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Thermocapillary-driven convection in a half-zone liquid bridge has been extensively
examined. A large number of researches have been conducted concerning the transition of the
flow field. Physical mechanism of the transition, however, has not been fully understood. In
the present study, three-dimensional numerical simulations taking with and without dynamic
free surface deformation (DSD) into account ar i
surface deformation upon the flow field. The surface shape is solved by considering the stress
balance on the free surface, and the calculation coordinate is reconstructed at every time step
with employing a boundary fitted coordinate. The test fluids are acetone (Pr=4.38) and 2¢St
silicone oil (Pr=28.11). The free surface deformation is determined pri
variation. For acetone, the effect of the DSD upon critical peint and flow field is quite small in

3

the range of present numerical simulation.
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pressure and axial velocity is obtained.

1 INTRODUCTION

One of the purposes of the space environment utilization is the processing of a new material,
because the buoyancy effect can be reduced in the space environment. Floating-zone method
is one of the well-known material processing methods under the micro-gravity. In this method,
however, the convective motion still occurs induced by the surface tension difference on the
free surface owing to the temperature gradient. This convection is called thermocapillary or

1

and has heen widely investigated with a half-zone (HZ) model

AAAAAAAA goni convection, and has been
corresponding to half part of floating-zone model. In the HZ model, a liquid bridge is

ustained between the coaxial cylindrical rods. Each rod is maintained at different
temperature, thus the liquid bridge is exposed by a temperature difference AT between the
both rods. When AT exceeds a critical value ATe, the induced flow in the HZ bridge of
medium and high Prandtl number fluid exhibits a transition from a two-dimensional steady
flow to a three-dimensional oscillatory one. The oscillatory flow has two patterns called as

'Standing wave' and 'Traveling wave'. These flows appear depending upon the temperature
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difference. The structure in the liquid bridge is characterized further by the azimuthal wave
number m. The flow field is divided azimuthally into 2 X m sectors; the alternate sector, m in
total, consists of the same thermal-fluid structure.

The experiments for the thermocapillary convection have been widely conducted. Preisser
et al. (1983) [l investigated the oscillatory flow to study the effect of several parameters such
as the aspect ratio and Marangoni number. Velten et al. (1991) [ observed the periodic
instability of thermocapillary convection in the cylindrical liquid bridge.

As for the numerical simulation, Kuhlmann (1993)8 and Wanschura et al. (19954
calculated the critical Reynolds number for the various non-dimensional numbers (Bi, Gr, Pr,
A) using the linear stability analysis. Savino and Monti (1996) B! simulated the oscillatory
flow numerically and compared it with their experiments. Shevtsova et al. (1998) 6] studied
the transition from two dimensional thermoconvective steady flow to a time-dependent flow
considered for an axisymmetric liquid bridge of a high Prandt! number fluid (Pr = 105) with a

static curved free surface.

t should be noted that most of the existing numerical simulations were conducted without
3 1 3 v a1 Ay Afbnn tlin mmant AL Aceillodl v
considering the dynamic free surface deformation (DSD). After the onset of oscillation,

however, the pressure field fluctuates violently because of the unsteady flow. Therefore the
fa

un
free surface is expected to dynamically deform due to these fluctuation. In fact, the free

surface vibration in the liquid bridge has been observed in some terrestrial experiments.

Kamotani et al. (2000) 17 reported an experiment of the thermocapillary convection performed
aboard the Spacelab in an open cylindrical container, and investigated the free surface
movement. In addition, they analyzed the influence of surface deformation upon the critical
condition in the half-zone configuration. Correlation between the criticality and the dynamic

surface deformation, however, is not understood yet. An influence of surface vibration upon

" o1y s s .
3 i s i34 {ns ~A
the flow field instability must be evaluated to understand

PR : AE AT T
he mecnanism of the oscillatory

flow. To the authors' knowledge, no numerical works have been done on the thermocapillary
for

convection in a liguid bridge with including the dynamic deformation of the surface.

