中心線上には,静圧孔が 4mm 間隔で 111 点(計測区間 440mm) 設けられている. (本静圧レールは静圧レール高 さが計測波形に与える影響を調べる目的で、レール高さが 0mm~52mm まで変えられる構造になっているが、今回の試 験では高さ 0mm で試験を実施した.) LBM の模型全長が 400mm あるため、一度に波形全体を計測することはできず、 230mm の延長スティングを用いて模型前後位置を調整して 2回の通風で波形計測を実施した.

また,通常風洞試験では,バリスティックレンジの自由 飛行試験とは異なり,模型支持の影響が避けられないが, 本試験においては図7に示す3種類の模型支持法を用いる ことで,近傍場圧力波形計測結果の支持干渉補正を試みた. 図8には,LBM模型に対して支持干渉補正を適用した際の, 計測波形の変化を示すが,波形後部が後述する構造/非構 造重合格子法 Euler CFD 解析の結果と一致する方向に修正 されている様子が分かる.

図 6 JAXA 1mx1m 超音速風洞試験(LBM)

図 7 支持干涉補正用模型支持方法

3. D-SEND#1 近傍場圧力波形推算

3.1 パネル法

近傍場圧力波形推算法として,まずは D-SEND#1 供試体 設計時に用いた,線形パネル法 Panair⁵⁾に衝撃波に起因する 非線形性による波形変形補正(Aging 補正)を適用する手 法を適用した.本解析では NWM も LBM も,フィンの無 い軸対称物体として簡略化した形状で解析を実施している. 図 9 に Panair 解析結果として LBM の表面 Cp分布を,図 10 には Panair 解析の出力である Aging 補正前の近傍場圧力波 形と,その波形に Aging 補正を施した波形を比較して示す. Aging 補正においては,まず Panair 解析結果の近傍場 Cp分 布を,

$$F(x) = \sqrt{\frac{\beta r}{2}} C_p \tag{1}$$

の関係式により Whitham の F 関数⁶に変換した上で,

$$\Delta x = -\frac{(\gamma + 1)}{\sqrt{2\beta^3}}\sqrt{r}F(x)$$
⁽²⁾

で定義される波形変形を施し、結果として多価となった波 形に対して、Area balancing 法により衝撃波を導入する. (ここでrは機軸からの半径方向距離、y社比熱比、 $\beta = \sqrt{M^2 - 1}$ である.) 図 10の波形を見ると、Aging 補正前 の波形は線形パネル法(衝撃波はマッハ波として扱われ る)解析であるため、波形の先端と後端は 0m と 8m であり LBM 全長に一致しているが、Aging 補正により波形全長が 長くなっている様子が分かる.(衝撃波の非線形性による 波形の延長が表現されている.)

図 9 Panair 解析結果

3. 2 軸対称 CFD 解析

続いて、同じくフィンの無い軸対称形状に対して、2次 元軸対称 Euler CFD 解析を適用した. CFD ソルバーとして は、空間差分に Chakravarthy&Osher の TVD スキーム⁷⁾を用 い、時間積分には ADI 陰解法を適用している. 図 11 に LBM に対する解析結果として空間 Cp 分布を示す.計算格 子点数は、機軸方向及び機軸垂直方向とも約 400 点(約 16 万点)である.

3.3 非構造格子法解析

次に3次元非構造圧縮性流体ソルバーTAS(Tohoku University Aerodynamic Simulation) code⁸⁾を適用した.図12 に本計算に用いた計算格子(NWM M=1.4 解析用)及び解 析結果として Cp分布を示す.計算格子は機体近傍および 機体下方の格子間隔を細分化し,近傍場圧力波形を可能な 限り詳細に捉えられるようにしている.

図 12 TAS Euler CFD 解析結果(M=1.4)

3. 4 構造/非構造重合格子法解析

JAXA では、複雑形状への適用に優れた非構造格子法と、 衝撃波捕獲特性に優れた構造格子法を組み合わせた、構造 /非構造重合格子法 CFD 解析手法の開発を行っている⁹⁾. 非構造格子法としては前述の TAS を JAXA で改良した JTAS を用い、構造格子法としては JAXA で開発されたマ ルチブロック構造格子法 UPACS(Unified Platform for Aerospace Computational Simulation)¹⁰⁾を用いている。本手 法では、非構造格子で計算された流れ場情報を構造格子の 機体に近い側の境界面に受け渡し、その境界面の物理量を 固定した状態で CFD 解析を行う.非構造格子から構造格 子への数値補間には市販の可視化ソフトウェアである" Tecplot360"の付属補間マクロを使用した。本手法を D-SEND#1 供試体形状に適用した結果として、図 13 に M=1.7 での Cp 分布を示す.

M=1.7 構造格子 非構造格子 構造格子

(b) LBM 図 13 UPACS/TAS 重合格子法 Euler CFD 解析結果

3.5 ハイブリッド格子法解析

最後に、JAXA が開発したハイブリッド格子(六面体, 四面体, ピラミッド, プリズム)対応解析ツール FaSTAR¹¹⁾を適用した.図14に, Hexagrid¹²⁾で作成した計 算格子及び FaSTAR 解析結果の一例として LBM 周りの Cp 分布を示す.

