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ABSTRACT in order to understand the realistic flow transitions in a small liquid bridge of
molten tin with an aspect ratio of 4s=2.0, which was used for experiments at NASDA, a long-run
numerical simulation was conducted using real temperature history of the experiment for boundary
conditions in our numerical code. The result revealed that the critical Marangoni numbers, flow
mode and frequency of the 3-D flow of the present ramped AT case are very close to those obtained in
our previous works in which AT was kept constant. However, the amplitude of surface temper
oscillations near the second critical point are very small (0.2K) and its frequency is high (2.5Hz in
I-T type oscillation). At highly super critical state, the “1-T” type oscillatory flow-temperature
structures started slow azimuthal motion. This rotation caused a low frequency oscillation of a local
surface temperature. At further large A7, there occurred an alternative changes of oscillation mode
between 1-T and 2-T, whereas the slow rotation action was maintained. These results seem to explain
the experimental observations.

We also conducted a set of Proper Orthogonal Decomposition (POD) analyses for oscillatory flows in
liquid bridges of low Pr fluid. POD helped understanding the detailed structures of the 3-D
disturbances in a liquid bridge of Pr=0.01 fluid simulated with a condition of 45=2.0 and Ma=35.0.

Keywords: Marangoni flow, Numerical simulation, Three dimensional oscillatory flow, Critical
Marangoni number, Molten tin, Flow mode, Proper Orthogonal Decomposition

1. INTRODUCTION

Since 1999, we have conducted a series of numerical simulations of unsteady three
axmwnsmn al Marangoni convection in a half-zone liquid bridge of low Prandtl number (£r)
fluids [1-11]. In the first few years, we used a very simple model of liquid bridge in which a
liquid bmdg is confined between two differentially heated solid discs of infinitely large
thermal conductivity, i.e., the disc temperature is uniform over each disc surface area, and the
disc temperatures are kept constant at each temperature at £>0. With this simple model of
liquid bridge, we determined the first and the second critical Marangoni numbers as a
function of the aspect ratio, As=L/a; where L is the length and ¢ is the radius of the liquid

bridge. Characteristics of the oscillatory flow in liquid bridge of low Pr fluid is its two-step

flow transition process, i.e., the first instability ‘%Dreai(s the spatial axisymmetry (but the flow
regime is still s;eaﬁy} pmer to tue onset of time d pendem flow field. Rupp et al[12],

Levenstan [13, 15], Leypoldt et al. [14] reported their numerical simulations o
Marangoni flow in low Pr fluid and confirmed the two-steo instability process fo
range of the aoﬂtsn% ratios mostlv 4s=1.0 and 1.2.

5&4 ML LLL\/ LQLEUD BLIVOL

We have conducted series of numerical simulations of Marangoni convection in
half-zone liquid bridges of low Prandtl number fluids for a wide range of aspect ratio (45=0.6
— 2.2)[5,7]. Our numerical code was validated by comparing the critical Maraqgoni (or

Reynolds number) to the linear stability analysis and other numerical results. Drawings of the
flow and temperature fields and oscillations of local velocities and temperatures reported in
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previous Annual Reports [6, 8] helped understanding the behaiviors of oscillations of velocity
and temperature fields, different oscillation types, modes of the oscillatory Marangoni flow in
low Pr liquid bridges. We determined the first and the second critical Reynolds numbers as a
function of aspect ratio and the Prandtl number. Our results indicate that the critical
temperature difference (ATc) for the incipience of oscillatory flow in liquid bridge of low
Prandtl fluid increases as the aspect ratio decreases and shows maximum value at 4s=1.2.
This trend has not confirmed experimentally. There have been very few reports of
experimental observation of oscillatory Marangoni flow in low pr liquid bridge; mercury [17],
semiconductor melt[16, 18- 27, 29, 30] and molten tin [28, 32]. These authors reported
oscillations of local surface temperature under certain large AT, vibrations of liguid surface,
and non-axisymmetric trajectories of tracer particles. The research group at NASDA reported
slow and fiast oscillations of local surface temperature [32-34]. They defined the critical
condition for incipienc of oscillatory flow by the AT at which they detected these temperature
oscillations, either slow or fast. They measured AT by using two thermocouples molded in the
suport rods and the junctions are located 6=0.5mm apart from the melt/rod interface.
Although the distance is as small as 0.5mm, temperature drops in the distance & is
significantly large since very large heat flux flows through the rod and liquid bridge. In the
FY2001 Annual Report [8], we reported a conduction dominant model which estimated the
conduction temperature drop in the small distance & and enabled to properly evaluate the
effective temperature differnce acting on the liquid surface. The conduction temperature drop
causes a serious error in the critical Marangoni number, some time as large as 20“%