Recently, Kuhimann et al. 8 have made a combined anaiytiea‘i and numerical study on th
i i he DSD wusing th
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stability analysis. They analyzed the mutual relation between the flow field and the dynamic
surface deformation in the most dangerous mode. The present study aims at understanding
time-dependent thermal-fluid phenomena with dynamic free surface deformation in the

half-zone liquid bridge by a direct nonlinear numerical simulation.
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2 NOMENCLATURES
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vi
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v
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aspect ratio

diameter

gravity

heat transfer coefficient
height of the liquid bridge
unit matrix

Jacobian

azimuthal wave number
surface-normal vector
normalizing dominator

pressure

domain \
position of the free surface
radius of the disk

main radii of curvature

temperature

reference temperature
maximum velocity
velocities

compensated temporally velocity

contravariant velocities

temporally contravariant velocities

contact angle

thermal expansion coefficient

temperature difference between the

disks

amount of free surface deformation

time in the computational domain
surface tension

reference surface tension

thermal coefficient of surface tension

thermal diffusivity
thermal conductivity

dynamic viscosity
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kinematic viscosity
density

Biot number

Bond number
Capillary number
Grashof number
Marangoni number
Prandtl number

Reynolds number
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3 NUMERICAL METHOD

The purpose of this study is to analyze the influence of the free surface deformation upen
the thermocapillary flow. Therefore, a numerical method to capture the temporally varying
surface motion is employed. The deformed surface is expressed using the boundary fitted
coordinate (BFC).

To consider the thermocapillary convection in a liguid bridge, a configuration of the analysis
is defined as shown in Fig. 1. The liquid bridge with volume Vo is sustained by two rigid
parallel disks of equal radii r= Zplocated at z= 0 and A The temperature difference between

these disks is defined by 4 T

£

Cold Disk~____

The liquid is assumed to be an incompressible Newtonian fluid of kinematic viscosity v

and density p. In a cylindrical coordinate system, the continuity, the Navier-Stokes and the

Qi

energy equations are given by

V'Eé — G (1)
ou . . Pr _
—+(u-Vju=-VP+ V’u 2
55‘ Mo
oT I,
—+{u- V)T = veT (3
ot Mo

Variables are non-dimensionalized using scales shown in Table 1.
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Table 1: Scales used for non-dimensionalization
Variable &z 4 v="_vn v, v D 7
Scale H HulorAT orAT o v olorATTp)2 47

The non-dimensional numbers are defined by

U,H
Re =—2
1%
P}”ZK
K
[ o]
Ma = :miAT-H
pi |oT

adequate coordinate system must be employed to calculate the flow field with the finite
difference method. The boundary fitted coordinate method is applied to the governing

equations in all directions. In the previous study, the computational domain was assumed to
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Equation (5) is inversely transformed as follows,
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The continuity, the Navier- Stokes and the energy equations (Egs. (1)-(3) ) are transformed to

the ones in the generalized coordinates.

[ Continuity equation |

i 0 1 &
FoeV ) g ar

where

(77,)+—(7,)=0

0
7
on (N

H

i 1 i
Ve = Ev, +;§9v9 +&v, V, =&4 v, +;§§9v€ +&C v, V=1, ju;navg +17,v,.

These velocities are called as contravariant velocities.

[ Navier-Stokes equation ]
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In this analysis, fractional step method is utilized to solve these governing equations.
Adams-Bashforth method is adapted for time advancement. The Crank-Nicholson scheme is
applied only the circumferential constituent of the viscous terms in the Navier-Stokes and the

energy equations in order to ensure a larger stability margin.

3.8 Boundary conditions

3.3.1 Boundary condition of the velocity
To derive the boundary condition of the velocity on the free surface, the balance between the
shearing stress and the surface tension must be considered.

The relation between the shearing stress and the surface tension is shown in Fig. 2.

Figure 2! Stress balance between shearing stress and surface tension

From Fig. 2 the equations of the balance between the shearing stress and the surface tension

10).
1 0o Yoo 1o
T,, 7d0ds =1| 0 +~——-rd8 |- 0 }'m’s
r o J
Newton’s law of viscosity is expressed as follows
{ {5“;@ ov, ¥
Tﬂ § = /L[ )
‘ \on O ) 1D
(1 6v oflv )

From Egs. (10) and (11), equation (12) is derived.
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If the velocity on the free surface in the normal direction is assumed to be zero, equation

12).

