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Several sets of numerical simulations were conducted to give realistic understandings of
oscillatory Marangoni convection in half-zone liquid bridges of low Prandtl number fluid
with various aspect ratios (from 0.6 to 2.2). Special emphasis was placed on the effects of the
less-conductive supporting rods on the transition from axisymmetric steady flow to three
dimensional steady and also to oscillatory three dimensional flow. The new simulation results
revealed that the conductive heat transfer through the small gaps (Imm in total) between the
melt/rod interface and the temperature measuring points causes significant temperature drop
which provide with serious error in estimating Marangoni numbers. This conductive
temperature drop is the major reason of the discrepancy between the numerical results in
preceding years and the experimental results obtained in NASDA. The effect of the finite
conductivity of the rods causes additional effect through the non-uniform temperature
distributions on the melt/rod interface. This effect is not negligible but yet minor.

Keywords: Marangoni flow, Oscillatory flow, Critical Marangoni number, Low Pr fluid,
Flow mode, conductive temperature drop

1. INTRODUCTION

Marangoni convection in a half-zone liquid bridge of length L and radius a confined between
two differentially heated solid rods has become over the years a typical model for the study of
thermocapillary flows and their stability. The stability of thermocapillary flow in
non-isothermal liquid bridges with cylindrical free surface has been intensely investigated.
These studies are stimulated by the experimental facts that flow instabilities in floating zones
cause striations in crystals grown in microgravity condition. It is well known that the flow
exhibits axisymmetric and steady roll cell structure under small temperature difference (AT)
between the two disks and that it becomes unstable and a three-dimensional thermocapillary
flow arises when the applied temperature difference exceeds a certain threshold value. On
this subject, there have been many experimental works, theoretical studies by means of the
linear stability analyses and non-linear numerical simulations. Most of those experimental
works, however, have been extended for high Prandtl number fluids. Less works have been
reported for low Prandtl number fluids, since it is very difficult to conduct well-controlled
experiments with small Prandtl number fluids (mostly liquid metals) due to opacity, reactivity
and high melting temperatures. On the other hand, numerical simulations have been
conducted for thermocapillary flow in half-zone liquid bridges of various Prandtl numbers.
Linear stability analyses (Neitzel et al.[1], Kuhlmann and Rath [2], Wanschura et al. [3],
Chen et al. [4], Chen and Hu [5], Chen et al. [6]) have confirmed that for high Prandtl
numbers the instability is oscillatory (Hopf bifurcation) whereas for low Prandtl numbers the
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instability breaks the spatial axisymmetry (but the flow regime is still steady) prior to the
onset of time dependent flow field. Recently, Levenstam et al.[7] studied the flow transitions
in a half-zone at intermediate Prandtl numbers (0.05 — 1) using both linear stability analysis
and numerical simulations. By means of direct numerical simulation techniques, Rupp et al.
[8], Levenstan and Amberg [9] and Leypoldt et al. [10] confirmed that for low Prandtl
number fluids, the first bifurcation is stationary i.e., the supercritical three-dimensional state
is steady, and that the flow becomes oscillatory only when the temperature difference is
further increased. These works had been conducted on limited range of the aspect ratios
(4s=L/a), mostly 4s=1.0 and 1.2.

In proceding years, we have conducted series of numerical simulations of Marangoni
convection in half-zone liquid bridges of low Prandtl number fluids [11-18]. Part of these
critical Reynolds numbers (or the critical Marangoni numbers) showed good agreements with
those reported values by linear stability analysis [3,4] and other numerical simulations [9,10].
As was reported last year, our numerical simulations helped understand the structures of flow
and temperature fields of 3-D steady flow and also types of oscillatory flows. We showed the
first and the second critical Reynolds numbers as a function of aspect ratio and the Prandtl
number. Our results indicate that the critical temperature difference (A7c) to initiate the
oscillatory flow in liquid bridge of low Prandtl fluid increases as the aspect ratio decreases
and shows maximum value at 4s=1.2. This trend was first reported by us but has never been
confirmed experimentally. However, very few experimental reports are available on the flow
instability in half zone liquid bridges of semiconductor materials [19-26] and molten tin
[27-30]. These authors reported the existence of the oscillatory thermocapillary flows through
their observations of the surface temperature oscillations, vibration of liquid bridge surface,
and non-axisymmetric trajectories of tracer particles. The research group at NASDA
succeeded to detect the second flow transitions by using a small liquid bridges of molten tin
[27-30]. Their experimental results showed that AT, tends to increase with decreasing aspect
ratio. The results are qualitatively coincides with the aspect ratio dependency of our
numerical results in large aspect ratio region. However, the experimentally determined
critical Marangoni numbers (or the critical temperature differences between two rods
measured by two thermocouples each of which is located in the iron rod only 0.5mm apart
from each melt/rod interface) were as large as twice or more of our predictions, as shown in
Fig.1. These discrepancies were pointed out in the last annual report [16], and left to be
solved in the FY2001.

