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ABSTRACT

The effects of s

small vibrations on Marangoni convection were investigated using a liquid
bridge of 5 ¢St silicone oil with a disk diameter of 7.0 mm, and an aspect ratio close to 0.5.
Experiments were performed to determine the critical temperature difference data for no vibration
case and with small vibrations applied. The surface oscillation amplitude was also determined
experimentally, and a 3-D numerical simulation model was developed using a level set algorithm to

predict the surface oscillations of an isothermal liquid bridge. The experimental results have shown
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temperature difference data for different aspect ratios were not affected by the vibrations. This is

~cictant rith the reciilite abtained fhr acetnn 1 & 5
consistent with the results obtained for acetone bridges reported in the previous year.
The peak amplitudes of surface oscillations decreased as the disk temperature difference

was increased and the average liquid temperature decreased. This can be attributed to an increase in
surface tension which stabilizes the liguid bridge surface. The surface oscillation amplitude,
however, showed an abrupt increase at the onset of oscillatory Marangoni convection, and then a
decrease as i:he temperature difference was further increased above the critical value. The reason for

this variation in the surface oscillation amplitude with the temperature difference is unclear and

needs to be investigated further.

To clarify the surface oscillation phenomena induced by external vibrations, experiments
and numerical simulations were conducted for an isothermal silicone oil bridge of 7.0 mm diameter.
By subjecting the liquid bridge to small random vibrations, the surface oscillation frequency could
be clearly determined. The computational results have also shown a similar surface oscillation

frequency.
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1. INTRODUCTION

Marangoni convection in liquid bridges changes from a steady, axi-symmetric flow to an
oscillatory flow, when a large temperature gradient is imposed. Such an oscillation in flow can lead
to non-uniformities in crystal structure such as striations"* when a floating zone process is used to
fabricate single semiconductor crystals of high purity from melts. Large liquid bridges can be
formed under microgravity in space, however, the liquid bridges are also susceptible to small
vibrations or g-jitter on space p}a{ferms that may excite oscillations of the free surface and add to
the complexity of the hydrodynamics involved.

The effects of small horizontal vibrations on the critical temperature difference and surface
oscillation of acetone liquid bridges were previously investigated experimentally.” * Also, a
horizontal vibration model of Ichikawa et al.’ was adopted to predict the resonance vibration

frequency of an isothermal liquid bridge.

oscillation characteristics of isothermal silicone oil bridges were also investigated experimentally

and numerically.

2. EXPERIMENTAL APPARATUS AND INSTRUMENTATION

A schematic of the test section is shown in Figure 2.1. It had upper and lower disks of 7.0
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previous reports.® A PC-controlled vibration stage (Parker-Daedal Model 404XRI150MP) was
employed to apply horizontal vibrations to a liquid bridge and find the effect on AT and the
response of the free surface. The test section was mounted on the stage, which was translated
horizontally at a constant speed. Due to friction effects, small vibrations were experienced by the
liquid bridge in all directions. A video camera and a single-axis accelerometer were mounted on the

same stage to monitor the liquid bridge motion and acceleration level, respectively.
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Figure 2.1 Schematic of the test section

102

This document is provided by JAXA.



3 NUMERICAL SIMULATION

Tracking or capturing a moving free surface in numerical simulation has been an important
research field for more than a decade. In practice, however, the numerical simulations of free
surface flows are difficult, especially if the free surface separates fluids of dramatically different
densities. So far, the approaches available for treating moving interfaces include Lagrangian
methods, such as boundary-fitted grid and boundary-integral methods, and Eulerian methods, such
as volume of fluid, level set, and enthalpy methods. As a new Eulerian method, the level set method
was originally introduced by Osher and Sethian,” and has been widely applied to a variety of free
surface flows.® ' Unlike the VOF method, which divides the spatial domain into cells that
contain fractions of material, the level set method divides the domain into grid points. Each point
contains the value of the level set function at that point, therefore, there is an entire family of

contours. By updating the value of level set at each grid point, a new entire family of contours will

be given and only one of which is the zero level set, which corresponds to the interface. The major
s aeit Af thic methad 1o that 3 1 2 £ i
merit of this method is that it naturally constructs the fundamental solution to interface propagation.