Despite these corrections, there remained some discrepancies betw
and the cx_p@m ents. First oA-e is the rsqu ncies of local tempera‘tL
O
z

e critical frequency of = in b‘i‘ﬁdgs with a=1.5mm : Hfﬁj
As=2.0. Gn the other hand, experimentally observed frequency was 0.2Hz or 0.02Hz.
many experimental runs, very slow oscillations (=0.02Hz) of local temperature were ﬁist
detected and last for a while and then took ovpz b y another type of oscillations with mediuvm
freq i ). Our simultions conducted in FY200! could not explain these
oscillations wzth sim and the medium frequencies. Previous simulations had been conducted
over a limited range of AT (near the second critical AT) and run-time (corresponded to less
than few minutes of real experimental *f*n}. The second one is the value of the second critical
Marangoni number. The experimentally determoned second critical Marangoni number,

based on the effective temperature difference corrected by the conduction dominant model,

tend to be larger than those predxcted by our simulation [8].
In FY 2002, we tried a simulation for a liquid bridge of As=
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history of temperature Axfzersn@ﬁ over 10 minutes of experimental run ﬁm@, in order to reveal
what phenomena correspond to these slow oscillations and when the osc zﬁatory flow started.

In FY2003, we also con rjﬂgwgd a ?vnnpr.v ﬂ?“?ﬂ’\nﬁ’\ﬁﬂi f‘pnnfpﬂgs
oscillatory flow in order to reveal the tempo- S‘Gah&ﬂ stmciures of the oscillating velocity and
temperature fields. In order to understand the behavior of complicated flows, we use direct
numerical simulation (DNS) of the partial differential equations. Three-dimensional (3-D)
DNS usually consumes much time and computation fees. Often the results of DNS involve so
many types of disturbances. The flow and temperature fields obtained by DNS in our
previous reports will be analyzed (decomposed) by means of the POD method to get better
understandings of characteristic modes and their spatial structures of the three dimensional
disturbances.

ion (POD)Y of ¢ e
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2. NUMERICAL SIMULATION USING

HISTORY

2.1 MODEL FORMULATIONS

EXPERIMENTAL TEMPERATURE

In order to evaluate the effect of thermal resistance in the supporting solid rods
extending both sides of the liquid bridge, cylindrical solid rods are added to a standard model
of half-zone liquid bridge, as shown in Rig. 1. The origin of the z axis is located at the center
of the lower melt/rod interface. The length of the liquid bridge is ax4s, the length of the rods

are axAs,. The liquid surface is assumed non-deformable and cylindrical.

This shape is true

under microgravity condition. There acts the Marangoni effect on the liquid surface.
Radiative heat loss from surfaces was neglected in the present simulation. Fundamental
equations, initial and boundary conditions are expressed as follows.

In the liquid bridge:

U U 1oV oW
—F—t——F =0
R OR RI8 Oz
U, AU VU _ y? LU _ 9P 3 {‘;E){RU)];+ 13U
ootV ke &5z Tk kR ok f 7% 36°
v av var wr ov  1ap a3 [1a(rRV)] 1 %
et e m e — e
3t R RO® R  3Z RO a}eife 3R f R* 26
W W VAW oW 13, oW 1 %w 3w
ey R A ELi=weel Ly Sy My
ot R R a0 9z 3z ROR\ R ) R® 267 0z
L[ 90 vae o) 1a( e I 2’0 3’
\a»z- R R29 3z ) RAR\ oR ) R® 0% oz
In the solid rods,
26 Ji a( 8@1 1 2% azeL
=0 TT:Rﬁh [t t—
o1 | R OR\ OdR ] R” 96 az” |

