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Direct numerical simulations of the forced two-dimensional turbulence are performed by lattice
Boltzmann method with high resolutions. It is confirmed that the lattice Boltzmann method is an
alternative approach to simulate multi-scales flows efficiently before instability takes place. The
instability can occur even after millions time-steps of iteration. Based on the database of the DNS,
the behaviors of energy and enstrophy flux and the features of SGS Lamb vector in context of
large eddy simulation are discussed. The most important observation is that the transverse
component of the SGS Lamb vector, which plays a key role in the dynamics, only dominates in the

regions of curved sheet-like structures.

Key Words: Direct numerical simulation, Lattice Boltzmann method, Two-dimensional turbulence

1. Introduction

In the past a few more than a decade, the lattice
Boltzmann method (LBM), originated firstly from
lattice-gas cellular automaton (LGA), has greatly
developed into an alternative and promising numerical
scheme for simulating fluid flows and modeling physics
in fluids.” Contrasting with the conventional CFD
method, LBM is not a technique of numerical scheme or
algorithm but a physical model of fluid flows with some
advantages. Remarkable one of those is that it is a high
efficient parallel method to simulate turbulent flows with
multi-scales.

One class of physical systems exhibiting
apparent two-dimensional turbulent behaviors is the
large-scale motion of the Earth’s air and ocean masses
that occurs at a state close to geostrophic and hydrostatic
balance.” Another motivation of the studies on
two-dimensional turbulence is that it provides a beautiful
example of dynamic system. In the past thirty years, a
number of theoretical, numerical and experimental
studies have been devoted to the understanding of this
branch of fluid mechanics. But still, many fundamental
questions remain open.”’In this paper, direct numerical
simulations of the forced two-dimensional turbulence are
conducted by lattice Boltzmann method with high
resolutions. Based on the database obtained by DNS, the
behaviors of energy and enstrophy flux and the features
of SGS Lamb vector in context of large eddy simulation
are discussed. The emphases are on the interaction
between large-scale and small-scale in two-dimensional
turbulence that has been paid less attention.

2. Lattice Boltzmann Method

Instead of macro variables such as velocity and
pressure, lattice Boltzmann method deals with
mesoscopic quantities called distribution functions,
which describe the fraction of masses of fluid bulk
moving with a curtain speed and are governed by, in a
standard form
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In which, 7 is relaxation time. f, is equilibrium

distribution function, related only to macroscopic states
of the system
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For two-dimensional flows, w, takes
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The formulas of the equilibrium distribution function are
derived under some fundamental conservative laws about
collision such as mass and momentum conservations.

Finally, the macro density and velocity of fluid
flows are recovered by
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It can be demonstrated that these density and velocity
distributions satisfy the Navier-Stokes equations of
viscous incompressible flow in second order of accuracy.
Moreover, the pressure of the flow fields can be
recovered by a isothermal state equation and the
viscosity of the fluid is restored as

H=At(r-0.5)pc’

The most challenge in DNS using LBM is the
instability occurring usually when Reynolds number is
high enough. This instability can take place either at first
several stages of simulation or even after millions time
steps of iteration just as what happened in our case.
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3. Simulation and analysis

Two-dimensional turbulences are different very
much from the three-dimensional turbulent flows in the
sense that there exist two opposite cascades in
two-dimensional turbulence: energy (or inverse) cascade
and enstrophy (or direct) cascade. Our simulations began
from still initial condition with 5127 resolution. The flow
was driven by external force only with three lowest
wavenumber modes in Fourier space. This process of
evolution is of pure direct cascade that means both of
energy and enstrophy transfer from large scales to small
scales before stationary state is reached, as shown in
Fig.1. To get database of higher resolution, we continued
simulation with 1024 and 2048’ resolutions, by
rescaling double periodic domains of flow field with
lower resolution as the latter’s initial condition for
time-saving. In these cases, the spectra of small scales
underwent decaying, which usually implies inverse
cascade. The spectral evolution of 2048” resolution was
shown in Fig.2. Fig.3 shows the energy and enstrophy
flux through fields of different scales at very late stage of
time development. Positive value means flux from
large-scale to small-scale for enstrophy but from
small-scale to large-scale for energy flux. One can see
here that inverse energy cascade and direct enstrophy
cascade co-exist simultaneously. Note that the energy
fluxes are very small especially for the smallest scales.
This is consistent with the physical phenomena, saying
that the like sign vortices will merge and the smallest
eddies are easily and quickly merged into larger vortices.
Fig.4 shows a typical vorticity distribution of forced
two-dimensional turbulence. Sheet-like structures are
characteristic pattern of the direct cascade.