However, there has been no modeling work done on Marangoni convection using the level set
method in the literature. In this work, the level set method has been adopted to capture the three
dimensional motion of a vibrating free surface in a liquid bridge driven by small horizontal

vibrations.

3.1 3-D Geverning Equations

The equations of motion for incompressible flow including gravitational and small

horizontal acceleration forces, viscous, and surface tension effects are given by the incompressible

Navier-Stokes equations. These may be expressed as
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The dimensionless parameters used are Reynolds number, Froude number, and Weber number,

: LU % LU?
respectively, Re=21""= o= M= pro- P
Hy A\s gL g

3.2 Level Set Method
3.2.1 Level set function and its formulation

Briefly, the level set function is a signed normal distance from the interface. In Figure 3.1
we consider a closed moving interface I'(t) propagating with speed F normal to itself, and Q(t) is the
region that T'(t) encloses. We associate )(t) with an auxiliary function¢(x,z), which is called the

fevel set function,

N Jdist(x,?(z),i} if x outside T'(2) N
pxn=y T (5)
(~dist(x,T(1),1) if x inside I(¢)

T(1)={xe Q:9(x,0)=0} | (6)

T(t)

(
§é’/\
\_ /¥ ~_ |

/ ;S ~ /T
N’ { RN

Figure 3.1 An interface propagating with a speed of F

As a nice feature of the level set method, the unit normal vector of the interface n and

normal speed F can be simply represented in terms of ¢ (x,¢)

S %)
V9l
F=2 (8)
V9l

If the flow velocity is given by u(x,#), we have

ugn=F ©
From equations (7) and (9), we have

¢, +udVo =9, ~um|Vo|=¢, —F|V¢| (10)

From equation (8), we have

104

This document is provided by JAXA.



¢, —F|V¢|=0 (11)
So, from eQuations (10) and (11) we get

¢ +ugVp=0 (12)
Equation (12) is called the level set equation. This equation will move the zero level of ¢ exactly

as the actual interface moves.

3.2.2 Re-initialization of level setf function

Because we initialize the level set function¢ as a signed distance from the interface, we

[Vqﬁ]:l (13)
When we move the level set function¢ with equation (12), ¢ will no longer be a distance

function and may become irregular at later times.

oot

(14

!Va;»g #
This will necessarily result in the variation of interface thickness in time, making further computation
and contour plotting highly inaccurate. Fortunately, we can ignore all values of ¢ far from the zero
level set and replace the solution ¢ at any time by another function ¢, with the same zero set as

¢ and then take ¢, as the initial data to use. An iterative procedure was proposed to fulfill the

ol 11

ao0ve process.

e (
6, =sign(9,)(1-I7¢) 1s)
9(x,0)=0, (x) (16)
The stopping criterion for the iteration is
A | i cm |
2l < Pik ™ Pk )
ol 1 <(ar){Ax) (17)
M \ VRN / N A
Here, M = numbecr of grid points where }gbl”} kE< A, A=3Ax/4,and we adopted the above procedure
to re-initialize the level set function.

By carrying out re-initialization, the level set function will remain a distance function at
later times, and will ensure the interface having a finite thickness all the time. Another important

issue is mass conservation. For incompressible flows, the total mass must be conserved in time.

‘However, just like other Eulerian methods, such as the VOF method, even with the above
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re-initialization procedure, it has been found that the total mass is not completely conserved in time.
To overcome this difficulty, an improvement has been firstly made on the re-initialization procedure
aimed at preserving the total mass in time. We classify the grid points into two groups: the first
group includes the grid points that are the closest to the interface and on the interface, and the other
grid points belong to the second group. For simplicity, let us consider a 2-D domain, if any one of

