UDC 533. 697:532. 574. 7: 621. 454

航空宇宙技術研究所資料

TECHNICAL MEMORANDUM OF NATIONAL AEROSPACE LABORATORY

TM-180

 $ジェットエンジン燃焼器出口ガス流の乱れの
 測定(<math>\Pi$)

―― レーザのドップラ効果を利用する方法 ――

相波哲朗

1970年 5月

航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

ジェットエンジン燃焼器出口ガス流の乱れの $測定(<math>\Pi$)*

―― レーザのドップラ効果を利用する方法 ――

相 波 哲 朗**

Measurements of Turbulence in Gases Flowing from a Gas Turbine Combustor (II)

- Optical Laser System -

By Tetsuro AIBA

Measurements of turbulence in gases flowing from gas turbine combustors are required for the study of turbine blade cooling. In the previous paper a method using a cooled film probe was shown for the measurements of turbulence for this purpose. Recently developed an optical laser system should be also an useful method in this field and this one was employed for the present study.

Measurements of turbulence by the optical system were carried out first using a small 0.3 mW laser unit in preliminary experiments and it was shown that a large laser unit is required for the objective measurements. The experiments with a 2 W laser unit were carried out later and the systems feasibility was studied. Through the study, some data of turbulence were obtained for jets from pipes: the movement of small particles for scattering centers in fluids was analyzed: a method to determine the required laser power for the turbulence measurements was obtained: and it was shown that further improvements of the equipments are necessary for the final purpose, measurements of turbulence in gasas flowing from a combustor.

1. まえがき

ジェットエンジン燃焼器出口の燃焼ガス流の乱れの 測定はタービン翼の冷却の資料を得るために要求され ている。この目的のために行なわれた実験として,一 つの缶形燃焼器を設計し,冷却フィルムプローブを用 いた測定に対しては前報でその概要を述べた¹⁾。

冷却フィルムプローブとともにこの分野で有望な測定方法としてレーザのドップラ効果を利用する方法がある。この流速の測定方法は流れをプローブにより乱す心配がなく、最近いくつか結果が発表されている²⁾。 レーザによる流速の測定結果は最初に Yeh とCummins³⁾ によって発表され、その後、水に対する

測定^{4~6)}, ポリマーを希釈した水で乱流域まで⁷⁾, あるいは気体の乱流に対する測定^{8)~13)}, さらにはロケット出口流や噴流に対する測定も行なわれている^{18),14)}。この方法は燃焼ガス流に対してはその温度変動の影響が無視でき,速度変動だけ測定することができる。光学的な設定方法によっては三次元的な乱れの測定も可能であり,レーザ光の焦点を移動させることにより流れ中の任意の点の速度を測れ,速度分布や入口からの流れの発達の様子等も測ることができる^{15),16)}。

実験では冷却フィルムプローブにいくつかの未解決の問題があったので、レーザの光学系をそれに代えて用いた。光学系は伝熱の研究で要求されている流れ方向の乱れの強さ¹⁷⁾を測定するように設定した。予備実験において 0.3mW のレーザを使用したところ大容量のレーザが必要であることが判明し、のちほど短期間

^{*} 昭和45年1月9日受付

^{**} 原動機部

であるが 2W のレーザを用いて実験を行ない,この 方法の可能性を調べたので報告する。

2. 実験装置

レーザの光学系の設定にはいくつかの方法が考えられるが¹⁶⁾,実験では管内の水流の乱れの強さを測定した方法⁴⁾ と原理的に全く同じ光学系を採用した。その光学系を含む実験装置の概要を図1に示す。燃焼器等に関しては前報で述べたのでここでは説明を省略する。

図1においてレーザ光はスプリッタによって二つに分けられる。双方の光の焦点を測定点に合わせ,かつ交叉させるようレンズと鏡を用いる。参照光は流れ中を直進し測定点を通過して光電子増倍管に向かう。測定点の粒子によって反射された散乱光のうち光電子増倍管の方向の光は参照光と一緒になってフォトカソードに入射する。双方の光によるビート信号はスペクトラムアナライザで測定され,その出力はスクリーン上に信号の強さが周波数の関数となって現われる。図1の角度 θ は燃焼ガス流の速度と使用機器の許容最大周波数 100~MHz から 5° とした。

図1では He-Ne レーザを用いた予備実験の回路を示してある。予備実験の結果大きな出力のレーザが必要であることが判明し、燃焼器出口の燃焼ガス流の測定に対しては公称 2W のアルゴンレーザが 2週間 Coherent Radiation 社の好意により貸与された。この場合の光学系は基本的には同様であるが、燃焼ガスによる汚染を防止するために光源は燃焼器の隣室の操作室へ設置した。

測定機器は以下のものを使用した。

1 レーザ光源 Coherent Radiation 社製ガスレー ザ52型

出力 3.8W

波長 4880Å 1500 mW

その他 2300 mW

ビームの広がり 0.5 ミリラジアン以下

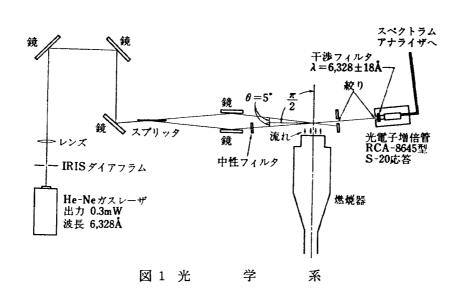
2 光電子増倍管 RCA 製 8645型 10段 S-20応答

使用範囲 3000~8000Å 最高感度波長 4200Å 最高感度 64 mA/W

アノードのパルスに対する応答時間 1.6×10-9 秒

3 高圧電源 Fluke 製 412B 型範囲 0~2100 VDC 0~30 mA

安定度 0.02%


精度 ±0.25%

リップル 500 μV R.M.S以下

4 スペクトラムアナライザ Tektronix 製 540型 プラグインユニット IL20型 (又は IL5型) 周波数範囲 10MHz-4.2GHz (50Hz-1MHz)

レーザのドップラ効果を利用する測定方法の原理は 図 2 に示す関係から導くことができる 2 。 図 2 でレー ザ入射光の波長を λ ,その速度を c とし,入射光の 向かう方向の単位ベクトルを \hat{n} ,粒子のもつ速度ベクトルを \hat{v} とする (ここで $|\hat{v}| \ll c$)。粒子の速度 と入射光との速度差が

$$c \rightarrow n_i$$

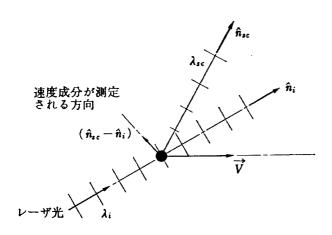


図 2 運動中の粒子によって与えられる ドップラシフト周波数

であるので粒子に入射する光の周波数 レp は

$$\nu_p = (c - \overrightarrow{v} \cdot \overrightarrow{n_i}) / \lambda_i \tag{1}$$

となる。この周波数はまた運動中の粒子の散乱周波数 でもある。

次に散乱光を考え、その単位ベクトルを \hat{n}_{sc} 、散乱周波数を ν_p とする。散乱光の一つの波面が発生するごとに粒子は波面の方へ \hat{v} ・ \hat{n}_{sc} の速さで動くから、その発生時間間隔 $1/\nu_p$ ごとに前の波面との距離は

$$(c - \overrightarrow{v} \cdot \overrightarrow{n}_{sc}) / \nu_p$$

となる。したがって静止している測定者が測定する散 乱光の波長 λsc は

$$\lambda_{sc} = \frac{c - \overrightarrow{v} \cdot \widehat{n}_{sc}}{\nu_p} = \lambda_i \left(\frac{c - \overrightarrow{v} \cdot \widehat{n}_{sc}}{c - \overrightarrow{v} \cdot \widehat{n}_i} \right) \qquad (2)$$

となり、その周波数は

$$\nu_{sc} = \frac{c}{\lambda_{sc}} = \frac{c}{\lambda_i} \left(\frac{c - \overrightarrow{v} \cdot \overrightarrow{n_i}}{c - \overrightarrow{v} \cdot \overrightarrow{n_{sc}}} \right) = \nu_i \left[\frac{1 - \frac{\overrightarrow{v} \cdot \overrightarrow{n_i}}{c}}{1 - \frac{\overrightarrow{v} \cdot \overrightarrow{n_{sc}}}{c}} \right]$$
(3)

全体のドップラシフト周波数 νD は

$$\nu_D = \nu_{sc} - \nu_i$$
 (4) で求められるので

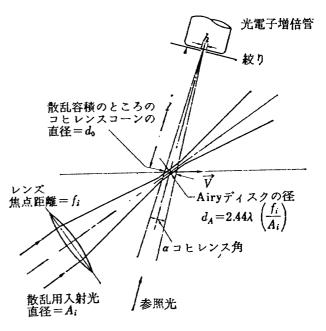
$$v_{D} = v_{i} \begin{bmatrix} \frac{1 - \overrightarrow{v} \cdot \overrightarrow{n}_{i}}{c} \\ \frac{1 - \overrightarrow{v} \cdot \overrightarrow{n}_{sc}}{c} \end{bmatrix} - v_{i} = \frac{v_{i}}{c} \begin{bmatrix} \overrightarrow{v} \cdot (\overrightarrow{n}_{sc} - \overrightarrow{n}_{i})} \\ \frac{\overrightarrow{v} \cdot (\overrightarrow{n}_{sc} - \overrightarrow{n}_{i})}{c} \\ 1 - \frac{\overrightarrow{v} \cdot \overrightarrow{n}_{sc}}{c} \end{bmatrix}$$
(5)