Initial conditions:
U=syV=W=0 6=i

Beundary conditions:

At the upper end of the upper rod (Z=4s+A4s,):
{’T} - UH (€]

At the bottom of the lower rod (Z=-4s;)

@ = @C (€3]

At the surface of the liquid bridge (R=1):
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At the surface of the rods (R=1):

®_, (15)
oR

At the upper melt/rod interface (Z=4s)

20 20 y
U=V =W =0, Sz-:.”ma—z’ in rod (16, 17)
At the lower melt/rod interface (Z=0)
U-v-w=o, 2., 2 (18,19)

37 vim gl in rod

The non-dimensional parameters are the Prandtl number, Reynolds number, respectively
defined as follows.

v Cp'/‘
Pr=—= 5
o A

5 5/ do \ . /{ \

Rer = —kﬁffco/wv}'

The Marangoni number is defined as Mar=RerPr. The non-dimensional variables are defined
as; {R, Z}= {r/a, zla}, P = paz/(vu)? U = ualv, =tvid®, =TT, where, a =A/c, p, , u:
velocity, p: pressure, c,: heat capacity, p: density, A: thermal conductivity, p: viscosity, v:
kinematic viscosity, Ty the initial temperature of the cold end of the supporting rod, o: the
Stefan-Boltzman constant and @, =0, /0, A4 s = P

2.2 NUMERICAL METHOD

These equations are discretized by a finite difference method with a modified central
difference treatment for the convective terms [35] and non-uniform staggered grids.
Non-uniform grids were adopted to increase the resolution. The radial velocities on the
central axis were calculated by means of the method of Ozoe et al. [36]. A fully implicit code
was developed last year using the Conjugate Gradient method, combined with a specially
coded matrix pre-conditioner, as reported in 2001 Annual Report [8]. This code provides very
fast calculation, however, works only on the super computer. The thermophysical properties
and geometric parameters are listed in Table 1. The simulation results will be expressed in
dimensional form for the sake of easy comparison with the experimental results. In this work,
we used the same grid as was used last year for 4s=2.0 [8,11].

The temperatures on both ends of the model must be given as a function of time. In this
work, we reduced this information from one of the time records of NASDA’s experiments
measured by two thermocouples mounted in the supporting rods on the axis but & apart from
the melt/rod interfaces. The temperatures at both ends of the rods with a length As=L/a=2

were deduced using a conduction dominant model.

{ 3\
|
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In the present simulation, we used the following geometric parameters: o=1.5mm,
L=L,.=3.0mm and d=0.5mm. Thus obtained and smoothed results of 7y and T¢are shown n
Fig. 2 as a function of time. Ty and Tt rise in the first period, however, the temperature
difference is monotonically increasing throughout the run.

2.3. RESULTS

Results of the simulation sing the temperature records of the top and bottom
temperatures during the experiment are shown in Figs. 3-7.

Fig. 3 shows time evolutions of local values of the axial velocity, azimuthal velocity

bR
on the melt surface, averaged azimuthal velocity, local temperatures, together with the

imposed over-all temperature difference AT, calculated temperature difference between the
two thermocouple positions A7” and the effective temperature difference acting on the melt
surface, AT, which is defined as.

271’ 1 9
i (1,979) ,[ (1 6,As )G‘QJTCO /27 (22)

An averaged azimuthal velocity on the surface was defined as

_lr27‘c., Al s {
Yol =10 VYs(1,6,05)%¢) < ¢

1

I T, 4 £
11qf B =54 11 £ 7 +1
E MUust DE ZEYC. put 1o

expected to osch}atc around zero.

Fig. 3 suggests that there occurred two-step flow transitions in the liquid bridge. The
first one is a transition from an axisymmetric flow to a three dimensional flow. The second
one is an incipience of esciifamry flow.

1. ~ Acrix TYYITY

Fig.4 shows results for very early period. In this simulation, as an
imposed a finite temperature difference A77=3.4K. Then, there was an initial transient period
continued for 3 seconds to develop conductive and convective temperature and flow fields of
Marangoni flow in the melt zone. The temperature and velocity fields were all axisymmetric.

