UDC 533. 6. 071. 5: 629. 7. 054

航空宇宙技術研究所資料

TECHNICAL MEMORANDUM OF NATIONAL AEROSPACE LABORATORY

TM-171

缶形燃焼器(低圧・低温系)試験設備による 航空計器の氷結(着氷)試験

> 鈴木邦男・相波哲朗 本間幸吉・服部宣夫

> > 1970年3月

航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

既 刊 資 料

ТМ-136	"NAL-16·31" および "NAL-25·31" 二段ロケット結合部の曲げ剛性試験	1968年5月	中 井 暎 一, 飯田宗四郎 高 木 俊 朗, 安 藤 泰 勝 菊 地 孝 男
T M-137	ロケットの三次元の運動の方程式およ び HITAC 5020 による軌道計算の ためのプログラム	1968年5月	毛利 浩
TM-138	片持板の振動解析に関する考察	1968年6月	塙 武敏,越出慎一 林 洋一
T M-139	薄板構造の疲れき裂伝ぱ実験	1968年6月	竹 内 和 之,野 原 利 雄 飯田宗四郎
T M-140	二次元スラットおよびスロッテッドフ ラップの実験的研究(Ⅱ)	1968年7月	犬丸矩夫,北村清美
TM-141	超音速二次元翼列予備実験風胴につい て	1968年7月	近藤 博, 坂口 一
TM-142	二次元スラットおよびスロッテッドフ ラップの実験的研究(Ⅲ)	1968年7月	犬丸矩夫,高橋 侔
T M-143	端面一体巻きフィラメント・ワインデ イング容器の静圧強度および疲れ強 度	1968年8月	竹中幸彦,朝田洋雄野口義男
T M-144	真ひずみ計の試作	1968年8月	竹中幸彦,朝田洋雄野口義男
T M-145	スピンを伴うロケットの運動を計算す るプログラム	1968年8月	戸川隼人,石黒登美子山本浩通
TM-146	双発 STOL 機の飛行試験 (実用運用包囲線および離着陸特性)	1968年8月	幸尾治朗, 岡 遠一塚野雄吉, 鎌田幸男小野孝次
TM-147	浮動振子型加速度計の試作	1968年9月	大月正男,鈴木孝雄 円居繁治
T M-148	吹出しフラップ翼の高揚力特性	1968年9月	小橋安次郎, 宮 沢 政 文 西 武 徳
TM-149	NAL-16-TR ロケットの研究試作	1968年10月	ロケット性能研究室
TM-150	リフトジェット VTOL 機の着陸にお ける水平方向の減速について	1968年11月	西村博史
T M-151	フラッタ解析法の再検討 (フラッタ解析法の研究 その1)	1968年12月	市川輝雄
TM-152	ノズル内の突起物によるロケットエン ジンの側分力	1969年1月	植崎哲二,中野富雄
TM-153	FA-200 改機の風胴試験 (I) プロペラ付き	1969年2月	広末健一, 坂井紀穂 高橋 宏, 綿貫忠晴
TM-154	FA-200 改機の風胴試験 (II)高揚力装置付き	1969年2月	広末健一,木村友昭高橋 宏,綿貫忠晴
TM-155	極超音速風胴 M7ノズル較正試験	1669年2月	橋本 登, 吉沢 昭 穂積弘一
T M-156	自動制御系の動特性を計数型電子計算 機により模擬するための汎用プログ ラム	1969年3月	戸川隼人, 丸山治雄
TM-157	機上用超小形エンコーダの研究	1969年3月	中 正夫,山本芳樹大石 晃
TM-159	可動アイアンバードによる姿勢制御の実 験	1969年5月	西村博史, 藤枝郭俊
TM-160	極超音速風胴計測装置について	1969年7月	長洲秀夫, 吉沢 昭松崎貴至
TM-161	燃料蒸発管に関する研究(Ⅱ) 一加熱蒸発管の燃料未蒸発分捕集—	1969年8月	鈴木邦男, 田丸 卓 乙幡安雄

缶形燃焼器 (低圧・低温系) 試験設備による 航空計器の氷結 (着氷) 試験*

鈴木邦男**・相波哲朗**・本間幸吉**・服部宣夫***

概 要

航空機の機体外部に取り付ける計器の着氷・解氷試験をするため、缶形燃焼器の低圧・低温系燃焼試験 設備を利用して小形氷結風胴(Icing Tunnel)を試作した。特殊な風胴であるため、実験してみるといく つかの問題が発生したが、その都度解決して予定した供試体の試験を終了した。試作した風胴に発生した 問題点を中心に述べる。

1. まえがき

航空機の機体外部に取り付けるピトー管,迎角検出 器や温度計などは,気象状態によって氷や霜が付着し, 誤指示を与えるとか,全く作動しなくなる恐れがある。 これを防止するため,計器には巧妙な解氷,霜除去装 置が組込まれている。

この種の解氷装置を試験するために、水分を多量に 含んだ低温空気を扱う氷結(着氷)風胴が必要になる。 わが国においては、このような風胴がなく、外国の例 (図1)を参考に、航空宇宙技術研究所の缶形燃焼器(低 圧・低温系) 試験設備を用いて、小形氷結風胴を試作 し、航空計器の解氷試験を行なった。

試作した氷結風胴およびその試験時に起きた問題点を主体にして述べる。

2. 航技研で試作した氷結(着氷)風胴

2.1 缶形燃烧器(低圧・低温系)試験設備

この試験設備は、氷結風胴としての所要事項に対し もっとも適当なものと思われ、これを利用した。設備 の要目は、次の通りである。

- (1) 供試燃燒器入口 (測定部) 空気圧力: 1.2~0.2 kg/cm² abs
- (2) 供試燃燒器入口 (測定部) 空気温度: +40~ -60°C
- (3) 風量: 1 m³/s (最大)
- (4) 燃焼器出口の最高ガス温度:1,100°C 燃焼器入口空気圧力と温度との間には,ほぼ標準大
- * 昭和45年1月13日受付
- ** 原動機部
- *** 日本航空電子工業(株)