となる。また | v | ≪ c の条件から

$$\nu_{p} = \frac{\overrightarrow{n} \cdot \overrightarrow{v}}{\lambda_{0}} \cdot (\overrightarrow{n}_{sc} - \overrightarrow{n}_{i}) \tag{6}$$

が得られ、ここで λ は入射光の真空中における波長、n は粒子が浮遊している流体の屈折率である。

図1では軸方向の速度だけがドップラシフト周波数に関係するよう角度を設定してあり、この場合式(6)は


$$\nu_{D} = 2 \frac{n}{\lambda_{D}} (U+u) \sin \theta \tag{7}$$

となる。ここで U は軸方向の平均速度でuは軸方向の乱れの成分である。レーザ光の強い可干渉性(Coherency) を利用し、 測定点からの散乱光と直進した参照光をある光路差を経て再び合流させ光電子増倍管のフォトカソードの上に双方を重なるように照射すると、電気的にドップラシフト周波数 ν_D をとりだすことができる。

燃焼ガス流中の測定ではガスの温度変化が屈折率 n に関係するが、燃焼ガスの物性値が空気の値に近いことから n の変化は 3×10⁻¹以下と推定される。この値は本実験においては速度の変動に比べてきわめて小さく無視することができる。したがってドップラシフト周波数の変動から速度の変動のみを求めることができる。

有効な散乱光を与える測定点の容積は次のように決められる。

測定点に焦点が合わせてあるのでその体積は入射光の Airy ディスクの直径 d_A と、受光側で散乱光と参照光をうまく結合できる条件から決まる長さ d_0 から

コヒレンスの条件: $\alpha = \frac{\lambda}{2h}$ $d_0 \sim l\alpha = \frac{l\lambda}{2h}$

図3 散乱容積の決定法

求められる 2 。 図 3 に示すように 4 Airy ディスクの径 4 は 18 , 19

$$d_{A} = 2.44 \lambda \left(\frac{f}{a}\right) \tag{8}$$

で与えられる。ここで λ は入射光の波長 4880 Å, f はレンズの焦点距離 $1050 \, \mathrm{mm}$, a は散乱用入射光の直径で絞りから決められ $2 \, \mathrm{mm}$ である。したがって

$$d_A = 0.06 \,\mathrm{mm}$$

散乱容積の長さ d_o は光学系の設定上の点から、フォトカソード上に散乱光と参照光の二つの光線が小さな角度 α だけ異なって入射するときを考えて求める。そのときの干渉縞の間隔 q は

$$q = \frac{\lambda}{\sin \alpha}$$

$$\approx \lambda / \alpha \tag{9}$$

で与えられる。もし光電子増倍管の前の絞り h が q に比べて小さすぎると,干渉縞のほんの一部しか利用できない。ドップラ効果を利用する場合,二つの光線の波面の位相がずれているので双方を結合させるとその位相差は時間的に変化する。h が q に比べて大き過ぎると干渉縞を同時にいくつも観測して,干渉縞全体の値をとることになり,直流成分が多く求める速度の信号は測定しにくくなる。したがって干渉縞の間隔の h 以下をフォトカソード上で受光する必要がある。ここで絞り h が干渉縞の間隔の h のとき最大の信号が得られるものと考えれば

$$h = \frac{1}{2} q$$

の条件を式(9)に代入して

$$\alpha = \frac{\lambda}{2h} \tag{10}$$

が得られる。角度 α より大きな角度をもった光は直流成分を与え、小さな角度をもつ光が速度信号に寄与する。図3のフォトカソードと散乱容積との距離をlとすれば

$$\alpha = \frac{d_0}{l} = \frac{\lambda}{2h}$$

から

$$d_0 = \frac{\lambda l}{2h} \tag{11}$$

が得られる。実験では l=30cm, h=2mm であったので

$$d_0 = 0.04 \, \text{mm}$$

3. 測定方法

光学系の設定には角度、測定位置への焦点の設定等 をまず行なう。参照光に対しては2個の中性フィルタ を使ってその強度を減衰させ、光電子増倍管へのオーバロードを防止した。フィルタのうち1個は減衰率を連続的にかえることができる。このフィルタは最大の信号、ノイズ比を与える参照光、散乱光の強度比10~20 対 1 を得るのに好都合である。測定点と光電子増倍管の中間には小さな口径の絞りを設けて光電子増倍管からの視野をせまくした。

散乱光と参照光が正しく調整されていれば、スペクトラムアナライザにビート信号が得られるが、最終的にはスペクトラムアナライザの信号を見ながら光学系の調整を行なった。

乱れの測定に対してはスペクトラムアナライザをゆっくりスキャンさせる必要がある。短かい周期の変動速度に対しては、特定の周波数におけるビート信号の強さがドップラ効果で与えられる周波数に相当した流体の速度の占める時間に比例する。これが乱流においては速度の変動の確率分布を測定することに相当する。この際、層流に対するビート信号の幅が乱流の場合の信号幅に比べて無視できる程度でなければならない。

図4は乱流における信号の広がりの様子の一例を簡単化して示す 2)。 図中 4 ν D は信号の半値幅を $^{-}$ ν D は 曲線をスムーズに描いたときの最大値に相当する周波数である。添字 t は乱流を 1 2 1 2 1 2 2 3 2 5 3 6 乱流に対する曲線は「機器」の信号幅を含んだ確率分布を示す。もし速度の確率分布がガウス分布ならば、測定される曲線もガウス分布である。ただし、この場合その信号幅の二乗は真の乱れによる信号幅の二乗と「機器」の信号幅の二乗を加えたものを示す。

速度の確率分布がガウス分布である場合,軸方向の 速度変動の平均二乗根 u' は次式から求められる^い。

$$\frac{u'}{U} = \frac{1}{2.36} \left[\left(\frac{\Delta v_D}{v_D} \right)_t^2 - \left(\frac{\Delta v_D}{v_D} \right)_{lam}^2 \right]^{\frac{1}{2}}$$
 (12)

レーザを使った測定でノズルからの噴流の周波数分析を行なった結果は、熱線で得た結果ときわめて良く 一致することを示している¹¹⁾。その結果を図5に示す。

4. 結 果

内径 6, 15, 20 mm のパイプからの噴流に対しては速度 7 m/s まで乱れの測定を行なった。その結果をパイプ出口中心で測定した速度とパイプ径から求めたレイノルズ数に対して図 6 に示す。燃焼器出口の燃焼ガス流に対してはデータがまだ得られてなく、その問題点は高速において信号がノイズと区別できないことであった。

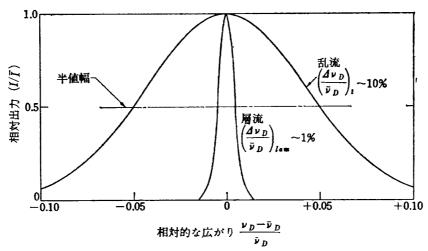


図 4 乱れによるドップラ信号の広がり

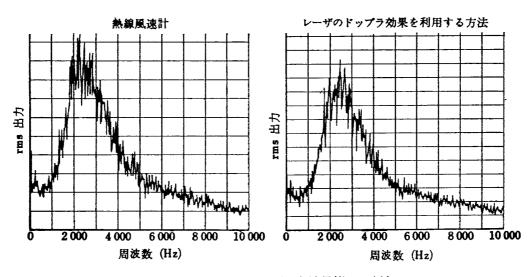


図 5 乱れのスペクトルの測定結果11) <噴流>

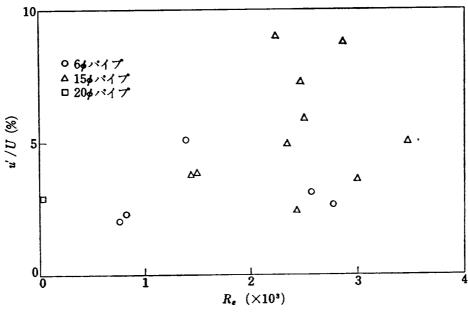


図6噴流の乱れの強さ

実験では燃焼ガス流に対してデータを得るためいくつかの改善を試みた。すなわち、Hewlet Packard 製H05-312A ウェーブアナライザの使用、電子回路における抵抗のマッチングの改善、流れ中に濃い煙の注入、光電子増倍管の電源電圧の調整、光学系の再三にわたる調節である。これらを通じていくつかの根本的な問題点が判明した。それらは、信号入力が小さいこと、ノイズレベルが高いこと、さらには測定電子回路が適当でないと思われることである。

