UDC 521.1: 521.4: 529.7: 629.783

航空宇宙技術研究所資料

TECHNICAL MEMORANDUM OF NATIONAL AEROSPACE LABORATORY

TM-359

宇宙飛行体の汎用軌道解析用プログラム

"STANPS"

[1] 人工衛星および惑星間宇宙船の軌道生成プログラム

松	島	弘		•	志	甫		徹
村	囲	ΤĒ	秋	٠	武	内	澄	夫

1978年8月

航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

			-
1.	まえがき …		2
2.	記号:		4
3.	特殊摂動法に	よる人工衛星の軌道生成(STANPS-B)	4
:	3.1 時系およ	び座標系	4
		系	4
	3. 1. 1. 1	基本的データ	5
		原子時(TAI)を基準にした時系変換	7
	3.1.2 座標	·	7
	3. 1. 2. 1		7
			10
	3.2 運動方程	式	12
			14
			15
			36
	3.2.4 大気	抵抗によって生じる加速度	37
	3.2.5 制御		40
	3. 2. 5. 1		40
	3. 2. 5. 2	Medium thrust	53
	3. 2. 5. 3	Low thrust	53
	3.3 数值積分	法	53
	3.3.1 Gan	iss-Jackson 法 ······	55
			58
4.	特殊摄動法网	こよる惑星間宇宙船の軌道生成(STANPS-C)	61
		: び座標 系	61
	4.1.1 時	系	61
	4.1.2 座樹	要系	61
	4.1.2.1	座標系の種類	61
	4. 1. 2. 2	座標系の変換	61
	4.2 運動方種	呈式	67
	4.2.1 運動	助方程式 [における摂動加速度	69
	4.2.1.1	惑星を質点とする重力による摂動加速度	69
	4.2.1.2	一般相対性理論の効果による摂動加速度	70
	4.2.1.3	太陽輻射による摂動加速度	7 0
	4. 2. 1. 4	太陽の J2 項による摂動 加速度	71
	4. 2. 1. 5	制御推力による加速度	72
	4.2.2 運動	カ方程式Ⅱにおける摂動加速度	72
	4.2.2.1	太陽を質点とする重力による摂動加速度	72
	4.2.2.2	惑星を質点とする重力による摂動加速度	72
	4.2.2.3	一般相対性理論の効果による摂動加速度	72
	4. 2. 2. 4	太陽輻射による摂動加速度	73
	4. 2. 2. 5	制御推力による加速度	73
	4.2.2.6	中心惑星(または月)の重力ポテンシャルの高次項による摂動加速度	
	4.2.3 定		74

5. 入力および出力	74
5.1 STANPS-B の入力および出力	75
5.2 STANPS-C の入力および出力	78
5.3 具体的な出力例	79
5.3.1 STANPS-Bの出力例	79
5.3.2 STANPS-C の出力例	84
6. むすび	84

بر .

宇宙飛行体の汎用軌道解析用プログラム

"STANPS"

〔1〕 人工衛星および惑星間宇宙船の軌道生成プログラム

松 島 弘 一**• 志 甫 徹** 村 田 正 秋^{**}• 武 内 澄 夫***

Space Trajectory and Mission Analysis Program "STANPS".

[1] Programs for Orbit Generation of Artificial Satellite and Interplanetary Spacecraft.

By Koichi MATSUSHIMA, Toru SHIHO, Masaaki MURATA and Sumio TAKEUCHI

Space trajectory and mission analysis program system "STANPS", which has been completed at the National Aerospace Laboratory, consists of the following six large subprograms (A-F) and data file.

- STANPS A; Orbit generation of an artificial Earth satellite by general perturbation theory (Lagrange's Planetary equations).
- STANPS B; Orbit generation of an artificial Earth satellite by special perturbation theory (Cowell's Method) with the Gauss-Jackson numerical integration formula.
- STANPS-C; Trajectory generation of an interplanetary spacecraft by Cowell's method with the Gauss-Jackson numerical integration formula.
- STANPS D; Generation of Lunar and planetary ephemerides by numerically integrating the Cowell-type equations of motion of the Moon and nine planets with the Gauss-Jackson formula.
- STANPS-E; Navigation systems (Observation and trajectory estimation processes with the function of guidance and control).
- STANPS F; Formation of the basic table of atmospheric density model J-71 and generation of the ephemerides of the Sun and Moon by the theories of Newcomb and Brown for STANPS B.

STANPS -

- DATA FILE; 1. Lunar and planetary ephemerides generated by STANPS-D.
 - 2. Atmospheric density table generated by STANPS-F.
 - 3. Data of Universal time and the coordinates of the pole by BIH.
 - 4. Orbital elements of asteroids (2016) and short-period comets (88).
 - 5. A catalogue of about 6000 stars.

*昭和53年6月16日 受付

計測部 *宇宙研究グループ

In this report, we document mathematical models for STANPS-B, STANPS-C and STANPS-F and how to use them.

1. まえがき

人工衛星および惑星間宇宙船の運動解析、誘導制御、 およびミッション解析等に関連する研究に用いるための。 多目的シミュレーション・プログラム "STANPS" (Space Trajectory and Mission Analysis Program System) の作製を行った。このプログラムは人工衛星 および宇宙船の軌道を生成するブロクラムを基幹として, レーダーや光学センサによる観測系、カルマン・フィル タなどの情報処理系および誘導制御系からなる航法系の ブログラム(言語はフォートランを使用)を配したもの で、全体で約40,000 ステップ程の大きさである。STA NPS 全体の構成は表1.1 に示した通りである。このブ ログラムは単に軌道生成やミッション解析に用いるだけ でなく、運動方程式や数値積分法の検討、航法系におけ る種々のセンサや情報処理,誘導手法の比較など,現在 のブログラム構成の一部を変更して使用することもでき るように計画された。この報告では軌道生成ブログラム のうち,特殊摂動理論による人工衛星の軌道生成プログ ラムSTANPS-Bと,惑星間宇宙船の軌道生成プログラ ム STANPS-C および STANPS-F の内容について述 べたものである。プログラムに用いられた式はすべて示 したが、それらの導出については非常に長くなるので省 略した。

STANPS-B

人工衛星の運動を記述する方程式は Newton の法則か ら出発して, 摂動力の精密な定式化は別として, 容易に 求めることができる。しかし問題はいかにしてこの方程 式の解を求めるかにある。三体問題, あるいは多体問題 の解析的アブローチは長い間の天体力学の主題であるが, ここで築き上げられた理論を基礎として人工衛星の運動 を求める一般摂動理論が作られている。この手法は長期 間にわたる運動の見通しを立てたり, 運動の様々な特徴 を解析するのに非常な偉力を発揮するわけであるが, 地 球を周る人工衛星のように高度も低く, 大気抵抗や太陽 輻射圧のような非保存力の他に制御力も加ってくると, 式の複雑さは大変なものとなる。

一方,電子計算機の進歩と共に,数値積分の速度も速 くなり,また高精度な積分法もいろいろ考えられてきた。 運動方程式を直接,数値積分することによって解を求め る特殊摂動論は,人工衛星の高精度な運動を知るのに非 常に有効で,かつ実用的なものである。そこでブログラ ム STANPS では、人工衛星の軌道生成の部分は一般摂 動論によるものと、特殊摂動論によるものとの二つを用 意して、それぞれの手法の特徴を十分に活用できるよう にしたわけである。

STANPS-B は運動方程式(2階の常微分方程式) をGauss-Jackson 法によって積分することにより,軌 道の変化を求めるもので,各摂動力は現在考えられる最 大の厳密さで定式化してある。数値積分のステップサイ ズは任意に固定することもできるが,入力カードで与え た制限値内に打切り誤差をおさめるように,自動的なス テップサイズ制御の機能も持たしてある。ただ数値積分 における打切り誤差の推定については困難な問題が多く, あまり信頼を置くことは危険であろう。

基準座標系は 1950.0 平均赤道面座標系にとってある が、地球固定座標系との変換の際には、地球自転の詳し いデータが必要になる。これは地球の自転が不規則な変 動をともなっているためで、このデータは世界時と原子 時との差の形で公表されている。普通、この時系列デー タを補間して用いることになるわけであるが、このプロ グラムでは過去のデータの調和解析から得られた周期項 と、最小二乗法による補正を加えて、計算で求めるよう になっている。

STANPS-C

惑星間を飛行する宇宙船の軌道計算も基本的には人工 衛星の場合と同じである。ただ運動を記述するための中 心天体を地球から太陽へ,そしてまた惑星にと変えてい くことと、考慮する摂動力が少し異なるという違いがあ る。STANPS-B の場合と同様,このプログラムにお いても運動方程式をGauss-Jackson 法によって積分し、 宇宙船の軌道を求めるものであるが、自動的なステップ サイズ制御は行っていない。これは打切り誤差の推定に 十分な信頼がおけないためであるが、そのかわりに任意 の時刻にステップサイズの大きさを変えられるようにし てある。またこのプログラムでは時間を過去に遡って軌 道を求めることができるようになっている。これは数値 積分の誤差を調べるのに非常に有効であるし、またある 惑星への軌道の初期条件をきめるのにも役立つであろう。

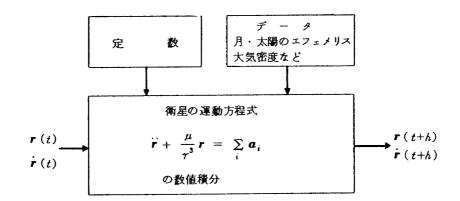
以上は二つのプログラムの機能の特徴を簡単に示した ものであるが、各プログラムの内容(理論式)を3およ び4章で、入力制御カードおよび具体的計算例を5章で 示す。