From a thermal engineer’s point of view, the measured temperature differences do not
represent the temperature difference which drives the thermocapillary flow, since there
should be a considerable temperature drop in the supporting rod (made of iron) whose
thermal conductivity is much smaller than that of molten tin. The smaller thermal
conductivity of the supporting rods also originates non-uniform temperature distributions on
the melt/rod interface. The two dimensional temperature distribution on the melt/rod interface
may cause extra effects on the flow patterns and flow transitions. These effects of
non-isothermal boundary conditions on the flow transitions have never been properly
evalutaed by numerical simulations.  The aim of our research in FY2001 is development of
a new mathematical model and numerical codes, which can include the conductive heat
transfer in the supporting rods and also the radiative heat loss from their surfaces. By running
the codes, simulations predict the realistic stability limits at different aspect ratios under
various imposed temperature differences. The results must be subjected to a quantitative
comparison with the experimental results obtained by NASDA’s group.

2. MODEL FORMULATIONS

132

This document is provided by JAXA.



In order to evaluate the effect of thermal resistance in the supporting solid rods extending
both sides of the liquid bridge, cylindrical solid rods are added to a standard model of
half-zone liquid bridge, as shown in Fig. 2. The origin of the z axis is located at the center of
the lower melt/rod interface. The length of the liquid bridge is axAs, the length of each rod is
axAs;. The liquid surface is assumed non-deformable and cylindrical. This shape is true
under microgravity condition. There acts the Marangoni effect on the liquid surface.
Radiative heat loss from surfaces is also included. Fundamental equations are expressed as

follows.
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00 20

U=v=w=0, B_Z= r/mE' in rod

The non-dimensional parameters are the Prandtl number, Reynolds number, Biot number, as
defined as follows, respectively. Radiation heat loss is evaluated by means of the Biot
number.
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respectively. The Marangoni number is defined as Mar/=RerPr. The non-dimensional
variables are defined as; {R, Zi= {rla, zla}, P= pa?(vy), U= ualv ,0 = (T-To)IAT,
=tvla2, where Tp = (Th+TD/2, a =Mlcy p, u: velocity, p: pressure, c,: heat capacity, p:
density, A: thermal conductivity, y: viscosity, v: kinematic viscosity, o: the Boltzman constant,
Oy = O Oy, /lr/m = A, | Ayyand ATr=(Ty-To).

It should be noted that the ATt is the over all temperature difference imposed between the top
and the bottom of the solid rods and it does not represent the temperature difference which
drives the thermocapillary flow on the melt surface. The effective temperature difference
acting on the liquid bridge and the temperature difference between the thermocouples in
NASDA’s experimental apparatus will be defined in the later part of this report.

3. NUMERICAL METHOD

These equations are discretized by a finite difference method with a modified central
difference treatment for the convective terms [31] and non-uniform staggered grids.
Non-uniform grids were adopted to increase the resolution. The radial velocities on the
central axis were calculated by means of the method of Ozoe et al. [32]. A fully implicit code
was developed this year using the Bi-CGSTAB ( Bi-Conjugate Gradient STABility ) method
of Fujino et al. [33], combined with a specially coded matrix conditioner. This code provides
very fast calculation, however, works only on the super computer. The code was validated by
comparing the results with our previous numerical simulations run by different codes. The
new code provides results with indistinguishable difference from the previous results. In this
work, we did not give 3-D disturbances. But numerical disturbances grew up automatically.
These numerical disturbances incubate 3-D disturbances automatically and they start growth
with time if a super critical temperature difference is imposed. A two dimensional (2D)
simulation code with the same scheme and 2D grids was run in order to obtain a 2D solutions
under the same conditions. Fig.3 shows one of the grids used for 2-D simulations. For three
dimensional cases, similar grids were generated on each of » vertical cross sections on every
AG=1t/n. In the present simulations, n= 20-24 was chosen for various aspect ratios. The
thermophysical properties and geometric parameters are listed in Table 1.