As the over-all tempera%:ure difference increased, the flow velocﬁy increased gradually. At

about /=15 seconds, a local azimuthal velocity started increasing with time indicating a
growth of a 3-D disturbance. Growth process continued. At around #=56sec., 3-D disturbance

became se*’nehow observable and at around =66sec, it reached fuﬁy leev{s%opeé stage. Since

flow mode was maintained. Detailed analysis of velocity and temperature realed that
the ﬁmciamental ammutnai wave number of this 3- S ﬁow and tempe;ature ﬁeld wa mil.

aimost symmemcal wn:h respect to one diameter, an avcraged azzmuthal Velocrcy {[Uﬁl)

showed very small value, about 5x107®, at =60sec and decreased slowly.

Now, we should make some discussions on the critical conditions for the flow
transitions based on the present simulation. It is difficult to define the critical point accurately
in Fig.4. However, the axisymmetric flow field become unstable against a 3-D disturbance at
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sometime between /=15sec. and 30sec. The effective temperature difference then was AT.=
0.87K at [5sec. and 1.05K at 30sec., respectively. Then, the first critical Marangoni number,
based on the effective temperature difference (AT,), ranges between 5.96 and 7.21. These are
very close to our previous result; Ma.,= 7.13 [11].

On the other hand, in the 2001 Annual Report, we reported the second critical
Marangoni number Ma»,=25.36 and critical frequency ©.=136.4 (i.e., /=1.87Hz for a molten
tin bridge of ¢=1.5mm) for a molten tin bridge of As=2.0 based on the simulations assuming
time-independent over all temperature difference without rods [11].

Fig. 3 shows that at =160sec. (AT, =3.94K, Mu=27.04) the averaged azimuthal
velocity ( }ﬁﬁf} increased again up to 2x107 but no oscillation was observed. However, at

1=190sec. (AT, =4.45K, Ma=30.54), ]Uﬁf started oscillation with a frequency /=1.9Hz and its
amplitude and frequency increased with time very quickly and oscillation amplitude of {(719]

became almost constant at =220sec. Frequency of local temperatures and Uy was gradually
increased with time (i.e., increase of AT,) from 1.9Hz to 2.53Hz at /=250sec. De gaﬂe{%
visualizations revealed ?haa the oscillations between =190 and 220sec. is characterized as 1-T
type; fundamental wave number is m=1 and the line of symmetry shows periodical twisting
back and forth in azimuthal direction. However, it is difficult to distinguish the oscillatory
behavior from the plot of local surface temperatures in Fig.3, even on an enlarged plot in
Fig.5, since the ampigﬁ;a@ of temperature oscillations was less than 0.1K in this stage.

However at t=250sec., local ‘Eemp@raﬁure Gscﬂiatzons were modulated by slow
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As shown in Fig.6, after several oscillations of low frequency, at r=365sec., the
surface temperature started rather random oscillations with large amplitude (= 1K of
peak-to-peak value) and medium frequency (f=0.25Hz) with small amplitudes (less than
0.2K). Visualizations of the flow and temperature distributions in the liquid bridge revealed
that these osczﬂanons were ca‘ussd by temporal changes of flow modes between 1-T and 2-T
accompanied by an irregular rotating motion. This type of oscillations of surface temperature
may correspond ‘z:@ the experimentally observed temperature oscillations with f=0.29Hz
under a range of the Ma mngcm number between Mo=73 and 90.

\Iternations of the flow modes continued for 35 sec. in this simulation. At
=400sec., the oscillation mode changed again. At £400sec., oscillations in 1-T mode was
dominant, but sometime, mode changes to 2-T type for a short period and soon come back to
I-T type. Angle of the line of symmetry changed quickly in azimuthal direction
accompanying the mode change. However, the grids used in the present simulation are rather
too coarse to guarantee the accuracy of simulation results at this highly super crifical
conditions.