気条件で指定される関係が ある。

図2に、この系統図を示す。空気は、消音器、フィ ルタを通して遠心圧縮機(1)により約1.45kg/cm²abs に加圧され、水冷の第一空気冷却器(3)により約25 °Cに冷却されたのち、第二空気冷却器(4)で0°C 近くまで冷却される。第二空気冷却器では、約30冷凍 頓の能力をもつフレオン冷凍機により冷却されたブラ イン(塩化カルシウム水溶液, $0 \sim -5^{\circ}$ C)を流し、 空気と熱交換を行なわせる。空気中の水分は、トリエ チレングリコール脱湿器 (5) の出口で露点約-15°C まで、ついでアルミナゲル脱湿器(6)の出口で露点 約-40°Cまでとり除く。これは、次段の空気タービ ン(7)中の膨張に際し、氷結の発生を防ぐためであ る。空気タービンの出口圧力は、実験条件により異な るからその膨張比も変化するが,これに対して,三段 輻流形とし,膨張比により使用段数をかえるようにし た。タービン出口の空気は、標準大気条件に対応する 温度より低く,自動制御の電熱器(9)を入れて供試 燃焼器入口温度を一定に保つ操作をすることができる。

供試燃焼器を出た高温の燃焼ガスは、水冷壁のダクトを通って排ガス冷却器 (13) に入り冷却される。ここでは、うず巻噴射弁を用いて冷却水を直接燃焼ガス中に噴射する。冷却された燃焼ガスおよび冷却水の蒸気は、蒸気噴射エゼクタ (14) により吸出され、煙突から大気に放出される。

図2中の(10'),(12') は副系統で、配管系の 熱容量が小さく、供試燃焼器入口空気の温度降下が早い。 しかし、空気温度の精密な設定はむずかしい。

図3に空気タービンの計画性能を示す。図3中,実 線は標準大気 1 m³/s の空気流量を示し、鎖線は空気 タービンの計画性能である。斜線を施こした部分の空

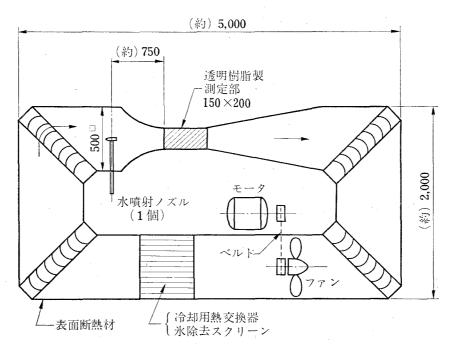


図 1 航空計器用小型氷結(着氷)風胴の例

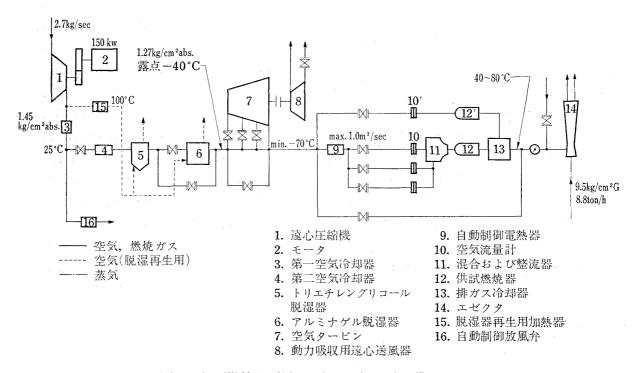


図 2 缶形燃焼器 (低圧·低温系) 試験設備系統図

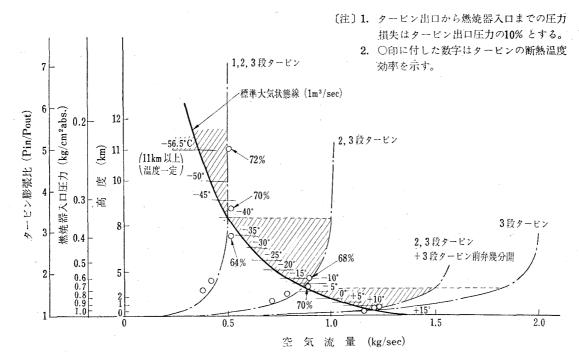


図 3 空気タービンの膨張比一流量 タービン入口圧力 1,27kg/cm² abs タービン入口温度 4°C

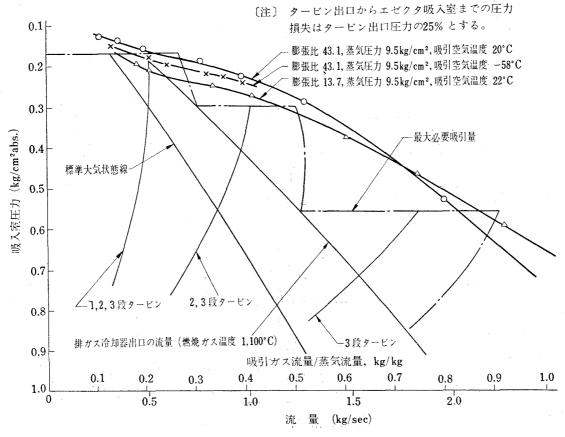


図 4 エゼクタ吸入室圧力一流量

表1 エゼクタの要目

1	要目
ノズル前蒸気圧力	9.5 kg/cm ² g (かわき飽和蒸気)
蒸気消費量	約 8.8 ton/h
ノズルのど直径	45 mm φ
のど面積比	13. 5
全 長	約 4,700 mm