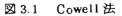
表1.1 STANPSの概要

	内	容		方	式			備考		
Ø g	23	17	解	法	摂	動	カ			
STANPS-A	系	の軌道生成 摂動法)	Lagrange の の一 般 項表示		地球重力場 大気抵抗 月・太陽の 太陽輻射出 制御力	列力		• 長期間にわたる人工衛星 てるのに適している。	の見通しを立	
STANPS-B	系	の軌道生成 摂動法)	よる数値利	ckson 法化 (分。(4~12 (可能, ステ (可変)	地球重力場の歪み 大気抵抗 月・太陽の引力 太陽輻射圧 制御力			 摂動力の各種の組合せを 重力ボテンシャル調和係まで選択可能。 ステップサイズ制御機能 	数は最大22次	
STANPS-C	生成系	宙 船の 軌道 摂動法)	Cowell 法 数值積分法	は同上	太陽・惑昼 太陽輻射日 太陽輻力 一般相対性 近くの惑 の重力場の 制御力	E テンシ 主理論の 星(地封	_ァ ルJ₂項)効果	 目標天体は月および9惑 任意に選択でき、軌道のおける中心天体は自動的る。 逆時間軌道生成も可能。 	各フェーズに	
STANPS -D		9 惑星のエ ス生成系	Cowell 法 数值積分法	は同上	太陽・惑劇 太陽輻射E 太陽重力テ 一般相対性 近くの惑	E ドテンシ 生理論の	ァルJ₂項)効果	 太陽中心の1950.0年の 瞬時)赤道面座標系におの位置,速度,加速度の プラー6要素,赤径,赤間々隔で計算される。 	ける月,惑星 ベクトル,ケ	
STANPS-E	航法系	を伴り宇宙	観測系: レーダー追跡(range radar と range and range rate radar の選択可能。追跡局は最大 3局) 惑星直径観測の光学センサー(レーダー追跡と併 用可能) 情報処理系: 標準的カルマン・フィルター,観測値差分方式の 有色雑音フィルター 誘導制御系: 摂動型誘導方式				疹局は最大 −追跡と併	 利用者が自分の研究した ブログラムを用意して、 換して使用するととを前 観測機器の追加,交換可 他方式のフィルターに交 誘導制御系も交換可能 制御誤差は大きさと方向 イズを付加できる。 	その部分を交 提としている。 能 換可能	
STANPS-F	大気密度 table 生	の b asic 成系	Jacchi a-		,000km)とこ 00℃)の 2変 表示			生成した basic table いて,地磁気活動,季節 周期,太陽活動,日周変 を考慮して補正を行って	í ,緯 度,半年 化による変動	
	月・太陽 リス生成	のエフェメ 深	Newcomb	, Brown の大	元 (一般摂	助法)		 STANPS - D 作製以前 STANPS - A, Bで使用 		
	月 · 惑星 リス	のエフェメ	STANPS イルを作り	-D を用い と	て、オフラ・	インでラ	データファ			
STANPS データファイル	大気密度	テーブル	STANPS -F を用いて,オフラインでデータフ イルを作製				データファ	- 実際に使う時は、STANPS-Fの備 考欄に記した諸種の補正を行なう。		
	BIHデ	- 9		運動の位置変 T1,UT1-				ベリ国際報時局(BIH) (1962年1月0日以降5 タ)		
	恒星,小惑星,周期 6 等星以上の恒星約 6.000, 彗星データ 周期彗星88個 (1976) のカタ					星 1,86	1 個 (1976)	· · · · · · · · · · · · · · · · · · ·		

2. 記 号

a	:	軌道半長径
AU	:	天文単位
С	:	光速
C _{n,m}	:	重力ポテンシャル定数
D	:	月の平均離角
е	:	軌道の離心率
ЕТ	:	曆表時
F	:	月の平均黄緯引数
$F_{10.7}$:	10.7 cm 波長の solar flux の指標
g'	:	金星の平均近点離角
		火星の ″
$g^{{ m IV}}$:	木星の ″
$g^{\mathbf{V}}$:	土星の ″
Gmi	:	天体の引力定数
GMS'	г:	グリニジ平均恒星時
GAS	г:	グリニジ視恒星時
H_n	:	座標変換行列
i	:	軌道傾斜角
J	:	木星の日心平均黄経
J _n	:	重力ポテンシャル定数
k	:	ガウス定数
Kp	:	地磁気の変化の指標
L	:	月の平均黄経
L '	:	太陽の平均黄経
		月の平均近点離角
ι'	:	太陽の平均近点離角
М	:	平均近点離角
N	:	章動行列
P	:	歳 差行列
-		太陽定数
-		太陽の赤道半径
R_E		地球の赤道半径
r		位置ベクトル
• •	:	
		加速度ベクトル
•		重力ポテンシャル定数
		Delayed IR (赤外線)の輻射定数
		国際原子時
		大気外圏温度
		世界時
		協定世界時
V		金星の日心平均黄経
α	:	赤経


α_t	:	視赤経
TdE	; :	地球のアルベド
Td	:	反射係数(Diffuse 成分)
r_s	:	″ (Specular 成分)
δ	:	赤緯
δ_t	:	視赤緯
εı	:	真黄道傾角
ε _M	:	平均黄道傾角
Δε	:	黄道傾角の章動
θ	:	黄経
θ_{g}	:	グリニジ視恒星時
ม้	:	経度
μ	:	地心重力定数
ρ	:	大気密度
ρ_B	:	大気基本密度
φ	:	緯度
Δφ	:	黄経の章動
ø	:	黄緯
ø,	:	ニュートンポテンシャル
\mathcal{Q}	:	昇交点経度
ω	:	近地点引数
	3.	特殊摂 動法による人工衛星


Ø 軌道生成(STANPS-B)

人工衛星の軌道変化を一般にCowell 法と呼ばれる手 法によって求める。これは直交座標系における衛星の運 動方程式を直接、数値積分することによって摂動を受け た衛星の位置および速度ベクトルの各成分を求めるもの で、摂動加速度を生じさせる月や太陽の運動、地球の重 カポテンシャル,大気密度の変化などの様子はすでにわ かっているものとしている。(図3.1)

- 3.1 時系および座標系
- 3.1.1 時系

用いられている時系とそれらの関係は図 3.2 化示した 通りである(詳しい時系の議論は参考文献3.1で行って いる)。基本時系としては国際原子時(TAI)を用い ているが,世界時(UT1)との差(TAI-UT1)は,将 来の値に対しても予測計算を行っている。また原子時と 暦表時の流れは同じものとしている(時間に対する一般 相対性理論の効果は考慮していない)。衛星の軌道要素 は普通,協定世界時(UTC)で与えられることが多いの で、このブログラムの入力もエポックをUTC で与える ようになっているが、出力の時刻は TAI で与え、TAI -UTC の値を同時に出すようにしている。以下に原子 時を基準として他の時系への変換を示す。

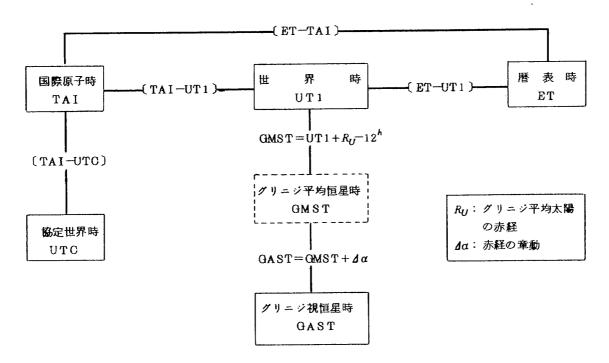


図 3.2 STANPS-Bにおける時系

3.1.1.1 基本的データ

(1) (TAI-UT1)

(TAI-UT1)のデータは定期的にBIH(BUREAU INTERNATIONAL DE L'HEURE)より配布される が、このプログラムでは次のように計算で求めている。 < 1962.0 から 1975.0まで>

$$(TAI-UT1) = (TAI-UT1)_{0} + dS$$
$$+ d_{i} (TAI-UT1)$$
$$(3.1)$$
$$(TAI-UT1)_{0} = C_{n} + B_{y} (C_{0}t + \frac{1}{2}C_{1}t^{2})$$

$$+ \sum_{i=1}^{12} \left(\frac{A_{i}}{\omega_{i}}\right) \sin(\omega_{i}t - \theta_{i}) \Big]_{1962.0}^{t}$$
(3.2)
$$\Delta S = S_{1} \sin 2\pi t' + S_{2} \cos 2\pi t'$$
$$+ S_{3} \sin 4\pi t' + S_{4} \cos 4\pi t'$$
(3.3)
$$\Delta_{i} (\text{TAI} - \text{UT} 1) = A_{0i} + A_{1i} (T - T_{0i})$$
$$+ A_{2i} (T - T_{0i})^{2}$$
(3.4)

① $(TAI-UT1)_0$ における各定数 $C_o, C_1, C_n, A_i, \omega_i, \theta_i$ は表3.1 に与えられる。

② AS は地球自転変動の季節変化に対応する量であ

るが S1~S4 は次のように与えられる。

$$S_1 = 0.30198$$

- $S_2 = -0.0083$
- $S_3 = -0.50067$
- $S_4 = 0.50053$
- ③ Δ_i (TAI-UT1)を計算するのに必要な A_{0i} , A_{1i} , A_{2i} , T_{0i} の各値は表 3.2 に示した。
- ④ (3.2)~(3.4) 式の計算において,時間はすべてペッセル年を基準にしている。(3.2) 式における t は 1820.0より起算した年数で与えるもので, t = T-1820.0

となる。ここでTは(TAI-UT1)を求めたい時刻 をベッセル年で表わしたもので、(3.4)式におけ るTと同じものである。(3.3)式のt'はベッセル 年初からの時間経過を年を単位として表わしたもの である。また(3.2)式における B_y はベッセル年の 長さで、 $B_y = 365.25$ と与える。

<1975.0から1985.0まで>

この期間における〔TAI-UT1〕は予測値を求めることになるが、それは次式で与えられる。

 $(TAI-UT1) = (TAI-UT1)_0 + \Delta S$ (3.5)

表 3.1

i	Ai	$\boldsymbol{\omega}_i$	$\boldsymbol{\theta}_{i}$
1	0,3580D-03	0,35160D-01	0,3223623D+01
2	0,8030D-03	0,70320D-01	0,1117010D+00
3	0,1239D-02	0,10550D+00	0,2816961D+01
4	0,3040D-03	0,13960D+00	0,4937536D+01
5	0,2150D-03	0,18210D+00	0,3689626D+01
6	0,5210D-03	0,21096D+00	0,5497790D+00
7	0,4340D-03	0,28128D+00	0,4719370D+01
8	0,1890D-03	0,31644D+00	0,2630211D+01
9	0,5210D-03	0,33780D+00	0,2476622D+01
10	0,1410D-03	0,51712D+00	0,4572763D+01
11	0,1620D-03	0,56256D+00	0,6492620D+00
12	0,1840D-03	0,68293D+00	0,3001970D+00

CU=-U,848762D=03

C1= 0,196870D-04

 $C_n = 0.88753 \,(\, \mathrm{sec}\,)$

1	INTERVAL	TOI	A ₀₁	Ali	A
1 2	1962.00 - 1962.50 1962.50 - 1963.00	1962.00	0.9215823E+00 0.9296236E+00	0,6969027E-02 -0,2686999E-01	0,3150258E-01 0,7125146E-01
-3-4	1963,00 = 1963,50 1963,50 = 1964,00	1963,00 1963,50	0.9327631E+00 0,9198011E+00	-0,1504284E+00 -0,1323248E-01	0,2711748E+00 0,1687656E+00
-5-6	1964.00 = 1964.50 1964.50 = 1965.00	1964,00	0,9553621E+00 0,9932452E+00	0,8309959E-01 -0,2786188E-02	-0,7095797E-02 0,5849237E-01
-7	1965.00 - 1965.50 1965.50 - 1966.00	1965,00	0,1003352E+01 0.1025273E+01	0,7794895E-02 0,4832484E-01	0,7710089E+01 -0,4789461E-01
9 10	1966,00 - 1966,50 1966,50 - 1967,00	1966,00	0,1034811E+01 0,1031335E+01	-0,2724122E-01 0,5290993E-01	0,6980124E-01 -0,1166649E+00
11- 12	<u>1967.00 - 1967.50</u> 1967.50 - 1968.00	1967,00 1967,50	0,1024178E+01 0,9795189E+00	-0,1095518E+00 -0,1564305E+00	0,5377123E-01 0,2325100E-01
13- 14	$\frac{1968,00 - 1968,50}{1968,50 - 1969,00}$	1968,00 1968,50	0,9076686E+00 0,8383066E+00	-0,1384729E+00 -0,4561914E-01	0,3654949E-02 -0,1437253E+00
15 16	$\frac{1969,00 - 1969,50}{1969,50 - 1970,00}$	1969.00 1969.50	0,7775268E+00 0,7361812E+00	-0,1296536E+00 -0,8744938E-01	0,1155913E+00 -0,1231630E-01
17	$\frac{1970.00 - 1970.50}{1970.50 - 1971.00}$	1970,00 1970,50	0,6879628£+00 0,6569145E+00	-0,3042661E-01 -0,1729780E+00	-0, 2851636E-01 0,6197567E-01
20 21	$\frac{1971,00 - 1971,50}{1971,50 - 1972,00}$	1971,00 1971,50	0,5834954E+00 0,5244302E+00	-0,2560108E+00 -0,9687868E-03	0,3006232E+00 -0,3583874E-01
22	$\frac{1972,50}{1972,50} = \frac{1972,50}{1973,00}$	1972,00 1972,50 1973,00	0,5086300E+00 0,5060298E+00	-0,3446459E-01 -0,3240654E-01	0,6254342E-01 -0,1043395E+00
24	$\frac{1973,50}{1974,00} = \frac{1974,00}{1974,00}$	1973.50	0,4643083E+00 0,4163648E+00 0,3207406E+00	-0,8408451E-01 -0,1090906E+00	-0,7079953E-02 -0,1490347E+00
26	1974,50 - 1975,00	1974.50	0,1682408E+00	-0,3698359E+00 -0,3157019E+00	0,1545480E+00 -0,2363487E-01