The present simulation n,suits first succeeded to expl in “he N AS“AS experi imen tai
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molten tin bridge of As=2.0 expemenced very stra‘ige S;OW osmHations of lccai temperature
on the liquid bridge (order of the frequency: 0.01Hz) prior to the incipience of a series of
higher oscillations (order of the frequency: 0.2Hz). On the other hand, our previous
simulations predicted Ma,=25.36 and critical frequency @.=136.4 (i.e., /=1.87Hz for a
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molten tin bridge of a=1.5mm) for a molten tin bridge of 4s=2.0 based on the simulations
assuming time-independent over all temperature difference without rods. In FY20021, we
thought the observed oscillations of f=0.2Hz might correspond to the oscillations predicted
by the simulation and simulation results could not explain low frequency oscillations.

The present simulation revealed that the incipience of oscillatory flow might have
started prior to the slow frequency oscillations but it had not been detected. In order to detect
the second critical condition (incipience of the oscillatory flow) a very sensitive temperature
sensors are required, because the surface temperature oscillates with rather high frequency
(=2.5Hz) and small amplitudes (less than 0.1K PP). Present result draw realistic explanations
of the flow phenomena that caused the oscillations of surface temperatures with low
frequency ( =0.01Hz) and another oscillation with medium frequency range (=0.25Hz).

However, present simulation could not 1@801\/6 the issue of the second critical
Marangoni number. As mentioned before,
the second critical Marangoni number would be Ma,=31.2, if we define t

ent ¢

the time when ‘Uﬁﬁ starts its oscillations, i.e., 7=190sec. in the pre

slightly larger than the previous result, i.e., Ma=25.36 [11].

In the transient simulations, one may think that the critical cor d n depend on the
rate of the temperature ramp and also geometry of the liquid bridge. Here, we checked the
effect of the rate of temperature ramp on the incipience of the ngzuofeor )/ iiow “:ig 7 shews

510‘/\&;1 process of U_l;i under four rates. In these simulations the initial
=180sec. ([M eZé-&.ZK, Ma:Z&é} shown in ?ig. 2. We us
ramp; case i i .
dAT/dr=0.05 K/s and case 4; dAT/dr= 0.075K/s. As the ramp rate increases, growth rate o
the amplitude of [Uﬁg increases and may more quickly attain to a observable amplitude. It

<

should be noted that even if we maintain the ATp constant at Mo=28.8 (Case 1), 51@
non-oscillating 3-D flow was unstable at d osgiﬁaa@ry msturbaucp star @d aft@r long waiting

time. This indicates that the ATy =4, a super critical
marginal stability
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condition according to our definition o

condition.
Results shown in Fig7 indicate that r@gamiess the rate of temperature ramp,

OoVVEr iRd

oscillatory disturbance starts its growth process at around /=190sec. in the present simulations.

These results suggest that we can not define an un que value of Mag fr@ the time when the
oscillatory disturbance started ie., Ma;,=30.40, 32.25 and 33.63, for Case 1). Case 3) and
Case 4), respectively. These suggest that in order to initiate oscﬂlations an embryo of

oscillatory disturbance must be i‘nwbated otherwise the 3-D non-oscillating flow can be
maintained at a super critical state. In the previous simulations, we adopted an isothermal,
quiescent initial condition. Such an initial condition created considerably large initial
disturbance which may work as an embryo and the oscillations could started quite soon with
very small super critical AT. Of course, such disturbances could not grow under sub-critical

~fie

conditions. On the other hand, the present simulation used monotonically and slowly

ac Aa I~nn

increasing ramped temperature difference the 3-D non-oscillating flow was developed with
less disturbances and lacked in such embryo which may initiate an oscillatory flow. Thus, the
3-D non-oscillating flow field was maintained until /=190 sec. in a super critical state

On the other hand, 1f we assume that the oscillation becomes observable at a moment

reaches 1x10™, Fig. 7 suggests that the critical Marangoni numbers may become

e

when ]U 8

strongly dependent on the temperature ramp rate, i.e., Ma,=34.08, 36.85 and 39.87, for Case
1, Case 3 and Case 4, respectively. These values are considerably larger than our previous
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result, Ma=25.36 decided as a marginal stability condition based on a series of simulations
under constant A7 s [11].

