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ABSTRACT

'f’his paper presents an incompressible flow solver based on the primitive variable
formulation and its several applications to both fundamental and practical flow problems.
The coupled form of the momentum and energy equations written in generalized coordinates
are solved by the FDM (finite difference method), where a two-step time integration method
with second order accuracy, the approximation of convective terms by the QUICK method,
and an accurate, fast convergence pressure Poisson solver are employed, as well as an
efficient multi-domain technique. Studies on flows on a flat plate and around a circular
cylinder verified the accuracy and efficiency of the present procedures. Treatments of flow
problems with complicated geometry are also presented for several examples.

1. INTRODUCTION

Two numerical procedures to solve the unsteady
incompressible Navier-Stokes equations in both
primitive and Y — @ varnable forms are developed.
The primitive vanable procedure uses the coupled
form of the momentum and energy equations as its
governing equations and can treat not only pure flow
problems but also problems with heat convection.
The QUICK [1] algorithm extended to generalized
coordinates {2, 3] is applied to model the convective
terms and the time integration is performed by a
two-step method with second order accuracy [4].
The pressure in the former procedure is simul-
taneously calculated between these two steps by
solving the pressure Poisson equation with Neumann

* BEEB KXY

boundary condition. A new numerical method [5]
is developed to do this which can obtain a fully
converged pressure field at every time step. Further-
more, the primitive variable methods is coupled with
an efficient Multi-Domain Technique [3, 6]. It can
treat both external and internal flows around
complicated muitiple bodies by employing the
multiple grid system containing overlapped regions.

Section 2 describes the governing equations, and
section 3 the numerical treatments. In section 4,
several examples of numerical results are shown.

2. GOVERNING EQUATIONS

Two kinds of the governing equations are con-
sidered; one is the primitive variable formulation
and another is the y — @ formulation.
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2-1 Primitive Variable Formulation

The time dependent governing equations in the
primitive variable form for incompressible flows
including heat convection and buoyancy force by
the Boussinesq approximation are written in gen-
eralized coordinates. For simplicity, the 2D equations
are shown.
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where u and v are the velocity components in the x
and y directions, respectively, and U and V the
contravariant velocity components in the £ and 1
directions, respectively. p is the pressure, 6 the non-
dimensional temperature, Re the Reyolds number
and Gr the Grashof number. For convenience, Re*
is used to represent the Reynolds number in the
momentum equations and the Peclet number (Pe =
Pr-Gr) in the energy equation. J is the transformation
Jacobian and g, g., g, the transformation metrics.

In most cases where stream velocities are large
compared with the buoyancy induced ones, the
buoyancy effect is negligible, which leads to the
case with forced convection. In such cases, the
momentum equations are independent of the energy
equation and can be solved without any information
of temperature field. The temperature field is ob-
tained from the velocity field along with the tempe-
rature distribution at the previous time step by solving
the energy equation at every time step.

However, in the case of natural or mixed con-
vection, where the buoyancy effect is dominant or
significant, the momentum and energy equations
are coupled and must be solved simultaneously at
every time step.

When dealing with a natural convection flow,
the characteristic velocity is not known, so that the
Reynolds number is not determined. According to
Ostrach [7], the Reynolds number may take the
following values in a well balanced manner:

a. Gr <landRa <1 : Re=Gr
b. Gri>1land Pr <1 : Re=Gr}
c. Gri>1andPr >1 : Re=(Gr/Pr)s

(2
Incidentally, Ra denotes the Rayleigh number (Ra =
Pr-Gr).

2.2 y- @ Formulation [8]

The two-dimensional time dependent governing
equations in the y— @ form for pure incompressible
flow problems are written in generalized coordinates
as follows:

(V') + (V" Ww)e + (J"'Ww), = Re™ IV
VY= -0 3)

where  represents the stream function and @ the
vorticity. The velocities are obtained by taking the

derivatives of the stream function as follows:
u= ll’y= ¢f£¥+¢ﬂ"! (4)
v=—¢ = —Pefs — Yol

The pressure field is calculated from the velocity
field by solving the following Poisson equation.