表 3.2

6

ここで〔TAI-UT1〕。と *dS*はそれぞれ(3.2) 式と (3.3)式に等しい。

(2) (ET - TAI)

暦表時 ET と原子時 TAI はその進み方は,厳密な意味 ではまったく同じではない。 $^{(3.1)}$ しかし,その差は非常に 小さいので,このプログラムでは一定としている。

 $ET - TAI = 32^{5}18$

(3) (TAI-UTC)

UTC(協定世界時)の方式は何度か変更されたため、 その変換は複雑になるが、1962年以後の〔TAI-UTC〕 は次のようにして求める。

 $(TAI-UTC) = (TAI-UTC)_{i}$ + O_{si}(MJCD-MJCD_i) (3.6) $(TAI-UTC) = (TAI-UTC)_{i}$ + O_{si}(MJAD-MJAD_i) (3.6)

- (3.6) 式は UTC が与えられたときに (TAI-U TC)を求める式で, (3.6) 式は逆にTAI が与え られた場合の式である。
- ② MJCD, MJCD, はUTCを基化したユリウス日,

MJAD, MJAD, はTAI を基にしたユリウス日で ある。

③ 必要なデータは表3.3, 3.4 にそれぞれ与えられている。

3.1.1.2 原子時(TAI)を基準にした時系変換 以上の基本的データを用いて,時系の間の変換は次の ように行われる。基準の時系はTAI であるが、衛星の エポックはUTC で与えるので,まず UTC からTAI への変換を行い,次にTAIを基にしてUT1, GMST, GAST, ET, UTC を決め,軌道の計算が行われている 間は,これらの時系がつねに与えられるようにしている。 変換のプロセスを図3.3 に示したが,ここで MJ EDはユ

- リウス暦表日である。
 - 3.1.2 座標系
 - 3.1.2.1 座標系の種類

STANPS-Bにおいて用いられる座標系は次の4つで ある。(図 3.4)

- (1) 1950.0 平均赤道面座標系(C₁₉₅₀)
 - 原 点: 地球重心
 - 基準軸: 1950.0 (ペッセル年初) における平均春 分点方向
 - 基準面: 1950.0 における平均赤道面

また赤経(α)と赤緯(δ)は次のようにきめる。

表 3.3

1 37665.0 $ 38334.0$ $0.18458580+01$ $0.11232D-02$ 37665.0 2 38334.0 $ 38395.0$ $0.2647279D+01$ $0.11232D-02$ 38334.0 3 38395.0 $ 38486.0$ $0.27657940+01$ $0.12960D-02$ 38395.0 4 38486.0 $ 38639.0$ $0.2883730D+01$ $0.12960D-02$ 3866.0 5 38639.0 $ 38761.0$ $0.32820180+01$ $0.12960D-02$ 38639.0 6 38761.0 $ 38820.0$ $0.3540130D+01$ $0.12960D-02$ 38761.0 7 38820.0 $ 38942.0$ $0.37165940+01$ $0.12960D-02$ 38820.0 8 38942.0 $ 39004.0$ $0.3974/06D+01$ $0.12960D-02$ 38942.0 9 39004.0 $ 39126.0$ $0.41550280+01$ $0.12960D-02$ 38942.0 10 39126.0 $ 39887.0$ $0.41550280+01$ $0.25920D-02$ 39004.0 11 39887.0 $ 41317.0$ $0.6185682D+01$ $0.25920D-02$ 39887.0 12 41317.0 $ 41499.0$ $0.11000000+02$ 0.0 41499.0 13 41499.0 $ 41683.0$ $0.11200000D+02$ 0.0 41683.0 14 41683.0 $ 42048.0$ $0.120000D+02$ 0.0 41683.0 15 42048.0 $ 0.1400000D+02$ 0.0 0.0 42413.0	1	INTERVAL(MJCD)	[TA I - UTC]	O _{si}	MJCDi
3 38395.0 - 38486.0 0.2765/940+01 0.12960D-02 38395.0 4 38486.0 - 38639.0 0.2885730D+01 0.12960D-02 38646.0 5 38639.0 - 38761.0 0.3282018D+01 0.12960D-02 38639.0 6 38761.0 - 38820.0 0.3240130D+01 0.12960D-02 38761.0 7 38820.0 - 38942.0 0.37165940+01 0.12960D-02 38870.0 8 38942.0 - 39004.0 0.39714/06D+01 0.12960D-02 38942.0 9 39004.0 - 39126.0 0.41550580+01 0.12960D-02 38942.0 10 39126.0 - 39887.0 0.41550580+01 0.25920D-02 39126.0 11 39887.0 - 41317.0 0.6185682D+01 0.25920D-02 39887.0 12 41317.0 - 41499.0 0.100000000+02 0.0 41317.0 13 41499.0 - 41683.0 0.120000000+02 0.0 0.0 41643.0 14 41683.0 -	l	37665.0 - 38334.0	0,18458580+01	0,112320-02	37665.0
438486.0-38639.00.2883730D+010.12960D-0238486.0538639.0-38761.00.3282018D+010.12960D-0238639.0638761.0-38820.00.3340130D+010.12960D-0238761.0738820.0-38942.00.3974/06D+010.12960D-0238820.0838942.0-39004.00.3974/06D+010.12960D-0238942.0939004.0-39126.00.41550580+010.12960D-0239004.01039126.0-39887.00.41550580+010.25920D-0239126.01139887.0-41317.00.61856820+010.25920D-0239887.01241317.0-41683.00.110000000+020.041317.01341499.0-41683.00.12000000+020.041683.01441683.0-42048.00.12000000+020.041683.01542048.0-0.13000000+020.042048.0	2	38334.0 - 38395.0	0,26972790+01	0.112320-02	38334,0
5 38639.0 38761.0 $0.32820180+01$ $0.12960D-02$ 38639.0 6 38761.0 $ 38820.0$ $0.32401300+01$ $0.12960D-02$ 38761.0 7 38820.0 $ 38942.0$ $0.37165940+01$ $0.12960D-02$ 38820.0 8 38942.0 $ 39004.0$ $0.3974/06D+01$ $0.12960D-02$ 38942.0 9 39004.0 $ 39126.0$ $0.41550580+01$ $0.12960D-02$ 39004.0 10 39126.0 $0.41550580+01$ $0.12960D-02$ 39004.0 10 39126.0 $ 39887.0$ $0.41550580+01$ $0.25920D-02$ 39126.0 11 39887.0 $ 41317.0$ $0.61856820+01$ $0.25920D-02$ 39887.0 12 41317.0 $ 41499.0$ $-0.10000000+02$ 0.0 41317.0 13 41499.0 $ 41683.0$ $0.12000000+02$ 0.0 41683.0 14 41683.0 $ 42048.0$ $0.12000000+02$ 0.0 41683.0 15 42048.0 $ 42413.0$ $0.13000000+02$ 0.0 42048.0	3	38395.0 - 38486.0	0,2765/940+01	0,129600-02	38395,0
6 38761.0 $ 38820.0$ $0.33401300+01$ $0.129600-02$ 38761.0 7 38820.0 $ 38942.0$ $0.37165940+01$ $0.129600-02$ 38820.0 8 38942.0 $ 39004.0$ $0.3974(060+01)$ $0.129600-02$ 38942.0 9 39004.0 $ 39126.0$ $0.41550580+01$ $0.129600-02$ 39004.0 10 39126.0 $ 39887.0$ $0.41550580+01$ $0.259200-02$ 39126.0 11 39887.0 $ 41317.0$ $0.61856820+01$ $0.259200-02$ 39887.0 12 41317.0 $ 41499.0$ $0.1000000+02$ 0.0 41317.0 13 41499.0 $ 41683.0$ $0.11000000+02$ 0.0 41499.0 14 41683.0 $ 42048.0$ $0.12000000+02$ 0.0 41683.0 15 42048.0 $ 42413.0$ $0.13000000+02$ 0.0 42048.0	4	38486.0 - 38639.0	0,28837300+01	0.12960D-02	38486,0
7 38820.0 38942.0 $0,37165940+01$ $0,12960D-02$ 38820.0 8 38942.0 39004.0 $0,3974706D+01$ $0,12960D-02$ 38942.0 9 39004.0 $ 39126.0$ $0,41550580+01$ $0,12960D-02$ 39004.0 10 39126.0 $ 39887.0$ $0,41550580+01$ $0,25920D-02$ 39126.0 11 39887.0 $ 41317.0$ $0,61856820+01$ $0,25920D-02$ 39887.0 12 41317.0 $ 41499.0$ $-0,10000000+02$ $0,0$ 41317.0 13 41499.0 $ 41683.0$ $0,12000000+02$ $0,0$ 41683.0 14 41683.0 $ 42048.0$ $0,13000000+02$ $0,0$ 42048.0	5	38639.0 - 38761.0	0,32820180+01	0,129600-02	38639.0
8 38942.0 - 39004.0 0.3974/06D+01 0.12960D-02 38942.0 9 39004.0 - 39126.0 0.41550580+01 0.12960D-02 39004.0 10 39126.0 - 39887.0 0.4313170D+01 0.25920D-02 39126.0 11 39887.0 - 41317.0 0.6185682D+01 0.25920D-02 39887.0 12 41317.0 - 41499.0 0.10000000+02 0.0 41317.0 13 41499.0 - 41683.0 0.11000000+02 0.0 41499.0 14 41683.0 - 42048.0 0.12000000+02 0.0 41683.0 15 42048.0 - 42413.0 0.13000000+02 0.0 42048.0	6	38761.0 - 38820.0	0.3540130D+01	0.12960D-02	38761.0
9 39004.0 $ 39126.0$ $0.41550580+01$ $0.12960D-02$ 39004.0 10 39126.0 $ 39887.0$ $0.4313170D+01$ $0.25920D-02$ 39126.0 11 39887.0 $ 41317.0$ $0.6185682D+01$ $0.25920D-02$ 39887.0 12 41317.0 $ 41499.0$ $-0.10000000+02$ 0.0 41317.0 13 41499.0 $ 41683.0$ $0.11000000+02$ 0.0 41499.0 14 41683.0 $ 42048.0$ $0.12000000+02$ 0.0 41683.0 15 42048.0 $ 42413.0$ $0.13000000+02$ 0.0 42048.0	7	38820.0 - 38942.0	0,37165940+01	0,129600-02	38820,0
10 39126.0 39887.0 $0.43131700+01$ $0.25920D-02$ 39126.0 11 39887.0 $ 41317.0$ $0.6185682D+01$ $0.25920D-02$ 39887.0 12 41317.0 $ 41499.0$ $-0.100000D+02$ 0.0 41317.0 13 41499.0 $ 41683.0$ $0.110000D+02$ 0.0 41499.0 14 41683.0 $ 42048.0$ $0.120000D+02$ 0.0 41683.0 15 42048.0 $ 42413.0$ $0.130000D+02$ 0.0 42048.0	8	38942.0 - 39004.0	0,3974/06D+01	0.129600-02	38942.0
11 39887.0 - 41317.0 $0.61856820+01$ $0.259200-02$ 39887.0 12 41317.0 - 41499.0 $0.10000000+02$ 0.0 41317.0 13 41499.0 - 41683.0 $0.11000000+02$ 0.0 41499.0 14 41683.0 - 42048.0 $0.12000000+02$ 0.0 41683.0 15 42048.0 - 42413.0 $0.13000000+02$ 0.0 42048.0	9	39004.0 - 39126.0	0,41550580+01	0,12960D-02	39004.0
12 41317.0 $ 41499.0$ $-0.10000000+02$ 0.0 41317.0 13 41499.0 $ 41683.0$ $0.11000000+02$ 0.0 41499.0 14 41683.0 $ 42048.0$ $0.12000000+02$ 0.0 41683.0 15 42048.0 $ 42413.0$ $0.13000000+02$ 0.0 42048.0	10	39126.0 - 39887.0	0,43131700+01	0,259200-02	39126.0
13 41499.0 - 41683.0 0.11000000+02 0.0 41499.0 14 41683.0 - 42048.0 0.12000000+02 0.0 41683.0 15 42048.0 - 42413.0 0.13000000+02 0.0 42048.0	11	39887.0 - 41317.0	0,6185682D+01	0.259200-02	39887.0
14 41683.0 - 42048.0 0,12000000+02 0.0 41683.0 15 42048.0 - 42413.0 0,13000000+02 0.0 42048.0	12	41317.0 - 41499.0	-0,10000000+02	0,0	41317.0
15 42048.0 - 42413.0 0,13000000+02 0.0 42048.0	13	41499.0 - 41683.0	0,1100000D+02	0+0	41499.0
-	14	41683.0 - 42048.0	0,1200000D+02	0.0	41683,0
16 42413.0 - 0.14000000+02 0.0 42413.0	15	42048.0 - 42413.0	0,13000000+02	0.0	42048,0
	16	42413.0 -	0,14000000+02	0.0	42413.0