3. POD ANALYSIS OF 3-D DISTURBANCES
3.1 FUNDAMENTALS OF THE POD

POD is well known as a rigorous procedure for extracting a basis of characteristic modes
from sampled time evolution signals [38-44]. These modes are the eigenfunctions of an
integral operator based on the spatial correlation function. They are shown to form an
orthogonal basis for the function space in which the process resides, and to represent this
process in the most efficient way [41,42]. Directly applying this procedure to a 3D discretized
problem involves extremiely considerable computing task because the spatial correlation
matrix (the eigenvalues of which we want to obtain) is usually very large. For the case under
consideration in our study, the matrix would have a dimension corresponding to the number
of grid points used for the DNS scalculation. A more accessible approach which is referred to

as the method of snapshots was proposed by Sirovich [40]. This method which invokes the
ie

; i : . + ak
ergodic hypothesis allows to reduce the computation task to a much more tractable

eigenproblem with a size N equal to the number of snapshots of the flow field which have
been obtained by direct numerical simulation (usually of the order of some hundreds). The
method of snapshots [45] which is applied to our problem is presented in a practical way in
the following.

The state variables U(x,7) and ©(x,7) obtained through the N snapshots are

decomposed into time-averaged parts, U(x) and ©(x), and time-varying parts, U'(x,7)

Ux,t ) U( ) +U'(%,7), (24)
B(x,7)=0(x)+0'(x,7). (25)
The two time correlation matrices Cfin and szn are then constructed from the
velocity and temperature samples, respectively, as

cv =L LU'(X,T

o = N( (5,7, U'(%7,)) mn=12,.,N (26)
CS’HZ%{@'(X,@%)?'{X;T”}) mn=12,.,N 27)

Y

where the outer parentheses (.,. ) represent the inner product defined as
(a,b)= {U a(x ) b(x )dx (28)

where @ and b are two vectors for Eq. (27) and two scalars for Eq. (28) and D is the

flow domain,

$tuts

The eigenvalues A” and A° associated to these matrices, and their corresponding

eigenvectors A" and B, m=1N, can be calculated, which gives

~U U 47
a"m,nAin = '}Ll' .4.”1 (29)
and Cy Bl =A B/ (30)

1

. . - P P g . ~ L. N 1
Finally, the characteristic modes (also called empirical eigenfunctions) ®Y(x) and

Foy

®,; (x) (here normalized) are obtained as linear combinations of the time-varying parts,

1

N
®Y(x) = jg%é;méj'(x,z’m) 31)
m=1
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and B"O'(x,7,,), (32)

. ! o U N 2 m m <) = 2
with A7 = A /-_“‘ AN 2 (4 and B =B"/ A7N 3 (B]")
m=1 m=1

The method chosen here is based on the separate treatment of velocity and temperature with
the construction of a two time correlation matrix for each field, as is also done in Refs. 42-44.
The eigenvalues and empirical eigenfunctions have interesting properties:

1) The eigenvalues are real, non-negative and can be ordered. Each eigenvalue AV (or

/1?) represents the relative contribution of the corresponding modes @ (x) (or 0°(x)) to

the total fluctuation kinetic energy (or thermal energy).
2) The eigenfunctions are orthogonal and have been normalized, so that they verify

U U 0 50
(@, ®;)=9,,; and (O; ,@7)=6;

as linear combinations of the incompressible flow snapshots v’.

4) At last, from Egs. (24) and (31), and Egs. (25) and (32), it is easy to understand that the
eigenfunctions automatically satisfy the homog@neeus boundary conditions associated to the
perturbations for the problem under consideration.

The time-varying parts v’(x,7)and T'(x,7) can then be expressed in terms of these
normalized eigenﬁmctisms as

¥ N N £33N
U Xa )= i a; T}%@l 10:9 {33}

o
[
NN

g

My
(1) = Y b0 (x)

where a,(7) and b/‘z;’ ) are coefficients depending on time, and A, and M, are the

numbers of the first most important modes retained in the expansion for velocity and
ively. When M, =M, =N, the original sampled signal can be

¥V Bivid

temperature, respec
reproduced exactly, with

a,(t)=a" = NAVA™ and b(t)=b"=NA B (35)

Usually M, and M, are much smaller than the number of snapshots, N . They are

chosen so that the set of eigenfunctions captures most of the fluctuation energy. For example
N

/}Z AV o

in Sirovich®, the choice is made by taking £ >99%, where &

Mg N
N2, N e ino that th (M) mod h 0
> A/ ) A7, meaning that the first M, (M) modes capture more than 99% of the

i=l i=1
fluctuation kinetic energy (thermal energy). The use of these modes to construct a low
dimensional model is presented in the ext section.