V2p = 2J (ugvy — veuy) (5)

3. NUMERICAL TECHNIQUES

3.1 Approximation of Spatial Derivatives

The above governing equations are then
discretized by the FDM and solved numerically. A
regular mesh system is employed for easy treatment
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of complicated geometry problems. It comes from
the conservation form of the governing equations,
where the control volume integrations of the con-
vective and viscous terms are reduced to surface
integrations on the control surfaces. In viscous terms,
quantities on control surfaces are approximated by
arithmetic averages. However in convective terms,
a higher order upwind technique based on the QUICK
method extended to generalized coordinates [1-3]
is applied to suppress instability at higher Reynolds
numbers. Incidentally, the transformation metrics
are calculated by second order central differences
except for the normal derivatives at boundaries which
are calculated by one-sided differences with the
same order accuracy.

3.2 Time Integration Method [4]

The time integration is performed by a two-step
method. Here it is illustrated for the primitive variable
formulation.-Let q be the solution vector, H the
convective terms, X the viscous terms, and Y the
buoyancy force terms. Then the time integration is
expressed in the following:

The first step is

1
2
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The second step is

Pl S Uyt 1ynn + Tonn (1)
At 2 2
The pressure Poisson equation is derived by taking
the divergence of the second step equation (7),
assuming V- 3" = 0.
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The pressure is calculated by solving Eq. (8)
between these two steps.

To summarize the time integration steps, we
have the following order of calculation.

@, "=, 7)= @)=

= (") (9)

3.3 Pressure Poisson Solver

When the primitive variable method 1s employed,
the pressure boundary conditions must be solved at
every time step. In general, the pressure boundary
conditions of incompressible flows are obtained from
the nommal direction momentum equations at bound-
aries. These result in Neumann type boundary con-
ditions. It is well known that the direct application
of a point relaxation method such as the SOR method
to solve the Poisson equation with Newmann bound-
ary conditions coverges very slowly.

Another problem arises when Neumann condi-
tions are imposed at all boundaries, where the follow-
ing constraint must be satisfied to ensure the existence
of solutions [9].

jn DdR = /r (8p/dn)ds (10)

where D denotes the source of the Poisson equation,
n the normal direction to the boundary, R the
computational region or its area, and I" the boundary.
This constraint is usuélly not satisfied due to
numerical errors, which lead to a non-converged
solution. To automatically satisfy this constraint, a
source modification method {9, 10} has been pro-
posed.

At first, the following value is calculated by
numerical integration over the whole computational
region.

E= /R DdR - '[r (8p/On)ds (11)

Then the source of the Poisson equation is modified
by subtracting this small value, E/R from the original
source term D.

Vip=D-E/R ' (12)

However, it is not expected to remarkably im-
prove the convergence of the SOR method by such
a modification. Actually, an application of the SOR
method to the Poisson equation with Neumann
condition at a part of boundary also suffers very
slow convergence.

A new method is developed here to overcome
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this deficiency, which can produce a rapid con-
vergence for almost all cases. It comes from the
linearities of the equation and boundary condition,
where the Poisson equation with Neumann bound-
ary conditions can be divided into two equations.
One is the Poisson equation with Dirichlet bound-
ary conditions at the whole bounday, and another
is the Laplace equation with new Neumann boundary
conditions. As an example, let the original equation

and boundary condition be
Vzp =D
1
dp/on =S on T (13)
Eq. (13) is divided into two equations
Vipy =D
(14)
p1=0 on T
Vip, =0
(15)

Op2/0n = S — 3p, /On

onT

The constraint on Eq. (15) can automatically be
satisfied by modifying the source of Eq. (14), follow-
ing Eq. (12). Thus the solution of Eq. (13) is ob-
tained as the sum of the two solutions, p, and p.,.

p=p1+p (16)

Since the boundary condition for Eq. (14) is the
Dirichlet type, the application of the SOR method
produces a rapid convergence. Once Eq. (14) is
solved, the boundary condition for Eq. (15) is
obtained by evaluating the normal derivative of p,
at the boundary. Since Eq. (15) is a Laplace equation,
it can be transformed into a boundary integral form.

1 o} 1
cpg-!-g/[‘pz%(ln;)dl‘ (17)

1 Opy 1
2 ). on (’";)‘"—0 ,

1
c= 1
2—10

where o denotes the inner angle of the boundary.
The above boundary integral equation can be solved

in R

on T’

by the Bounday Element Method (BEM).

In the present study, the BEM with linear ele-
ments is applied. The grid points at the boundary
for the FDM are taken as the boundary nodes of
the BEM. The integral equation (17) is discretized
to obtain the system of linear equations, and the
unknown values are solved by a vectorized LU
decomposition procedure.