4. RESULTS
4.1 Flow and temperature fields for As=2.0
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First, a series of simulations for tin liquid bridge with a fixed aspect ratio of As=2 with
different imposed over-all temperature differences as shown in Table 2. In these cases, we
assumed g=0 (zero-gravity condition).

Case 1: AT=4.37K (Ma1=30)

In this case the thermocapillary flow in the liquid bridge is axisymmetric and steady. At =0,
the bottom plate of the lower rod is subjected to an instantaneous temperature rise from
©=-0.5 to up to ©=+0.5 (real temperature rise in this case is 4.37K). The lower rod is heated
up via unsteady heat conduction and the liquid bridge and the upper rod are heated up. As the
liquid bridge is subjected to a non-isothermal condition, thermocapillary flow starts as shown
in Fig.4. As time passes in the early stage, the surface velocity increases very quickly. But
with this small ATy the induced flow is steady and axisymmetric. After time 7=0.2, the
surface velocity is maintained at a constant value, indicating that the effective temperature
difference between the lower and the upper melt/rod interfaces and the flow has reached their
final conditions. However, the lower figure indicates that the temperature level in the liquid
bridge is still rising until 7=0.65. Temperature and velocity distributions at the steady state are
shown in Fig. 5. The isotherms are drawn at every AG=0.02 on the vertical cross section and
AG=0.001 on the horizontal cut planes. The horizontal cut planes at the cold and the hot end
of the liquid bridge show small coaxial non-uniformity of temperature (yet less than 0.013K).
The isotherms in the melt are horizontal and parallel. Heat transfer in the melt is practically
controlled by the conduction. The effective temperature difference between the upper and the
lower ends of the liquid bridge is 0.96K and the effective Marangoni number is Ma=6.6.

Case 2: AT7=10.93K (Ma;=75)

The simulated results are shown in Fig.6 and Fig.7. In the early stage, an axisymmetric
thermocapillary flow field develops. This axisymmetric flow is unstable against a three
dimensional disturbance. From an early stage, small 3-D disturbance (see Fig.6, local
absolute azimuthal velocity (|Up|) on the melt surface) grows exponentially with time and
becomes distinguishable after 7=0.65. Finally, a steady three dimensional flow and
temperature field comes out as shown in Fig.7. The isotherms are drawn at every A©=0.02 on
the vertical cross section and A©=0.002 on the horizontal cut planes. The horizontal cut
planes at the cold and the hot end of the liquid bridge show small two-dimensional
temperature (yet less than 0.66K). The shape of the isotherms in horizontal cuts look like a
horse-shoe, suggesting that the 3-D flow has an azimuthal wave number of m=1. The
isotherms in the melt are almost parallel but distinguishably and three dimensionally
deformed. 3-D convective transfer in the melt takes important role in the 3-D flow. The
effective temperature difference between the upper and the lower ends of the liquid bridge is
2.37K during the pseudo axisymmetric flow period. But it increases up to 2.38K at the 3-D
steady flow. The flow transition from an axisymmetric to a 3-D steady flow is accompanied
by a small (0.5%) reduction of the over-all heat transfer coefficient in the melt. The effective
Marangoni number based on the averaged surface temperature difference A0 is Ma=16.32.
The averaged surface temperature difference A® is defined as : AT = A®x AT, where A©

1s defined as:
= _12n 2 }

Case 3: AT;=17.48K (Mar=120)
The simulated results are shown in Fig.8. From the early stage, a 3-D disturbances are
growing. For a very short period, a pseudo steady 2-D flow field appears (0.1<7<0.2) but
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after at 7=0.16, a 3-D disturbance starts increasing its intensity. The exponential growth ends
at around 7=0.25. At the last moment of the growth, an oscillatory disturbance is excited.
However, the amplitude of this oscillation stays small and very slowly decreases with time.
The final flow state should be a 3-D steady flow with m=1. A® is about 0.2156 at the fully
developed stage. Then the effective Marangoni number is Ma=25.87. This value is slightly
smaller than the second critical condition (Ma,=25.93). This small sub-critical state is the
cause of the slow decay of the accidentally excited oscillations.