1	INTERVAL	[TA I - UTC]	O _{si}	MJ AC _i
1	mjad _i - mjad _{i+1}	U,1845858D+01	0,112320-02	37665.0 +0,21364097D-04
2	"	0,26912790+01	0,112320-02	38334,0 +0,31218504D-04
3	"	0+27657940+01	0.129600-02	38395.0 +0.32011504D-04
4	*	0,28837300+01	0.129600-02	38486,0 + 0,33376504D-04
5	*	0.32820180+01	0.129600-02	38639;0 +0,37986319D=04
6	4	0.35401300+01	0.129600-02	38761,0 + 0,40973726D-04
7	9	0,3/165940+01	0.129600-02	38820,0 + 0,430161340-04
8	¢.	0,3974/060+01	0,129600-02	38942,0+0,46003541D-04
9	*	0,4155058D+01	0.129600-02	39004,0 + 0,48090949D-04
10	•	0,43131700+01	0.259200-02	39126,0+0,499209490-04
11	•	0,61856820+01	0.259200-02	39887,0+0,71593541D-04
12	•	0.1000000+02	0.0	41317,0+0,11574074D-03
13	*	0.1100000D+02	0.0	41499,0+0,12731481D-03
14	4	0,12000000+02	0.0	41683,0+0,13888889D-03
15	4	0,13000000+02	0.0	42048,0+ 0,150462960-03
16	4	0,14000000+02	0.0	42413.0+ 0.16203703D-03

UTC < UTC \rightarrow TAI >MJ AD = MJ CD + (TAI - UTC) / 86400TAI TAI (ET-TAI) $<\!\mathrm{TAI}\!\rightarrow\!\mathrm{ET}>$ < TAI \rightarrow UT1 >(TAI-UT1) MJ D = MJ ADMJED = MJAD $+\frac{(ET-TAI)}{}$ _ (TAI-UTI) 86400 86400 UT 1 (TAI-UTC) $\langle UT1 \rightarrow GMST \rangle$ $OMST = K_1 + K_2 D + K_3 D^2$ D = MJD - 15019.5<TAI -> UTC > $K_1 = 99.690983$ MJCD = MJAD $K_2 = 360^{\circ}9856473356$ (TAI-UTC) $K_3 = 2.902 \times 10^{-13}$ 86400 OMST < GMST \rightarrow GAST >**-**Δα $GAST = GMST + \Delta \alpha$ GAST MJCD MJED MJ AD

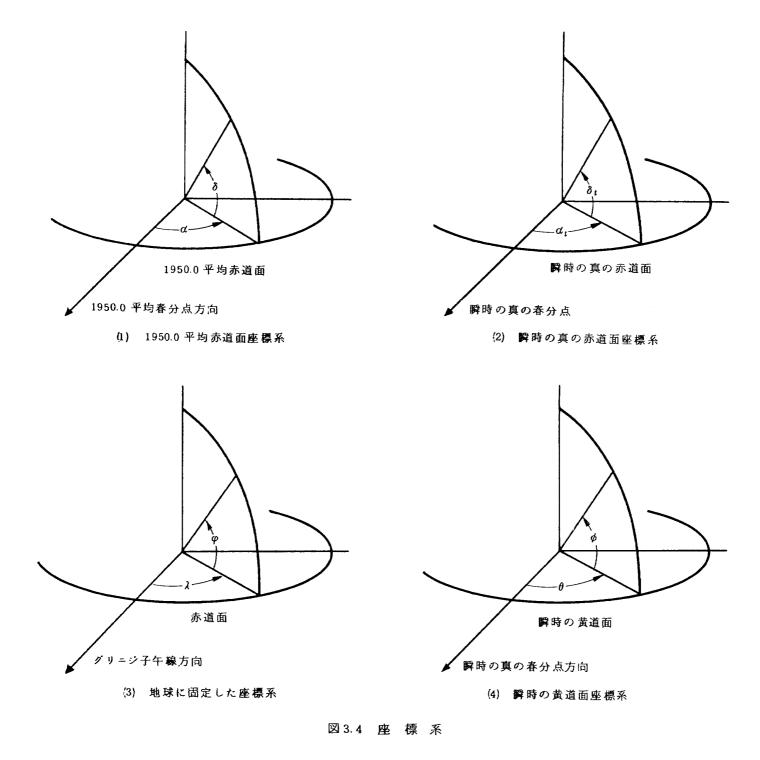
(UTC)

(ET)

(TAI)

図 3.3 時系の変換

8



- 赤 経: 春分点方向から基準面にそって反時計ま わりに測られる角度(単位は時間)
- 赤 緯: 基準面から上向きに測った角度

これは基準座標系となるもので,運動方程式の積分は この座標系で行われる。また制御力が加わったときに生 じる加速度もここで求められる。

- (2) 瞬時の真の赤道面座標系(C_{true})
 - 原 点: 地球重心
 - 基準軸: 瞬時の真(True of date)の春分点方向 基準面: 瞬時の真の赤道面

- 赤経(a_t),赤緯(**ð**_t)は1950.0平均赤道面座標系の 場合と同様に定義される。
 - (3) 地球に固定した座標系 (C_{terr})
 - 原点:地球重心
 - 基準軸: グリニジ子午線方向
 - 基準面: 赤道面
 - また経度(λ)と緯度(φ)は次のようにきめる。
 - 経 度: グリニジ子午線から基準面にそって反時 系まわりに測られる角度
 - 緯 度: 基準面から上向きに測った角度

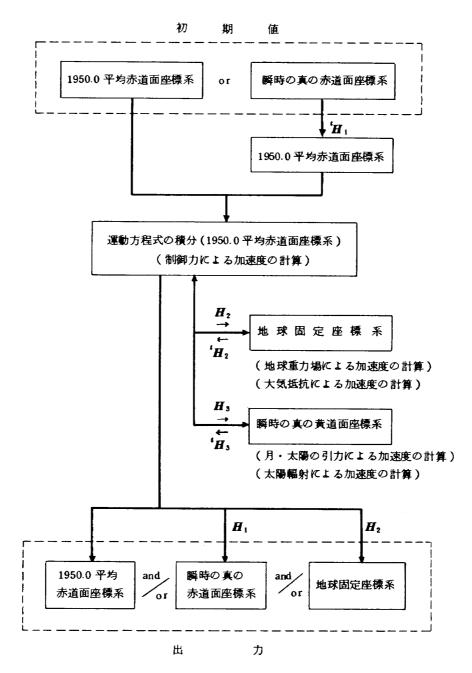
この座標系は地球の自転と共に,基準座標系に対して 回転する。地球の重力ポテンシャルおよび大気抵抗によ る摂動加速度はこの座標系で計算される。

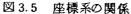
- (4) 瞬時の黄道面座標系(C_{ecl})
 - 原 点: 地球重心
 - 基準軸: 瞬時の真の春分点方向
 - 基準面: 瞬時の黄道面
- また黄経(θ)および黄緯(φ)は次のようにきめる。
 - 黄 経: 春分点方向から基準面にそって反時計ま わりに測られた角度
 - 黄 緯: 基準面から上向きに測った角度
- 月,太陽の引力および太陽輻射による摂動加速度はと