the following

(9:,)(051)0 (18)
(¢:,)(911)=0 (19)
{ Ve n e TAN
(0 )(911,) = (20
/ \/ \
. i< 21
(6, )(911,)<0 1)
iq aaticfiad {1 ) halangae ta the frat grann nainte atheryice {7 7Y helanoe to the cecond oroun
i3 BGLLSL.{\;&AB \L,,J} Uuujl}.gs [N S § LW 1irst SEVUL PURIWS, otner V¥isSwv, \*J ) UWIVIIES U iy OV VUi g;thl

points. For the first group points, we solve the convection equation ¢, +(ugv)¢ =0 and denote the

n+l

updated ¢ by qzb("ﬂ) . We have now advanced one time step. The zero level sets of ¢"" give the new

interface points and ¢™' is a distance function. For the second group points, we solve the

n+1/2)

convection equation ¢, +(ugv)¢=0 and denote the updated ¢ bygb( , and then construct a

ftamre Finetine hu anlving < +1/2 it { +/2 te
new distance function by solving ¢, =8 <¢(n H;{i—i‘?q”)i) with $<X,‘{}>=$(" )<X> to steady state.
: /

We denote the steady state solution by ¢™"' and we have now advanced one time step. The zero

"1 give the new interface points and ¢""' is a distance function.

level sets of ¢
3.3 Body Force Due to Surface Tension Force

The model of Continuum Surface Force (CSF) ' is employed to treat the surface tension
force at the interface which interprets the surface tension force as a continuous effect across an
interface rather than as a boundary condition on the interface. By using the level set function, body

force due to surface tension force can be expressed as,

1 . 1 PPy
Wo.ﬁ(cz)ﬁ:Weg(mﬁ(mV,’ (22)
The curvature of the interface is evaluated from
o (Ve )
;c({b}:—(‘?ga}:—v%mj (23)

The Dirac delta function is defined as
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3.4 Poisson Equation Seolver

Briefly, we may write the Poisson equations for pressure as

v{_{vp}:% (25)
p ) At
e
~ zé Gx i_—:%g-%AAg‘!/——.{gggv:ﬁg—%- Biimx,z) .]L_i{_l_‘{/ /ZﬂD\+ifC/¢\5 /¢\V¢ \§ (26)
i | Pl plRe N T MWW e
G \ ifimx,2)
Tz

The Successive Over Relaxation (SOR) method has been used to solve the Poisson equation for

pressure.

3.5 Smoothing of Interface
For immiscible two-phase fluids the density and viscosity can be expressed by the
following equations

@7

AS)
-
—~
=
3
©
I
o

o, +{(ugV)n=0 (28)
Since p and p change sharply at the interface, conventional finite difference schemes will
incur excessive numerical diffusion when solving equations (27) and (28). In order to overcome the

difficulty, we will give the interface a finite thickness 2« and let p and u vary smoothly at the

interface. Therefore, the density p and viscosity u can be expressed as follows.

[0 ¢ <-a
H,(0)=1(¢+a)/(20)+sin(mp/a)/ 2 |p|<c (29)
!il P>
f[}<¢) = loin +(p0ut _:Din )“a {gb) (38}

In the present numerical simulations, we took o =3Ax/4.

Since the scheme is explicit, a CFL condition must be satisfied in order to ensure stability. In

many cases, the gravitational force and surface tension terms are sufficiently stiff to require a more
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restricted time step than a standard CFL estimate would predict. We have augmented the standard

CFL estimate by setting
We 3/2
At = + Dy ) Ax 32
s \/(pout b M)872'Fr2 ( )
At, = min[ > (Re)&xz/,u) (33)
{14
At, = main| 2% (34)
g
A" = cmin Az, AL, AL, ) (35)

The constant, ¢, is a safety factor to be determined experimentally. We have takenc=1/2.
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bridge. The Navier-Stokes equations in primitive variable formulations were solved on a staggered
grid by the method of lines. The advection terms were discretized by the QUICK method and the
other terms by the central finite difference method or the collocation difference method except for
the body force, and a second-order Adams-Bashforth method was used as the time integration
scheme. The Poisson equations were solved by means of the Successive Over - Relaxation (SOR)
approach. The model of Continuum Surface Force (CSF) was employed to treat the surface tension

force at the interface.