Case 4: AT1=18.94K (Ma;=130)

The simulated results are shown in Fig.9. At 7=0.16 a 3-D disturbance starts its growth
process. For a very short period, a pseudo steady 2-D flow field appears (0.1<7<0.2) but
after 7=0.24, transition to a 3-D flow field occurs and an oscillatory disturbance is
superposed on the basic 3-D flow and increases its amplitude exponentially with time. Finally
the flow and temperature fields exhibit oscillations with yet small amplitudes. The
non-uniformity of the interface temperature becomes larger than those in the previous case.
The melt flow pattern is classified as a twisting type oscillation with m=1. A® is about
0.2152 during the fully developed oscillation. Then the effective Marangoni number is
Ma=2798.

Case 5: AT1=20.40K (Ma;=140)

The simulated results are shown in Fig.10 and 11. A transition to 3-D flow occurs at around
7=0.25. At the same time oscillatory disturbance increases its oscillation amplitudes. At this
condition, oscillatory disturbances grow much faster and bigger and become easily detectable.
Finally the flow and temperature fields exhibit oscillations with constant amplitudes and
period as shown in Fig.10. The isotherms in Fig.11 are drawn at every A@=0.02 on the
vertical cross section and AG=0.0025 on the horizontal cut planes.. The non-uniformity of the
interface temperature becomes larger than those in the previous case. The melt flow pattern is
classified as a twisting type oscillation with m=1. A@ is about 0.2147. Then the effective
Marangoni number is Ma=30.06.

Case 6: AT7=26.23K (Ma;=180)

The simulated results are shown in Fig.12 and 13. A transition to 3-D flow occurs at around
7=0.25. At the same time twisting type oscillatory disturbance of m=2 increases its oscillation
amplitudes and soon become detectable. But after around 7=0.8, a transition of flow occurred
accompanied by a significant decrease of A© for a short time. After 7=1.15, a twisting type
oscillatory flow with m=1 becomes dominant. Thereafter, oscillatory flow of m=1 is
prevailing but the flow and temperature fields become unstable and the periods and
amplitudes of disturbances are time dependent. A® is about 0.213 during the m=1 period.
Then the effective Marangoni number is about Ma=38.34.

4.2 Critical Marangoni numbers for flow transitions in a liquid bridge of As=2.0

From these simulation results mentioned above, we can calculate the growth rate constant
of a 3-D steady or oscillatory disturbances. Thus determined f’s are plotted as a function of
the effective Reynolds number as shown Fig.14 and Fig.15 for the first transition and the
second transition, respectively. In the plots, the results of our previous simulations which
assumed isothermal melt/rod interfaces. Fig.14 indicates that the first critical Reynolds
number is insensitive to the thermal conductivity of the supporting rods, i.e., isothermal case
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predicted Re;;=790.5 and the present results based on the effective AT gives 791.9. Deviation
is less than 0.2%. This reflects the fact that at the first flow transition condition, heat flux
through the liquid bridge is small and the melt/rod interface is practically isothermal even if
the rod has smaller thermal conductivity than the melt. However, for the second critical
Reynolds number, the small thermal conductivity of the rods causes a small increase of the
critical Reynolds number. The isothermal case predicted the second critical condition as
Rer= 2819, w,,=136.4 and the present result 2903, @w,,=140.5. The deviation is yet less than
3%.

With this model, we evaluated the effect of radiative heat loss, from the surfaces of the melt
and the rods, on the second critical Reynolds number and the critical oscillatory frequency.
Under the radiative boundary conditions with £€=0.1 and T,m»=390K, the present model
predicted the second critical conditions as follows.

If we assume the isothermal melt/rod interfaces: Re,,=2828 and w.,=138.2.

If we assume two iron rods support the liquid bridge: Re,=2917.7 and w.,=141.4.

Thus the radiation heat loss provides small increase (by about 3.5%) of the second critical
Reynolds number from the isothermal, adiabatic case in our previous result.

