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ABSTRACT

A typical transonic flow at Mo, = 0.80 and Re = 1 X 10° is numerically simulated by
using the Yee-Harten TVD Scheme of Euler Backward Implicit method. This study
treats unsteady, inviscid or viscous compressible flows. In the viscous flow case, two
turbulence models are applied: Baldwin-Lomax model (BLM) and Stock-Haase model

(SHM). Comparison with the experimental data shows a good agreement.

1. INTRODUCTION

The characteristic of aerodynamics in tran-
sonic flow regime is of great importance, since in
this speed range most civil aircrafts cruise. A
typical transonic flow has a subsonic free stream
from which the flow accelerates to a supersonic
speed along the airfoil surface. The deceleration
from supersonic to subsonic flow, in general,
passes through a shock wave.

If a shock strength is sufficiently large, a
boundary layer separation will occur near the
shock. Depending on the airfoil configuration,
there may also occur a separation at the trailing
edge, that can merge with the shock induced
separation region. In that case, the boundary
layer is generally turbulent. The response to a
strong adverse pressure gradient is a function of
Reynolds number?).

* ¥ BT

The difficulty in predicting transonic flows is
caused by the existence of non-linear phenome-
na. Hence the flow equation must be represented
by a non-linear equation. The basic equation
which represents most fluid dynamics of interest
is the Navier-Stokes Equations. By neglecting the
least significant part under certain physical
considerations, an approximation to the govern-
ing equations can be developed.

The numerical solution of the Navier-Stokes
equations for aerodynamic predictions is now
made possible as a result of increases in computer
capability and advances in grid generation tech-
niques?).

Algebraic eddy viscosity models are still the
most common choice for turbulent compressible
Navier-Stokes equations. These models are quite
acceptable for the turbulence modeling of
attached turbulent boundary layer without shock
waves?),

Baldwin and Lomax5) proposed an algebraic
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eddy viscosity, after Cebeci and
Smith®), which is intended for separated turbu-

patterned

lent flows. In this model, the determination of
the boundary layer edge is not required, and
thus eliminates a source of potential error of the
computed eddy viscosity in the outer layer.

Several further evaluations on the model
proposed some modifications either on para-
meters?) used or on the way how an abritrary
function is defined®).

On the other hand, Stock and Haase9),
proposed a slightly different formulation of the
outer eddy viscosity. In their proposal, a bound-
ary layer edge can be determined by using the
function defined in the Baldwin-Lomax model.
However, the displacement thickness, which will
be later used to calculate the eddy viscosity
equation, is derived from Coles velocity profile
in defect form19),

Described here are the results of a series of
computations using two algebraic eddy viscosity
formulations to simulate transonic flows over
NACA-0012 airfoil. The flows under considera-
tion are unsteady compressible at M__ = 0.8 and
Re = 10°. The Yee-Harten scheme is employed
to ensure the non-oscillatory approximation to
shocks and other contact discontinuities.

In attempt to have an insight and understand-
ing into the physics of the transonic flow charac-
teristics around the considered airfoil, the
results are compared with the experiment which
was conducted in our transonic tunnel at Nagoya
University. In section 2, brief outlines of the
governing equations, the numerical scheme and
the turbulence models used in this study will be
presented. The results will be shown in section 3.

2. METHOD OF CALCULATION

2.1 Governing Equations

The basic equations under study are the
Navier Stokes Equations. Considering the effi-
cient numerical process, an approximation to the
governing equations can be developed. One of
such approximations is the Thin Layer Navier-

Stokes equations. The diffusion process along the
body surface is neglecteds), while the normal
component of the momentum equation is
retained, unlike
Layer approximation. The two dimensional
Thin Layer Navier Stokes Equations in Cartesian
coordinates can be written in the conservation

the conventional Boundary

form:
Q:+F+G, =S, (1)
where
P pu pu
u u? +
Q: P s F= p p , G= F:uU
pv puv pv° +p
e (etp)u (e+p)
0
S= Txy
TYY

UTxy TUTyy + 4y

=(r— ——1- 2 2 =P
p=(r—1) {e—zp@W®+v")}, T=—Epp

The variables p, u, v, p, e and T are made non-
dimensional by the following reference values:
density p.,, velocity component U, pressure
(PooU.o), total energy per unit volume (5U2) and
temperature T, respectively. The bar denotes
dimensional quantities. Finally, u is the dimen-
sionless dynamic viscosity defined as f/f, For
the evaluation of u, the Sutherland’s formula is
employed. In the dimensionless form:

= ———;.:(é, T3/2 where C= ——-—1;2'4 2)

In the present study, T is assumed 300 K. The
dimensionless heat conduction k is defined as
k = yu/Pr (Prandtl number Pr = 0.72).

