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Abstract Dynamic structures of liquid germanium at the temperature of 1253
K were investigated by a first-principles molecular-dynamics simulation. To
investigate long-range correlation functions the MD simulation was carried out
not only with a cubic cell but also with a rectangular parallelepiped cell. The
calculated dynamic structure factors and the dispersion relation are in excellent
agreement, with the results of a recent inelastic X-ray scattering experiment.

1 Introduction

The structure of liquid germanium is complicated compared with that of most liquid
metals. Unlike simple liquids, the structure factor S(Q) has a shoulder on the high-Q) side
of the main peak|[l, 2|. This shoulder is explained by the difference between the effective
core radius and the wavelength of the Friedel oscillation in the interatomic pair potential[3]
or the existence of the covalent bonds even in the liquid metal [4]. It is an interesting
issue that how such complex structures are related to the dynamic structure in the liquid
germanium. Recently the dynamic structure factor, S(Q,w), of liquid germanium was
measured by the inelastic X-ray scattering experiment [5].

On the theoretical side, a first-principles molecular-dynamics (FPMD) simulation is one of
the best methods for studying the properties of liquid germanium. Though several FPMD
simulations for liquid germanium [6, 7] have been carried out so far, dynamic properties
have not been much studied in detail.

In this paper we present the results of the dynamic properties of liquid germanium at
1253 K calculated by FPMD simulations. The system size dependence of the self-diffusion
coefficient is also investigated.

2 Method of calculation
2.1 First-Principles MD

Our first-principles calculation is based on the density functional theory with the gener-
alized gradient approximation (GGA) [8] for the exchange-correlation energy. The norm-
conserving pseudopotential [6] is employed for the interaction between the valence elec-
trons and the ion, which is derived from the calculation of the atomic electron configu-
ration 4s? 4p? 4d°. The electronic wavefunctions are expanded by a plane wave basis set
with a cutoff energy of 11 Ryd. The I'-point is only used to sample the Brillouin zone of
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the MD supercell. The Khon-Sham energy functional is minimized by the preconditioned
conjugate-gradient method [6, 9]. The constant temperature FPMD simulation is carried
out using the Nosé-Hoover [10, 11| thermostat. The density of the system is chosen from
the experimentally observed value; the number density n = 0.04658 A3 [12].

2.2  MD simulation

We carried out the FPMD simulation using 64 atoms in a cubic cell with periodic bound-
ary conditions (system 1). The length of a side of the cell, L, is 11.12 A. To calculate
the dynamic structure factor accurately, we performed a long-time MD simulation for
22,000 steps with a time step of 125 a.u. (3.02 fs). Physical properties were calculated by
averaging the atomic configurations of 21,500 steps after the thermodynamic equilibrium
was achieved.

In the system 1, the smallest wavenumber, Quin, is 27/L = 0.57 A-1 . On the other
hand, experimental dynamic structure factors were observed for 0.2 < Q < 2.8 A-1 [5].
To obtain the dynamic structure factors for smaller-Q) region we employ a larger system
with 128 atoms (system 2). The shape of the MD cell in the system 2 is not cubic but
a rectangular parallelepiped whose one side length L, is as twice as those of the other
sides, Ly and L3, where Ly = 22.23 and Ly = Lz = 11.12 A. In this system the smallest
wavenumber, Qmin, is 27/L; = 0.28 A-1 . For the system 2 the MD simulation was
carried out for 25,000 steps with a time step of 3.02 fs.

2.3 Dynamic structure

The method of calculation of the dynamic structure factor S(Q,w) is as follows: First
we calculate the intermediate scattering function F(Q,t) which is defined as the space
Fourier transform of the van Hove correlation function G(r,t),

FQ.H) = [drep(-iQ - mG(r1) e
= %<"Q(t)nfq(0)>v (2)

where v
nq(t) = 3 expliQ- i(t) 3)

is the Fourier transform of the density operator, (- --) means thermal avcrage and N is
the number of atoms. The dynamic structure factor S(@Q,w) is given as

S(Quw) — [ dtexp(-iwt) F(Q.1). (1)

S(Q,w) gives the frequency spectrum of the correlation between density fluctuations of a
given wave vector. We note that

1
o [ wS(Q.w) = F(Q.0) = 5@ (5)
is the static structure factor. The self-diffusion coefficient D is obtained by the relation,
1 2
D= (1)), (6)
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where (r?(t)) is the mean square displacement(MSD) of atoms. This expression for D,
which is a time-independent quantity, should be applied to the time region where (r?(t))
varies linearly with ¢. In a fluid system the linear behavior in (r?(t)) is obtained at much
longer time compared with the characteristic time of correlation between the tagged atom
and its immediate neighbors. Therefore equation (6) is valid only for a large ¢. The velocity
autocorrelation function Z(t) is defined by

1N
200 = 13 < wi(t) - 05(0) >, 7)
j=1
where v;(t) is the velocity of the j-th atom at time ¢.

3 Results and Discussion
3.1 Static structure

In figure 1, we show the structure factors S(Q)’s of liquid germanium at 1253 K. The solid
and the dashed lines represent the results calculated by the systems 1 and 2, respectively.
The data observed from the X-ray [1] and the neutron [2] diffraction experiments are
also shown by the open and the solid circles, respectively. The asymmetric first peak of
5(Q) is well reproduced by the FPMD simulation and the whole shape of S(Q) is in good
agreement with the experimental data.
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Figure 1. Structure factor, S(Q), of liquid germanium at 1253 K. The solid and the dashed

lines show the results for the system of 64 atoms and 128 atoms, respectively. The open and
the solid circles show the X-ray [1] and the neutron scattering experiments [2], respectively.