(12) can be shown as follows.

ov, OJo
B =7
on  Os
(13).
{1 v, 3 ( v, \( 1 oo
S~ +pr— = | =——
\r 08 or\r )| rod
Equation (11) can be non-dimensionalized as following equations
o, Oo
on Os PN

lé‘vr+?£v_6 _ 1oo
rogd or\\r ) ro@

In the equation of the relation between normal and tangential directions, the tangential

velocity v is divided into radius and axial directions (See Fig. 3).

i vV, = V. Ccosg
{ | ; (15)
: v, =V sing
: v,
n v, =
% ’ cosQ
\ < ) (16)
v, = —
%\ sing
av.\' — _(:}—_ Vr
on on\ cosy
= / amn
v, 0 ( v, \l
on  on \sing )
-~ N PR
o v, )__ar
on \coquJ Js
< 18
i( v, )_ _ar (18)
on i sing | ds

Figure 3: Velocity on the free surface

Generally the following relations are derived in the normal and tangential directions.
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[ Normal Derivatives ]

a¢ 1
5 J\/——
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6¢ [
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[ Tangential Derivatives ]
¢ _
55(5) - ¢"7
(20)

N
0% _ 1
té‘s(ﬂ) ﬁlg

_ 52 2 — 2 2
where, a =¥, +2,, ,B—r(;r,?%—zézw y=r +z;.

Using eq. (19), the equation of the stress balance in normal and tangential directions is

obtained.
1 ( Bv, L0V, ) . 1oor
JNa \ og o) o 07
The axial velocity is derived from eq. (21). The radial velocity is derived from the relation of

I
o~
[
S
A

On the other hand, the boundary condition of the circumferential velocity is defined by

Lov, ,a(% __Lor (23).
ro0 or\r) rob

Equation (23) is transformed to the one in the computational domain by the Jacobian matrix

as

w0 (), 0 (%), , 2 (%)
(§9§§ Q@é %G?HHL’@AUJFQ@ (f”eraf'iUU
L, or or ar

= Léﬁ PE é’e’a’g'*'% 5;} (24).

3.2 Boundary condition of the temperature
The condition of the heat transfer over the free surface is assumed to be adiabatic.

Therefore the equation of the boundary condition of the temperature is

or
8n

=0 (25).
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Equation (25) is transformed by equation (19) as

or 1 or ,
o _ (26).
on e ( Pon J )

3.3.3 Treatment of the liquid center axis

In this analysis the governing equations are described in the cylindrical coordinate.
Therefore the center of the cylinder (r = 0) can not be solved directly by the present equation.
This problem is solved by a method described below. The computational grid is fixed at the
center.

The Navier-Stokes equation in the axial direction and the energy equation at the center are

derived by azimuthal integration.

[ Navier-Stokes equation at the liquid center |

OV 19, 18 o
6; +§(fvrv )—%——ég(vgv }+——;(iﬂvzvz)

R
o Prlaf ov), (1w af av,
T & L[V:zllid?‘( ai%ae(?aﬁ%?(r 52}}

ov, AGE Ir
2, A0 (‘,vz)+=——va]Az
ot whr s Az 0
oP Prlag2zav| 1Tov. ¢ =
R JMa’ﬂ’Arg{T{ or |,, .ELaZ_‘ng
[ Energy equation |
or o 0 0
pe—t (v, T+ —(v,T )+ =—(mv,T
ot ) gg ) e (D)
1 [af ary oftery of or)]
= | r— | —— |+ —| F—
Ma]_ rk r) 0 kr@} 5Zk GZJ_‘
2 67271 ,Aﬁ%‘{u T\L ii Er-n T_IAZ
ot ﬁér,g_ovr” Azl
(28)
1 A8 gzif:af L PEWIM
Ma | mhr 55 Or |y, Az| Oz g |