Avoiding difficulties in the irregular shape of
physical domain, equation (1) is transformed
into the curvilinear coordinates of computational
domain using the following relation

E=E(x, »), n=n(x, ) 3)
While
property, equation (1) can be written in general-

maintaining the strong conservation

ized coordinates,
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Or +Fe 4 Gy = S, (4)
where
Q=J71Q F=J" (§,F+E,G),
G=J" Y(nF+ 1, G),
0
S = _‘i w2ull + Gﬂx
I w?vp + Oy
2{ (u? +v2)+kT }+0¢
with

= _ 1
w?= 773¢ + 7?;2), J g(nxun + nyvn):

¢ = (nxu + nyv)
J = §xmy — §,ny is the Jacobian.
Jacobian matrices are defined as A = 0F(Q)/
dQ and B = 8G(Q)/aQ, and the Jacobian matri-
ces in generalized coordinates are written as:

A= (ExA4 + syB) and B = (A + nyB) (5)

Finally, the diagonalization of eq. 5 is obtained
by using R and R, matrices whose columns are

eigen vectors of A and B, in the following:
R{'AR; = Ay and R;'BR, = B, (6)

Matrices R;' and R, as well as R;' and R,
employed in this study can be seen in the Ap-

pendix.

2.2 Numerical Scheme

In this section a numerical method with the

Yee-Harten TVD scheme will be briefly outlined.

More details of the method can be found in ref.
1). Considering the procedure to explicitly solve
the viscous term on the right hand side of eq. 4,
we only have to solve the left hand side of the
equations. A one parameter family of TVD
scheme for solving the left hand side of eq. (4)

by the implicit backward Euler method is

a1 ~n+l =n
o' +)\E(F:’+%’ F__ o

~m+l ~m+1 — A
+M(Gi’k+%—0i.k_1)—Q" (7

where Af ==L and A" = At AE and An denote

AE

the grid spacings in the § and n direction. In this
study, Qi+;_,k is calculated as the Roe’s sym-
metric average:

~ Qi1 + 0

(

1= (8)
2 (/2L 4y

The flux function Fy,1 Lk is expressed as

Fiti= St By k + Ris1@1) (9)
If the eigen values of A andB can be expressed as

(at, af, ..., df)and (ap, &3 ,an ) (10)

Then, the [-th component <I>,+ ,where/=1, 2,
, m is written as

" \l/(a

] )
)(g,.+g,.+,)

N

1
o W(ah%

Here o is the difference of the characteristic
variables in the local direction, and is defined as

Qiv1,6— Qi x

! !
* 7i+%)ai+% (“)

- p-1

%3 Nl 0 Se U gk i) (12)
and
gﬁ = S « max (0, min (1“24,1"5 . a§+l))
l 2 2 (13)
S = Sign (aH%)
lz| Izl > e
W(Z)= (zz+€2)lz| <e (14)
2e
with
1,1
(g7 +&5+1)
- = —F —a #0
Y3 xp(a l) dii% (15)
0 a =0

Another numerical flux éi,k%% can be defined
similarly.

For efficiency of computation a linearized
conservation form has been intentionally chosen
to keep the strong conservation property.
Finally, an ADI form of the linearized implicit
algorithm has been constructed.
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2.3 Grid and Boundary Condition

An algebraically generated C grid is used here
in this study. To calculate the flow, 201 X 30
mesh is employed, with no special clustering near
the shock. Figure 1 shows the grid distribution
around the airfoil, with 120 grid points on the
airfoil surface. The outer boundary is 10 chord
lengths away from the body.