4  RESULTS AND DISCUSSION

it

W"f\ﬁ

ects of Vibrations on AT, for a Silicone il Bridge

o
ot
t"’ﬁﬂ

The test section was subjected to small vibrations by moving the translation stage in the

o~
i

x-direction over a distance of 10 cm at a constant speed of 2.67 cm/s. The acceleration levels

recorded and their power spectra are shown in Figures. 4.1 and 4.2. Under these vibrations, the

temperature difference between the upper and lower disks of a silicone oil bridge was increased
gradually. Figures 4.3 and 4.4 show the fluid temperature fluctuations in the silicone oil bridge with

an aspect ratio (H/D) of 0.95 for no vibration and with vibrations applied, respectively. The values
of critical AT were determined following the same procedure as described in our previous report.®
The corresponding power spectra of the temperature oscillation data are shown in Figures
4.5 and 4.6, respectively. The oscillation frequency for this liquid bridge was 1.0 Hz, and peaks in
the spectra are seen in both cases. In the vibration case, additional peaks are evident at harmonics of

various vibration frequencies.
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Power specirum density for (a) x-direction
(b) y-directionand (c} z-direction acceleration

Measured accelerations for table moving with constant speed
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Frequency of fluid temperature oscillations
Ar=0.95, no g-jitter
(a) AT<ATcq and (b) AT-ATcq
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Figure 4.5 Power spectra of liquid temperature
oscillations in a silicone oil bridge
of 7 mm diameter and an aspect
ratio = 0.95 for no vibration case

Frequency of fluid temperature oscillations
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Figure 4.6 Power spectra of liquid temperature
oscillations in a silicone oil bridge
of 7 mm diameter and an aspect
ratio = (.95 for vibration case
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Figure 4.7 Effect of external vibrations on the critical temperature difference

data obtained in a 5 ¢St silicone oil bridge of 7 mm disk diameter

Figure 4.7 shows the effect of external vibrations on the critical temperature difference data

31

TN il T
hat the external vibrations had a negligible effect

on the critical temperature difference for different aspect ratios.
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4.2 Surface Oscillations of 2 Silicone Oil Bridge

The amplitude of surface oscillations was also determined for a silicone oil bridge of D = 7.0
mm, H = 3.5 mm, and an aspect ratio (H/D) of 0.5 as shown in Figures 4.8 and 4.9. A high-speed
video camera at a frame speed of 124 fps was used with a pixel resolution of 2.0 ym. The liquid
bridge was placed on a translation stage moving horizontally at a constant speed. Without any
vibrations applied (Fig. 4.8), the peak-to-peak surface oscillation amplitude was less than 4 pm.
Since the pixel resolution was 2 um, the amplitude of 4 um can be considered to represent slightly
more than the background noise in the images recorded. On the other hand, the liquid bridge surface
responded to small vibrations with irregular oscillations of varying amplitudes depending on the

temperature difference between the upper and lower disks. The surface did not follow a simple

In Figure 4.9, the peak-to-peak amplitudes of the oscillating liquid bridge surface are
plotted for different temperature differences. In the absence of any temperature gradient, AT = 0, the
peak-to-peak oscillation amplitude increased from about 20 um at a distance of 100 pm below the
hot corner to 50 pm at a distance of 500 um below. By decreasing the lower disk temperature while
keeping the upper disk temperature constant, the surface temperature of the liquid bridge below the
hot corner also decreased but surface tension increased. The increase in surface tension had a

stabilizing effect on the oscillation of the liquid bridge surface, therefore the peak-to-peak amplitude

decreased for an increasing AT less than AT,,. In Figure 4.9, the peak-to-peak amplitude for 0 < AT
< AT, was reduced to about a half of that obtained for AT = (. The stabilizing effect was more

pronounced further below the hot corner where the local temperature was lower and surface tension
higher.