Ag for the radius and circumference velocity at the center, the velocity is evaluated by

summed value over the surrounding mesh points (See Fig.4).
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(29)

Figure 4: The velocity at the center axis

After the summation, the velocities Vi, Vi are divided into the radius and circumference

components (v, v,) as follows;

[ (7 V] i
= Lchosé’Vr + Vycost o 0y, J |—
11 \
(30).
I : | 11
v, =V, {—sm&v )cosﬂ'/sm( —9‘, —
R g y ~ (2] .
Lo \Z 1
Here, nj shows the division number of the circumference direction. This treatment at the

3. 4 Free surface deformation
The stress balance over the free surface must be considered to compute the free surface
shape. Along the interface between two immiscible fluids (1) and (2), the forces over the

surface must be balanced. If the surface is plane and the surface tension is constant, the

stress balance over the surface leads
I 2 3

where S is the stress tensor and n is the unit normal vector directed out of liquid (1) into the

R

ambient fluid (2). The each component in the stress tensor is describe

S‘.!j = ——Pé:%j + He, (32),

where aj can be expressed in the cylindrical coordinate as

) _ﬁvr ; __}_?v_g“L;vL ; _@vl
I V- R
(33).
1] 0 v_g\ 1 v, | Lj10v, v, 1 6vr+@vz

“ =\ ) rae] T2 ee e T2 o
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On the other hand, if the free surface has curvature and the surface tension varies along the

interface, the equation of the stress balance becomes (8
S n+o(V-njn—(I—nn)-Vo=§?.n (34)

where I is the identity matrix. The element ¢ (V - n) in the second term in L. H. S. is so-called

Laplace pressure. The mean curvatures of the interface,

1 1
Veon=—+— (35)
R R
can be expressed as the sum of the inverse principle radii of curvatures £; and Rz The mean
curvatures of the interface can be described with Cartesian coordinate system as follows;

[ er( . rerY)

von= R3N3L P f{z *%0) }

GROR(OR AR _ *R )
vhon (36).
Oz 86’(82 06 8265J

—JH(@—RYURz +2(§§—W —R52R ~l
L

oz ) || \08) 06’ J

orthogonal projection of a vector onto the tangent plane defined by n.

i

Equation (34) can be non-dimensionalized using the scale as Table 1.

§“)~n+(—§— T}(V nja—(I-nn)- VI =§%.n (37).
\

(38).

From these equations, the equation of the stress balance is led in the three directions. Since
the two directions of the curvature exist in the three dimension, the two tri-diagonal matrices
must be considered for axial and circumferential directions. The tri- dlagonai equations are

indicated below.
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[ Radius direction ]
62R: RN [ R(Pm P(2)> BO,H
o R{R +(0RI36)'}(1/Ca~T) Ca® or
o) Lo __;Lgfv_r+% n
2 ar J r 80 oz  Or )nm,
1-n’ 0T 107 aT}
- —tn,———+n,—
n, Or r 08 tord
. 1 _OROR(BROR _, O'R
R{RZ +(5R/66’)2} 0z 06\ 0z 08 0200
(aR) ) { 2 oR| |
-R
06
(39)

o o L1 o3 L
| Circumiecrential direcrlon |

R _ -R'N’ { Re(PO = PP) —22(H -z) -
00" R{R*+(oR/&z)}(1/Ca~T) ! Ca or
SN T % B S, TR e e
20 or\ v ) rd8imn, 20z Or)m,
1-n 0T 1or  ar |
= SR T T T
n, Or r 08 OZJ
4 A2 B / An\2
SRS S .2 S P Y
R\R*+(0R/z) 1| L N\
_,0ROR(BROR o R )|
2 66\ 6z 00 0200 ) |
2(“Rj _
K
Rkoﬁ
(40)