の座標系で計算される。

3.1.2.2 座標系の変換

STANPS-B において必要な座標系の変換は次の通 りである。(図3.5)


$$C_{1950} \rightleftharpoons C_{true} : C_{true} = H_1 C_{1950}$$


$$C_{1950} = {}^{t}H_1 C_{true}$$

$$C_{1950} \rightleftharpoons C_{terr} : C_{terr} = H_2 C_{1950}$$

$$C_{1950} \rightleftharpoons C_{ecl} : C_{ecl} = H_3 C_{1950}$$

$$C_{1950} = {}^{t}H_3 C_{ecl}$$

次に各変換行列 $H_1 \sim H_s$ およびその転置行列 $H_1 \sim$ [•]H₃は以下のように与えられる。 $< H_1$, ${}^{t}H_1 >$

$$H_{1} = NP , \quad H_{1} = P N$$

$$(3.7)$$

$$P = \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix}$$

$$P_{11} = \cos Z \cos \theta \cos \zeta_{o} - \sin Z \sin \zeta_{o}$$

$$P_{12} = -\cos Z \sin \theta \cos \zeta_{o} - \sin Z \cos \zeta_{o}$$

$$P_{13} = -\cos Z \sin \theta$$

$$P_{21} = \sin Z \cos \theta \cos \zeta_{o} + \cos Z \sin \zeta_{o}$$

$$P_{22} = -\sin Z \sin \theta \cos \zeta_{o} + \cos Z \cos \zeta_{o}$$

$$P_{23} = -\sin Z \sin \theta$$

$$P_{31} = \sin \theta \cos \zeta_{o}$$

$$P_{32} = -\sin \theta \sin \zeta_{o}$$

$$P_{32} = -\sin \theta \sin \zeta_{o}$$

$$P_{33} = \cos \theta$$

$$(3.9)$$

$$N = \begin{pmatrix} N_{11} & N_{12} & N_{13} \\ N_{21} & N_{22} & N_{23} \\ N_{31} & N_{32} & N_{33} \end{pmatrix}$$

$$N_{11} = \cos \Delta \phi$$

$$N_{12} = -\sin \Delta \phi \sin \varepsilon_{M}$$

$$N_{13} = -\sin \Delta \phi \sin \varepsilon_{M}$$

$$N_{21} = \cos \varepsilon_{t} \cos \Delta \phi \cos \varepsilon_{M} + \sin \varepsilon_{t} \sin \varepsilon_{M}$$

$$N_{22} = \cos \varepsilon_{t} \cos \Delta \phi \sin \varepsilon_{M} - \sin \varepsilon_{t} \cos \varepsilon_{M}$$

$$N_{31} = \sin \varepsilon_{t} \cos \Delta \phi \cos \varepsilon_{M} - \cos \varepsilon_{t} \sin \varepsilon_{M}$$

$$N_{32} = \sin \varepsilon_{t} \cos \Delta \phi \sin \varepsilon_{M} - \cos \varepsilon_{t} \sin \varepsilon_{M}$$

$$N_{33} = \sin \varepsilon_{t} \cos \Delta \phi \sin \varepsilon_{M} + \cos \varepsilon_{t} \cos \varepsilon_{M}$$

$$(3.11)$$

(1) Pは地球自転軸の歳差に対応する変換行列で, 1950.0 から任意のエポック(MJED)までの間の歳 差量を表わすパラメータ(。, 2,0は次式で与えら $n Z_0^{(13, 18)}$

$$\zeta_{o} = 2304.''948 T + 0.''302 T^{2} + 0.''0179 T^{3} Z = 2304.''948 T + 1.''093 T^{2} + 0.''0192 T^{3} \theta = 2004.''255 T - 0.''426 T^{2} - 0.''0416 T^{3}$$

$$(3.12) T = \frac{1}{100} \left(\frac{L_{z}}{360^{\circ}}\right) L_{z} = 129602768.''13 + 1.088995409 T_{z} + 1.''089 T_{z}^{2}$$

$$T_{z} = (MJED - 33281.923) / 36525$$
 (3.13)

G

 $F = 11^{\circ}15'03''20 + 1342^{r}82^{\circ}01'30''54 T$ $-11.^{\prime\prime}56 T^2 - 0.^{\prime\prime}0012 T^3$ $D = 350^{\circ} 44' 14'' 95 + 1236^{r} 307^{\circ} 06' 51'' 18 T$ $-5''_{17}T^{2} + 0''_{10}0068T^{3}$

 $Q = 259^{\circ}10'59''79-5'134^{\circ}08'31''23T$ $+ 7.'' 48 T^2 + 0.'' 0080 T^3$ (3.16)

ここでTは 1900年1月0.5 ET(15019.5 MJ ED) からユリウス世紀(36525 暦表日)単位で測ったも のであり、(3.14)式における K_{1i} , K_{2i} , a_i , b_i , c_i, d_i, e_i の各定数は表 3.5 に与えられている。 l, l', F, D, Q については 3.2.2節を参照のこと。 $< H_2$, ${}^{\iota}H_2 >$

$$\boldsymbol{H}_{2} = \boldsymbol{S}\boldsymbol{H}_{1} , \boldsymbol{H}_{2} = \boldsymbol{H}_{1} \boldsymbol{S}$$
(3.17)
$$\boldsymbol{S} = \begin{pmatrix} \cos \theta_{g} & \sin \theta_{g} & 0 \\ -\sin \theta_{g} & \cos \theta_{g} & 0 \end{pmatrix}$$
(3.18)

表3.5 章 動1)

 $(K_{1i}, K_{2i} (i=1, 2を除く) の単位は × 10⁻⁴ arc sec)$

<u> </u>	Δψ0	Δ ψの係数 Δ εの係数		0係数		引		数	
i	K _{1 i}	K _{2i}	K _{1i}	K _{2 i}	ai	bi	Ci	di	ei
1	-17." 2327	- 0." 01737	+ 9." 2100	- 0.100091	1			1	+1
2	- 1." 2729	- 0." 00013	+ 0."5522	-0."00029			+ 2	-2	+2
3	+ 2088	+ 0.2	- 904	+ 0.4					+2
4	+ 2037	-0.2	+ 884	- 0.5			+ 2		+2
5	+ 1261	- 3.1				1			
6	+ 675	+ 0.1			+1	1			
7	- 497	+ 1.2	+ 216	- 0.6		1	+ 2	-2	+ 2
8	- 342	- 0.4	+ 183				+ 2		+1
9	- 261		+ 113	- 0.1	+1		+ 2		+ 2
10	+ 214	- 0.5	- 93	+ 0.3		-1	+ 2	-2	+2
11	+ 124	+ 0.1	- 66				+ 2	-2	+1
12	+ 16	- 0.1				2			
13	- 15	+ 0.1	+ 7			2	+ 2	-2	+ 2
14	+ 114		+ 50		-1		+ 2		+ 2
15	+ 58		31		+1				+1
16	- 57		+ 30		-1				+1
17	- 52		+ 22		-1		+2	+ 2	+2
	1								
18	+ 45		- 24		-2		+ 2		+1
19	- 44		+ 23		+ 1		+ 2		+1
20	- 32		+ 14				+ 2	+ 2	+2
21	+ 26		- 11		+1		+2	-2	+ 2
22	- 26		+ 11		+2		+2		+ 2
23	+ 19		- 10		-1		+ 2		+1
24	- 15		+ 8		+1				+1
25	+ 14		- 7		-1			+ 2	+1

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$$

$$\theta_g = GAST$$

$$= K_1 + K_2 D + K_3 D^2 + \Delta \phi \cos \varepsilon_t \quad (3.19)$$

グリニジ視恒星時 θg を求めるための定数および D は

 $K_1 = 279$.° 690983 $K_2 = 360$.° 9856473356 $K_3 = 2$.° 902×10⁻¹³ D = MJ D - 15019.5 で与えられる。⁽¹⁾ <**H**3 **, 'H**3 >

$H_3 = QH$	$H_{3} =$	'Q 'H 1	(3.20)
$\boldsymbol{Q} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$0 \\ \cos \varepsilon_t \\ -\sin \varepsilon_t$	$\begin{array}{c} 0 \\ \sin \epsilon_t \\ \cos \epsilon_t \end{array}$	(3.21)

3.2 運動方程式

地球を回る人工衛星の運動方程式を次のように与える。

表3.5 章 動(2)

(K1i,K2iの単位は×10⁻⁴ arc sec)

	Δφα)係数	Δε0	つ係数]	引		数	
i	K _{1i}	K _{2 i}	K _{1 i}	K _{2 i}	ai	bi	C _i	di	ei
26	-13		+ 7		+1			-2	+1
27	-10		+ 5			-1			+1
28	- 9		+ 5		-1		+ 2	+ 2	+1
29	+ 7		-3			1	+ 2		+ 2
30	- 6		+ 3			-1	+ 2		+ 2
							10		
31	- 6		+3 -2		+1	ļ	+2	+2	+2
32	+ 6 - 6		-2 + 3		+ 2		+2	-2	+2
33 34	- 5		+ 3		-2			+ 2 + 2	+1 +1
34 35	-5		+ 3		2	-1	+ 2	-2	+1 +1
30	- 5		ΤJ				Τ4		Τ1
36	+ 5		-3		+1		+2	-2	+1
37	- 5	(+3					-2	+1
38	- 5		+ 3		1		+ 2	+2	+1
39	- 4	ļ	+ 2		.	-2	+2	-2	+1
40	+ 4		-2		+ 2			- 2	+1
41	- 4		+ 2		+ 2		+2		+1
42	+ 3		-2			+1	+ 2	-2	+1
43	- 3	1	+ 2		-2		+2		+2
44	- 149		–		+1			-2	. –
45	+ 60							+ 2	
46	1 45				+ 2			-2	
46 47	+ 45				+2 + 2			-2	
47	+ 28						+2		
40	+ 25 - 21						+ 2	-2	
50	+ 10				+ 2		-2	2	
51	- 7				+1	+1		-2	
52	+ 6				+1			+ 2	
53	+ 4				+1	-1			
54	- 4					+1		-2	
55	- 4							+ 1	
56	+ 4				+1		-2		
57	+ 3				+1		+2		
58	- 3				+1	+1			
59	- 3				+1			-1	
60	- 3				+1	-1	+ 2		+ 2
61	- 2				+1	1		-1	
62	- 2				-2			· ·	+1
63	- 2	ł			-1		+2	-2	+1
64	+ 2				+ 2		۰ <i>۵</i>		+1
65	- 2				-1	-1	+ 2	+ 2	+2
						1			
66 67	- 2					-1	+2	+2.	+2
67	- 2				+1				+2
68 60	+ 2				+1	+1	+2		+2
69	- 2				+3		+ 2		+ 2

$$\ddot{\boldsymbol{r}} = -\frac{\mu}{\tau^3} \boldsymbol{r} + \boldsymbol{a}_g + \boldsymbol{a}_{SM} + \boldsymbol{a}_{SP} + \boldsymbol{a}_D + \boldsymbol{a}_C$$
(3.22)

 I は座標系C₁₉₅₀ における衛星の位置ベクトル, µは地心重力定数で

 $\mu = 3.986013 \times 10^{5} \text{ km}^3/\text{sec}^2$

で与えられる。(3)

- ② 中心力による加速度以外に次の各加速度を考慮している。
 - **a**g : 地球重力ボテンシャルの 2 次以上の項に よる加速度
 - a_{SM}: 月および太陽の引力による加速度
 - a_{SP}: 太陽輻射圧によって生じる加速度
 - **a**_D : 大気抵抗によって生じる加速度
 - a_C : 制御力を加えたときに生じる加速度
- ③ (3.22)式の数値積分によって衛星の運動を求める。図3.6 に全体図を示したが、この節では各加速度の内容を記す。
- 3.2.1 地球重力ポテンシャルの 2次以上の項による 加速度

地球の重力ボテンシャルは Legendre 関数 P_l^m (sin φ) を用いると次のように表わすことができる。

$$U = \frac{\mu}{r} + \mu \sum_{\ell=2}^{\infty} \sum_{m=0}^{\ell} \frac{R_E^n P_\ell^m (\sin \varphi)}{r^{n+1}} (C_{\ell,m} \cos m\lambda)$$

$$+ S_{l,m} \sin m \lambda$$
) (3.23)