The simulation for each case is initially started
with a uniform free stream at the prescribed
Mach number. At the outer boundary the flow is
assumed uniform with the free stream: u = U,
and v = 0. At the downstream boundary, non-
gradients of flow variables are applied ( g—g =0),
except for pressure. Regarding to the pressure,
the same value as the upstream flow was en-
forced on the boundary. The surface of the
airfoil is impermeable, and “no-slip’’ boundary
condition is employed for the viscous case. In
the case of the Euler equations, a “slip” bound-
ary condition is imposed and the tangential
velocity at the wall is linearly extrapolated from
the value next to the wall. The pressure on the
body surface is calculated from the normal
momentum equation. The total enthalpy is held
constant along the body, which is the same value
as the free stream. Along the wake cut, each
quantity is calculated by averaging the variables
above and below the cut.

The parameter € included in Eq. (12) is set
equal to 0.2 for all cases. The result of using
other values showed no significant differences.

To simulate the separation at boundary layer
which is likely to occur in the transonic flow, the
grid is refined up to the viscous sublayer scale.
AY,,;n of the first spacing is 4 X 10™* which is
fully in the range of the thickness of boundary
layer in incompressible flow.

2.4 Turbulence Model
2.4.1 Baldown and Lomax (BLM)

This is a two layer model in which an eddy
viscosity is separately calculated for inner and
outer region. The inner region follows the

Prandtl-Van Driest formulation. The distribution
of vorticity is used to determine the length scale,
thereby avoiding of finding the outer edge of the
boundary layer. For inner region:

We)oner = pl? |wl (16)

where
1=ky {1 —exp(—y*/A")},

ta P o [T 17

Bw Pw

y

k is von Kirman constant = 0.4 and 4% = 26.
|wl is the absolute magnitude of vorticity. The
eddy viscosity for the outer region is given by:

(Mr) outer = KCeppF\akeFkien(y) (18)
where
YmaxFmax
Frake = Crot¥ max Ui the smaller  (19)

Fmax
The constants C, = 1.6, K = 0.0168 and C\x =
0.25 are defined due to the Cebeci-Smith®)
formulation for contant pressure boundary layer
at transonic speed. The quantities y,,, and
Fonax are determined from the function

FO) =yl {1 - exp( ) (20)

Finax is the maximum value of F(y) along the
y-coordinate, and y,,4, is the location where it
occurs. Ugir is the difference between maximum
and minimum velocity in profile. The function
Fgrep (¢) is the Klebanoff intermittency factor
defined as

Fries() = {1+5.5¢(
y

C
i)‘"}* (21)

with Cyy = 0.3.

2.4.2 Stock and Haase Model (SHM)

The Stock and Haase model (SHM) is almost
the same model as the BLM. However, another
procedure to evaluate the turbulent length scale
is proposed, which enables the direct application
of Cebeci-Smith’s eddy viscosity formulation.

For the outer region, Cebeci-Smith’s eddy
viscosity is given by:
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(Mp)outer = kU S* Fic1op(») (22)

Where U, is the velocity at the edge of the
boundary layer.

The Klebanoff intermittent factor is defined
as

Fraep)= {1+55(3)° } ! (23)

where 6 is the boundary layer edge.
If the Coles formulation which consists of a
summation of the law of the wall and the wake

can be written as

U, _ U, C oy
y 55}-1 = [nloiﬂ%sm (1%)+ o] (24)

where II is Coles pressure gradient parameter.
The maximum of the property y}%gj will
provide

8= 1.548y,,0x (25)

The results of numerically experimental
velocity profiles show that by increasing the
constant parameter in Eq. (25) by 25%

8= 1.936¥max (26)

the viscous-layer thickness was predicted well?.
The displacement thickness 6* is evaluated by
numerically integrating the velocity profiles from
y=0ory=y,=otod.

3. RESULT AND DISCUSSION

The transonic flow solutions for NACA0012
airfoil were computed for Re, = 1 X 10° and
M, = 0.80. All computations were carried out
up to the time when the mean flow travels by
5.273 chord length.

The calculated result was considered a steady
state when the relative error for every flow
variables become less than 107*. Each case
converged at about 850 steps. It required 110
second CPU time on Fujitsu FACOM VP200.

Turbulent eddy viscosities are used in the
BLM and SHM. These are made non-dimensional
by the free steam molecular viscosity ., and
plotted in the y-coordinate in Figs. 2 and 3. Both

U

N B e T TN,

Fig. 1. 201 X 30 “C” Grid for NACA-0012
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Fig. 2. Turbulent Viscosity Profiles (BLM):

M_ =08, a=0and Re=1X 10°.

models produce almost the same profiles with
rather flat peaks which go to zero outside the
boundary layer.