最初の問題は散乱光を集めるためにレンズを使って 大きな立体角を採用すればよい²⁰⁾。しかし光電子増倍 管の容量が小さいので Fabry-Perot 干渉計の使用と なり、測定結果から乱れの強さを求める新らしい理論 の確立を必要とする。第二の問題を解く方法としては 光電子増倍管を冷却したり2個使う方法がある²⁰⁾。

第三の問題は小さな径のパイプからの噴流に対して 信号が二つのピークを与えたことから発生した。二つ

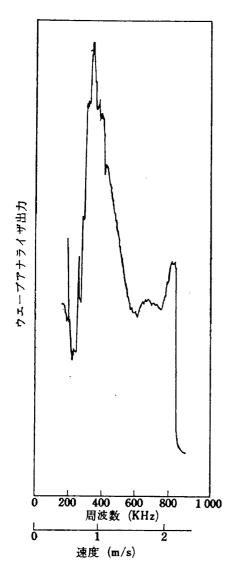


図 7 レーザの光学系から得られた速度信号

のピークを含んだ信号幅は流れから予想される信号幅に比較して極度に広くなった。二つのピークを測定した結果を図7に示す。周波数の低い方のピークは自身の周波数の低い側で急激に変化し、周波数の高い方のピークに対しては逆の変化が認められる。大きなのパイプからの噴流に対しては通常高い周波数側のピークのみがゆがんだガウス分布をもって測定された。そしてスペクトラムアナライザやウェーブアナライザのところにいつも大きなノイズのようなピークが得られた。図6に示した速度や乱れの強さは高い周波数側のピークの周波数や信号幅から求めた。このように信号幅が極度に広くなると全信号入力が一定であるからスペクトラムアナライザのスクリーン上の信号の高さが低くなり測定を困難にする。

この広い信号幅や二つのピークは複雑で解析が難かしいが、速度や密度の変動による周波数変調に基づくものであるとの説が発表されている¹⁶、そのような場合、一つの速度変動に対して周波数変調によるいくつかの周波数が発生し、信号は大きく広がり、周波数信号とそのスペクトラムから換算した速度は必ずしも対応しなくなる。周波数変調を考慮し、測定点の粒子密度の時間的変化による影響を除くため振幅リミッタを用いて振幅一定で周波数変調された信号を通過させ、周波数ディスクリミネータで入力信号成分をとりだした結果は熱線による結果とよく一致している(図5参照)。

本実験では周波数変調を考慮しておらず、この考えなしでは極度に広がった信号幅を説明することが難かしい。しかし周波数変調を考慮せず、水中に粒子があって密度変動が小さい点を除いては本実験と本質的に同一の方法で乱れを測定した結果 ^{5,7)} は、別な方法によって測定された従来のデータと良く合うとされている。したがってこの問題に対してはより基本的なことから再検討する必要がある。

5. 考 察

5. 1. 乱流中における微粒子の動き

レーザを用いた乱れの測定方法では小さな粒子を流 れ中に流して散乱光を与える媒体としている。実験で は微粒子が流体の動きを代表していることを前提とし ている。ここではどの程度の大きさの粒子であれば本 実験に使用できるかを検討する。

球状の粒子が乱流中で以下の条件のもとでどのような動きをするかについて解析が行なわれており²¹⁾,これを利用する。

- 1) 乱れは等方性で定常的である。
- 2) 微粒子の直径は最も小さなうずに比べても何分の 一かの小さいものである。
- 3) 流体と微粒子間の相対速度に基づいたレイノルズ 数は小さい。
- 4) 微粒子間の相互作用が無視できる程度に希釈された状態である。

流体の速度 uf 中の球に対する方程式は

$$\frac{\pi d^3}{6} \rho_p \frac{du_p}{d\tau} = 3 \pi \nu \rho_f d \left(u_f - u_p \right) + \frac{\pi d^3}{6} \rho_f \frac{du_f}{d\tau} + \frac{1}{2} \frac{\pi d^3}{6} \rho_f \left(\frac{du_f}{d\tau} - \frac{du_p}{d\tau} \right) + \frac{3}{2} d^2 \rho_f \sqrt{\pi \nu} \int_{\tau_0}^{\tau} \left(\frac{du_f}{d\xi} - \frac{du_p}{d\xi} \right) / \sqrt{\tau - \xi} \cdot d\xi \right) d\xi$$
(13)

ここで d は微粒子の直径, ρ_p は微粒子の密度, ρ_f は流体の密度, u_p は微粒子の速度, ν は流体の動粘性係数, τ は時間を, τ_o は開始時間を示す。式 (i) の左辺は球を加速するために必要な力を示す。右辺第1項は相対速度に対する粘性による定常時の抗力である。第2項は流体の加速により球に加わる圧力の項,第3項は球に付着した流体を加速するのに必要な力である。最後の項はフローパターンが定常からずれる影響を考慮したものである(Basset history integral)。

式(3)は

$$\frac{d^2}{v} = \frac{\partial u_f}{\partial x} \ll 1$$

لح

$$\frac{u_f}{d^2} \frac{1}{\partial^2 u_f / \partial x^2} \gg 1$$

のとき適用できる。ここで微粒子のサイズが小さくミクロンのオーダでうずの大きさが cm のオーダであるので条件が満たされるものとすると、流体と微粒子の振幅の比 η および位相遅れ β は次のように表わされる 21 。

$$\eta = \sqrt{(1+f_1)^2 + f_2^2} \tag{14}$$

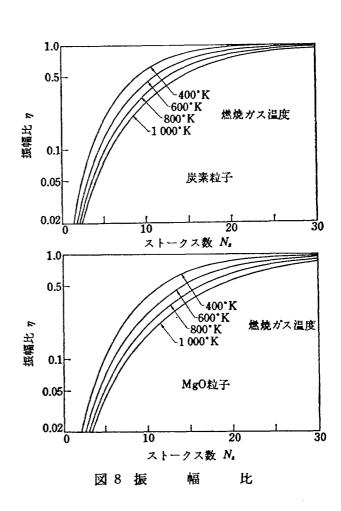
また

$$\beta = tan^{-1} \left\{ \frac{f_2}{1 + f_1} \right\} \tag{15}$$

ここで f_1 と f_2 は無次元の値で次のように表わされ

$$f_{1} = \frac{\left[1 + \frac{9}{2(S + \frac{1}{2})}N_{S}\right]\left[\frac{1 - S}{S + \frac{1}{2}}\right]}{\frac{81}{\left(S + \frac{1}{2}\right)^{2}}\left[2N_{S}^{2} + \frac{N_{S}}{\sqrt{2}}\right]^{2} + \left[1 + \frac{9N_{S}}{2(S + \frac{1}{2})}\right]^{2}}$$
(16)

$$f_{2} = \frac{\frac{9(1-S)}{(S+\frac{1}{2})^{2}} \left[2N_{S}^{2} + \frac{N_{S}}{\sqrt{2}}\right]}{\frac{81}{(S+\frac{1}{2})^{2}} \left[2N_{S}^{2} + \frac{N_{S}}{\sqrt{2}}\right]^{2} + \left[1 + \frac{9N_{S}}{2(S+\frac{1}{2})}\right]^{2}}$$
(17)


ここで

$$S = \rho_p / \rho_f$$
 $N_S = \sqrt{\frac{\nu}{\omega d^2}}$ ストークス数

ω = 運動の角速度

酸化マグネシウム (MgO) とカーボン粒子の振幅比とストークス数の関係を種々の燃焼ガス湿度に対して図8に示す。酸化マグネシウム粒子は火炎の研究によく使用される 22)。この粒子の大きさは約 5μ で比重量は $3.65\,g/cm^3$ である。炭素粒子は油や煙草等の煙を対象にしているがその大きさは $100\,Å$ から 0.2μ 位とされている。油煙に対してはグラファィト粒子であることが知られており 25)、その比重量は $2.25\,g/cm^3$ である 24)。

実験では最初酸化マグネシウムを使ったが空気流中 の観察から乱流には追従しないことが判明した。つい で葉巻の煙を利用したところ観察では適当であるよう

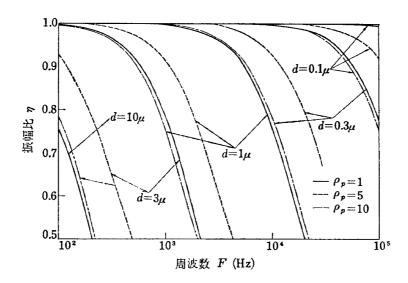


図 9 振 幅 比 (燃焼ガス温度 1000°K)

に見受けられた。計算結果で検討したところ 1000°K の燃焼ガス中で振幅比 η =0.9 の条件に対して酸化マグネシウムは 59 Hz までしか追従せず, 0.2μ の炭素粒子は 5.7×10^4 Hz まで追従することがわかった。したがって通常の乱れは 10^4 Hz までとされるので油煙等の炭素粒を発生する煙を使えることが確認された。