右辺の第1項から生じる加速度は(3.22)式の右辺の第 1項にあたり、これを中心加速度とする。(3.23)式の 右辺の第2項から生じる摂動加速度が a_g にあたるわけ で、 a_g のx、y、z 成分をそれぞれ a_{gx} 、 a_{gy} 、 a_{gz} とす ると次のように与えられる(参考文献 3.2)。

$$a_{gx} = Real \sum_{l=2}^{K} \sum_{m=0}^{l} \mu R_{E}^{l} (C_{l,m})$$

$$-iS_{l,m}) \frac{\partial U_{l,m}}{\partial x}$$

$$a_{gy} = Real \sum_{l=2}^{K} \sum_{m=0}^{l} \mu R_{E}^{l} (C_{l,m})$$

$$-iS_{l,m}) \frac{\partial U_{l,m}}{\partial y}$$

$$a_{gz} = Real \sum_{l=2}^{K} \sum_{m=0}^{l} \mu R_{E}^{l} (C_{l,m})$$

$$-iS_{l,m}) \frac{\partial U_{l,m}}{\partial z}$$

$$(3.24)$$

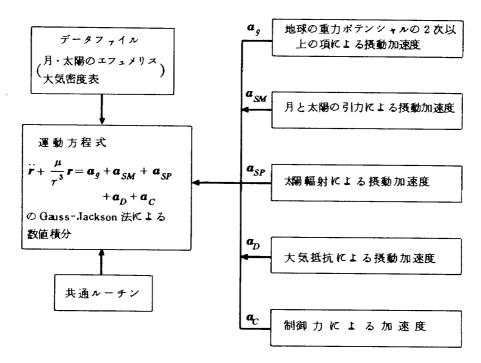


図 3.6 運動方程式の積分

(3.29)

$$\frac{\partial U_{l, m}}{\partial x} = -\frac{U_{l+1, m+1}}{2} + \frac{(l-m+2)!}{2(l-m)!} U_{l+1, m-1} + \frac{(m>0)}{2(l-m)!} = -\frac{U_{l+1, 1}}{2} - \frac{U_{l+1, 1}^*}{2} + \frac{(m=0)}{2} + \frac{i(l-m+2)!}{2} + \frac{i(l-m+2)!}{(l-m)!} U_{l+1, m-1} + \frac{i(l-m+2)!}{2} +$$

 (3.24)式において Kの値は一般に任意の大きさ までとれるわけであるが,定数 C_{l,n}, S_{l,m} が観測 によって決められるために当然ある範囲に限られる。 このプログラムでは K=22まで可能である。 C_{l,n}, S_{l,m} の値は表3.6 に示したが,これは参考文献3 によったものである。なお R_E は地球の平均赤道半 径で

$$R_E = 6378.140 \text{ km}$$

とする。

② (3.27)式におけるU_{l,m}は

$$U_{l,m} \equiv \frac{P_l^m(\sin\varphi)(\cos m\lambda + i \sin m\lambda)}{r^{l+1}}$$
(3.28)

として定義されるもので,これを用いると(3.23) 式の右辺の第2項は次のようになる。

$$U' = Real \sum_{\ell=2}^{\infty} \sum_{m=0}^{\ell} \mu R_E^{\ell} (C_{\ell,m} - i S_{\ell,m}) U_{\ell,m}$$

(3.29)式からわかるように(3.24)式は $a_{gx} = \partial U' / \partial x$, $a_{gy} = \partial U' / \partial y$, $a_{gz} = \partial U' / \partial z$ から求められたものである。

③ (3.27)式を計算するためには次の出発値を必要 とする。

$U_{0\cdot 0} = \frac{1}{r}$	
$U_{1,0} = \frac{z}{\tau^2} U_{0,0}$	
$U_{1,1} = \frac{(x+iy)}{r^2} U_{0,0}$	
$U_{2,0} = \frac{3}{2} \frac{z}{r^2} U_{1,0} - \frac{1}{2} \frac{1}{r^2} U_{0,0}$	
$U_{2,1} = 3 \frac{z}{r^2} U_{1,1}$	
$U_{2,2} = 3 \frac{(x+iy)}{r^2} U_{1,1}$	
	(3.30)

④ 表 3.6 において Harmonic 定数 $C_{l,n}$, $S_{l,n}$ とその正規化された $\overline{C_{l,n}}$, $\overline{S_{l,n}}$ が示されているが, それらの間の関係は次のようにして与えられる。

$$C_{l,m} = \left(\frac{\varepsilon(2l+1)(l-m)!}{(l+m)!}\right)^{\frac{1}{2}} \overline{C}_{l,m}$$

$$S_{l,m} = \left(\frac{\varepsilon(2l+1)(l-m)!}{(l+m)!}\right)^{\frac{1}{2}} \overline{S}_{l,m}$$

$$\varepsilon \geq \tau^{\varepsilon}$$

$$\varepsilon = \begin{cases} 1 : m = 0 \end{cases}$$

$$\varepsilon = \begin{cases} 2 : m \neq 0 \end{cases}$$

3.2.2 月および太陽の引力による加速度

$$\boldsymbol{a}_{SM} = -Gm_1 \sum_{n=1}^{2} \left(\frac{m_n}{m_1}\right) \frac{1}{d_n^3} \{ \boldsymbol{r} + f(q) \boldsymbol{r}_n \}$$

表 3.6 重力ポテンシャルの Harmonic 定数

(1) Zonal harmonics

			$(S_{l,o} = 0)$
		正規化された Harmonic 定数	Harmonic 定数
i	m	\overline{C}_{ℓ} , m	$C_{l,m}(\times 10^{-9})$
2	0	-4.84170×10^{-4}	- 1082. 637
3	0	9. 60408×10^{-7}	2. 541
4	0	5. 39333×10^{-7}	1. 618
5	0	6. 87446×10 ⁻⁸	0. 228
6	0	-1.53097×10^{-7}	- 0. 552
7	0	9. 08860×10^{-8}	0.352
8	0	4. 97198×10^{-8}	0. 205
9	0	3. 53300×10 ⁻⁸	0. 154
10	0	5. 17176×10 ⁻⁸	0. 237
11	0	-6.50565×10^{-8}	-0. 312
12	0	3. 84000×10^{-8}	0. 192
13	0	6. 52406×10^{-8}	0. 339
14	0	-1.94980×10^{-8}	- 0. 105
15	0	-1.88586×10^{-8}	-0.105
16	0	-5.91864×10^{-9}	- 0. 034
17	0	3. 71868×10^{-8}	0. 220
18	0	1. 67687×10^{-8}	0. 102
19	0	-1.58527×10^{-8}	-0.099
20	0	1. 85847×10^{-8}	0. 119
21	0	1. 26574×10^{-8}	0. 083
22	0	-1.37146×10^{-8}	-0.092

(3.31)

$$f(q) = \frac{3 q + 3 q^{2} + q^{3}}{1 + (1 + q)^{\frac{3}{2}}}$$
(3.32)

$$q = \frac{1}{r_{n}^{2}} (r^{2} - 2r_{n} \cdot r)$$
(3.33)

$$d_{n} = |r_{n} - r|$$
(孫字 1:太陽, 2:月)

① 月,太陽の引力による摂動加速度は

$$\boldsymbol{a}_{SM} = Gm_1 \sum_{n=1}^{2} \left(\frac{m_n}{m_1}\right) \left(\frac{\boldsymbol{r}_n - \boldsymbol{r}}{|\boldsymbol{r}_n - \boldsymbol{r}|^3} - \frac{\boldsymbol{r}_n}{|\boldsymbol{r}_n|^3}\right)$$
(3.34)

と書かれるが, **r**が **r**, に比較して非常に小さい場合 には非常に大きな有効数字を取扱うことになり,計 算機の丸め誤差などの影響を受けやすい。そこで (3.34)式を次のように変形して(3.31)~(3.33) 式が得られる。

$$a_{SM} = -G_{m_{1}} \sum_{n=1}^{2} \left(\frac{m_{n}}{m_{1}}\right) \left(\frac{\mathbf{r} - \mathbf{r}_{n}}{d_{n}^{3}} + \frac{\tau_{n}}{\tau_{n}^{3}}\right)$$

$$= -G_{m_{1}} \sum_{n=1}^{2} \left(\frac{m_{n}}{m_{1}}\right) \frac{1}{d_{n}^{3}} \left\{\mathbf{r} + \left(\frac{d_{n}}{r_{n}^{3}} - 1\right)\mathbf{r}_{n}\right\}$$

$$d_{n}^{2} = \left(\mathbf{r}_{n} - \mathbf{r}\right) \left(\mathbf{r}_{n} - \mathbf{r}\right) = \tau_{n}^{2} + \tau^{2} - 2\mathbf{r}_{n}\mathbf{r}$$

$$\oslash \mathbb{R} \pounds \mathbb{R} \pounds \tau$$

$$\frac{d_{n}^{3}}{\tau_{n}^{3}} - 1 \equiv f(q)$$

$$= \frac{1}{\tau_{n}^{3}} \left\{\left(\tau_{n}^{2} + \tau^{2} - 2\mathbf{r}_{n}\mathbf{r}\right)^{\frac{1}{2}}\right\}^{3} - 1$$

$$= \left(1 + \frac{1}{\tau_{n}^{2}}\left(\tau^{2} - 2\mathbf{r}_{n}\mathbf{r}\right)\right)^{\frac{3}{2}} - 1$$

$$q = \frac{1}{\tau_{n}^{2}}\left(\tau^{2} - 2\mathbf{r}_{n}\mathbf{r}\right) \pounds \pounds \mathcal{H} \mathcal{H}$$

$$f(q) = \left(1 + q\right)^{\frac{3}{2}} - 1 = \frac{3q + 3q^{2} + q^{3}}{1 + \left(1 + q\right)^{\frac{3}{2}}}$$