気流量は、燃焼器に 1 m³/s を 流した 場合のバイパス 管路の流量となる。空気タービンの制御は、燃焼器入口圧力、入口温度、風量に応じて各段の入口弁、タービンバイパス弁および動力吸収用ブロア入口弁の開度 を調節することにより行なう。タービン入口弁は、「二、三段タービン十三段タービン幾分開」のような操作も可能である。

図4に蒸気噴射エゼクタの実測性能を示す。現在用いている蒸気ノズルは、膨張比 43.1 のものである。また図4中の1点鎖線は、燃焼ガスと冷却水蒸気を合わせた流量である。このとき、燃焼ガスの温度は最高の1,100°Cとし、各圧力状態の飽和蒸気温度まで冷却するものとした。図4では、一部吸引量不足の部分があるが、これはタービン側の調整で補うことができる。表1にエゼクタの要目を示す。

供試燃焼器取付部 (測定部)の主要寸法を図5に示す。

2.2. 試作風胴測定部

2.2.1 要求条件

測定部において、次の事柄を満足しなければならない。

- (1) 必要な風速範囲が得られること。
- (2) 必要な空気温度範囲が得られること。
- (3) 必要な量の水分を含んでいること。
- (4) 必要な時間,定常状態の運転ができること。
- (5) 空気流速,空気温度,水量などの測定について 所要精度が得られること。
- (6) 着氷状態の観察しやすいような窓を持つこと。

2.2.2 試作した風胴

試作した風胴は、迎角検出器を試験する目的から、 試験装置の都合上、図2の主系統の供試燃焼器取付部 に取付けるようにした。測定部付近の系統図を図6に 示す。低温空気の測定は、水噴射前で行ない、供試体 部分の風速、温度は計算から求めるようにした。噴射 水量は、メスシリンダとストップウォッチで測定し、 微粒化用空気量は、まえもって噴射圧力(差圧)と流 量との特性を求めておき、噴射圧力から読むことにし た。この程度でも、低温空気流量にくらべて少ないか ら、測定精度上の問題はない。低温空気側の水噴射 (微粒化用空気の影響も含めて)による温度上昇は、風 速によってかわるが計算上 0.7~1.3°C程度である。

供試体下流側は、二重壁ダクトになっていて、これ

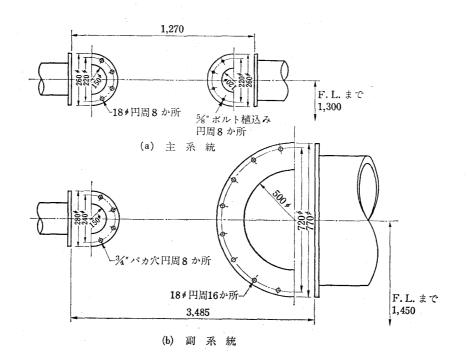


図 5 供試燃燒器取付部寸法

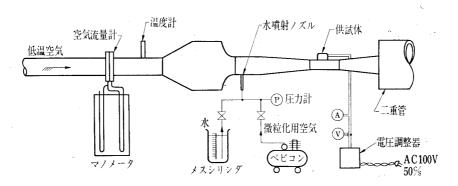


図 6 測定部付近の系統図

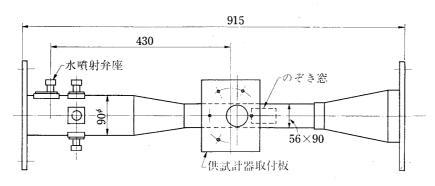


図 7 風胴本体 (試作の原型)

に水を循環させ、氷の壁面への付着を防止した。気流中を飛ぶ氷のうち、壁面に付着してとけた部分は、燃焼ガス冷却用噴霧水の溜に入る。これは十分な容量(約0.5m³)があるため、試験中に水を取除く必要はなかった。

(1) 風胴本体

風胴本体の概要を図7に示す。単純な直管で、測定部のみ所要風速の得られるよう断面を絞り、供試体取付座、水噴射弁座、観察窓などをつけたものである。 試験設備に取付けるにあたって本体上流側に伸縮接手を入れた。

(2) 水噴射弁

試験した例では、水噴射量が最大でも1g/s以下と少ないため、微粒化用空気を用いる空気噴射弁とした。これは、水噴射を止めたとき、噴射弁内で水の凍結が考えられるため、噴射弁の取りはずしの容易な点を重視して、空気噴流と水を直角方向にあてる通常の霧ふきのような構造とした。図8に噴射弁の主要部分を示す。噴霧の観察によると、心配された特に粒径の大きな液滴はみられず、使用可能と判断した(図9)。

3. 試 験 例

3.1 着氷例

迎角検出器の着氷,解氷試験状態の一例を図10に示す。このときは,風速 100, 200, 300 ± 5 / 20 / 300 ± 5 / 20 / 400 を 400 / 400

3.2 試験中に起きた問題

(1) 水噴射弁内の水の凍結によるつまり

これに対しては,入口空気条件を,水を噴射しない 状態の値に設定する間,水噴射弁を取りはずしておき, 測定時,水を噴射しながら取付けるようにした。この 方法では,入口空気温度 -40° C のときでも,問題な く使用できた。なお,水は加熱せず約 14° Cのものを 使用した。

(2) 風胴壁に飛んだ水が壁面上で凍結し、堆積して空気通路をふさいでしまうこと。

(対策 a) 水噴射弁から下流側のダクトにニクロム線

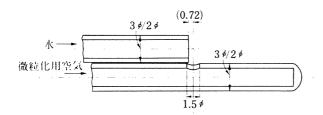


図 8 水噴射弁 主要部

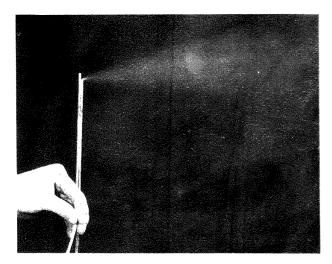


図 9 噴霧の様子

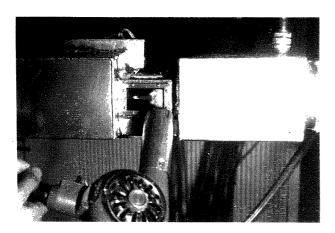


図 10 着氷状態の一例 (窓内部のものが供試体)