Here we used a newly developed numerical code o
the DNS results obtained in FYz()OI[ ] Calculation proceeded along the
in Fig.8. The grid used for POD was the same as that used for DNS in our pr

ure

this work, we picked up 100 to 400 data sets of velocities and temperatu

chart shown
vious report. In
covering two to

(Dm
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four periods of oscillations of constant amplitudes.

As will be pointed out later, in most of the cases, energy of the three dimensional
disturbances are contained in the first two modes. Then hereafter, we will approximate the
DNS results with only two to four modes.

3.2 RESULTS OF POD ANALYSIS

Fig. 9 shows snapshots of one of our DNS results for a low Pr liquid bridge (4s=2.0,
Pr=0.01 and Ma=35.0). Firstly, data sets are averaged over the sampled oscillation periods to
obtain time averaged fields of velocity and temperature, U and @, respectively. Then the
time-varying parts are obtained.

The POD process was applied to decompose these time-varying parts to many modes.
Fig. 10 shows snapshots of four major eigen functions of velocity, @ on a horizontal cut at
the middle of the liquid bridge. Here, radial and azimuthal components are indicated by the
arrows and the axial velocity W is shown by the color. Amplitudes for these modes are also
shown in the figure. It is understood that the first and the second modes are very much
ignificant. f;g 11 shows bird’s eye view of distributions of contour surfaces of @" (the eigen
functions for time-varying part of the W: z component of velocity vector).

Figs.12 and 13 show the structures of the major eigenfunctions of time-varying part of
temperature disturbance together Wifh their amplitudes.

Figs.11 and 13 reveal that ®" and ®° have very complex spatial s.

!uagmg from the order of magnitude of the eigen vectors, the major two modes are taking
mportant roles in this case. The sums of the major two eigenfunctions with their ¢

2]

ML

provide fairly good r p odus’iion of the time-varying part of velocity and
disturbances, as shown in Figs.14 and 15. Snapshots of as birds eye views o

5

(

distributions of contour hrfaces of Za;:®," and Th@° ( of the major two terms) are
shown in Fig.16. Video r rés of Za®,"” and Zb®,° md cate that the disturbances

H 1rantinnm otarting frame tha S Nm,\ ~L N
direction, starti 1g from the front side of the fi figure and
di
!

In F 2@@3 more precise POD Wﬂ‘i bp cmaucted to many DNS rpsuhs in order to
9 Y
haracteristics of the three dimensional oscillatory

understand the details of the ori g in and

e

Marangoni flow in half-zone liquid bridge

w2 O

4. CONCLUSIONS
1) A long-run simulation was conducted to obtain a better understandings of the temperature

oscillations on a molten tin liquid bridge surface o’bservsd in NASDA’s ground-base
experiment. The simulation used a time records of temperatures measured by two
thermocouples mounted in the supporting rods mad of iron, E cated on the axis of ‘Lh@ rods
and apart from the melt/rod interfaces by a small distance §:{§.§mm. In the present simulation,
a molten tin liquid bridge with an aspect ratio 4s=2.0 was modeled being suspended between

two iron rods of As=2.0 and the surfaces are 8&18%35(1@ We adopted a simple conduction
dominant model to reduce the temperatures at top and bottom ends of model system from the
temperature records measured by the thermocouples.

Transient simulation results revealed that the Marangoni flow in the liquid bridge
experienced axisymmetric flow, %ﬁﬂssﬂiaﬁ?}g 3-D flow with a fundamenial wave number
m=1, and 3-D oscillatory flows. The first flow mode chan ge from an axisymmetric to a 3-D
non-oscillating flow started at around t=  sec. and fully grown up at arou@d t= sec. The fi
critical Marangoni number Ma.; lies between 5.96 and 7.21,, These are very close to our
previous result; Maq=7.13.