その他にもいっそう濃い煙を発生させるため四塩化チタン(TiCl4)やバルサン等を使ったところ、空気流中では葉巻の煙と同様な動きが観察された。しかしこれらの煙の化学的な組成や微粒子の大きさは現時点ではわかっていない。そこで図 9 に示す流体の運動の周波数 F, 粒子の密度 ρ_P とその直径 d に対する振幅比 η の変化から所要粒径を求められるようにした。仮に粒子の比重が 10 であれば 10^4 Hz までの動きに対して追従するには 0.2μ 以下の大きさでなければならない。

この計算では連続流体を仮定しているが、粒子の大きさに基づいたクヌードセン数は1のオーダである。 したがって実際の状態はもっと複雑であり²⁵⁾、乱れに 関しても等方性を仮定して実際とは異なるので、この 得られた結果は概略の値を示すに止まる。

5.2. 乱れの測定に必要なレーザ出力の一つの決定法

高速における乱れの測定に必要なレーザの出力に対してはまだはっきり示されたものがないが、暗黙のうちに大きな出力の必要なことが示されている。予備実験では低速の噴流に対しては小出力のレーザで測定が行なえたが、流速をあげたとき速度信号がノイズと区

別できなくなった。この問題を検討した結果,実際の 燃焼ガス流中の乱れを測定するにはレーザ出力の大き いものが必要とわかった。以下に検討の内容を示す。

予備実験の光学系は図1に示したものと基本的に同じであるが、燃焼器の代りに内径 1.5cm の鋼管を使用した。パイプからは葉巻の煙を含んだ空気噴流を流した。測定の条件では散乱光が参照光よりずっと弱いので十分な速度信号を得るための条件として散乱光の強さを考慮した。以下の解析では散乱光の強さに基づいて入射光の散乱と減衰、流れの速さと乱れの強さの影響を求め、実験容易な予備実験から推定する方法を示す。

予備実験で必要なレーザ出力を P_i , 実際の燃焼ガス流に対する出力を P_i とし、両者の間に次の関係があるものとする。

 $P_t = F_s \cdot F_a \cdot F_t \cdot F_v \cdot F_o \cdot F_e \cdot P_1 \qquad (18)$

F: 散乱センタの影響

Fa; 光の減衰の影響

 F_i ; 乱れの強さの影響

Fv; 平均流速の影響

Fo; 光学系の影響

Fe; 電気回路の影響

各項目に対してその内容を以下に示す。以下の計算ではレーザ出力を直接使用する代りにそれに比例する光東Iを使用した。

散乱センタの影響;Fs

図 10 に示す散乱センタにおける入射光 I_i と θ 方

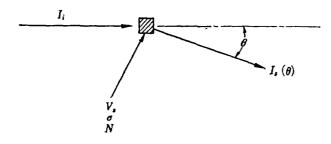


図 10 散 乱 セ ン タ

向への散乱光 $I_{\bullet}(\theta)$ との比は次の関係で示される 26 。

$$\frac{I_s(\theta)}{I_i} \propto v_s N \sigma \tag{19}$$

ここで

v: 散乱センタの容積

N; 散乱用粒子の密度

σ; 散乱断面積

 v_i , N, σ および定数は光学系の幾何学的形状と散乱用粒子の濃度,大きさ,形あるいは反射率に関係する。もし粒子の全ての条件がわかっていれば Mie の理論が式(p)の値を与える。しかし粒子の条件をすべて知ることは困難であり,また計算もきわめて混み入ったものとなる。そこで散乱に関しては光束を除いてすべての条件が一定と仮定すれば,予備実験と本実験において I_s/I_i の値は一定になり,ファクタ F_s は1とおける。

光の減衰の影響;Fa

測定流体中に煙を流したので光の経路における光束の減衰を考えなければならない。減衰の量は光の経路 1 に対して次のように表わされる²⁶⁾。

$$\frac{I_2}{I_1} = e^{-na E l} \tag{20}$$

ここで

I1, I₂; 入射および透過光束

n; 光路の単位長さあたりの粒子の数

a; 粒子の平均断面

E;粒子による減衰係数

粒子の条件を予備実験と本実験で同一とし、おのおのに対して測定流体中の光の経路 l_1 と l_2 をとる。測定流体以外のところにおける減衰を無視すれば、本実験における減衰($I_2|I_1$) l_2 は次のように表わされる。

$$\left(\frac{I_z}{I_1}\right)_{l_z} = \left(\frac{I_z}{I_1}\right)_{l_1}^{l_2/l_1} \tag{21}$$

ここで

 $\left(rac{I_2}{I_1}
ight)_{l_1}$; 予備実験における減衰

光電子増倍管上に等しい光束を得るためには、次の 条件

$$(I_2)_{l_2} = (I_2)_{l_1}$$

から入射光の比は

$$F_{a} = \frac{(I_{1})_{l_{2}}}{(I_{1})_{l_{1}}} = \left(\frac{I_{2}}{I_{1}}\right)_{l_{1}}^{1 - \frac{l_{2}}{l_{1}}}$$
(22)

予備実験から $l_1=1.5 \text{ cm}$ と $(I_2|I_1)_{l_1}=22/25$ が与えられ、燃焼器の直径から求めた $l_2=15 \text{ cm}$ より $F_a=3.5$

となる。

乱れの強さの影響; F_t

スペクトラムアナライザのスクリーン上の速度信号は散乱光と参照光から得られたビート信号で、その縦軸はある周波数のビート信号の強さを表わす。散乱光の強さが参照光の強さよりずっと弱いので、信号の高さはある周波数のビート信号を与える散乱光の強さに比例する¹⁶⁾。散乱光の周波数分布は散乱用粒子の速度分布によって与えられる。その結果前述のように速度の確率分布を与え、速度信号を周波数全体にわたって積分すると散乱光に比例した、あるいはレーザ出力に比例した値を与える。

速度信号のスペクトラムがガウス分布をもつものと 仮定すれば、そのスペクトラムは次のように表わされ る。

$$\phi(x) = \frac{-(x-m)^{2}/2 \sigma^{2}}{\sqrt{2\pi} \sigma}$$
 (23)

ここで

φ;スペクトラムの確率分布

x;変数(または信号の周波数)

m; 平均値(または信号の中央の周波数)

σ; 標準偏差

予備実験における測定に対し添字1,本実験のそれを2で表わす。予備実験において明瞭な信号を得るための所要レーザ出力を次式で求められるものと仮定する。

$$P_{1} = K \int_{-\infty}^{\infty} \phi_{1} dx$$

$$= \frac{K}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} dy = K \text{ (watt)} (24)$$

ここで

$$y = (x-m) / \sigma_1$$

K;定数

速度信号の幅は乱れの強さとともに増加するが、そ

れは一定のレーザ出力の測定においては式 図 σ を 増すことに相当し、信号のピークの高さを減らすこと になる。そのときの分布を

$$\phi_2 = \frac{-(x-m)^2/2\sigma_2^2}{\sqrt{2\pi} \sigma_2}$$

とする。ノイズレベルから識別できるようにピークの 高さを2の場合も1に等しく保つことを考えると、そ の場合必要なケース2の所要レーザ出力は

$$P_{2} = \frac{\sigma_{2}}{\sigma_{1}} K \int_{-\infty}^{\infty} \phi_{2} dx$$

$$= \frac{K\sigma_{2}}{\sigma_{1}} \int_{-\infty}^{\infty} \frac{e^{-z^{2}/2}}{\sqrt{2\pi}} dz$$

$$= \frac{\sigma_{2}}{\sigma_{1}} K \text{ (Watt)}$$
(25)

ここで

$$z$$
; $(x-m)/\sigma_2$

したがってケース 1 に比べてケース 2 のレーザ出力は σ_2/σ_1 倍必要となる。

 σ_z/σ_1 の値は速度信号の半値幅から次のように求められる。確率分布 ϕ はそのピークの高さを y=0 (あるいは z=0) で与えるが,その分布 ϕ の半値幅が $y=\pm b$ (あるいは $z=\pm b$) で与えられるものとする。したがって分布 ϕ が y (あるいは z) の正負に関して対称であるので正の部分のみを考慮して

$$\frac{\phi(b)}{\phi(a)} = e^{-b^2/2\sigma} = 0.5$$

ケース1に対して $\sigma=\sigma_1$, $b=b_1$ ととり,ケース2に対して添字2を用いれば

$$e^{-b_1^2/2\sigma_1^2} = e^{-b_2^2/2\sigma_2^2}$$

$$= 0.5$$

$$\therefore \frac{\sigma_2}{\sigma_1} = \frac{b_2}{b_1}$$
(26)