表2 試験 状態

	100	200	300ノット		
-30° C	着氷なし	図11	図12		
-15° C	着氷なし	図13	図14		

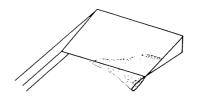


図 11 着氷状態 (1)

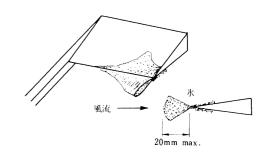


図 12 着氷状態(2)

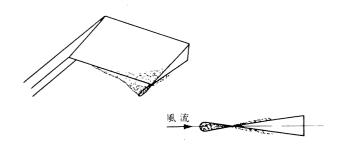


図 13 着氷状態(3)

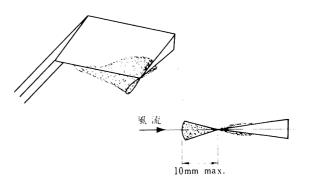


図 14 着氷状態 (4)

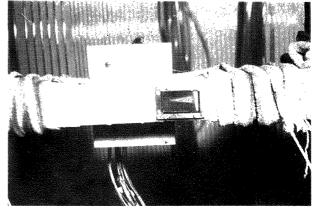


図 15 ダクトにニクロム線を巻いたところ (左側が上流)

を巻き、電気的に加熱して着氷を防ぐ。

図15に、この状態を示す。電気入力は、表面への熱 伝達の計算から、約3kW とした。この結果、相当に 効果はあったが、壁面の均一な加熱がむずかしく、加 熱しすぎの部分がある反面、ニクロム線の巻けない部 分ができ、この部分に氷が成長して、空気通路をせば めた。

(対策 b) ダクト全体を二重壁にして、約 14° C の水を循環させ、壁温を 0° C以上に保つようにする。

この方法は、有効で、壁面上に氷の成長するトラブルは全く解消した。図10に示したダクトが、二重壁に改造したあとの外観である。

(3) のぞき窓ガラスと供試体の間に氷がついたこと(図10参照)。

のぞき窓ガラスを外部から大形のヘヤードライヤで 加熱して氷を飛ばしたが,正当な解決策は,供試体と 壁との間を十分あけておくことである。

(4) のぞき窓ガラスの外側表面に霜が付着して見えなくなること。

これは、(3)の場合と同様、ヘヤードライヤで霜を とかしながら観察したが、プラスチック板の二重構造 として間に水を流すなどの対策を考えるべきである。

(5) 噴射した水が、供試体部までに凍らずに水のまま飛ぶのが観察された。これは、十分な冷却時間がなかったためか、過冷却状態になっているのかまたは壁面にて水循環により氷の溶けた水が飛んだのかのいずれかと思われる。これについては、次節で検討を行なう。

3.3 噴射した水の様子

3.3.1 空気噴射弁の微粒化特性

通常の空気噴射弁のノズルは、同心の二重管からなり、内管から液体を、外管から空気を流す構造である。この種の噴射弁の微粒化特性を求めた抜山・棚沢の実験によると、噴霧粒の表面積、体積をとった平均粒径(サウタ平均径、S.M.D.) d_0 は次式で表わされる 10 。

$$d_{0}^{(\mu)} = 585 \frac{\sqrt{\sigma_{w}}}{v\sqrt{\gamma_{w}}} + 597 \left(\frac{\mu_{w}}{\sqrt{\sigma_{w}\gamma_{w}}}\right)^{0.45} \left(1000 \frac{Q_{w}}{Q_{a}}\right)^{1.5} \tag{1}$$

ここに

 γ_w ; 液体の単位体積あたり重量 (g/cm³)

 σ_w ;液体の表面張力 (dyne/cm) μ_w ;液体の粘性係数 (dyne \cdot s/cm²)

v ; 気・液流間の相対速度 (m/s)*

 Q_w ; 液体容積流量 Q_a ; 気体容積流量

実験範囲は $0.8 < \gamma_w < 1.2$, $30 < \sigma_w < 73$, $0.01 < \mu_w < 0.3$ である。また,水-空気の場合 $Q_a | Q_w \ge 5,000$ の範囲で流量比の影響は少なくなり,空気を薄刃オリフィスから噴出するとき,次のような簡単な形になる。

$$d_0^{(\mu)} = \frac{3400}{77} \tag{2}$$

この氷結風胴に用いた水噴射弁は、空気流を液流と 直角方向にあてる形で、空気流の一部は、液を流す管 に衝突し、管背後に比較的流速のおそいうずをつくる。 この低速領域に入った液体は、微粒化が進まず、粗粒 のまま残ることになり、概して性能は悪くなりやすい。 しかし、全体的にみると同方向に噴射する前記の形に くらべて大差ないとみてよい²³。

(1), (2) 式を求めた実験は、まわりがほぼ大気 圧状態であって、本実験のように低圧状態に噴射する 場合には、粒径の変化をチェックしてみる必要がある。 空気の単位体積あたり重量 γa の 項の入った微粒化特 性の式として一色 33 のものがある。

$$\left(\frac{d_0}{d_i}\right)^{0.25} = \frac{1.6}{W_{ei}^{0.25}} + \frac{3}{2} \left(\frac{\gamma_a}{\gamma_w}\right)^{0.5} + \left(1 + \frac{G_a}{G_w}\right) C_{Di} \left\{ln\left(\frac{d_i}{d_0}\right)^{0.25}\right\} \tag{3}$$