Oscillatory flow of 1-T type mode started its growth at around t=190 sec. from a very
small amplitude and a frequency of f=1.9Hz. Oscillation amplitudes increased rapidly and
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fully grown up at around =220sec. At =220sec., amplitude was about 0.1K and continuously
increased its amplitude as temperature difference increase with time. However, the amplitude
of surface temperature oscillation was less than 0.2K and f=2.5Hz at =250sec. The second
critical Narangoni number was Ma.,.=30.52, if we define the critical point as the instance
when flow field started oscillation with very small amplitude. This value is significantly
larger than our previous result, Ma,.=25.32, with a critical frequency of f;=1.87Hz, which
was determined as a marginal stability condition based on a series of simulations with
time-independent values of AT.

Despite this discrepancy in the critical Marangoni number, the present simulation found
out new type of oscillation phenomena. At /=265 sec., the whole body of the velocity and
temperature fields exhibiting the 1-T type oscillations started slow rotating motion around the
axis. Correspondingly, local temperatures indicated low frequency oscillations (f=0.04Hz ,
amplitude = EK) accompanied by the high frequency oscillations of 1-T oscillations (f=2. SHZ,
amplitude =0.2K). These low frequency oscillations may explain the experimentally observed
oscillations.

ncy oscillations, the su

SALAGLIRSIS 110 St

&
o
)

(@]

After several low fre cy e temperature started another typ
oscillations dunng t=365- {}{} with medium frequen@y and large amphaude \fz 0.25Hz,
amplitudes = 1K). These oscillations correspond to alternative changes of oscillating modes
between 1-T and 2-T types. These oscillations may explain the second temperature
oscillations observed in the experiment after the low frequency oscillations faded out.

The present simulation predicted third type of oscillations at t>400sec. In this stage, 1-T
type oscillations are dominant but for a short time, 2-T type oscillations took over
accompanied by a big }ﬁmps of local surface temperatures. This type of temperature
oscillations was not reported in the experiments to date. The grids used in this simulation
were not fine enough for calculations at highly super critical condition and the results are not

completely reliable. Further check and validations are necessary.

2} A Proper Orthogonal E}ecomposmen (POD) me hod was applied to one of our previous

results of the direct numerical simulation (DNS) of the oscilla ‘;mg Marangoni flow in a liquid
bridge of low-Pr fluid (Pr=0.01, 45s=2.0 and Mu=35.0). DNS showed a 1=T type oscillations
in the liguid bridge. POD analysis revealed that the three dzmensxo al oscillating disturbances

can be decomposed into many modes. However, in this case, the Lemp@raau:r@ and velocity
disturbances are well represented by two major eigen functions. Here we showed three
dimensional structures of these eigen functions and their time-dependent amplitudes.
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Table 1 Thermophysical properties and geometric parameters.
Molten tin Iron rod
Pr 0.009 -
density o [kg/m3] 6793 7700
Thermal conductivity A [W/mK] 35.44 20.0
Specific heat Cp [J/kgK] 242 460
Viscosity u [kg/ms] | 1318 -10° -
Temperature coefficient o ¢ [N/mK] 213 - }{}'4 -
of surface tension
Radius a [m] 15-10°
Length of the liquid bridge L 30-10°
[m] |
Length of the supporting rod 9.0-10°
Lm]
Offset of the thermocouple o[m] 05-10"
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Fig.1  Schematics of a liquid bridge with two supporting rods.
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Fig.9 Time average and extraction of time-varying part of velocity and temperature.
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function of time. Distribution of eigen functions on a horizontal cut at Z=0.5 color indicate W

component.

149

This document is provided by JAXA.



Fig.11 Birds eye views of the four major eigen functions of velocity, together with the eigen
values and 2-D distributions on the mid plane (Z=0.5As).
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Fig.12 Four major eigen functions of temperature, eigen values and their amplitudes as a
function of time. Distribution of eigen functions on a horizontal cut at Z=0.5.
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Fig.13 Birds eye gviews of the four major eigen functions of temperature, together with the
eigen values and 2-D distributions on the mid plane (Z=0.5As).
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Fig.14 Synthesis of the time varying part of the velocity disturbance by sum of the two major
eigen functions and their amplitudes.
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