Increasing AT to AT, at which transition to oscillatory convection occurred caused an
abrupt increase in the peak-to-peak amplitude although the average temperature of the liquid bridge
was lower and therefore the stabilizing effect of surface tension was greater. Two different
measurements at the onset of oscillatory flow are shown in Figure 4.9. Interestingly, further
increasing the temperature difference above the critical value, AT > AT, caused the peak-to-peak

surface oscillation amplitude to significantly decrease below the hot corner, although it did not

change at distances within about 30 pim below the hot corner.
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Maximum surface oscillation, no jitter
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.......... DT>>DTer R{um}

Figure 4.8 Peak surface oscillation amplitude for Figure 4.9 Effect of external vibrations on the

different temperature differences peak surface oscillation amplitude
The reason for the peculiar dependence of the surface oscillation amplitude on the imposed

conversion of vibration energy to surface oscillation as well as its relation to flow/temperature
oscillation at the onset of oscillatory Marangoni convection need to be investigated further in the
future, as Kamotani et al. (1984)" have suggested the existence of triple coupling among surface,
velocity and temperature oscillations at the onset of oscillatory Marangoni convection in a
non-vibrated liquid bridge. Although the characteristic frequencies are quite different among the
imposed vibrations, flow/temperature oscillations, and the vibration-induced surface oscillations,
there may be a link between Kamotani et al.’s triple coupling mechanism and an amplification of the
vibration-induced surface oscillations presented in this work.

The effect of external vibrations arising from a DC motor running near the stationary test

section on the liquid bridge suriace 1s snOWN i rigure 4.

o
<

{

>
-

he raw and smoothed surface position
data for a silicone oil bridge of an aspect ratio (H/D) = 0.5 and a reduced volume ratio (minimum
liquid bridge diameter to disk diameter ratio = 0.75) both showed an oscillation frequency of about

15 Hz.
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Fluctuations ofa liguid bridge by using 2a motoyr
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o ﬁwﬁﬁﬂ A P,

0 . . 0.6 0.8 1 1.2

600
598
596
594
592
590
588
5886
584

X2 (pixel)

S broobersshorordasdannech

Fluctuation di

Time T (s)

Filuctuations of a liguid bridge by using a motor
(Surface position -absolute)
s = 593
@
S x 552.5 ™
25 592 - e
= A
o 501 ALY,
N 580.5 -
0 0.2 0.4 0.6 0.8 1 1.2
Time T (8}
Figure 4.10 Sur oscillation data for a liquid bridge of diameter =0.75
dc;@ to an external vibration generated by a DC motor

5. NUMERICAL RESULTS
5.1 Computational Domain

The 3-D problems were solved in the following domain shown in Figure 5.1.

Qz{(x,yjz}‘ 0<x<4R, 0<y<4R, 0<5:z< 1}

4R

Figure 5.1 Schematic of 3-D computational domain for a liquid bridge simulation

f an isothermal liquid bridge, and attention was
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paid to the displacement of the free surface of the liquid bridge. The key parameters were the
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density ratio, p,,. / p, , viscosity ratio, u,, / 1, , Weber number We= p,U2D/c , and Reynolds number
Re=p,U_D/y,. The physical properties and geometric parameters used to determine the above

dimensionless parameters can be found in Table 5.1.

Table 5.1. Physical properties and geometric parameters

5 ¢St silicone oil Air
Density p [kg/m’ 915 1.226
Viscosity p  [kg/ms] 4.575x10™ 1.78x107
Surface tension o [N/m] 1.97x107 —
Diameter of disks D [m) 7x107
Height of liquid bridge H [m] 3.5x10™
Gravity g [m/s9] 9.81

The initial shape of the liquid bridge is shown in Figure 5.2, which was a straight cylinder
and would deform under gravity and applied vibrations in the vertical and horizontal directions,
respectively. Both the liquid bridge and the surrounding air were at rest initially. The applied

acceleration level in the horizontal direction was 20 mg.

Figure 5.2 Initial shape of a 3-D liquid bridge

The evolution of the liquid bridge shape due to vibrations and surface tension under gravity
can be found in Figures 5.3(a)-(b). These figures show the predicted liquid bridge shape as viewed
at an angle of 30 degrees above the ground. The upper and lower boundaries of the liquid bridge
were fixed completely to the upper and lower disks, respectively. The deformation near the lower
disk was outward and that near the upper disk was inward, which are consistent with the increase in
pressure near the lower disk and decrease of pressure near the upper disk due to the effect of gravity.