$$(S_{1,2} = 0)$$

表 3.6 重力ポテンシャルの Harmonic 定数

(2) Non-zonal harmonics

		正規化された	Harmonic定数	Harmo	nic定数
l	m	$\overline{C}_{l, m}$		C _{1,m}	S _{l, m}
2	2	2.37990-06	-1,36560-06	1,53620-06	-8.8149D-07
3	1	1.9977D-06	2.23370-07	2,1578D-06	2,41270-07
3	2	7.78300-07	-7.55190-07	2,65840-07	-2,57950-07
3	. 3	4.90110-07	1,52830-06	6.83430-08	2,1311D-07
4	1	-5,17480-07	-4,84100-07	-4,90920-07	-4,59260-07
•	2	3.42960-07	6,71740-07	7,6688D-08	1,50210-07
4	3	1,03900-06	-1,19230-07	6,20920-08	-7.1254D-09
4	4	-1.05120-07	3,56610-07	-2,22110-09	7,53480-09
3	1	-5,3667D-08	-7,9973D-08	-4,5958D-08	-6,84850-08
5	2	5.9869D-07	-3,99100-07	9,6889D-08	-6.4588D-08
5	3	-5.8429D-07	-1.6338D-07	-1,9302D-08	-5.39720-09
5	4	-1,1583D-07	-4,53930-08	-9,0188D-10	-3,5344D-10
5	5	1.39560-07	-8,68410-07	3,4363D-10	-2,13820-09
	•	-7,2166D-08	1,7756D-08	-5.6780D-08	1,3970D-08
6 6	1 2	2,4670D-08	-4.06540-07	3,0690D-09	-5,0575D-08
6	3	4,4139D-09	2,90550-08	9,1517D-11	6,02420-10
6	4	-1,0003D-07	-3,0297D-07	-3,7866D-10	-1.14690-09
6	5	-1,35040-07	-6,09640-07	-1,08990-10	-4,9202D-10
6	6	-2,91360-08	-2,63270-07	-6,78810-12	-6,1337D-11
7	1	2.35320-07	5.5634D-08	1,72240-07	4,07200-08
7	2	2,04250-07	1.73210-07	2,0344D-08	1,72520-08
7	3	2,19940-07	-3.46440-07	3,09810-09	-4.87990-09
7	4	-2,86170-07	-2,7738D-07	-6.07690-10	-5,8902D-10
<u> </u>	5	3,47270-08	8.70140-08 8.58650-08	<u>1,2291D-11</u> -1,9085D-11	3,0796D-11 5,9599D-12
777	6 7	-2,7496D-07 -2,4856D-08	-8,8968D-09	-4.61090-13	-1.65040-13
		-2,10500 00			
8	1	1.09460-08	4,84290-08	7,52190-09	3.32800-08
8	2	1.1084D-07	1,0359D-07	9,10380-09	8,5083D-09 -5,1273D-10
8	3	-8.8578D-08 -2.2315D-07	-5.07150-08 2.65110-07	-8,9553D-10 -2,9126D-10	3.4602D-10
<u>8</u> 8	<u>4</u> 5	1.53180-07	8,1128D-08	2,77250-11	1,4689D-11
8	6	-9.75420-08	2,8082D-07	-2,72420-12	7,8429D-12
8	7	2.04980-07	2.45920-07	1,04520-12	1,25400-12
8	8	1,6967D-07	9,3261D-08	2,16290-13	1,1889D-13
9	1	1.8099D-07	4,10910-08	1.1760D-07	2,6700D-08
9	2	-2.20130-08	2,42150-08	-1,52480-09	1,67730-09
9	3	-9,9252D-08	-2,30850-08	-7,50120-10	-1,7447D-10
9	4	-4.0867D-08	-3.85250-08	-3.49720-11	-3,29670-11
9	5	-5,89570-08	3,68340-09	-6,03020-12	3,76740-13
9		4.88120-08	1.11150-07	6.4453D-13	1,46770-12
9 9	7	-1.9880D-07 2.3523D-07	-1,4978D-07 9,63550-09	-3,78890-13 7.68870-14	-2,85460-13 3,14940-15
9	<u>8</u> 9	-3.45330-08	5,95020-08	-2,6605D-15	4.5841D-15
-	7		-1/2040-00		

表 3.6 重力ポテンシャルの Harmonic 定数 (2) Non-zonal harmonics (つづき)

		Exilatic	Harmonic定数	Harmonic定数		
l	m	$\overline{C}_{l, m}$	$\overline{S}_{l, m}$	C _{1,m}	S _{1,m}	
10 10	1 2	8,9008D-08 -3,7256D-08	-6,0157D-08 -6,3676D-08	5,49990-08 -2,21520-09	-3,71720-0 -3,78610-0	
10 10	3	-1.3307D-07 -2.1887D-08	-7.2728D-08 -7.8408D-08	-7.7585D-10 -1.2891D-11	-4.2403D-1 -4.6179D-1	
10	5	-6.15090-09	-1.1904D-07	-3.81860-13	-7,3902D-1 -8,1404D-1	
10	6	-9,4142D-08 1.8525D-07	-1.17280-08	-6,5344D-13 1,5593D-13	1.82280-1	
10 10	7	1.08870-09	2.1656D-08 7.07810-09	1,24700-16	8,1075D-1	
10	9	7.84730-08	5,6381D-09	1,4581D-15	1.0476D-1	
10	10	1.33210-07	9,88390-08	5.5348D-16	4,10670-1	
11	1	-1,21940-08	7,5463D-08	-7,19840-09	4,4548D-0	
11	<u>1</u> 2	-2.0255D-08	-6.2998D-08	-1.0487D-09	-3,2617D-0	
11	3	-1.0988D-09	-3,80980-08	-5,06820-12	-1.75730-1	
11	4	1.5676D-08	-1,9551D-07	6,6005D-12	-8,23220-1	
11	5	-1+85910-09	6.11130-08	-7.39670-14	2,43150-1	
11	6	6.3601D-08	-2.64570-08	2.50550-13	-1.0423D-1	
11	7	-3.37610-08	-1,28250-07	-1,4019D-14	-5,32560-1	
11	8	-1.3634D-08	4.52290-08	-6,49430-16	2.1544D-1	
11	9	2.1256D-08	6,67210-08	1,3071D-16	4.10290-1	
11	10	5.2555D-08	-7,74010-08	4,9868D-17	-7.3444D-1	
11	11	8,69960-08	-2,56910-08	1.75990-17	-5,1973D-1	
12	1	-5,69350-08	-6,61590-08	-3,22330-08	-3,74550-0	
12	2	-9,7424D-08	4.63410-08	-4,4446D-09	2.1141D-0	
12	3	1,15550-07	-4,8666D-08	4.30410-10	-1,81280-1	
12	4	-5.03790-08	5,35680-08	-1.5638D-11	1,66280-1	
12	5	8.8134D-08	2,7932D-08	2,34590-12	7.43480-1	
12	6	-2.1177D-08	3,50340-08	-5.0216D-14	8,3075D-1	
12	7	2,9751D-08	3,1783D-08	6.6074D-15	7.0587D-1	
12	8	4.0190D-08	5,68770-08	8,92580-16	<u>1,26320-1</u> 3,51560-1	
12 12	9 10	-1,1503D-07 -4,5921D-08	1,45080-08 -4.3264D-08	-2.7874D-16	-1,2905D-1	
12	10	-7.8443D-09	-4,78>8D-08	-3,4498D-19	-2,10470-1	
12	12	-2.76170-08	-1,68080-08	-2,47920-19	-1.5089D-1	
	•-					
13	1	8.6136D-09	-3.2401D-08	4,69190-09	-1,7649D-0	
13	2	-1,06790-08	-9,06700-08	-4,33570-10	-3,68120-0	
13	3	-3,23610-08	4,92860-08	-9.90350-11	1,5083D-1	
13	4	3,98520-08	-1.0608D-07	9,3539D-12	-2,4899D-1	
13	5	4.004/0-08	3,81140-08	7,38510-13	7.02860-1	
13	6	-2,1906D-08	-1,13210-08	-3,2766D-14	-1,6934D-1	
13	7	-7.6933D-08	1.11400-08	-9,72550-15	1,40830-1	
13	8	-2.7448D-09	1,43090-08	-3.09120-17	1.6115D-1 7.8375D-1	
13	9	-1,1588D-08	7.29890-08	-1.2443D-17 4.6996D-19	8,59430-1	
13	10	4.1979D-09 -5.4381D-08	7.67690-09 1.3450D-08	-7.1747D-19	1.77450-1	
13	11	-4,66330-08	7.99630-08	-8,7010D-20	1.49200-1	
13 13	12 13	-6.8944D-08	7,18910-08	-2,5228D-20	2,63060-2	

		正規化された	Harmonic定数	Harmonic定数			
ı	m	$\overline{C}_{l,m}$	$\overline{S}_{l,m}$	<i>C</i> _{<i>l</i>,<i>m</i>}	<i>S</i> _{<i>l</i>,<i>m</i>}		
14 14	1 2	-1,4359D-08 -1,5908D-08	5,2390D-08 2,73740-08	-7.5462D-09 -5,7968D-10	2.7533D-08 9.9750D-10		
14	3	9,6915D-08	-2,56310-08	2.4726D-10	-6.5392D-11		
14	4	-2,98640-08	-3.81890-09	-5.41470-12	-6,92410-13		
14	5	-1,3828D-09	-5,8680D-08	-1,8189D-14	-7,71860-13		
14	6	-1,38720-08	-2,79760-08	-1.3600D-14	-2,74280-14		
14	7	7,1056D-08	2,4043D-09	5.37470-15	1,8186D-16		
14		-1.87790-08	-5.87500-08	-1,1446D-16	-3,5810D-16		
14	8	-2.43220-08	6.04610-08	-1,2620D-17	3,13710-17		
14	10	2.89820-08	-3.4224D-08	1.37290-18	-1.6211D-18		
14	11	8,2611D-08	-1,96270-09	3.9130D-19	-9,2965D-21		
14	12	1.17510-09	-3.09670-08	6,30220-22	-1,66080-20		
14	13	3.0793D-08	4.76200-08	2.2474D-21	3,4755D-21		
14	14	-6.5969D-08	3,30300-09	-9,0988D-22	4,55570-23		
•·	·						
15	1	2.93580-08	-1,6691D-08	1,49220-08	-8,48350-09		
15	2	-1,2291D-08	-6,89630-08	-4,0494D-10	-2,2721D-09		
15	3	-5,89210-08	4.47720-08	-1,26900-10	9.64270-11		
15	4	1,4876D-08	7,03590-09	2,1218D-12	1,0036D-12		
15	5	3,6806D-08	-8,40510-09	3.5394D-13	-8,08270-14		
15	6	1,0081D-08	-3,04730-08	6,6897D-15	-2,02220-14		
15	7	3,04390-08	1.57750-08	1,43550-15	7.43950-16		
15	8	-6,8884D-08	6,0808D-08	-2,39490-16	2,11410-16		
15	9	-4,5169D-08	5.55560-08	-1.2116D-17	1.4902D-17		
15	10	6,2126D-08	+7,1799D-09	1,3606D-18	-1,5725D-19		
15	<u>11</u> 12	-4,47240-08 -4,20250-08	-3,43910-09 5,90720-09	-8,5908D-20	-6.6060D-21		
15	13	-4,1654D-08	-5,58920-09	-7,7676D-21 -8,4003D-22	1.0918D-21 -1.1272D-22		
15	14	9,5654D-09	-2,71450-08	2,53300-23	-7,1881D-23		
15	15	-5,6358D-08	3,48950-08	-2.72470-23	1,68710-23		
				-2112410-25	1100110 05		
			E		• • • • • • • •		
16	1	-9,9588D-09	5.4160D-08	-4,9056D-09	2,66790-08		
16	2	5,5086D-09	4,9455D-08	1.6514D-10	1,4826D-09		
	3	5,4189D-08	5,4887D-09	9,9604D-11	1,0089D-11		
16	4	4,6176D-08	3,6270D-08	5,2637D-12	4,13450-12		
16	5	-2,4432D-08	2.96710-08	-1,7544D-13	2,1306D-13		
16	6	-3,72030-09	-2,07860-08	-1.7173D-15	-9,59490-15 0 316(D-17		
16	78	-2.2794D-09 -1.0459D-07	3,0609D-09 -4,4731D-08	-6.9379D-17	9.3166D-17 -9.2638D-17		
16 16	9	2,48450-08	-8,62620-08	-2,1661D-16 3,6383D-18	•		
16	10	-3,99280-08	-4.50580-09	-4,33420-19	-1,2632D-17 -4,8910D-20		
16	11	-2,08480-08	2,9738D-08	-1,7780D-20	2,5362D-20		
16	12	1.59300-08	-1,27030-08	1,1482D-21	-9,15620-22		
16	13	2.5280D-08	6,62400-09	1,6918D-22	4.4330D-23		
16	14	-1,48520-08	-8,17130-09	-1.0477D-23	-5,76430-24		
16	15	-7,742>D-08	-2.64910-08	-6,9365D-24	-2,3733D-24		
16	16	-1.85380-08	-2,23100-08	-2,9360D-25	-3,53330-25		

表 3.6 重力ポテンシャルの Harmonic 定数(つづき)