ここに

di ; 液滴の初期粒径

 W_{ei} ; 初期のウェーバ数= $\frac{\gamma_a v_1^2 d_i}{\sigma_{vo}}$ (無次元数)

v₁ ; 気・液流間の実際の相対速度 (m/s)

CDi ; 初期の液滴の抵抗係数

Gw, Ga; 液・空気の重量流量

(3)式は、(1)式とだいぶ違った形になっているが、標準大気状態で結果を比較するとほぼ一致する。(3)式に、後記する本実験の場合の数値; $G_w/G_a=0.712$ 、 $v_1=313\,\mathrm{m/s}$ 、 $d_0=34.7\mu$ ((1)式から求めた)、 $C_{Di}=0.48$ を代入して、大気圧状態における(3)式の各項の値を調べると、

右辺第1項第2項第3項0.057510.070630.513168.97%11.01%80.01%

程度になり、この実験においてもっとも空気圧力を低下させた 0.37気圧、空気密度の標準状態との比 0.445の数値をそのまま代入してみると、第1項が22%増、

* 相対速度vは、ノズルから噴出する空気が大気圧、 常温状態になっているとして容積流量 Qa を求め、 これをノズル断面積で割った値をとっている。し たがって、v が音速以上になるときもあり、実際 の速度とはことなる。 第 2 項が33%減になり、平均粒径にして約 4 %変化するが、液滴の微粒化が音速流付近で完了するとすれば、これより影響の少なくなることが予想される。本実験の場合、この程度の誤差は特に問題にならず、抜山・棚沢の式(1)をそのまま用いる。したがって、噴射弁の微粒化特性は、(1)式に水の諸数値; $\gamma_w=1$ g/cm³, $\sigma_w=73$ dyne/cm, $\mu_w=0.0134$ dyne·s/cm² およびv=577 m/s を代入して次の形になる。

$$d_0 = 8.7 + 32.7 \left(1000 \frac{Qw}{Qa}\right)^{1.5} \quad (\mu) \tag{4}$$

微粒化用空気流量は, m, kg, s 単位を用いて

$$G_a = C\Psi A P_1 / \sqrt{RT_1} \qquad (kg/s) \tag{5}$$

ここに

$$\Psi = \sqrt{\frac{2g\kappa}{\kappa - 1} \left[\left(\frac{P_2}{P_1} \right)^{\frac{2}{k}} - \left(\frac{P_2}{P_1} \right)^{\frac{k+1}{k}} \right]}$$

C ; 流量係数

A; ノズル断面積 (m²)

P₁ ; ノズル入口圧力 (kg/m² abs)

R ; ガス常数 (空気のとき 29.27 kg·m/°K kg)

T: ; ノズル入口温度 (°K)

P₂; ノズル出口圧力 (kg/m² abs)

 $\kappa = c_p/c_v = 1.4$ (空気), 比熱比

g ; 重力加速度 (9.8 m/s²)

空気の場合, $P_2/P_1=0.528$ でチョークし,ノズル出口において音速になる。この状態で $\Psi=2.145$ となる。噴射弁の空気噴孔は,図 8 から 1.5 mm ϕ であり,ノズル前空気温度は約 20° C,その圧力は約 2 kg/cm 2 Gにしたから当然チョークしていて, $C \doteq 0.8$ にとると(5)式か $G_a=0.983 \times 10^{-3}$ kg/s になる。空気の単位体積あたりの重量は,ノズル上流側において

$$\gamma_{a0} = 1.293 \times \frac{273.1}{T} \times \frac{P}{10332} = 0.03416_{5} - \frac{P}{T}$$

$$= 3.498 \text{ kg/m}^{3}$$

ノズル出口において

$$\gamma_{a_1} = \left(\frac{2}{2 + (\kappa - 1)M^2}\right)^{\frac{1}{\kappa - 1}} \gamma_{a_0} \quad (kg/m^3) \quad (6)$$

音速であるから M=1 および κ=1.4とおくと

 $\gamma_{a_1} = 0.634 \gamma_{a_0} = 2.217 \text{ kg/m}^3$

なお,大気圧, 20° C の状態では $\gamma_a=1.205\,\mathrm{kg/m^3}$ である

ノズル出口状態の音速 a は,ノズル入口状態の音速 a_0 から

$$a = \left(\frac{2}{2 + (\kappa - 1)M^2}\right)^{\frac{1}{2}} a_0 \qquad \text{(m/s)}$$
 (7)

 $v_1 = a$ とおくと

$$v_1 = 0.9129 a_0 = 313 \,\mathrm{m/s}$$

(1)式の Qa は, ra を用いて

$$Q_a = \frac{G_a}{\gamma_a} = \frac{0.983 \times 10^{-3}}{1.205} = 816 \times 10^{-6} \,\mathrm{m}^3/\mathrm{s}$$

ノズル有効断面積 A (流量係数0.8) を

$$A = \frac{\pi}{4} d^2 \times 0.8 = \frac{\pi}{4} \times (1.5 \times 10^{-3})^2 \times 0.8$$
$$= 1.414 \times 10^{-6} \text{m}^2$$

として、(1)式のでは、

$$v = \frac{Q_a}{A} = 577 \text{ m/s}$$

 Q_w は、3.1節の規定条件から、最大 $0.701\,\mathrm{cm}^3/\mathrm{s}$ で、 $Q_a=816\,\mathrm{cm}^3/\mathrm{s}$ を用いて(4)式から平均粒径を求めると

$$d_0 = 8.7 + 32.7 \left(\frac{701}{816}\right)^{1.5} = 34.7 \,\mu$$

となる。

実験状態の水噴霧の平均粒径その他を表3に示す。

表3中にある、水噴射にともなう空気温度の上昇は、次のようにして求めた:水滴が 0°C まで冷却されると凝固熱を放出して凍結し、氷の粒になってまわりの空気温度まで冷却される。水の状態の過冷却は考えない。噴射空気の比熱は一定とおく。氷の 比熱 は、表4°から求める。