4.3 Effect of the finite thermal conductivity of the rods on the critical conditions in
different aspect ratios

Similar set of simulations were conducted for a liquid bridge with As=1.4 and an adiabatic
surface. The results predicted Re.;=4783 and @:,=220.3. The isothermal boundary conditions
at both melt/rod interface gives Re.»=4628 and @.,=212.8 for Pr=0.01.

Thus, the radiation heat loss and the non-isothermal boundary conditions can not explain the
large deviation between the experimental results and our simulation results shown in Fig.1.

4.4 Effect of the conduction in the rods.

The results of the preceding sections suggest that the critical Reynolds numbers are not
sensitive to the small temperature non-uniformities on the both interfaces. Thus the very large
deviations between the second critical Reynolds numbers predicted by the simulations and
the experiments must be understood by different factors. The most plausible cause of these
deviations

may be the differences between the effective temperature difference between the melt/rod
interfaces (A7) and the temperature difference between the measuring point (A7>). Although
the vertical distance between the interface and the tip of the thermocouple () is as small as
0.5mm, it should be noted that the heat flux in the liquid bridge of low Pr fluid tend to be
large. Our previous simulation results predicted that as the aspect ratio decreases, the larger
temperature difference is required to initiate oscillatory convection, for aspect ratios larger
than 1.2. Thus, the heat flux must increase as the 4s decreases.

A very crude model predict the temperature drop in this small distance (0) between the
interface and the temperature measuring point. As shown in Fig.16, temperature difference
between the interfaces is denoted as AT; and that between the two measuring points is
denoted as AT . If we assume that the heat transfer in the melt is also governed by the heat
conduction, following equations are easily derived.

’

A A,
g="TLAT;, q=-LAT;, and AT, ~ AT, +2AT;
L 8
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where ATjsis the temperature drop in the distance o. Thus, the ratio of these two temperature
differences is a function of the aspect ratio as;

A% (2_8 Ix_m ]_1_ |

AT, a | A JAs

The reported values of the second critical Marangoni number of NASDA'’s experiments were
calculated based on the temperature difference between two thermocouples (A7T>). These
values can’t be expected to represent AT but rather closer to this AT . Hereafter, we define a
Marangoni number based on AT» and denote it as Ma’, i.e., Ma'=( AT,/ AT\)Ma.

Then, the second critical Marangoni numbers predicted by our simulations with isothermal

boundary conditions on both end plates (indicated by the solid triangles in Fig.17) can be
approximated by adopting this crude model as,

AT A
Ma= 2 = 14| 2| Zm | Ly,
AT1 a kr As

This equation converts the Mac, of our previous work to Ma’., as indicated by the dotted line
in Fig.17.

These approximated values are compared with the Ma’ values based on the three dimensional
simulations with the iron rods.

The temperature differences between two locations of thermocouples can be easily obtained
from the simulations. Thus calculated values of Ma’.; at As=2.0 and 4s=1.4 are also plotted
in Fig.17. These points fall very close to the dotted line, indicating the crude model can be
used as a first approximation to convert Ma to Ma’ or vise versa.

As shown in Fig.17, the experimentally determined second critical Marangoni numbers based
on the measured AT, show large scatters but most of them fall above the dotted line and the
Ma, based on the present 3-D simulation results. The smallest value at each As suggest the
dotted line gives a reasonable criteria for the incipience of the oscillatory Marangoni flow in
the tin liquid bridges. That means, the second critical Marangoni numbers as a function of
aspect ratio, first predicted by us via 3-D simulations is confirmed by the experiments using
tin liquid bridges at NASDA. However, the scatters of the experimental results are very large
and the reliability of those experimental results must be further evaluated critically.

5. Conclusion

2000 Annual Report of NASDA’s Marangoni Convection Research Project reported our
simulation results and NASDA’s experimental results on the critical temperature difference to
initiate the oscillatory flow in a small liquid bridge of molten tin. The experimental results of
the critical temperature difference (AT¢) were larger than our simulation results by a factor of
2 to 3. In order to evaluate the true causes of these discrepancies, a new mathematical model
was developed this year. The new model includes radiative heat loss and the supporting rods
which has lower thermal conductivity than the liquid in the liquid bridge. The developed
numerical codes were run using the same physical properties and geometrical parameters as
those of the experimental set-ups of NASDA’s experimental apparatus. The lower thermal
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conductivity of the iron rods and the radiation heat loss from the liquid surface cause small
increase of the second critical temperature difference (or the critical Reynolds number)
compared with our previous results which assumed isothermal disks. The increases, however,
are less than 3.5%. However, these simulation results and a thermal engineering analysis
revealed the real cause of the discrepancy between our results and NASDA’s experimental
results. The spatial gap between the melt/rod interface and the temperature measuring point,
as small as 0.5mm, create significant temperature drops and the measured A7c did not
represent the effective temperature difference which drived the thermocapillary flow. Heat
flux in the rods and short liquid bridge of molten tin cause unexpectedly large temperature
drops in the rods. The experimental results must be critically analyzed before being compared
with theoretical predictions.
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Table 1