In addition to these tri-diagonal equations, the constant volume eguation is ‘solved to
(41)

maintain the volume of the liquid bridge constant.
H PZ/T}
[l : —R’d@dz =V

surface R can be obtained by using Tri-Diagonal Matrix Algorithm

The position of the free s
ircumferential direc . [l

FFTYIVR A
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4 RESULTS

4.1 Medium Pr fluid

We perform the simulation with Pr = 4.38 (acetone), aspect ratio /(=H/E)= 1.0 and volume
ratio = 1.0 under the zero gravity. In all cases, the calculation grid points of (40 X 32 X 40) are
employed. Mesh size are unequally distributed in r and z direction. All results described below
are obtained by applying a finer time step than that in the last year’s report. We calculate
three cases. In the case 1, the computation without DSD is performed, while the case 2 is
taking the DSD into account. At last in the case 3, we calculate with using increased Ca to
investigate the effect of larger free surface deformation. We evaluate the effects of the DSD
upon the flow field and critical condition by comparing these cases. In addition, the mutual

relationship among the DSD, temperature, pressure and axial velocity is investigated.

4.1.1 Without dynamic free surface deformation
The calculations without dynamic free surface deformation are performed for Re = 800,
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d bridge shape is cylindrical.
or Re = 900 less than the critical

isymmetric steady flow (Fig. 5(a). Increasing Re up to 1,300 the
flow field exhibits the standing-wave oscillation first (Fig. 5(b)), and then changes into the
traveling-wave one (Fig. 5(c)). The azimuthal wave number m is mainly determined by the
aspect ratio. The relation is indicated as mX 7 = 2.2 .0 The mode number of oscillation is m

= 2 in accordance with the structure obtained by the linear stability analysis (LSA). 1112l

Figure 5: Temperature and velocity distributions in axisymmetric steady flow in r -z place (a),
Re = 900, standing wave (b) and traveling wave (¢), Re = 1,300 without DSD in r- 4 place at
mid-height
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Figure 6 shows the azimuthal velocity variation on the free surface at mid-height of the
liquid bridge. In the case of Re = 900 the azimuthal velocity decreases exponentially, but in
the other cases it increases. From this growth rate, we can estimate the critical Reynolds
number Re. (Fig. 6(b)) and compared with the result obtained by LSA for the code validation.

The present calculation gives Rec = 980. This results is in good agreement with the LSA
prediction, Re = 1,013. 14

T 1 T T 13
e _ 0002 - -
2 -
< E
£ £ oot b 4
£ & o .
N
<
& L : ' !
900 1000 1100 1200 1300 1400
Relative time -] Re number
() )
Figure 8! Azimuthal velocity variations (a) and growth rate (b) for Re = 900~1,300
without DSD
4.1.2 With dynamic free surface deformation 4
The calculations considering the DSD, as case 2, are performed under the same conditions
with the case 1. The Capiﬂazy number in the present calculation is assumed to be 0.0027,
which corresmond o that of acetone at Re = 1,300. Figure 7 shows the temperature and

.

ocity distributions in axisymmetric steady flow for Re = 900. The free surface shape is
shown in Fig. 8. The DSD is quite small. For Re = 1,300 the flow exhibits a transition to the
standing wave oscillation first, and changes into traveling wave one like the case 1 (m=2).

The surface deformation is shown in Figure 9. The deformation with the largest amplitude
takes place at mid-height of the bridge. The maximum amplitude is about 0.083um for R =
2.5mm. Kawaji et al.l13] found in their experiment that the DSD was too small to be measured,
which must be of order 0.1 . m or less.

Figure 10 shows the azimuthal velocity variations. The critical Reynolds number is
estimated to be Rec = 980, which coincides well with the one calculated without the DSD (case
1). This result also agrees with the one by LSA considering the DSD, Rec = 95118l It is noted
that no significant effect of the DSD can be found on the critical condition for the onset of

oscillatory flow in spite of the difference of the velocity distributions.
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Figure 7: Temperature and velocity distribution

for Re = 900 with DSD
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variations of one cycle of traveling wave oscillation.
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The capillary number, Ca= o 74 7'/ 00 is an important non-dimensional parameter for the
DSD. Ca = 0 means that the free surface is not deformed dynamically. In order to evaluate the
effect of the DSD, we simulate the flow field with a different Ca as the case 3. Here we employ
Ca 10 times larger than that in the case 2. Figure 12 shows the free surface shape in the
steady flow for Re = 900. The DSD in this case is about 10 times larger than the one with
normal Ca, which means the DSD is proportional to Ca. The Rec estimated by the azimuthal
velocity growth rate is Rec = 1,000 (see Fig. 13) which is a little larger than the case 2 with
normal Ca.