Since all the boundary values and the normal
derivatives at the boundary have thus been known,
the values at the interior grid points can be calculated
by the discretized boundary integral formulation
(17). However, as the number of the interior grid
points is about the square of the boundary grid
point number, this process is time-consuming. An
alternative way which can remarkably reduce the
CPU time is to solve the Laplace equation with the
calculated Dirichlet boundary condition by the SOR
method.

From now on, the method which solves Eq. (14)
by the SOR method, the boundary values of Eq.
(15) by the BEM, and the values at the interior grid
points of Eq. (15) by the BEM is named the SBB
(SOR-BEM-BEM) method, and the method which
is the same as the SBB method except that it solves
the values at the interior grid points of Eq. (15) by
the SOR method is named the SBS (SOR-BEM-
SOR) method.

3.4 Multi-Domain Technique [3]

To simulate problems with complicated geome-
try, an efficient Multi-Domain Technique is also
developed. A multiple grid system can be employed
and combined with overlapped regions, where the
connection at each grid boundary is made by a
triangular interpolation method during iteration
processes at every time step. As an example, two
overlapped regions marked by I and Il are considered
here (see Fig. 1). The value at the boundary point
of region II denoted by the star mark is interpolated
by the neighboring three points in region I denoted
by the solid circle mark. The same treatment is
made at the connection boundary of region I. The

Thic dociiment i nrovided hv TAXA



P OEMERAREINF Y v RV Y LRXE 57

4 (i, j+1) 3 (ith 1)

2 (i+l,§)

(b

Fig. 1  Connection of two overlapped regions: regions I and II. (a) Interpolation of the point at
connection boundary, and (b) the way of searching for the interpolated point and the

points used for interpolation.

interpolation function is the linear function widely
used in the finite element method,

u = ¢1u) + dauz + P3us3 (18)

where

¢1=5B]S , ¢2=S5c/S , #3=254a/S,

1 2, w z
25=11 o Y2 ) 2SA =11 T Y1y
1 z3 w3 1 z2 w»
1 z y 1 =z vy
2Sg =11 z2 y2f , 2S5c =11 z3 wys|.
1 z3 w3 1 o, wn

In a computer program, the interpolated points
and points used for interpolations can automatically
be searched by satisfying the following relation.

|61} + 192 + |l = 1. (19)

This is swept over all quadrilateral mesh cells
which consist of two triangles. The addresses as-
sociated with the points are memorized and refer-
enced in the computer program.

4. RESULTS

At first, two fundamental flow problems are
examined here to check the accuracy and efficiency
of the calculation procedures. Then, numerical results
for several different flow problems are presented.

Figure 2 shows the calculated results (dashed

lines) of the viscous flow on a flat plate with a
leading edge (Re = 10*) by both the primitive variable
and the y— @ method, compared with the Blasius’
analytic solution (solid lines). Good agreement is
obtained between the two solutions. However, unlike
the Blasius’ boundary layer solution, a pressure
peak appears at the leading edge in the numencal
solution of the Navier-Stokes equations.

Figure 3 shows the velocity vectors around a
circular cylinder (Re = 10°) calculated by the y -
@ method, and the pressure is then calculated from
the velocity field by solving the pressure Poisson
equation. In Fig. 4, the convergence history of the
SOR method is plotted, where the L, residual is
used as the monitor of convergence. It is seen that
the Poisson equation with Neumann boundary con-
dition converges very slowly. In contrast to this, a
fairly rapid convergence is obtained for the alterna-
tive one with Dirichlet boundary condition.

The pressure distribution obtained by the SOR
method for two iteration numbers are plotted in
Fig. 5. The distribution becomes unchanged when
the iteration number goes over 5000, which cor-
responds to the L, residual of 7.34 x 10-. For
comparison, the pressure distribution by the SBS
method is plotted in Fig. 6, which shows good
agreement with the final result by the SOR method.
By use of the SBS method, the L, residual is made
smaller than 10~ at the iteration number of about
100 in its first and third steps. Table 1 gives a
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Fig.2 Flow on flat plate with leading edge. (a) the primitive variable method and (b) y— @
method.
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Fig.3 Velocity vectors around circular cylinder: Fig.4 Comparison of convergence history of the
v — wmethod, Re = 103, and ¢ = 5. SOR method applied to Poisson equations

with Neumann boundary condition and with
Dirichlet boundary condition.