We can also view the liquid bridge from a horizontal angle and compare the shapes predicted at
114
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dimensionless times, t = 1.0 and t = 3.8, as shown in Figure 5.4(a)-(b). Because the applied
vibrations in the horizontal direction were so small, the shapes appear to be the same between

Figure 5.4(a) and (b), however, the surface was oscillating as described below.

(a)t=1.0

(b)t=3.8

Figure 5.3 Evolution of a free surface of a liquid bridge oscillating due to a small horizontal

vibration under gravity

To quantify the motion of the liquid bridge surface due to small vibrations applied in the
horizontal direction, simulations were conducted for a liquid bridge under microgravity using a 51 x
51 x 51 mesh. The applied vibration frequency was 15 Hz, and the acceleration level in the
horizontal direction was 18-mg. Three monitoring points on the surface of the liquid bridge were
taken at heights 4/H, H/2, 3H/4, from the bottom disk. Figure 5.5 shows the evolution of the surface
position at the three monitoring heights. At all heights, the liquid bridge surface was predicted to
oscillate in the horizontal direction with a frequency of about 15Hz, which was in good agreement

with that obtained experimentally on the ground and previously shown in Fig. 4.10.
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Figure 5.4 Evolution of a free surface of a 3-D liquid bridge vibrating under gravity and small

horizontal vibration
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ons of a liquid bridge surface driven by small horizontal vibrations
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6. CONCLUSIONS

The effects of small vibrations on Marangoni convection were investigated using a liquid
bridge of 5 ¢St silicone oil with a disk diameter of 7.0 mm, and an aspect ratio (H/D) close to 0.5.
Experiments were performed to determine the critical temperature difference data for no vibration
case and with small vibrations applied. The surface oscillation amplitude was also determined
experimentally. A 3-D numerical simulation model was also developed using a level set algorithm
to predict the surface oscillations of an isothermal liquid bridge.

The experimental results have shown that the effect of small vibrations on the onset of
oscillatory flow is small since the critical temperature difference data for different aspect ratios were
not affected by the vibrations. This is consistent with the results obtained for acetone bridges
reported in the previous year.

The peak amplitudes of surface oscillations decreased as the disk temperature difference

mperature decreased. This can be attributed to an increase in

however, showed an abrupt increase at the onset of oscillatory Marangoni convection, and then a
decrease as the temperature difference was further increased above the critical value. The reason for
this variation in the surface oscillation amplitude with the temperature difference is unclear and
needs to be investigated further.

To clarify the surface oscillation phenomena induced by external vibrations, experiments

iqe <3
I 13

and numerical simulations were conducted for an isothermal silicone oil bridge of 7.0 mm diameter.

o
o

By subjecting the bridge to small random vibrations, the surface oscillation frequency could be

clearly determined. The computational results have also shown a similar surface oscillation
frequency
7. NOMENCLATURE

A Vibration amplitude

] NTmciimmnt Al tninnn tn 4t a tatanfa~na
a INOIIIg1 GISdilce to ulo Hueavt
D Diameter of the upper and lower disks
f Vibration frequency
F Propagating speed of a closed moving interface normal to itself
FGX Body force in horizontal direction
Fr Froude number
g Gravity

Acceleration in horizontal direction

8x
L Characteristic length
n Unit outward normal vector at the interface

By Unit vector in x and z direction, respectively

[y
[
-3
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P Pressure

R Radius of the upper and lower disks

Re Reynolds number

¢ Time

At Time step

i Velocity vector

U, Characteristic velocity

We Weber number

Ax Grid increase in x direction

o Thickness of the interface

) Dirac delta function

¢ Level set function

r A closed moving interface

K Curvature of the interface

I3 Viscosity

1 Viscosity of liquid

Ui Viscosity ratio

Kot Viscosity ratio

0 Density

o) Density of liquid

Ou Density ratio

Oout Density ratio

c Surface tension

o Angular frequency in horizontal direction

Q Region that a closed moving interface enclosed
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