このようにすると流量 G_w の 水が t_i $^{\circ}$ $^{\circ}$ の氷になるため、まわりの空気へ放出する熱量 H_w は、次式の形になる。

$$H_w = G_w\{(t_w - 0)\overline{c_w} + L + (0 - t_i)\overline{c_i}\} \quad (kcal)$$
(8)

ここに

tw; 水の初期温度(°C)

- cw; 水の tw~0°C 間の平均比熱 (kcal/kg°C)

L ; 水の凝固熱 (L=80 kcal/kg)

ti ; 氷の温度 (°C)

- ; 0~ti°C間の氷の平均比熱 (kcal/kg°C)

微粒化用空気の与える熱量 Haは,

$$H_a = G_a \cdot \overline{C_p}(t_a - t_i)$$
 (kcal) (9)

ここに t_a : 微粒化用空気の初期温度(c C) である。これから主流空気の温度上昇 Δt_a は

$$\Delta t_a = -\frac{H_a + H_w}{m_a \cdot c_p} - {^{\circ}C}$$
 (10)

ここに m_a : 主流空気流量(kg/s)である。た だ し $\Delta t_a = t_i$ (設定温度)。

主流設定風速(ノット)	主流設定 温度(°C)	主流空気容積 流量 (m³/s)	主流空気質量 流量 (kg/s)	噴霧水量 (g/s)	$1000 \frac{Q_w}{Q_a}$	$d_0(\mu)$	水噴射による 温度上昇(°C)
100	-20	0. 234	0. 165	0. 234	0. 287	13. 7	0.84
200	-20	0. 467	0. 330	0. 467	0. 572	22. 8	0.72
300	-20	0. 701	0. 495	0. 701	0. 859	34. 7	0.69
100	-35	0. 234	0. 127	0. 234	0. 287	13. 7	1. 26
200	-35	0. 467	0. 255	0. 467	0. 572	22. 8	1. 05
300	-35	0. 701	0. 382	0. 701	0. 859	34. 7	0. 98

表 3 実験状態の噴霧粒径 ぬ その他

表 4 氷の定圧比熱 $(\overline{c_i}$ は, 0° C から t_i までの間の平均比熱)

t _i °C	c_i	Ci	
0	0. 487		
-20	0. 465	0. 477	
-40	0. 434	0. 463	
-60	0. 396	0. 447	
-80	0. 350	0. 429	

 $t_a=20$ °C, $t_w=14$ °C, $\overline{c_p}=0.24\,\mathrm{kcal/kg}$ ・°Cとして Δt_a を求めた。

今回の場合,所要温度は -15° C $\pm 5^{\circ}$ C, -30° C \pm 5 $^{\circ}$ Cで,水噴射による温度上昇は 1° C 内外であるから,表3の温度に設定すると,規定値のうちの低温側に入ることになる。

3.3.2 水噴霧粒の冷却

前節のものは、噴射された水 (および空気) が、まわりの空気温度と一致するまで冷却された場合であるが、この冷却の平衡状態に達するまでの時間を調べてみよう。

粒径 d の水腐が、 t_i °C の 氷 に なるため、まわりの空気に与える熱量 H_a は、(8) 式と同様

$$\dot{H}_{d} = -\frac{\pi}{6} d^{3} \cdot \gamma_{w} \{ (t_{w} - 0) \, \overline{c_{w}} + L + (0 - t_{i}) \, \overline{c_{i}} \}$$
 (8')

ここに γ_w : 水の単位体積あたりの重量 (kg/m^8) 。

一方,対流熱伝達によって水滴から出る熱量は,水 滴を球とみなして

$$N_u = 2 + 0.55 R_e^{0.5} P_r^{1/3} (10 < R_e < 1.8 \times 10^3)^{5}$$

(11)

なお,
$$N_u = \frac{\alpha \cdot d}{\lambda}$$
, $R_e = \frac{v_r \cdot d}{v}$

ここに

 N_u ; ヌセルト数

 R_e ; レイノルズ数

Pr; プラントル数

マァ; 水滴とまわりの空気との相対速度 (m/s)

ν ; 空気の動粘性係数 (m²/s)

α ; 熱伝達率 (kcal/m²·h·°C)

λ ; 空気の熱伝導率 (kcal/m·h·°C)

対流熱伝達によって液滴から出る熱量 H_T は,

$$H_T = \pi d_0^2 \cdot \alpha \cdot \overline{\Delta t} \cdot \tau \tag{12}$$

ここに

△t;空気水滴間の平均温度差(°C)

τ ; 時間 (h)

(8') と (12) 式を等しいとおくと

$$\tau = \frac{\frac{\pi}{6} d^3 \cdot \gamma_w \left\{ (t_w - 0) \overline{c_w} + L + (0 - t_i) \overline{c_i} \right\}}{\pi d^2 \cdot \alpha \cdot \Delta t}$$

$$= \frac{d^2 \cdot \gamma_w}{6N_u \cdot \lambda \cdot \overline{\Delta t}} \left\{ (t_w - 0) \overline{c_w} + L + (0 - t_i) \overline{c_i} \right\}$$

かりに $v_r = 51.3 \text{ m/s}$, $P_r = 0.73$, $\nu = 0.12 \times 10^{-4} \text{ m}^2/\text{s}$, $d = 34.7 \times 10^{-6} \text{ m}$ とおくと $R_e = 148$ から $N_u = 8.0$ 。 さらに $t_w = 14$ °C, $t_i = -34$ °C, $\overline{c_w} = 1.0 \text{ kcal/kg} \cdot \text{°C}$, $\overline{c_i} = 0.47 \text{ kcal/kg} \cdot \text{°C}$, $\lambda = 0.019 \text{ kcal/m} \cdot \text{h} \cdot \text{°C}$, $\gamma_w = 1000 \text{ kg/m}^3$, $\overline{d}t = 24.5 \, \text{°C}$ (空気: -35°C $\rightarrow -34$ °C , $\pi : +14$ °C $\rightarrow -34$ °C の 算術 平均値*) の諸数値を代入すると