ガウス分布の 2b は速度信号のスペクトラムで得られる半値幅 $\Delta \nu_D$ に相当する。

したがって所要レーザ出力は半値幅に比例し、

$$F_t = \frac{\Delta \nu_{D_2}}{\Delta \nu_{D_1}} \tag{27}$$

となる。ここで Δv_{D_1} , Δv_{D_2} はケース1と2に対する半値幅である。

予備実験では $\Delta \nu_{D_1} / \nu_{D_2} = 0.1$ が得られている。ここで ν_{D_1} は信号の中央の周波数である。本実験の乱れの強さをこの場合 20% と仮定するとその際の半値幅は次の関係から得られる 4)。

$$\frac{u'}{U} = \frac{1}{2.36} \left[\left(\frac{\Delta \nu_D}{\overline{\nu_D}} \right)_t^2 - \left(\frac{\Delta \nu_D}{\overline{\nu_D}} \right)_l^2 \right]^{\frac{1}{2}}$$
(28)
$$= 0.20$$

$$\therefore \left(\frac{\Delta \nu_D}{\overline{\nu_D}} \right)_t = 0.47$$

ここで添字 l と t は層流と乱流を示し、 $(\Delta \nu_D | \overline{\nu_D})_{l}$ t = 0.01 を代入して求めた。平均流速が等しく、 $\overline{\nu_D}$ が 等しくなる場合には乱れの強さの影響として次の値を与える。

$$F_t = 4.7$$

平均速度の影響; F_v

平均速度 U が高いときは速度信号の中央の周波数 $\stackrel{\sim}{_{\nu D}}$ が増加し、乱れの強さ $\stackrel{\sim}{_{\it u}}$ が一定のときも半値 幅 $\stackrel{\sim}{_{\it d}}$ に増加をもたらす。この条件と次の関連式 $^{\it u}$ から速度の影響を求める。

$$\nu_D = \frac{2 (U+u) n}{\lambda_0} \sin \theta \tag{29}$$

$$\overline{\nu_D} = \frac{2 U n}{\lambda_0} \sin \theta \tag{30}$$

$$\frac{u'}{U} = \text{const.} \tag{31}$$

$$\frac{\Delta \nu_D}{\frac{}{\nu_D}} = \text{const.} \tag{32}$$

したがって乱れの強さ一定に対しては「機器」の信号 幅が十分小さいとき

$$\frac{\Delta \nu_{D_2}}{\Delta \nu_{D_1}} = \frac{U_2}{U_1} = \frac{\overline{\nu_{D_2}}}{\overline{\nu_{D_1}}}$$
(33)

予備実験では $\overline{\nu}_D=100 {\rm KHz}$ で本実験の $U_2=300 {\rm m/s}$, $\theta=5^\circ$, $\lambda_0=0.488\times 10^{-6} {\rm m}$ に対して $\overline{\nu}_{D2}=100 {\rm MHz}$ である。信号の半値幅の広がりから得られる速度の影響はしたがって

$$F_v = \frac{\overline{\nu_{D_2}}}{\overline{\nu_{D_1}}} = 1000$$

光学系の影響; F。

予備実験における波長は 6328Å (He-Ne) で本実験では 4880Å (A) である。この波長差は用いた光電子増倍管が S-20 特性であるので 4880Å の波長に対して 2倍の感度を与える 27)。この波長差は光学系の透過率,散乱等に対してわずかながら変化を与えるが,ここではそれらの変化が無視できるものと仮定する。

特別な加工を施こした鏡を用いその表面でわずかな 光を反射し、裏面でほとんどの光を反射できるように

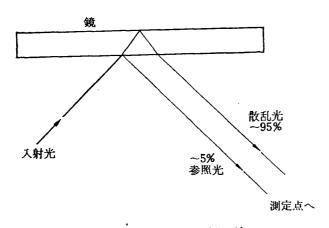


図11 両面反射鏡

すれば図11のように散乱用入射光と参照光が同時に一枚の鏡で得られ、角度 θ を小さくとることができる。 θ が小さくなると Mie の理論によって散乱光が数%増え、ある流体速度 U に対して信号の中央の周波数を下げることができ半値幅も小さくなる。しかし、角度 θ による半値幅の変化は式(7)より層流に対しては次のように表わされる。

$$\Delta \nu_D = \frac{2 U n}{\lambda_0} \cos \theta \ \Delta \theta \tag{34}$$

ここで $d\theta$ は光電子増倍管側の光学系から決まる値で、この場合角度 θ の変化に対しても一定になる。 θ の値が双方において小さいので前記の鏡を用いて θ の値をさらに小さくしても層流における半値幅を小さくすることにはならない。また $\overline{\nu}_D$ が小さくなるため式 図における相対的な値 $(\Delta\nu_D/\overline{\nu}_D)$ ι が大きくなり、計算式の前提から離れる。何らかの方法で θ を決めるための妥協点を見出す必要があるが、ここでは双方に対して等しい角度 θ を採用する。したがって光学系の影響として F_0 は δ をとる。

電気系の影響; Fe

信号とノイズの比は特殊な機器、光電子増倍管の冷却等によって改善する余地がある。信号のスペクトラムに対するスペクトラムアナライザの感度の変化、光電子増倍管や接続回路のノイズと信号周波数等電子回路の問題に対しては不確定な要素がいくつかあり、将来定量的に明らかにする必要がある。ここでは簡単に計算を行なうため電気系が双方に対して同等に働くものと仮定し $F_e=1$ をとる。

所要レーザ出力

式協における P_1 の値は予備実験より 0.3mW が与えられている。したがって、この値と $F_s=1$ 、 $F_a=3.5$ 、 $F_t=4.7$ 、 $F_p=1000$ 、 $F_o=0.5$ 、 $F_e=1$ から

 $U=300 \mathrm{m/s}$ で乱れの強さ 20% のときの所要レーザ 出力は

$$P_s = 2.5 \text{ (W)}$$

となる。この値は予備実験と本実験の条件が大きく異なり、いくつかの仮定を設けているので大体の目安を 与える程度に考えるべきであるが、計算から大出力の レーザが必要であることが確認された。

6. あとがき

燃焼器出口の燃焼ガス流の乱れを測定するためレーザのドップラ効果を利用する方法を試みた。実験は初期の段階にあり、測定方法自体の確立に重点が置かれた。得られた結論と今後の改善すべき点を以下に示す。
1. レーザを用いた乱れの測定を行ない、パイプからの噴流に対して 7 m/s までのデータを得た。燃焼器出口の燃焼ガス流に対しては光学系ならびに測定回路の

2. 光学的方法で乱れを測定するために要求される燃 焼ガス流中の光の散乱センタの粒子径を示した。

改善がさらに必要であることを示した。

3. 散乱光の強さに基づいて乱れの測定に必要なレーザ出力の一つの決定法を得た。

以上の結果から最終的な燃焼器出口の燃焼ガス流の 乱れの測定を行なうには以下の点を考慮する必要があ る。

- 1. 信号入力を強くするため大出力のレーザと集光レンズを採用する。
- 2. 電子回路の根本的な改善が必要である。周波数変 調に基づいた測定回路を採用すれば高速流と乱れのよ り詳細な構造の測定が可能になる。
- 3. 測定回路のノイズレベルを低下させる必要がある。 そのため光電子増倍管を2個組み合わせる等の対策をとる。
- 4. 測定の最適条件を求めるために周波数変調,信号 とノイズとの比,光電子増倍管の容量等を考慮した解 析が必要である。
- 5. データを磁気テープに記録する等による測定の能率化。
- 6. レーザ光の調整を十分に行ない、ビーム中の強度 分布やビームの強度を良好にしておくこと、あるいは 光学系を正確に調整し、汚染を防止すること。

最後に本研究を行なりにあたってミネソタ大学 R. J. Goldstein 教授のご指導と E.R.G. Eckert 教授ならびに T.E. Murphy 教授から種々のご援助をいただいたことを感謝いたします。

文 献

- 1) 相波哲朗;ジェットエンジン燃焼器からの燃焼ガス流の乱れの測定(I) -冷却フィルムプローブによる方法-, 航技研資料 TM-169 (1970)
- R. J. Goldstein and D. K. Kreid; Fluid Velocity Measurement from the Doppler Shift of Scattered Laser Radiation, Univ. of Minnesota, Heat Transfer Lab. Tech. Report No. 85 (1968).
- Y. Yeh and H. Cummins; Localized Fluid Flow Measurements with a He—Ne Laser Spectrometer, Appl. Phy. Letters, 4 (1964) p. 176
- R. J. Goldstein and W. F. Hagen; Turbulent Flow Measurements Utilizing the Doppler Shift of Scattered Laser Radiation, Phys. of Fluid, 10, (1967) pp. 1349—1352.
- 5) N. E. Welch and W. J. Tomme; The Analysis of Turbulence from Data Obtained with a Laser Velocimeter, 5th Aerospace Seience Meeting of the AIAA Paper No. 67—179 (1967)
- 6) E. B. Pike, D. A. Jackson, P. J. Bourke and D. I. Page; Measurement of Turbulent Velocities from the Doppler Shift in Scattered Laser Radiation, J. Sci. Inst., 1, (1968) p. 727
- R. J. Goldstein, R. J. Adrian and D. K. Kreid;
 Turbulent and Transition Pipe Flow of Dilute
 Polymer Solutions, to be published.
- J. W. Forman, E. W. George, J. L. Jetton, R. D. Lewis, J. R. Thorton and H. J. Watson;
 Fluid Flow Measurements with a Laser Doppler Velocimeter, I. E. E. E. J. Quantum Elect., 2 (1966) pp. 260—266.
- R. D. Lewis, J. W. Foreman and H. J. Watson;
 Laser Doppler Velocimeter for Measuring Flow
 Velocity Fluctuations, Phys. of Fluids, 11 (19
 P. 433
- 10) J. W. Forman, E. W. George and R. D. Lewis; Measurement of Localized Flow Velocities in Gases with a Laser Doppler Flow Meter, Appl. Phys. Letters, 7 (1965) p. 77.
- 11) E. Rolf and R. M. Huffker; Laser Doppler Velocity Instrumentation for Wind Tunnel Turbulence and Velocity Measuements, Paper Presented at George C. Marshall Sp. Fl. Center