It can be considered that the flow is slightly stabilized by the DSD. Here, in the Table 2 the

Rec of three cases are listed.

Table 2: Critical Reynolds numbers of three cases
Case 1 (without DSD) Case 2 (with DSD)

1.SA 4] L.SA (8
013 980 9

Case 3 (CaoX 10)
Present

1,000

Present Present

>

e 980
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Time series of surface deformations and temperature variations for Re = 1,300 in both cases
of 2 and 3 are shown in Fig. 14. The onset of the oscillation of the temperature with larger Ca

b 3

delays in comparison with the case using the normal Ca because of increased critical point.

Tn gualitatively, however, almest no differences can be seen. There is no striking influen
2 2 %

of the DSD on the criticality and flow field in the present conditions.
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Figure 14! Surface deformation and temperature variations for Re = 1,300 (black line: Ca =
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Cao =2.7X 108, gray line: Ca = Cag X 10)

Here, we compare the thermal and flow fields with and without DSD. In 2-dimensional
steady flow (Re = 900), it is hard to find any differences between both cases from temperature
and velocity distributions (Fig. 5(a), Fig. 7). The velocity and the temperature on the free
surface in both cases are shown in Fig. 15. The critical conditions of both cases almost coincide.
For Re = 1,300, the surface velocity and temperature variations on the free surface at
"~ mid-height are shown in Fig. 16. Although the both cases indicate the same critical condition,

the growth of the thermal field in the case considering DSD takes longer time than the case

[¢]

é.
without DSD, and thus the onset of the oscillation delays.
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Figure 16 Axial velocity (a) and temperature (b) variations on the free surface at

ann

mid-height of liquid bridge for Re = 1,300 with and without DSD.

Figure 17 shows the mutual relationship among the free surface deformation, temperature
and pressure variations. Each variation is the deviation from its mean values. Here, the
fluctuation of the free surface displacement from the initial position is magnified 104 times
because the DSD is quite small. From Figs.17 (a) and (b), it can be found that the low and
high temperature regions overlap with the low and high pressure ones, respectively. The same
relation also exists between the DSD and the pressure. The free surface is deformed
asymmetrically due to the azimuthal rotation in the traveling wave state. That is, the lquid
bridge is slightly twisted, and rotates with its shape unchanged. Figure 17(c) shows the
snapshot at which low temperature fluid arrives at the free surface near the hot corner.

The fluid near the free surface is then accelerated downward by the Marangoni force, which
is enhanced owing to the arrived low-temperature fluid. As the result, a low pressure region is
induced near the upper disk (see Fig. 17(d)). As the fluid near the upper disk flows downward,
the low pressure region also moves down. Consequently the surface becomes concave due to

the low pressure in accordance with the stress balance (see Fig. 17 ().
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Figure 17: Snapshot of fluctuations of the temperature and pressure. Positive and negative
temperature fluctuations are illustrated by purple and blue, respectively. As for pressure, red
and yellow, respectively. Frames (a) and (b) represent bird-eye view of those fluctuations;
Frames (c)-(e) present the scenario of the surface deformation at the hot corner.

This relation near the hot corner can be indicated from Fig. 18. Figure 18 shows the phase
correlation among several quantities at the free surface taken at near the upper and lower
disks (about 1/10H from each disks), (a) and (c), respectively, and at mid-height (z= 1/2H) (b),
The variables shown in the figure are the dynamic free surface deformation, the temperature,
and the absolute axial velocity in the traveling-wave state. These figures show one cycle of
oscillation in the traveling wave state. A phase lag of about = /2 exists between the
temperature difference and the surface deformation near the upper disk. Near the lower disk,
on the other hand, the phase difference against the surface velocity and the temperature of
the free surface displacement is shifted by = or slightly larger than =. As for the surface
deformation, one can conclude that it is mostly determined by the pressure at any axial
positions. The non-sinusoidal curves indicate the non-linear character of the oscillation at the

computed Reynolds number.
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difference and absolute axial velocity in the traveling wave oscillation for Re=1,300.