The radial distribution functions g(r)’s of liquid germanium at 1253 K are shown in figure
2. The meaning of lines is same as that in figure 1. The first peak for the system 2 is a
little broader than that for the system 1.
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Figure 2. Radial distribution function, g(r), of liquid germanium at 1253 K. The solid and
the dashed lines show the results for the system of 64 atoms and 128 ators, respectively.

3.2 Three-body angle distribution function

A three-body angle distribution function g®(#,r.) is calculated and shown in figure 3.
The three-body angle € is formed by a pair of vectors drawn from a reference atom
to any other two atoms within a cutoff radius r.. When the cutoff radius r. is 3.0 A,
which is longer than the average nearest neighbor distance, 2.7 A, g (8, r.) shows a clear
peak centered at 60°. When an interatomic interaction is isotropic and the atoms are in
closed-packed, ¢® (8, r.) should have a peak around 60°. Therefore this peak indicates a
typical structure in a simple liquid. With decreasing the cutoff radius r., the peak at 60°
disappears. For r. = 2.7 A, ¢®(0,r.) shows only single broad peak near 100° which is
close to the tetrahedral bond angle of 109°. This peak suggests that some local structures
due to anisotropic interactions remain in liquid germanium. The peak around 100° for the
system 2 is lower than that for the system 1.
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Figure 3. Three-body angle distribution function g® (6, r.) of liquid germanium at 1253 K.
The solid and the dashed lines show the results for the system of 64 atoms and 128 atoms,
respectively.
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3.3 Dynamic structure

To investigate the single-atomic motion in liquid germanium, we calculated the mean
square displacement of atoms (MSD) and the velocity autocorrelation function (VAF) by
averaging over all atoms and over the time origins in the whole MD steps. The results of
the MSD and the VAF are shown in figures 4 and 5, respectively. The solid and dashed lines
show the results obtained by the systems of the 64 atoms and the 128 atoms, respectively.
The MSD shows a free-particle like behavior until about 0.1 ps and then follows a straight
line in a long-time region with excellent statistical accuracy (see figure. 4). The self-
diffusion coefficients 1)’s are estimated by the gradient of the MSD for 1 < ¢ < 3 ps. The
results of D are 0.89 x10~* and 1.07 x10~* cm?s~! for the system 1 and 2, respectively.
The VAF’s do not take large negative values. This implys that the cage effect is small in
liquid germanium (see figure 5). The self-diffusion coefficients, D’s, estimated from the
spectrum of the VAF for the system 1 and 2 are 0.92 x10™* and 1.09 x107* cm?s™!,
respectively. The self-diffusion coefficient for the system 2 is about 20 % larger than that
for the system 1. This means that the periodic boundary condtions may affect the dynamic
properties in a small size simulation.
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Figure 4. The mean square displacement (MSD) of atoms of liquid germanium at 1253 K.
The solid and the dashed lines show the results for the system of 64 atoms and 128 atoms,
respectively.

In figures 6 and 7 the dynamic structure factors, S(Q,w)’s, for 0.2 < @ < 2.8 A1 are
shown. The solid and the thick dashed lines show the results obtained by the system 1 and
2, respectively. The experimental results [5] are also presented by the open circles (raw
data) and the thin dashed lines (fitting curves). The side peak for small Q-region A-1,
which shows a longitudinal propagating mode, is well reproduced by both the systems
1 and 2. With increasing wavenumber @), the side peak becomes less pronounced. The
central peak in S(Q,w) becomes sharper and more intense around @ = 2.5 A-!, which
is the main peak position of S(Q), that is called de Gennes narrowing. The calculated
results are in good agreement with the experimental data for all Q)-region.

The dispersion relation was also calculated, which is the relation between @ and the

87

This document is provided by JAXA.



(\Ge 1253K ]
L=11.12 A, N=64
--------- — Li=2223 A, 1,5=11.12 A, N=128

S
3
=
N

O_

0 0.2 0.4

t (ps)

Figure 5. The velocity autocorrelation functions of liquid germanium at 1253 K. The solid
and the dashed lines show the results for the system of 64 atoms and 128 atoms, respectively
(Z(t): VAF at time t).
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Figure 6. Dynamic structure factor S(Q,w), of liquid germanium for 0.2 < @ < 1.2 A1 at
1253 K. The solid and the thick dashed lines show the results obtained by the system 1
and 2, respectively. The experimental results [5] are also presented by the open circles {raw
data) and the thin dashed lines (fitting curve). S(Q) is the static structure factor.
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frequency of the side-peak wy,. For the system 1 the side peaks are observed only for the
two Q values. On the other hand for the system 2 since the five points for ¢) = 0.28 ~ 0.81
A1 are observed, we can estimate the gradient of the dispersion curves accurately and
that agrees reasonably well with the experimental sound velocity 2682 m s~ [13].

4 Summary

The dynamic properties of liquid germanium was investigated by the first-principles
molecular-dynamics simulations. It was shown that the long MD cell is effective to in-
vestigate long-range correlation function with a small number of atoms. It was also shown
that the self-diffusion coefficient for the system of the long MD cell with 128 atoms is
about 20 % larger than that for the system of the cubic cell with 64 atoms.
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Figure 7. Dynamic structure factor, S(Q, w), of liquid germanium for 1.7 < Q < 2.8 A-1at
1253 K (S(Q): Static structure factor).
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Figure 8. Dispersion relation w,(Q) — @ of liquid germanium. w,(Q): the side peak frequenct

of $(Q,w) at the wave number, Q. The solid and the open circles show the results for the
system of 64 atoms and 128 atoms, respectively. The triangles show the experimental data

[5]

90

This document is provided by JAXA.