 $\tau = 5.93 \times 10^{-6} \,\mathrm{h} = 16.4 \,\mathrm{ms} \,\,(d = 34.7 \,\mu)$

試作した風胴の場合、水噴射弁から測定部までの距

離は図 7 に示したように 430 mm で、噴射された水摘が $v_r=51.3$ m/s と平均風速 300ノットの 1/3 の 相対速度をもっていると仮定すると、測定部まで約 4.8 msかかって到達する。この時間で冷却平衡に達する水の最大粒径は、 $(d)_{max}=14.0~\mu$ となる。実際には、 v_r はこれより小さくなっていると思われ、極限の場合として $v_r=0$ におくと、(11)式から $N_u=2$ になり、 $d=34.7~\mu$ のとき、 $\tau=85.38$ ms,または $d_x~\mu$ の粒径について

$$\tau_{dx} = 85.38 \left(\frac{d_x}{34.7}\right)^2 \qquad \text{ms}$$

先の $(d)_{max} = 14.0 \mu$ は、水滴の滞留時間 が 3.2 ms と短かくなることもあって、 $(d)_{max}$, $Nu=2=6.7 \mu$ と小さくなる。

3.3.3 噴霧のうち平衡状態まで達する液滴の重量割 合

噴霧は、ある粒径分布をもっているから、平均粒径 d_0 が上記算例の $(d)_{max}$ より大きくても、ある割合のものは平衡状態まで達する。粒径を微分記号と混同しないように d の代りに x と書くと、粒径の dx 範囲中の粒数 dn は、

$$dn = f(x) dx (14)$$

噴霧の粒径分布関数 f(x) は,一般に次式で表わされる 6 ,

$$f(x) = ax^a exp(-bx^{\beta})$$
 (15)
サウタ平均径 d_0 は,

$$d_{0} = \int_{0}^{\infty} x^{3} dn / \int_{0}^{\infty} x^{2} dn = b^{-\frac{1}{\beta}} \frac{\Gamma\{(\alpha+4)/\beta\}}{\Gamma\{(\alpha+3)/\beta\}}$$
(16)

単位時間の噴射重量 Gは,

$$G = \gamma \int_{0}^{\infty} \frac{\pi}{6} x^{3} dn = \gamma \frac{\pi}{6} \frac{a}{\beta b^{(\alpha+4)/\beta}} \Gamma\left(\frac{\alpha+4}{\beta}\right)$$
(17)

(16), (17) 式から, a, b を消去すると, 粒の重量分布は.

$$\frac{dG}{G} = \beta \frac{\Gamma \left\{ (\alpha+4)/\beta \right\}^{\alpha+3}}{\Gamma \left\{ (\alpha+3)/\beta \right\}^{\alpha+4}} \left(\frac{x}{d_0} \right)^{\alpha+8}$$

$$exp \left[-\left[\frac{\Gamma \left\{ (\alpha+4)/\beta \right\}}{\Gamma \left\{ (\alpha+3)/\beta \right\}} \right]^{\beta} \left(\frac{x}{d_0} \right)^{\beta} \right] \frac{dx}{d_0} \quad (18)$$

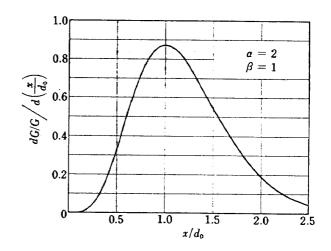


図 16 液滴の重量分布曲線

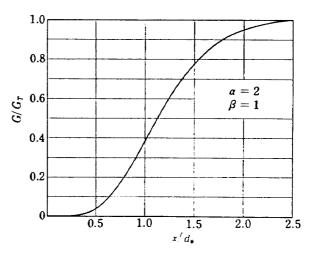


図 17 積算重量-粒径曲線

空気噴射弁では、 $\alpha=2$ 、 $\beta=1$ となることが実験的に 知られているから、これを代入する、

$$\frac{dG}{G} / d\left(\frac{x}{d_0}\right) = \frac{\Gamma(6)^5}{\Gamma(5)^6} \left(\frac{x}{d_0}\right)^5 exp\left[-\frac{\Gamma(6)}{\Gamma(5)} \left(\frac{x}{d_0}\right)\right]$$
$$= 130.2 \left(\frac{x}{d_0}\right)^5 exp\left[-5\left(\frac{x}{d_0}\right)\right]$$

この計算結果を図16に示す。さらに図16の曲線を積分したものを図17に示す。なお,最大粒径は,実験的に妥当とされている $2.5d_0$ とした。これから,平衡状態まで冷却される液滴の最大径 $(d)_{max}$ および噴霧のサウタ平均径 d_0 の比 $(d)_{max}|d_0$ を求めると,噴霧のうちの平衡状態まで冷却される液滴の重量割合が判明する。

本実験の場合の平衡状態まで冷却される噴霧の割合 を求めたものを表5に示す。

4. あとがき

はじめての試みで各種の問題が生じたが、応急対策

^{*} 平衡状態に達するまでの時間 τ の見積りに用いた平均温度差 $\overline{A}t$ は、 $\overline{A}t = \frac{1}{2}(At)_{\tau=0}$ としたが、 水の相変化を考慮した、より正確な計算によると、この τ のとき、氷ははまわりの空気との温度差にして約0.015 $\times (At)_{\tau=0}$ になるまで冷却されている。