- Specialist Conf. on Molec. Rad. Applic. to Diagnostic Techniques, Part I (1967).
- 12) R. L. Bond; Measurement of the Intensity of Turbulence, Status Prog. Rep. NASA Res. Gr. No. Sc-NGR-04-001-015 N67-40512
- 13) R. N. James, W. R. Babcock and H. S. Seifert; Application of a Laser-Doppler Technique to the Measurement of Particle Velocity in Gas-Particle Two Phase Flow, Stanford Univ. Dept. of Aeronautics and Astronautics, Rep. No. 265 (1966).
- 14) R. N. James, W. R. Babcock and H. S. Seifert; A Laser Doppler Technique for the Measurement of Particle Velocity, AIAA J., 6 (1968) pp. 160-162.
- 15) R. J. Goldstein and D. K. Kreid; Measurement of Laminar Flow Development in a Square Duct Using a Laser Doppler Flowmeter, J. Appl. Mech. 34-E (1967) pp. 813-818.
- 16) E. Rolf, J. K. Silk, S. Booth, K. Meister and R. M. Young; Laser Doppler Velocity Instrument, NACA CR-1199.
- 17) J. Kestin; The Effect of Free-Stream Turbulence on Heat Transfer Rates, Advances in Heat Transfer, vol. 3, T. F. Irbine and J. P. Hartnet Eds. Academic Press (1966) pp. 1-32.
- M. Born and E. Wolf; Principles of Optics Second Edition Pergamon Press, (1964) p. 319.
- 19) 久保田広; 応用光学, 岩波全書 (1963) p.118.
- 20) H. L. Morse, B. J. Tullis, H. S. Seifert and W. Babcock; Development of a Laser-Deppler Particle Sensor for the Measurement of Velocities in Rocket Exhaust, J. Spacecraft vol. 6 (19 69) pp. 264-272.
- 21) A. T. Hjelmfelt and L. F. Mockros; Motion of Discrete Particles in a Turbulent Fluid, Appl. Sci. Res. Vol. 16 (1966) pp. 149-161.
- 22) R. M. Fristrom and A. A. Westenberg; Flame Structure, McGraw Hill (1965) pp. 118-129.
- 23) A. G. Gaydon and H. G. Wolfhard; Flames, Chapman and Hall, (1953) pp. 162-192.
- 24) Handbook of Chemistry and Physics, Chemical Rubber Publishing Co. (1963).
- H. S. Tsien; Superaerodynamics, Mechanics of Rarefied Gases, J. Aero. Sci. vol. 13 (1946)

pp. 653-664.

- 26) C. N. Davies, Ed.; Aerosol Science, Academic Press, (1966) pp. 287-355.
- 27) RCA-8645 光電子増倍管のデータシート

既 刊 資 料

TM- 1	高マッハ数風胴について (I)	1961年11月	平木 一, 橋本 登	清水福寿
TM- 2	航空技術研究所計数型電子計算機設備 プログラムライブラリー (I)	1962年2月	樋口一雄, 三姓, 一雄, 一雄, 一种市,	戸高板 期橋 垣藤 年利 芳保 子 佐 佐
T M - 3	Y S 水平尾翼後桁取付部静荷重試験· 疲労試験報告書	1962年2月		佐 滕 保 于 多 田 保 夫
TM- 4	18cm×20cm 超音速風胴について	1962年5月	長洲秀夫,	伝田幸雄
TM- 5	遷音速流の線型理論	1962年8月	細川 厳	
TM- 6	18cm×18cm遷音速風整胴備試験	1962年8月	橋本 登,	井上政一
TM- 7	慣性力形疲労試験機	1962年8月	竹内和之,	山根皓三郎
TM- 8	アルミ合金の前歴が疲れ寿命におよぼ す実験的研究	1962年9月	池田為治,	坂元思無邪
TM- 9	方向性次元解析と相似解に関する覚書	1963年2月	甲藤好郎,	小出 勉
TM-10	DATATRON 205 用 ALGOL 58 使用 法について	1963年2月	髙橋利之	
TM-11	光弾性による高速車盤の縞模様	1963年2月	永井文雄	
TM-12	コーティングの断熱効果に関する実験	1963年 3 月	竹中幸彦, 林 洋一	小川鉱一
T M-13	遷音速における 45° 後退角翼の予備的 フラッタ実験	1963年 3 月	中井暎一,	小 原 英
TM-14	変断面片持梁固有振動数の一計算方法 について	1963年 3 月	中井暎一, 鳥海良三,	小 原 英 安 藤 泰 勝
TM-15	ジェット中間練習機のフラッタ確認の 試験報告	1963年4月	中中西高安江井井村木藤尻快泰博俊泰	田中義一
TM-16	フラッタ試験設備測定部変換ノズルの 予備試験	1963年 4 月	中 井 暎 一, 高 木 俊 朗,	橋爪 宏橋本 登
TM-17	VTOL 機用 Jet Lift Engine に関する一考察	1963年6月	鳥崎忠雄, 山中龍夫,	松 木 正 勝 藤 井 昭 一
TM-18	ヘリコプター振動のパワースペクトル 解析	1963年6月	小野幸一	
T M-19	吹出式超音速風胴による実験データの 処理方式について (I)	1963年 6 月	新井 忠,	原 亘利
TM-20	1 m × 1m 吹出式超音速風胴における AGARD 標準模型Bの三分力試験	1963年7月	高木廣治, 斎藤秀夫,	谷 新 井 忠
T M -21	国産中型輸送機 YS-11 主翼疲労試験 (第 I 報)	1963年9月	竹内和之, 北谷虔勇,	飯田宗四郎 中 井 治 夫
T M -23	人工衛星用多段ロケットの初期計画	1963年12月	五代富文,清水英範	山中龍夫
TM-24	円輪と薄肉円筒の回転強度の関係	1963年11月	永井文雄	
TM-25	DATATRON 205 用 ALGOL 58 の Procedures ライブラリー	1964年1月	高橋利之	
T M -26	吹出式風胴の圧力制御(フラッタ試験 設備の場合)	1964年1月	橋爪 宏,	中井暎一
TM-27	遷音速風胴における高速目標機のピト 一静圧および補助舵翼動き試験(I)	1964年1月	高木広治,	竹内 理
TM-28	一段式観測ロケットの超音速風胴試験	1964年1月	谷 喬, 榊原盛三,	原 亘利 外立政隆

TM-29	遷音速フラッタ試験設備の改造および 整備試験	1964年2月	中井暎一,橋爪 宏安藤泰勝,高木俊朗
TM-30	二段式ロケット飛しょう体の揚力およ び圧力中心推定法	1964年3月	小橋安次郎,宮 沢 政 文
T M -31	亜音速ジェット輸送機の遷音速風胴に おける試験	1964年3月	河崎俊夫, 竹內 理
TM-32	遷音速風胴の防音	1964年4月	牛田健二,高橋 宏
T M -33	非定常境界層の遷移の研究に使用され た定温度型熱線風速計について	1964年4月	榎並敬之,山本稀義
TM-34	極超音速風胴ノズルの境界層補正につ いて	1964年 5 月	長洲秀夫
TM-36	遷音速タービン翼列二次元試験(第 I 報)	1964年5月	近藤 博,養田光弘山崎紀雄
TM-37	気体の不完全性を考慮した極超音速風 胴ノズルの設計計算法	1964年5月	毛利 浩
TM-38	AGARD-A 標準模型の超音速三分力 試験	1964年6月	高木廣治,斎藤秀夫 石原久蔵
TM-39	相似極超音速流におかれた半球面上の 境界層の遷移に及ぼす粗さと冷却の 結合影響	1964年7月	石井孝雄
TM-40	国産中型輸送機 YS-11 胴体疲労試験 (I)	1964年9月	竹内和之,川島短郎
TM-41	抵抗線歪ゲージのゲージ率測定	1964年10月	田畑净治,大坪孔治 滝沢 実
TM-42	実在着氷条件の測定について	1964年10月	古 関 昌 次,田 寺 木 一 泉 日出夫
TM-44	高負荷燃焼器(アニュラ模型)の実験 結果	1964年12月	大塚貞吉,鈴木邦男 松本 宏,石井浅五郎 広木 強,山中国雍
TM-45	国産中型輸送機 YS-11 主翼疲労試験 (第Ⅱ報)一機体の被害状況一	1964年12月	竹内和之,飯田宗四郎塩原竹治,中井治夫
TM-46	翼胴結合金具の疲労特性	1964年12月	竹内和之, 藤枝郭俊
TM-47	ローター後流中のヘリコプター胴体の 抵抗について	1965年1月	幸尾治朗, 岡 遠一
TM-48	極超音速風胴用ペブル加熱器の予備実 験	1965年2月	平木 一, 橋本 登 林 二識, 吉永 崇 山口富夫
TM-49	Queen-Air 機の失速特性について	1965年2月	幸尾治朗,岡 遠一 照井祐之,鎌田幸男
TM-50	LS-A 型ロケットの曲げ剛性および振 動試験について	1965年5月	中井暎一,塙 武敏泉 日出夫
TM-51	超音速風厢空力データ表示記録装置	1965年5月	谷 裔, 髙島一明原 互利, 近藤洋史
T M-52	超音速目標の遷・超音速風胴試験	1965年5月	斎藤秀夫, 竹内 理柳原盛三, 木村友昭
TM-53	ベクトルのノルムと行列 の ノルム 一数値解法の収束条件その他への応用一	1965年5月	板垣芳雄
TM-54	熱衝擊試験用風胴整備試験	1965年5月	武藤洋治郎,池田 為 治坂元思無邪,光山 敏雄
TM-55	ロケット模型風胴試験における超音速 相似則の応用	1965年5月	河崎俊夫,谷 喬
TM-56	2024-T4アルミニウム合金平滑丸棒の 常温回転曲げ疲労試験	1965年7月	石田 誠,河野哲雄
TM-57	極超音速における軸対称物体の前面抵 抗	1965年7月	曾我国男
TM-58	試験用飛しょう体の超音速風胴試験	1965年8月	斎藤秀夫, 木村友昭