(2) (b)

Fig. 5 Pressure distribution around circular cylinder obtained by the SOR method. Iteration
number is (a) 1000, and (b) 5000 (L, = 7.34 x 107).
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Table 1 Comparison of three methods (SOR, SBB, SBS) tested on FACOM M-782, where the L, residual and
iteration number correspond to the two parts calculated with the SOR method. Incidentally, ( )+ ( ) +
() denotes the iteration number or the CPU time needed to calculate p , p, at boundary points, and p, at

interior points.

Ly Residual | Iteration Number { CPU Time (x107° sec) | Acceleration Rate
SOR method | 7.34 x 10° 5000 (given) 16104 1
SBB method | 10~* (given) 101 320 + 109 + 2203 6.1
SBS method | 10~ (given) 101 + 107 320 + 109 + 325 21.3

R e S

Fig. 6  Pressure distribution around circular cylinder
obtained by the SBS method (L, < 107,
and iteration number = 101 + 107).

detailed comparison of the three methods: SOR,
SBB, SBS. The SBS method is the most efficient
which achieves an acceleration rate of about 21 as
compared to the SOR method.

The SBS method is then incorporated into the
primitive variable procedure and applied to solve
the pressure Poisson equation at every time step. A
comparison between the SOR method and the SBS
method as a pressure Poisson solver in the primitive
variable procedure is made by solving the flow
around a circular cylinder at the Reynolds number
of 10°. Here the iteration number of the SOR method
is fixed to 100, while the L, residual of the SBS
method is again made smaller than 10, Figure 7
shows the time variaton of the aerodynamic co-
efficients (Cl, Cd) together with time averaged values

for each case. The SOR Poisson solver fails to
capture the time variation of Cl and results in a
time averaged Cd (= 0.32) much deviated from the -
experimental value (= 1.22). On the other hand, the
SBS Poisson solver captures the time variation of
Cl and obtains a time averaged Cd (= 1.33) close
to the measured value. Incidentally, the iteration
number needed in the first and the third steps of
the SBS method at each time level is about 50,
which is due to the good initial value for the Poisson
equation produced during the successive time in-
tegration process.

In the following, several applications of the
primitive variable procedure are presented. Figure
8 shows the numerical results of the internal flows
through complicated multiple passages by using
the Multi-Domain Technique, and Figure 9 the flow
patterns and the temperature fields of natural con-
vection in a complicated enclosure. It should be
noted that the pressure boundary conditions en-
forced here must not be non-gradient of pressure at
solid boundaries, but should be obtained from the
balance between the pressure gradient term and the
buoyancy force term of the normal direction
momentum equations. Figure 10(a) shows the over-
lapped grid system used to calculate the flow around
an airfoil (NACA4412) with a slat and flap. The
resulting particle pathes are plotted in Fig. 10(b)
and the time-averaged surface pressure distributions
in Fig. 10{c).

5. CONCLUDING REMARKS

Incompressible flow solvers based on primitive
variables as well as the y — @ formulation are pre-
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Fig. 7 Time variation of aerodynamic coefficients (Cl, Cd) around circular cylinder together

with time averaged values: Re = 10° and the primitive variable method. The pressure
Poisson solver is (a) the SOR method and (b) the SBS method.
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Fig. 8 Velocity vectors of internal flow through
multiple passages.
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Fig. 9 Velocity vectors and temperature distributions of natural convection in complicated
enclosure, where five blocks have higher temperatures relative to the walls of the night
passage. The Prandtl number is 0.84 and the Grashof number is 10°.

2IFI11800871001
L

Fig. 10 Calculation of the flow around NACA 4412 airfoil with slat and flap. Re = 1.6 x 10°, the
attach angle is 10° and the flap angle is 0. (a) Overlapped grid system, (b) instantaneous
particle pathes, and (c) the time-averaged surface pressure distribution.

sented. The explanation, however, is mainly made
on the former which has a general use. In the
procedure, the coupled form of the momentum and
energy equations written in generalized coordinates
are solved by the FDM. To construct the FDM
code, a two-step time integration method with second
order accuracy, the third order approximation of
convective terms by the QUICK method, and an
accurate, fast convergence pressure Poisson solver

developed by us are employed. The calculation of
practical flow problems with complicated geometry
is made easy by incorporating an efficient multi-
domain technique into the procedure.

Fundamental flow problems on a flat plate with
a leading edge and around a circular cylinder are
calculated by the present procedure. The results
verified the accuracy and efficiency of the procedure
and showed superiority over other methods as the
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Reynolds number becomes high. The procedure can
easily be used to solve practical flow problems
with complicated geometry, and several examples
were presented for demonstration.
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