	主流設定温度	主流設定風速					
			マレァ を主流の 1/3 にしたとき		ೡ=0 のとき		噴霧平均粒径 d ₀ μ
-			(d) _{max} μ	%	(d) _{max} μ	%	
	,	100	18. 5	68	10. 0	16	13. 7
	-20	200	13. 9	9	7. 1	1	22. 8
		300	11.7	1	5. 8	0	34. 7
		100	22. 0	83	11.6	25	13. 7
	-35	200	16. 6	16	8. 2	2	22. 8
		300	14. 0	2	6. 7	0	34. 7
•	ı		i	i ·	1	Į.	1

表5 平衡状態まで冷却される水滴の最大粒径 (d)max と噴霧の重量割合

をとって、初期の目的の試験を終了することができた。 今後、この種の試験を行なうにあたって考えるべき事 柄は次のようなものである。

- (1)問題の一部に風胴測定部断面積の小さいことがあげられ、これは風胴の構造を低温空気の一部循環方式にすれば解決できるが、新らしく氷除去スクリーンのような問題が入ってくる。これ以外の諸問題は、3.2で述べた対策でよいと思われる。
- (2) 噴射した水滴の粒径の推定を(1) 式で行なったが、この式を求めた実験は、 $(v)_{max} = 350 \text{ m/s}$ までで、今回の実験のような高速の場合は含まれていない。しかし、v > 300 m/s の範囲では、粒径に大きな変化はなく、この誤差は大きくないものと思われる。それにしても、表5の平衡状態に達する液滴の重量比は、若干かわる。
- (3) 噴射した水滴の凍結について、水滴と空気との相対速度 v_r の影響は表 5 にみられるように大きく、状態を正確に把握するためには、実際の v_r を知る必要があるけれども、今回はこの問題にふれなかった。
- (4) 噴射した水滴が、凍結してまわりの空気温度まで冷却されるのに必要な時間は、相当に長く、測定部において完全な平衡状態が要求されるときには、測定部に達するまでの水滴の滞留時間を、本実験の状態で1/2秒以上にする必要がある。
- (5) 表 3 (または表 5)中の噴霧粒径の値は、図18に示す着氷性雲の雲粒の実測値⁷⁾ とくらべて妥当なものと思われる。
- (6) この試験で着氷は、空気流速が大きく空気温度

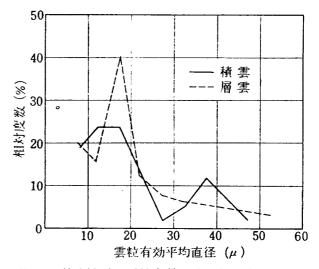


図 18 着氷性雲の雲粒有効平均直径の度数分布

が低いときほど起きやすいことがみられたが,

- i) 供試体表面温度は、空気流速が大きく、空気温度の低いときほど低下する。
- ii) 噴霧水の平均粒径は、空気流速が大きなときほど大きく、まわりの空気温度と平衡状態に達する液滴の量は少なくなる。すなわち、水のまま飛ぶものが多くなる。
- iii) 水滴の供試体に衝突する量は、流速の大きなと きのほうが多い。

などが考えられ、何の影響によるものか明らかでない。 また、着氷は、0°Cの水滴が飛ぶ場合、0°C以下の過 冷却状態の水滴が飛ぶ場合、氷粒子が飛ぶ場合のいず れの場合にもっとも起きやすいかなど、本格的に研究 するには、多くの事柄を調べる必要がある。

- 1) 抜山四郎; 熱, p. 170 養賢堂 (1969)
- 2) 同上; p. 194.
- 3) 一色尚次; Theoretical and Experimental Study on Atomization of Liquid Drop in High Speed Gas Stream, Report of Transportation Technical Research Institute (Tokyo) No. 35 July 1959.
- 4) 芝 亀吉;物理常数表,岩波書店(昭22)

- 5) 甲藤好郎; 伝熱概論, p. 163 養賢堂 (1964)
- 6) 文献(1)の p.161 または手島恒男; 気流噴射弁 を使用した高負荷燃焼に関する研究, 東北大学学 位論文要旨 (1958)
- 7) 古関昌次, 田寺本一, 泉日出夫, 太田幹雄, 峰岸 正勝;航空機の着氷気象条件について(1), 航技研報告 TR-101 (昭41-2)

T M-162	境界層内圧力変動および板の振動変位 の測定(I)	1969年9月	藤 森 義 典,	山崎 浩
TM-163	ある双発プロペラ STOL機の動安定風 胴実験	1969年9月	別府護郎,	鈴木友昭
TM-164	ブレードのフラッピング運動をバネで 拘束したロータのピッチダンピング について	1969年10月	別府護郎,	岡 遠一
TM-165	フェノール系複合材の環境試験結果	1969年11月	古田敏康,	野口義男
TM-166	ガスタービン用缶形燃焼器における燃 焼領域のガス組成と燃焼状態	1969年11月	大塚貞吉, 堀内正彰 宮坂	斎 藤 隆 本 間 幸 吉
TM-167	YS-11A-300 型輸送機の胴体疲労試験 一中部胴体前方大型貨物口部および 後方乗降口部付近一	1970年1月	竹内和之,熊倉郁夫,	川島短郎松岡陽一
TM-168	ダンピングメータの試作	1970年2月	柳沢三憲	
TM-169	ジェットエンジン燃焼器出口ガス流の 乱れの測定(I)	1970年2月	相波哲朗	
TM-170	JRエンジンの燃焼器におきた振動燃焼	1970年2月	鈴木邦男, 山中国雍	石井浅五郎

注:欠番は配布先を限定したもの

航空宇宙技術研究所資料171号

昭和45年3月発行

発行所 航空宇宙技術研究所東京都調布市深大寺町 1880

電話武蔵野三鷹(0422)44-9171 (代表) **5**182

印刷所 一誠社綜合印刷株式会社 東京都武蔵野市御殿山1-6-10