TM-59	ジェットリフトエンジン空気取入口の 実験 (I)	1965年9月	近藤 博,增田惣平
TM-60	吹出式超音速風胴における実験データ の処理方式について (Ⅱ)	1965年9月	原 互利,高島一明 関根英夫,中 正夫 戸川保子
TM-61	クインエア機の風胴試験	1965年9月	広末健一, 矢沢健司 塚野雄吉, 田村征 佐野四郎, 能村 佐野府信宏
TM-62	高温歪ゲージの温度特性試験	1965年10月	江川幸一
TM-63	2024-T3アルミニウム合金の有孔補強 平板の軸荷重による疲労特性	1965年10月	飯田宗四郎
TM-64	応力集中による材料の疲れ強さに関す る一実験 (I)	1965年10月	池 田 為 治,坂元思無邪光 山 敏 雄
TM-65	ジェットエンジンの翼の固有振動に関 する実験	1965年11月	武内澄夫, 宮地敏雄星谷昌二
T M -66	国産中型輸送機 YS-11 胴体疲労試験 (II)一機体の被害状況一	1965年11月	竹内和之,川島矩郎 塩原竹治
TM-67	国産中型輸送機 YS-11 部分胴体疲労 試験 一乗降口および前方荷物口部 付近の部分胴体—	1965年11月	竹内和之,野原利雄 松岡陽一
TM-68	超軽量ジェットエンジン試作1号機 (JR 100)の燃焼器(I)	1965年11月	大塚貞吉,鈴木邦男石井浅五郎,山中国雍
TM-69	質量分析計による水蒸気を含む試料の ガス分析	1965年12月	斎藤 隆, 堀内正司 中村浩子
T M-7 0	ジェットエンジン用燃料噴射弁の特性 試験	1965年12月	福田 広,相波哲朗松本 宏,畑山金彌
TM-71	可動アイアンバードの構造および機能	1965年12月	機体第一部,計 測 部原 動機 部
TM-72	地上付近の風の影響による小型ロケッ トの姿勢角変化	1965年12月	戸川 隼人,石黒登美子
TM-73	固定端を有する薄肉円筒殻の自由 振動 について	1966年1月	田寺木一,泉 日出夫
TM-74	回転振動試験装置の計画,構造および 特性	1966年2月	武内澄夫, 宮地敏雄星谷昌二
TM-75	高マッハ数風胴の消音装置について	1966年2月	牛田健二,清水福寿吉永 崇
TM-76	コーティングの断熱効果のアナログシ ミュレイション	1966年2月	小川鉱一
TM-77	テレメータ電波の偏波面の回転を利用 したロケットのスピン測定について	1966年3月	田 畑 浄 治,桜 井 善 雄 三 浦 雅 男
TM-78	昇降舵の操舵力特性に関するシミュレ ータ解析	1966年3月	堀川勇壮,森 幹彦 中野佳直
TM-79	テレメータ機上装置の小型化の研究	1966年3月	新田慶治
TM-80	安定制御のための一計算法	1966年3月	楢崎哲二
TM-81	吹出式超音速風胴の超動時および停止 時における過負荷防止装置	1966年3月	石原久蔵, 斎藤秀夫 外立政隆, 榊原盛三 宗美 均
TM-82	ピトー管による境界層速度分布測定に ついて	1966年4月	長洲秀夫,柏原登喜子
TM-83	ジェットリフトエンジン空気取入口の 実 験 (Ⅱ)	1966年4月	近藤 博,增田惣平
TM-84	二段ロケットの低速風胴試験	1966年7月	毛利 浩, 田村敦宏 佐野四郎, 能村 実
TM-85	航空機の滑走路走行時の振動に関する 実験的研究	1966年8月	小野幸一

TM-87	極小型超音速機用姿勢制御装置の特性 解析	1966年8月	池谷光栄,	畑山茂樹
TM-88	プロペラ後流偏向型 STOL 機の風胴 試験(I)	1966年9月	犬丸短夫, 北村清美 木村友昭	岡部祐二郎 川 幡 長 勝
TM-89	有孔板の振動について	1966年9月	川井忠彦,	泉 日出夫
TM-90	地上付近の横風の影響による小型ロケ ットの方位角変化	1966年9月	戸川隼人,	石黒登美子
TM- 91	高速タービン翼列二次元試験	1966年10月	近藤 博,山崎紀雄	養田光弘
TM- 92	リフトジェットエンジン試験設備(I) 一台上運転設備一	1966年10月	大山耕一, 中山 晋, 五味光男	吉田 晃
TM- 93	軽量ジェットエンジン研究試作2号機 (JR 200) の燃焼器(I) ―アニュ ラ型模型による実験―	1966年10月	鈴木邦男, 広瀬健樹, 山中国雍	石井浅五郎 大 塚 貞 吉
TM- 94	J-3ジェットエンジン用タービン動翼 の固有振動特性	1966年11月	武内澄夫, 星谷昌二	宮地敏夫
TM- 95	超軽量軸流圧縮機動翼の固有振動特性	1966年11月	武内澄夫, 星谷昌二	宮地敏雄
TM- 96	2024-T4および7075-T6有孔平板の曲 げ疲労試験と2024-T4平滑丸棒の軸 荷重疲労試験	1966年11月	佐野政明,	菰岡一洋
TM- 97	高マッハ数風胴について(Ⅱ)	1967年1月	吉永 崇, 広田正行,	井上建二 舊志
TM- 98	40kW プラズマ発生装置の諸特性	1967年1月	野村茂昭,	相原康彦
TM- 99	搭載機器用環境試験装置の特性	1967年2月	大月正男,田畑浄治,	鈴木孝雄 円居繁治
TM-100	二連型リフトエンジンの吸込み抵抗	1967年3月	近藤 博,	大城章一郎
TM-101	低圧環境下における固体ロケットモー タの性能	1967年3月	望月 昌, 富文, 富文, 浪	斎藤 信伊藤克弥
TM-102	弾性支持片持板の振動	1967年3月	墙 武敏, 越出慎一,	築地恒夫 林 洋一
TM-103	結合梁の振動について	1967年3月	築地恒夫,	林 洋一
TM-104	平板翼模型の固有振動モードの測定	1967年4月	中井暎一,	森田甫之
TM-105	非定常境界層方程式を含む放物型微積 分方程式の数値解法	1967年4月	関口清子	
TM-106	動安定微係数測定用風胴天秤について	1967年 5 月	髙島一明, 原 亘利, 金成正好	榊原盛三 北出大三
TM-107	プロペラ後流偏向型 STOL 機の風胴 試験(II)	1967年6月	犬丸矩夫, 北村清美, 高橋 侔,	岡部祐二郎 川 幡 長 勝 木 村 友 昭
TM-108	インダクタンス型小型圧力変換器の試 作とその応用	1967年7月	長洲秀夫,	柳沢三憲
TM-109	ロケットの飛しょう径路計算のための プログラム	1967年7月	戸川隼人,	石黒登美子
TM-110	二次元スラットおよびスロッテッドフ ラップの実験的研究(I)	1967年8月	犬丸短夫, 川幡長勝	北村清美
TM-111	リフトジェット VTOL 機の離陸径路 に関する近似解	1967年8月	西村博史	
TM-112	極超音速風胴ペブル加熱器の特性	1967年8月	橋爪 宏,	橋本 登
TM-113	リフトジェットエンジン試験設備(Ⅱ) 一計測設備一	1967年9月	森田光男, 関根静雄,	岩部柱相 武田克巳