Figure 19(a) shows the fluctuation of the temperature and the azimuthal component of the
velocity over the free surface in the #-zplane for the traveling wave state, where the wave is
advancing in the negative direction of #. The azimuthal velocity vectors are essentially
directed towards the coldest zone. The corresponding radial flow causes the high and low
pressure regions (see Fig. 19(b)) and thus results in a surface bulging and receding (Fig. 19(c)).
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The concave and convex regions are inclined noticeably against the vertical axis (Fig. 19(c)).
The hot temperature region seems to be almost symmetric, while the cold region is distorted
near the lower disk (Fig. 19(a)). This distortion causes the inclined pressure distribution and
thus the tilted surface deformations. The present relation between the surface deformation
and temperature agrees well with that obtained by Kuhlmann et al.l® using the linear
stability analysis.

Almost the entire free surface, the interface recedes at the low temperature region by the

influence of the induced high pressure due to the azimuthal Marangoni force.

-5.26-002 5.2E-002
(a)

)

: E o 1 Mg ‘ . . 4} \ o e AR
Figure 18 The fluctuations of the (a)temperature, (b)pressure, (¢)surface deformation and the

azimuthal velocity over the free surface in the traveling wave in - zplane for Re = 1,300
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4.2 High Pr fluid

Calculation of high Pr fluid needs finer grids in order to resolve the thermal fluid flow with
quite thin boundary layer. This means that a large computational time is required, which
could be one of the reasons why there exists few work concerning high Pr fluid. We perform
the simulation with 2¢St silicone oil (Pr = 28.11), aspect ratio /= 1.0 and volume ratio = 1.0

under the zero gravity. The calculation gird points are increased up to (rX 4 X2 =(66X32X
70).

4.2.1 Without dynamic free surface deformation

With uniform-sized coarse mesh, mode number which appears in the bridge is m =1 in spite
of the /'= 1.0 (the temperature distribution is shown in Fig. 20). Figure 21 shows the
temperature distribution on the free surface and at neighboring three grid points in the case
of Ma = 20,000. From this temperature distribution, it can be seen that the large temperature

gradients for rand zdirections exist near the both disks. So, the appearance of different mode

non-uniform mesh for r and z directions; ﬁner grids are applied in the vicinity of the free
surface and in the vicinity of both rods. Widths of the calculation grids (dr, dz) are noted in the

Table 3.

Using finer grids, the oscillation of m = 2 is exhibited. The temneréture distribution-is
shown in Fig. 22. The flow field exhibits the standing-wave oscillation first (Fig. 22(b)), and
then changes into the traveling-wave o ne (Fig. ZZ(C)} at a constant Ma =40,000, which 1s the

same as the case of acetone. E‘oﬂowmg results are obtained by using this non-uniform

calculation gird (case 4).

Figure 23 shows the azimuthal velocity variation. The estimated critical Marangoni
number is Mac = 32,500. In the experiment, the Mac is less than 20,0004, which is smaller
compared with the Mac obtained by the present calculation.

uniform mesh | non-uniform mesh

dr (r-direction) 1.8X 102 6.1X103  {(drmin)
dz (z-direction) 1.4X102 7.7%10%  (dzmin)
Figure 20° Temperature and velocity
distributions for Ma = 35,000 without
DSD in r- ¢ plane at mid-height
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Figure 22: Temperature and velocity distributions in axisymmetric steady flow in r - z place
(a) for Ma = 20,000, standing wave (b) and traveling wave (c) for Ma = 40,000 without DSD in
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Figure 24 shows the azimuthal velocity and the temperature variations at mid-height for
Ma = 40,000. The black line indicates the value at 6 = /47, which corresponds to the node
point of the temperature and anti-node point of the azimuthal velocity in the standing wave
oscillation. On the other hand the gray line indicates the vah}.e at 6= 0, the anti-node point
of the temperature and node point ‘of the azimuthal velocxty TFrom this figure, the flow
exhibits the standing wave flow at the early stage of the oscillation. But the temperature and
the azimuthal velocity of the node point is not stable and keeps increasing gradually. After all,
the amplitudes of black and gray lines coincide, and the flow exhibits the traveling wave
oscillation. Therefore it can be said that the standing wave oscillation in the present condition