As described in ref.9) the eddy viscosity
calculated by the BLM is higher than that by
the SHM. The profiles u, indicate a gradual
change. A comparison of mean velocity profiles
is made at the same station between the solutions
using both models and the laminar one in Fig. 4.
In a laminar flow, a very large région of reverse
flow is observed. This seems to be natural, since
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the laminar viscous flows produce a very thin
layer. Thus easily initiated a separation in further 8_
upstream. The adverse pressure gradient then _" .
boosts up the reverse flow. . DE
Inserting the turbulence model into the ) —— o
equations means to bring the flow in outer o8|
region with higher energy to the closer area to 4
the wall. The higher the eddy viscosity becomes, -8 ]
the less likely a reverse flow is to occur. The )
higher value of eddy viscosity in the BLM solu- g
o
tion can be seen from Fig. 4, which has elimi- }\E
nated the possibility of reverse flow at the g
surface. The eddy viscosity by the SHM, which is 00 10.00 2°‘°°u 30-00  40-00  50-00
slightly smaller than that by the BLM, retains the . .
reverse flow around the shock region Fig. 3. Turbulent Viscosity Profiles (SH}\g):
f 2 region. M, = 0.8, a=0and Re=1X 10°.
B__X/C' 0.441 g X/C1 0.527
®|— LHNRR . S1—_ LmNAR
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g * ! g| s Ns-SHH :
31 : o7 1
-4 1 u !
: B ! 2 ?
o° ! 1 !
5 | 4 i ¢
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(d)

Fig. 4. Mean Velocity Profiles: M = 0.8, a=0and Re = 1 X 10°
a) x/c=0.441 b) x/c=0.527 ¢)x/c=0.604 d)x/c=0.674
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A comparison with experiment for wall
pressure distribution can be seen in Fig. 5. Two
computed distributions are included. One of
these computed data is an inviscid calculation

and another one was obtained by using eddy
viscosity of the BLM. The experimental data
seems to be rather higher as compared with both
numerical results. This might be due to the fact

o EXP-1
EULER
NS-BLM
5.270

cpP

0.60

¢

NRCA-0012

Fig. 5. Surface Pressure Distribution:
M, =0.8, a=0and Re=1 X 10°

EXP-1
NS-5HM
NS-BLM
5.270

0.60

(=3
U NRCR-0012
8

Fig. 6. Surface Pressure Distribution:
M, =0.8, a=0and Re=1X 10°
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that the wall interference effect is not yet

included in our experimental data. All compari-
sons except for what were previously mentioned

are in reasonable agreement. The inviscid solu-
tion did give a stronger shock: the shock is more
upright than the viscous result. Some improve-
ment is seen in the viscous case. However, the
level of pressure recovery still underestimated
by this method.

Figure 6 shows a comparison of surface pres
sure distribution between the result predicted by
implementing both turbulence models and the
experimental data. The calculations are almost
identical except in the vicinity of shock location
and in the pressure recovery location. As com-
pared with the BLM, the pressure distribution
by the SHM is underestimated. The recovery
pressure level provided by the SHM seems to
have a better agreement with the experiment.
The very thin and small reverse flow predicted by
SHM might contribute to a better result.

In Fig. 7, the distribution of skin friction
along the surface clearly shows the discrepancy
of both models. The transition is noted as the
skin friction starts to decrease, then followed by
a sharp drop at the reverse flow in the shock

region. A slow rise of skin friction is observed in
the redeveloping region after the shock, then
followed by gradually decrease toward the
separation in the trailing edge. In the BLM this
kind of phenomena is not as sharp as in the SHM.
Considering the coincidence of pressure recovery
level between the experimental data and the
SHM, the flow characteristics: a separation
around shock region, followed by redeveloping
region, and then another separation near the
trailing edge, might be numerically confirmed.

Figure 8 shows the density contours of the
viscous and inviscid result. Here, the calculated
result is compared with the schlieren picture
taken by our experiment. Once again, the shock
location is well predicted in all cases.

4. CONCLUSION

Transonic flows ranging from the inviscid to
thin layer viscous flow have been simulated
numerically in this preliminary study by using
the TVD scheme of Euler backward implicit
method.