The interaction between scales is the key point
of understanding turbulent flows. In the engineering
turbulence computations, models have to be used.
Success of these computations heavily depends on
whether or not the models mimic as closely as possible
the interplaying behaviors. By filtering database of DNS,
the instantaneous turbulent field was decomposed into
scales- resolved and subgrid-scales parts in the context of
large eddy simulation. Fig.5 shows a example of
decomposed signal and vorticity field respectively. The
distinct observation from the latter figure is that the
large-scale structures that usually depend on initial
condition and external force remained its marks in
small-scale field.

For energy transfer between the resolved and
subgrid fields, the inner product of additional stress with
mean strain rate is broadly used like following
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But there is no rigorous demonstration showing this is
solely correct choice. Other candidates of transfer effects

come from the Helmholtz-Hodge decomposition of the
nonlinear term in governing equations
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therefore, there are four possible forms of energy transfer
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Fig.6 shows the distributions of the four forms of energy
transfer. The most interesting observation is for the final
form of the four energy transfer terms to be smoother and
then to be more adequate to be modeled in engineering
computation. It is this quantity that was employed by
Perot in his new RANS model as energy budget. * It also
should be noticed that the enstrophy transfer has only
sole form directly related to the transverse component (or,
in other name, the vector potential part) of the
Helmholtz-Hodge decomposition. All of these strongly
suggest that the transverse component plays an important
role in the interaction of resolved scales and subgrid
scales. But more interestingly, the transverse component
is only in the region of curved sheet-like structures to be
over longitudinal component in amplitude just as shown
in Fig.7, where the valuable is defined as

, (Vx\]ﬂ)o; 5 Vo @

O=(Vx®eL/I’

4. Concluding remarks

Contrasting with the conventional CFD method,
LBM is not a technique of numerical scheme or
algorithm but a physical model of fluid flows with some
advantages. Remarkable one of those is that it is a high
efficient parallel method to simulate turbulent flows with
multi-scales. The main challenge in this area is about
instability when high Reynolds number’s flows are to be
simulated. Instability may take place even after millions
time-steps of iteration. This strongly implies that it is
quite different from that usually met in simulations of
fluid flows and then distinct explanation needs to be
given.

Generations of sheet-like structures and/or
mergence/aggregation among vortices with like sign are
fundamental phenomena of two-dimensional turbulence.
The former corresponds to enstrophy (or direct) cascade,
while the latter is regarded as energy (or inverse) cascade.
For pure enstrophy (energy) cascades the energy
(enstrophy), accompanying enstrophy (energy), are
transferred from larger (smaller) scales to smaller (larger)
ones. For co-existing cases, behaviors seem complicated.
In our case, directly cascading of enstrophy and inversely
cascading of energy are observed simultaneously. But the
latter is very weak because it is after a long time of
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evolution and therefore the energy from the small-scales
is exhausted. The effects of large-scale structures
generally dependent on initial condition and external
circumstance remain in small-scale turbulence.The
vector potential of SGS Lamb vector plays key role in
the interactions of the resolved and the residual fields
and much more smooth. Therefore, it should be more
appropriate to be modeled in the context of large eddy
simulation. Though its influence is great, the proportion
of its curl (i.e. the transversal part of the SGS Lamb
vector) is less than the longitudinal part, except where
sheet-like structures are more heavily curved.
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Figure 1. Time development of spectra for the 5127 run.
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Figure 2. Time development of spectra for the 2048’
run.
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Figure 3. Spatial average energy and enstrophy flux
through different scales.

Figure 4. Distribution of vorticity.
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Figure 5. Signals (left) and flood contours (right) of
resolved and subgrid vorticity distribution.
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Figure 6. Flood contours of the four forms of energy transfer between resolved scales and subgrid scales.
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Figure 7. Flood contours of contributive proportion of transverse component over SGS Lamb vector
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