is not fully stable and is the transition state for the traveling one.
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Figure 24: (a) Azimuthal velocity and (b) temperature variations at mid-height for Ma =

00 (black: 6=1/4=,gray: 0=0)

Figure 25 shows the fluctuations of the temperature, the pressure and the azimuthal

4

face in # -z plane for the traveling wave state,

il U T4 pidiic VL Cilllly Wa

component o
where the wave is advancing in the negative direction of 0. Like the cases 1 and Z, the
azimuthal velocity vectors are mostly directed towards the coldest zone. The fluctuation of the
temperature indicates, on the other hand, meandering distribution at z = 1/4H, which is
different from the case of acetone. The fluctuation of the pressure also indicates the

meandering distribution.
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4. 4. 2 With dynamic free surface deformation

The calculation with DSD as the case 5 is performed for Ma = 20,000~25,000. The capillary
number is assumed to be 0.068, which corresponds to the one for 2¢5t silicone oil at Ma =
25,000. The calculation is started with the cylindrical shape because of the zerc gravity.

mperature and the velocity distributions in the axisymmetric steady
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@
o
5
w
et
by
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m
flow for Ma = 20,000. The surface displacement is shown in Fig. 27. The maximum free
splacement is about 0.38  m for R = 2.5mm.

Figure 28 shows the azimuthal velocity variation for Ma = 20,000 and 25,000. In the
present results, the calculations are carried out for two different Ma. Therefore, it is rather
hard to estimate Mac. The growth of the azimuthal velocity between the case 4 and 5 almost
DSD is little larger than the one without DSD. Therefore, it can be estimated that the Mac
with DSD is less than Ma = 32,500.

The velocity and the temperature distributions on the free surface with and without DSD
for Ma = 20,000 are shown in Fig. 29. Comparison between the case 4 and case 5 indicates

that both the velocity and the temperature distributions show no significant differences.
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Figure 29: Absolute velocity (a) and temperature (b) on the free surface for Ma = 20,000
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The surface deformation in the oscillatory flow is not obtained in present calculations
because of the shortage of the calculation time. From the fluctuation of the temperature and
pressure over the free surface of the case 4 (Fig. 25) it can be considered that the surface

deformation also indicates meandering distribution.

5 CONCLUSIONS

5.1 Medium Pr fluid acetone (Pr = 4.38)

(1) The thermocapillary convection with dynamic free surface deformation is calculated

successfully.
Lt 1 3 1 — 3 4 opritth thha vacilite AF
(2) The obtained critical Reynolds number Rec = 980 is in good agreement with the results of

the linear stability analysis.

(3) Effect of the DSD upon the Rec and the flow field is not seen clearly in the range of present

numerical simulation.

(4) Mutual relation among the DSD, the temperature, the pressure and the axial velocity 1s

obtained.

£\ T 1 s1% N Frv ot ‘ 5 e
(&) increasing the capiilary numbper (Ua = 10X Capj, the Rec estimated 1,000 was little higher
i &

(1) Using finer grids, the oscillation of 711 = 2 is obtained in the case without DSD.

(2) The critical Marangoni number in the case without DSD is obtained. The Mac is higher

than the one obtained by the experiment.

(3) The fluctuation of the temperature and the pressure over the free surface indicate

meandering distribution, which is different from the case of the medium Pr fluid acetone.
(4) The Mac in the case with DSD is estimated smaller than the one without DSD.
(6) In the axisymmetric steady flow, there are no significant difference between the cases

with and without DSD from the temperature and the velocity distributions on the free

surface.
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