In the viscous case two turbulent models:
Baldwin-Lomax (BLM) and Stock-Haase model
(SHM) are incorporated into the governing equa-

CH»1000
2.00

Fig. 7. Skin-friction Distribution:
M_ =08 a=0and Re=1X10°

Thic dociiment i nrovided hv TAXA



7 EIERT RGN Y Y o LR 263

REFERENCES

1) Deiwert, G.S., Numerical Simulation of
High Reynolds Number Transonic Flows,
AIAA Journal, Vol. 13, No. 10, Oct. 1975,
pp. 1354-1359.

2) Yee, H.C. & Harten, A., Implicit TVD
Scheme for Hyperbolic Conservation Laws
in Curvilinear Coordinate, AIAA Paper
85-1513.

3) Beam, R. and Warming, R., 4n Implicit
Factored Scheme for the Compressible
Navier Stokes Equations, AIAA Journal,

"~ Vol. 16, April 1978, pp. 393-402.

4) Deiwert, G.S., Computation of Separated
Transonic Turbulent Flows, AIAA Journal,
Vol. 14, No. 6, June 1976, pp. 735-740.

5) Baldwin, B. and Lomax, H., Thin Layer
Approximation and Algebraic Model for
Separated Turbulent Flows, AIAA Paper
78-257.

6) Cebeci, T. and Smith, A.M.O., Analysis of
Turbulent Boundary Layers, Academic

Fig. 8. Density Contours: Press, 1974.

M_=0.8,a=0and Re=1X 108 7) Granville, P.S., Baldwin-Lomax Factors for

a) Euler Eqs. b) Experiment
¢) Navier-Stokes Egs.

Turbulent Boundary Layers in Pressure
Gradients, AIAA Journal, Vol. 25, No. 12,
Dec. 1987, pp. 1624-1627.

8) Visbal, M. and Knight, M., Turbulence
Model for Two Dimensional Shock-Wave/
Boundary Layers Interactions, AIAA Jour-
nal, Vol. 22, No. 7, July 1984, pp. 921-
928.

9) Stock, HW. and Haase, W., Determination
of Length Scales in Algebraic Turbulence
Models for Navier Stokes Methods, AIAA
Journal, Vol. 27, No. 1, Jan. 1989, pp.
5-14.

10) Hinze, J.0., Turbulence, McGraw-Hill,
New York, 1959.

tions. As compared with experimental data, the
SHM shows a better agreement with the experi-
ment.

No attempt has been yet made in the present
study to use more rigorous turbulence model.
Since the flow is transonic, even the algebraic
turbulence model might be adequate for regions
in the vicinity of shock and in the separated
flow. The flow separation has not yet been
confirmed over the surface of the airfoil by
experiment. The flow characteristics about
NACAOQO012 airfoil should be considered qualita-

tive.
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APPENDIX The eigenvalues of the Jacobian matrix 0F/3Q
are defined as

The eigen values and eigenvectors are ex- N = (U= c)S, N = US, ¥ = (U +0)8,

pressed in term of the generalized metrics n, and _

. N =08 (A3
ny,, which define the x and y components. )
The nommalized contravariant velocity is

i, =n,/S and f,=n,/S ) A )
o v (A-D) U= un, +vn, (A-4)
where
_ And for subsequent use, let define
S=_/ni+n} (A-2) o )
V=un, —vh, (A-5)
The matrix R™! is given by
[ x ¢ x S T x|
+X 7+(7 —qU— Ay —Zv—h, +2
x e _p X, & X, 14 X
Ri= | ez T Vrergu-Ry tlvti, —2 (A6)
XL i Pse Xy, +Xp_p, _X
c 2 c Y ¢ x T2
2
XL 0 —Xy+p, —Xp+h, +X
|l ¢ 2 c y c x ¢
and the matrix R of right eigen vectors is given by
[ 1 1 1 1 ]
4 c [ [4
u a u ~ u ~ u -
¢ Mx c Ty ot ¢ thy (A7
R= v Py v -~ v - v PS .)
¢ My ¢t TRy ¢ =
C_p+s Ty L _p+e Ly
| 2¢ U+x 20+V 2c v x  2c V_

In the above, x=v— 1.
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