Thermophysical properties and geometric parameters.

Molten Tin Iron
Pr 0.009 -
Density o [kg/m3] 6793 7700
Thermal conductivity A [W/mK] 35.44 20.0
Specific heat Cp [J/kgK] 242 460
Viscosity ¢ [kg/ms] 1.318 - 10'3 -
Temperature coefficient ¢ ; [N/mK] 1.3 10" -
of surface tension
Emissivity e [-] 0.1 0.11(SKD11)
0.16(SUS316)
Radius a [m] 15-10"
Length of the liquid bridge L [m] 3.0-10"
Total length [m] 9010
Ambient temperature T, [K] 390

Table 2 Overall temperature differences and Mar imposed
for numerical simulation.

ATT[K] Mar [ -]
Casel 4.37 30
Case2 10.93 75
Case3 17.48 120
Cased 18.94 130
Case5 20.40 140
Case6 26.23 180
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250~ Experiment
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Fig. 1 Comparison of the experimentally determined Mac, and our simulation results
for tin bridges as a function of aspect ratio.
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Fig. 2 Schematics of a liquid bridge with two supporting rods.
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One example of the grid used in the present simulations.
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Pr=0.009, As=2, Ma;=30, Re;=3333
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Fig.4 Time evoluton of a 3-D oscillatory Marangoni flow in a bridge of Pr=0.009, As=2,
Mar=30, Re1=3333 and AT1=4.37K
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Fig. 5 Snapshots of velocity and temperature distributions in a vertical cut plane and
horizontal cuts at Z= As,, As+0.5As and As, + As at axisymmetric steady stage of Pr=0.009,
As=2, Mat=30, Re1=3333 and AT1=4.37K
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Pr=0.009, As=2, Ma;=75 and Re;=8333
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Fig. 6 Time evoluton of a 3-D oscillatory Marangoni flow in a bridge of Pr=0.009, 4s=2,
Mar=75, Re1=8333 and AT+=10.93K
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Fig. 7 Snapshots of velocity and temperature distributions in a vertical cut plane and on Z=
As, , As+0.54s and As, + As horizontal cut planes at finally 3D steady stage of Pr=0.009,
As=2, Mar+=75, Re1=8333 and ATr=10.93K
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Fig.8 Time evoluton of a 3-D oscillatory Marangoni flow in a bridge of A7r=17.48 K and
Ma1=120
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Fig. 9 Time evoluton of a 3-D oscillatory Marangoni flow in a bridge of A77=18.94K and
Ma1=130
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Pr=0.009, As=2, Ma;=140 and Re;=15555
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Fig.10 Time evoluton of a 3-D oscillatory Marangoni flow in a bridge of AT1+=20.40 K and
MaT=l40
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Fig. 11 Snapshots of velocity and temperature distributions in a vertical cut plane and on Z=
As, , As;+0.54s and As, + As horizontal cut planes at finally 3D oscillatory stage of AT7=
20.40 K and Ma=140.
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Pr=0.009, As=2, Ma1=180 and Re=20000
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Fig.12 Time evoluton of a 3-D oscillatory Marangoni flow in a bridge of ATy=26.23 K and
MaTil 80.

152

This document is provided by JAXA.



“5A(-)— 0.0025 0°

2%

E
-05 ©=05[-] 05 -05 D.S

Fig.13 Snapshots of velocity and temperature distributions in a vertical cut
plane and on Z= As,, As+0.5As and As, + As horizontal cut planes at finally 3D oscillatory
stage of A T+=26.23 K and Ma=180.
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Pr=0.009, As=2 and Gr=0
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Fig.14 The first critical condition
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Fig.15 The second critical condition.
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