TM-114	五段遷音速軸流圧縮機の空力設計	1967年9月	藤井昭一,松木正勝 五味光男
TM-115	燃料蒸発管に関する研究 (I)	1967年9月	大塚貞吉,鈴木邦男田丸 卓,乙幡安雄
TM-116	高負荷燃焼器の空気孔からの流れにつ いて(I)	1967年 9 月	鈴木邦男,相波哲朗
TM-117	ロケット用テレメータ機上装置の集積 回路化	1967年9月	新田慶治
TM-118	操縦桿レート信号によるアイアンバー ド制御の安定効果とパイロットのモ デルについて	1967年9月	村上 力, 真柳光美
TM-119	ベーン型気流方向検出器の特性	1967年11月	田畑浄治, 松島弘一成田健一, 塚本憲男
TM-120	円錐管レンズの設計とその応用	1967年11月	山中龍夫, 奧組澄男
T M -121	大きなマトリクスの逆行列計算および 連立一次方程式の計算のためのプロ グラミング技術	1967年11月	
TM-122	NAL-7-P ロケットの強度および燃焼 試験結果	1967年11月	竹中幸彦, 古田敏康 中一章 , 古田 明年 京,五田 明年 京,五 大 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八
TM-123	"NAL-16·31" および "NAL-25·31" 二段ロケットの振動試験	1967年11月	中井暎一, 古関大
TM-124	吹出式超音速風胴の集合胴圧力制御に ついて	1967年12月	外立政隆,近藤洋史 原 互利
	航技研1m×1m吹出式超音速風胴に おけるハーフモデル試験について	1968年2月	石原久藏,原 亘利 榊原盛三,関根英夫
TM-127	2024-T 3 アルミニウム合金の 3-bay 有孔補強平板の軸荷重による疲労特 性	1968年4月	飯田宗四郎,猿 本 光 明 斉藤信一郎
TM-130	リフトエンジンの自然吸込みについて	1968年4月	近藤博,大城章一郎
TM-131	遷音速タービン翼列二次元試験(Ⅲ)	1968年5月	近藤 博, 簑田光弘山崎紀雄, 古川 昇
TM-132	行列の最小固有値の一計算法	1968年5月	戸川隼人, 戸川保子
TM-133	フィラメント・ワインディング円筒の 強度特性に関する研究	1968年 5 月	竹中幸彦, 斎藤浩短 市田敏康, 川川田 一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎一郎
TM-134	AGARD 標準模型 HB-1,HB-2 の 超音速風胴試験	1968年5月	斎藤秀夫,石原久蔵原 亘利,野田順一 関根英夫
TM-135	歪ゲージの自己加熱による歪ドリフト	1968年5月	小川鉱一,遠藤修司
TM-136	"NAL-16・31" および "NAL-25・31" 二段ロケット結合部の曲げ剛性試験	1968年 5 月	中 井 暎 一,飯田宗四郎 高 木 俊 朗,安 藤 秦 勝 菊 地 孝 男
TM-137	ロケットの三次元の運動の方程式およ び HITAC 5020 による軌道計算の ためのプログラム	1968年5月	毛利 浩
TM-138	片持板の振動解析に関する考察	1968年6月	塙 武敏,越出慎一 林 洋一
TM-139	薄板構造の疲れき裂伝ぱ実験	1968年6月	竹内和之,野原利雄 飯田宗四郎

TM-140	二次元スラットおよびスロッテッドフ ラップの実験的研究	1968年7月	犬丸矩夫,	北村清美
TM-141	超音速二次元翼列予備実験風胴について	1968年7月	近藤 博, 八山 優,	坂口 一高森 晋
T M -142	二次元スラットおよびスロッテッドフ ラップの実験的研究(Ⅲ)	1968年7月	犬丸短夫,	高橋 侔
TM-143	端面一体巻きフィラメント・ワインディング容器の静圧強度および疲れ強度	1968年8月	竹中幸彦, 野口義男	朝田洋雄
TM-144	真ひずみ計の試作	1968年8月	竹中幸彦, 野 口義男	朝田洋雄
TM-145	スピンを伴うロケットの運動を計算す るプログラム	1968年8月	戸 川 隼 人, 山 本 浩 通	石黒登美子
TM-146	双発 STOL 機の飛行試験 (実用運用包囲線および離着陸特性)	1968年8月	幸尾治朗, 塚野雄吉, 小野孝次	岡 遠一 鎌田幸男
TM-147	浮動振子型加速度計の試作	1968年9月	大月正男, 円居繁治	鈴木孝雄
TM-148	吹出しフラップ翼の高揚力特性	1968年9月	小橋安次郎, 西 武 徳	宮沢政文
TM-149	NAL-16-TR ロケットの研究	1968年10月	ロケット性能	研究室
TM-150	リフトジェット VTOL 機の着陸にお ける水平方向の減速について	1968年11月	西村博史	
T M -151	フラッタ解析法の再検討(フラッタ解析法の研究 その1)	1968年12月	市川輝雄	
TM-152	ノズル内の突起物によるロケットエン ジンの側分力	1969年1月	楢崎哲二,	中野富雄
T M -153	FA-200改機の風胴試験(I) プロペラ 付き	1969年2月	広末健一, 髙橋 宏,	坂井紀穂 綿貫忠晴
TM-154	FA-200改機の風胴試験(Ⅱ) 高揚力装 置付き	1969年2月	広末 健一 , 高橋 宏,	木村友昭 綿貫忠晴
TM-155	極超音速風胴 M7 ノズル較正試験	1969年2月	橋本 登, 穂積弘一	吉沢 昭
TM-156	自動制御系の動特性を計数型電子計算 機により模擬するための汎用プログ ラム	1969年3月	戸川隼人,	丸山治雄
T M -157	機上用超小形エンコーダの研究	1969年3月	中 正夫, 大石 晃	山本芳樹
TM-159	可動アイアンバードによる姿勢制御の 実験	1969年5月	西村博史,	藤枝郭俊
TM-160	極超音速風胴計測装置について	1969年7月	長洲秀夫,松崎貴至	吉沢 昭
TM-161	燃料蒸発管に関する研究(Ⅱ) ―加熱蒸発管の燃料未蒸発分捕集―	1969年8月	鈴木邦男, 乙幡安雄	田丸 卓
TM-162	境界層内圧力変動および板の振動変位 の測定(I)	1969年9月	藤森義典	山崎 浩
T M-163	ある双発プロペラ STOL 機の動安定 風胴試験	1969年9月	別府護郎,	鈴木友昭
TM-164	ブレードのフラッピング運動をバネで 拘束したロータのピッチダンピング について	1969年10月	別府護郎,	岡 遠一
TM-165	フェノール系複合材の環境試験結果	1969年11月	古田敏康,	野口義男
TM-166		1969年11月	大塚貞吉, 堀内正高, 宮坂 彰	斎藤 隆 本間幸吉

TM-167	YS-11A-300型輸送機の胴体 疲労試験 一中部胴体前方大型貨物口部および 後方乗降口部付近—	1970年1月	竹内和之,熊倉郁夫,	川島矩郎松岡陽一
TM-168	タンピングメータの試作	1970年2月	柳沢三憲	
TM-169	ジェットエンジン燃焼器出口ガス流の 乱れの測定(I) 一冷却フィルムプローブによる方法—	1970年2月	相波哲朗	
TM-170	JRエンジン燃焼器に起きた振動燃焼	1970年2月	鈴木邦男, 山中国雍	石井浅五郎
TM-171	缶形燃焼器(低圧,低温系)試験設備 による航空計器の氷結(着氷)試験	1970年3月	鈴木邦男, 本間幸吉,	相波哲朗服部宣夫
TM-172	自動追尾型風向風速測定器	1970年3月	川幡長勝,	中谷輝臣
TM-173	FA200改機の動安定微係数	1970年3月	遠 藤 浩, 海老沼幸成。	林 良生中谷輝臣
TM-174	遷音速風胴動安定測定装置の構造と作動	1970年4月	小橋安次郎, 西 武 徳,	河野長正宮沢政文
TM-175	NAL~16•31D型ロケットの研究試作	1970年5月	五代富文,中井暎一,	近藤 洋 史 田 畑 浄 治
TM-176	非対称自由流線の一計算法	1970年5月	髙橋 侔	
TM-177	小型ロケットモータの振動燃焼実験 一パルス法による中周波振動燃焼の 研究—	1970年5月	五代富文, 西村久男, 柴藤羊二	伊藤克弥湯沢克宜
TM-178	大型低速風胴動安定微係数測定装置	1970年5月	広岡貫一, 戸田亘洋,	遠 藤 浩 岡部祐二郎
TM-179	風胴天秤の試作	1970年5月	金成正好,	北出大三

注:欠番は配布先を限定したもの

航空宇宙技術研究所資料180号

昭和45年5月発行

発 行 所 航 空 宇 宙 技 術 研 究 所 東 京 都 調 布 市 深 大 寺 町 1880 電話武蔵野三鷹(0422)44-9171 (代表) **⑤**182

印刷所一誠社綜合印刷株式会社東京都武蔵野市御殿山1-6-10