(a) ハイブリッド格子

(b) Cp 分布 図 14 FaSTAR 解析結果

4. 近傍場圧力波形推算手法検証

2章で紹介したバリスティックレンジ試験計測データと 超音速風洞試験データを,3章で紹介した5種類の数値解 析結果と比較した結果,及びそれぞれの波形の先端圧力値 及び後端圧力値を超音速風洞試験(JSWT)を基準として 比較した結果を図 15 に示す.まず,バリスティックレンジ と超音速風試データを比較すると、NWM 及び LBM ともに 波形前半部は非常に良い一致を示しており、ピーク圧力値 もほぼ等しいが、波形後部に同じ傾向の差異が見られる. これは前述の通りバリスティックレンジで使用した模型の フィン厚みが異なっていることが主たる原因であると推察 される.数値解析結果を比較すると、2次元軸対称 CFD 解 析結果と UPACS/TAS 重合格子法解析結果が両形状ともに 非常に良く一致しており、この結果からはフィンの有無が 波形に与える影響は大きくないと思われるが、図16に示す 超音速風洞試験結果には、フィンの有無,及びフィンのオ リエンテーション("+"字と"x"字の差異)により波形後部 に影響が出ることが確認されていることから、フィンの影 響については解析側でより詳細に検討する必要があると思 われる.パネル法+Aging 補正の結果は、同じ軸対称解析 である2次元軸対称 CFD 解析と比べて、波形前半部ではま ずまず良い一致を示しているが,波形後半部で差異が見ら れる. 波形の長さが長くなる方向にずれていることから, Aging 補正による誤差(特に Area balancing 補正における誤 差)ではないかと思われる. TAS 解析の結果は,他の解析 結果と比べてかなり波形が鈍っている. 前述の通り物体下 方に格子を集めて衝撃波を捕獲することを試みているもの の、やはり非構造格子で機体近傍場まで衝撃波をシャープ にとらえることは容易ではないことが伺える. 東北大学で は高精度近傍場波形推算のために、TAS 用の非構造解適合 格子法 ¹³⁾の開発を進めており、今後本研究への適用が期待 される. 最後に FaSTAR の結果を見ると、両形状とも波形 前半部では他の解析結果と良く一致しているが、波形全体 (特に波形後方)において多少波打つ様子が見られる. こ れは Hexagrid/FaSTAR 解析において近傍場波形をシャープ にとらえるために用いている格子密度増加オプション (Refinement Box 機能) において、スパン方向への Box 幅 が十分でないために生じている非物理的な変動であること が確認されており、更なる改善が期待される. ピーク圧力

値の比較においては、TAS 以外の推算結果は概ね JSWT の 結果よりも高い圧力値を示しており、風洞試験における衝 撃波/境界層干渉による減衰効果を考慮する必要があると 思われる.また、NWM と LBM を比べると、LBM の方が ピーク圧力値のばらつきが大きく、推算手法の違いが明確 に現れる傾向がある.

図 16 フィンが後部波形に与える影響(風試結果)

5. まとめ

JAXA が実施した低ソニックブーム設計概念実証プロジ ェクト (D-SEND プロジェクト) の第 1 フェーズである軸 対称供試体落下試験(D-SEND#1 試験)の2種類の供試体 形状(NWMとLBM)を対象として,近傍場圧力波形推算 手法の検証を実施した.フィンの無い軸対称形状に対して Panair 解析に Aging 補正を施した手法と 2 次元軸対称 Euler CFD 解析を,またフィン付きの3次元形状に対して非構造 格子法、構造/非構造重合格子法、ハイブリッド格子法の 3 種類の格子を用いた Euler CFD 解析を適用し、バリステ ィックレンジによる自由飛行試験データ、及び支持干渉補 正を加えた超音速風洞試験データとの比較を行った. ほと んどの解析手法は実験データと定性的に良い一致を示した が、特に波形後部においてフィンの影響の有無や、フィン 形状やオリエンテーションの違いに起因すると思われる差 異が確認された. 今後, 各解析手法を用いた詳細な検討が 必要と考えられる.

参考文献

- 本田雅久,他「D-SEND#1 落下試験概要」,第49回飛 行機シンポジウム講演集,JSASS-2011-5015,pp.56-62, 2011.
- 2) http://d-send.jaxa.jp/
- 今泉貴博,他「低ブーム軸対称模型(D-SEND#1)の 近傍場圧力実験計測」,衝撃波シンポジウム講演集, 2012.
- 4) 牧野好和,他「静圧レールを用いた機体近傍場圧力波 形計測の課題」第42回流体力学講演会/航空宇宙数値 シミュレーション技術シンポジウム 2010 講演集,2010.
- Carmichael, R.I. and Erickson, L.I., "PANAIR A Higher Order Panel Method for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations", AIAA Paper 81-1255, June 1981.
- 6) Whitham, G.B., "The Flow Pattern of a Supersonic Projectile", Communications in Pure and Applied Mathematics, Vol.5, 1952, pp.301-348.
- Chakravarthy, S.R. and Osher, S., "A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws", AIAA paper 85-0363, 1985.
- Nakahashi, K., Ito, Y. and Togashi, F., "Some Challenge of Realistic Flow Simulations by Unstructured Grid CFD", International Journal for Numerical Methods in Fluids, Vol, 43, 2003, pp.769-783.
- 9) 石川敬掲,他「低ソニックブーム設計概念実証落下試験(D-SEND#1)のソニックブーム推算」第43回流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム 2011 講演集, 2011.
- 10) Takaki, R., Yamamoto, K., Yamane, T., Enomoto, S. and Mukai, J., "The Development of the UPACS CFD Environment," High Performance Computing, Proc. of ISHPC 2003, Springer, pp.307-319, 2003.
- 11) 橋本敦,他「高速流体ソルバ FaSTAR の開発」第42回 流体力学講演会/航空宇宙数値シミュレーション技術 シンポジウム 2010講演集,2010.
- 12) Hashimoto, A., et al., "Lift and Drag Prediction Using Automatic Hexahedra Grid Generation Method," AIAA paper 2009-1365, 2009.
- 13) 大木祐介,他「ソニックブーム波形推算精度向上のための非等方細分化・疎化による解適合格子法」第25回数値流体力学シンポジウム講演集,2011.