表 3.6	重力ポテンシ	ャルのHarmonic 定数	(つづき)
-------	--------	----------------	-------

		正規化された	Harmonic定数	Harmonic定数			
l	m	$\overline{C}_{l,m}$	$\overline{S}_{l,m}$	C _{1,m}	S _{1,m}		
17	1	8,65930-09	-4,10930-08	4.14160-09	-1,96540-08		
17	2	-9.07690-09	-2,7205D-08	-2,45990-10	-7,4628D-10		
17	3	-7,78640-09	-1.79130-08	-1.23320-11	-2,83700-11		
17	4	-4,3231D-08	6,82030-08	-3,9931D-12	6,2997D-12		
17	5	4,1513D-08	-2,54530-08	2,26730-13	-1,39020-13		
17	6	-4,5453D-08	-1.72730-08	-1.4943D-14	-5.6787D-15		
17	7	1,69380-08	-3,37520-08	3.42720-16	-6,82930-16		
17	8	4,1231D-08	5.87920-09	5,2763D-17	7,5236D-18		
17	9	-4,3119D-08	-1,59740-08	-3,6072D-18	-1,33630-18		
17	10	-1.08440-08	5.5628D-08	-6.17250-20	3.16640-19		
17	11	-4,4136D-08	-4,31230-09	-1,79450-20	-1,7533D-21		
17	12	3,16610-08	6.29820-09	9.75880-22	1.94130-22		
17	13	2.5147D-08	9.77280-09	6,3286D-23	2.45950-23		
17	14	-5.5943D-09	7.26040-09	-1.2644D-24	1.64090-24		
17							
	15	4.9113D-08	3,19580-08	1,13290-24	7.3715D-25		
17	16	-2,35400-08	-1,58820-08	-6,68360-26	-4,50930-26		
17	17	-9,0191D-08	-9,47750-09	-4.39170-26	-4.61490-27		
18	1	-2.35570-08	-7,45360-08	-1,09580-08	-3,46710-08		
18	2	-9,42490-09	3,03530-08	-2,3776D-10	7,65710+10		
18	3	-3,5003D-08	-2.0464D-08	-4,8172D-11	-2.8163D-11		
18	4	2,94330-08	-4.46720-08	2,2298D-12			
18	5	1,7511D-09	-6.03670-09	7,39300-15	-3,38430-12 -2,5486D-14		
18	6	2,39310-08	-4,4966D-09	5,72000-15	-1,0748D-15		
18	7	-7.8040D-10	-8.20100-09	-1,0769D-17	-1.13170-16		
18	8	5,38190-08	-2,2106D-08	4,39160-17	-1,8038D-17		
18	9	-3.6120D-10	-5.05620-09	-1,7937D-20	-2.5109D-19		
18	10	4,2146D-08	7.89240-09	1,3184D-19	2,4690D-20		
18	11	2,4981D-08	2,31830-08	5,1306D-21	4.7614D+21		
18	12	-6,2242D-09	6,60250-09	-8,8214D-23	9,3575D-23		
18	13	-2,66850-08	-4.25000-08	-2.7731D-23	-4,4166D-23		
18	14	9,11910-09	-3.31290-08	7.4918D-25	-2,7217D-24		
18	15	-4,1521D-08	-1.7610D-08	-2.9690D-25	-1.25920-25		
18	16	2.48500-08	-4,81820-09	1.75940-26	-3,4114D-27		
18	17	3,53570-08	-4.71660-08	2,99210-27	-3.99140-27		
18	18	-3,4701D-10	5,05540-08	-4,8943D-30	7,13020-28		
					1,23060-20		
19	• •	0 60500 00					
19	12	3,60580-08	-3.44210-09	2.49320-22	-2.38000-23		
19	13	9,68760-09	-6,60950-08	4,4755D-24	-3,05350-23		
	14	7.6389D-09	-2.76490-08	2.5080D-25	-9,07770-25		
20	13	2,76300-08	3.23800.00	6 03700 04			
20	14	3,36870-08	3.23890-08	6,0278D-24	7,06610-24		
			-6,57410-08	4,7638D-25	-9,29670-25		
	-						
21	13	-1,9799D-08	-3,07110-08	-2.1457D-24	-3,32830-24		
21	14	1.66230-08	8,72150-09	1.07660-25	5,6486D-26		
22	13	-7,94350-09	4.14520-09	- A ALEON AP			
22	14	2.8516D-09	-4,21480-08	-4.46580-25	2,33040-25		
	•			8,9064D-27	-1.3164D-25		

となる。

- ② (3.31)式においてGを万有引力定数,m1を太陽質量と見ることもできるが,実はGm1はまとめて考えると天文定数におけるガウスの定数kの2乗になっている。kは天文単位系(長さ:1天文単位,質量:太陽の質量,時間:平均太陽日)で与えられるが,そのうち長さと時間だけをkm,sec になおしたとき
 - $G_{m_1} = 1.327125196 \times 10^{11}$

となる。この Gm1 は (km)³ (mi)⁴ (sec)²のディ メンションを持つわけである。このようにしたのは、 精度の悪い万有引力定数や太陽の質量を直接用いる ことを避けたためである。月の場合に

 $m_2/m_1 = 1/27068807.1301$

を用いる。

 ③ このプログラムでは太陽および月の位置ベクトル **r**₁, **r**₂ は Newcomb および Brown のテーブルを基 にして E. W. Woorard によって瞬時の黄道面および 真春分点に準拠する座標系に編集されたテーブルか ら計算している^(3,4)ここに簡単にその概要を示す。 太陽の位置ベクトル(**r**₁)

瞬時の真の春分点をもとにした太陽の黄経 θ_1 , 黄緯 ϕ_1 ,および太陽の地心距離 r_1 は次のように与 えられる。(係数 K_i が0.''100以上の項) $\theta_1 = L'$

+
$$K_i \sin(a_i \ell' + b_i g' + c_i g''' + d_i g^{\mathbb{N}} + e_i g^{\mathbb{V}}$$

+ $f_i T + h_i \ell + j_i F + k_i D + m_i Q$)
+ $K_i \cos(a_i \ell' + b_i g' + c_i g''' + d_i g^{\mathbb{N}} + e_i T)$
(3.34)

$$\phi_{1} = 0.''576 \sin F + 0.''166 \sin(\ell' - 2g^{N}) + 0.''100 \sin(4\ell' - 3g') - 0.''185 \cos(4\ell' - 3g') (3.35) \log \tau_{1} = K_{i} \sin(a_{i}\ell' + b_{i}g' + c_{i}g''' + d_{i}g^{N}) + e_{i}g^{\nabla}) + K_{i} \cos(a_{i}\ell + b_{i}\ell' + c_{i}D) + d_{i}g' + e_{i}g''' + f_{i}g^{N} + h_{i}g^{\nabla}) (3.36)$$

 $\left. \begin{array}{c} x_1 = r_1 \, \cos \phi_1 \cos \theta_1 \\ y_1 = r_1 \, \cos \phi_1 \sin \theta_1 \\ z = r_1 \, \sin \phi_1 \end{array} \right\} \quad (3.37)$

月の位置ベクトル(\mathbf{r}_2)

瞬時の真の春分点をもとにした月の黄経 θ_2 ,黄緯 ϕ_2 ,地心距離 r_2 は次のように与えられる。(係数

かいパロの以上の項)

$$\theta_2 = L$$

+ $K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q$

+ $f_i L' + h_i V + j_i J + k_i T$)

+ $K_i \cos($ ")

(3.38)

 $\phi_2 = K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q$

+ $f_i L' + h_i V$)

+ $K_i \cos($ ")

(3.39)

 $\tau_2 = R_E / \sin P$

(3.40)

Pは平均赤道地平視差で,0."0006 以上の係数を考慮 して

$$P = K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i \mathcal{Q} + f_i L' + h_i V + j_i J + k_i T) + K_i \cos(\mathcal{U})$$

$$(3.41)$$

と与えられる。(3.34)~(3.41)式における係数 k_i および $a_i \sim m_i$ の各値は表 3.7 に与えられている。 またl, l', F, D, Q については(3.16)式で与えら れているが、その他は次のようになる。⁽¹³⁾ $L' = 279°41'48!'04 + 100^{r0}°46'08!'13T + 1!'09T^2$)

 $V = 342^{\circ}46'01''_{,39} + 162^{\circ}199^{\circ}12'42''_{,88}T$ $J = 238^{\circ}03'00''_{,88} + 8^{r}156^{\circ}18'11''_{,52}T$ $g'' = 212^{\circ}36'11''_{,6} + 162^{r}197^{\circ}48'13''_{,95}T + 4''_{,63}T^{2}$ $g''' = 319^{\circ}31'45''_{,9} + 53^{r}59^{\circ}51'30''_{,60}T + 0''_{,651}T^{2}$ $g^{\rm IV} = 225^{\circ}20'16''_{,6} + 8^{r}154^{\circ}41'31''_{,29}T$ $g^{\rm V} = 175^{\circ}28'34''_{,3} + 3^{r}141^{\circ}33'05''_{,28}T$ (3.42)

ここでTは(3.16)式の場合と同様である。

- (3.34)~(3.42)式において *l*:月の平均近点離角 *l*:太陽の平均近点離角
 - F: 月の平均黄緯引数

 - D : 月の平均離角
 - V : 金星の日心平均黄経
 - ↓: 木星の 〃
 - L : 月の平均黄経
 - L': 太陽の平均黄経
 - **Q**: 月の昇交点の平均黄経
 - g': 金星の平均近点離角
 - g‴: 火星の ″
- a^{IV}: 木星の

```
q<sup>♥</sup>: 土星の 〃
```

を意味している。

表3.7(1) 0:の係数

<u> </u>	V (VID-R D		,		,					T	<u> </u>
i	K_i (×10 ⁻⁶ rad)	ai	<i>b</i> _i	c _i	<i>d</i> _i	ei	f_i	h _i	ji	k _i	m _i
1	33502	1	0	0	0	0	0	0	0	0	0
2	351	2									
3	5	3									
4	25	4	0	92	3						
5	-20	1	99								
6	14	2	98								
7	- 8	3	98								
8	- 2	4	97								
9	- 3	5	97								
10	. 7	13	92	0	0	0	4°.5				
			-								
11	1	1	0	9 9							
12	3	2	0	98							
13	3	1	0	98							
14	1	2	0	97							
15	- 2	3	0	96							
16	1	2	0	96							
17	- 1	3	0	95							
18	-13	0	0	0	1						
19	-13	2	0	0	98						
20	- 7	1	0	0	98						
					~ -						
21	- 3	2	0	0	97						
22	- 1	1	0	0	97						
23	- 2	1	0	0	0	99					
24	- 2	0	0	0	0	1	0	0			
25	31	0	0	0	0	0	0	0	0	1	0
26	1	0	0	0	0	0	0	1	0	1	0
26 27	1 2	U	U		U	U	U	1	0	1 99	0
27 28	- 1	1	0	0	0	0	0	0	0	99 99	0
28 29		Ĩ	U		U		U	U U		33	1
29 30	-84										1 2
30	I										2
31	6	0	0	0	0	0	0	0	2	98	2
31	- 1	0	0	0	0	0	0	0	2	98 0	2
33	-83.58T	1	v		v			Ŭ	2	v	2
33 34	-1.75T	2									
34 35	$-0.25T^{2}$	1									
	0.231	1								-	

 $K_i \sin(a_i l' + b_i g' + c_i g''' + d_i g \mathbb{N} + e_i g \mathbb{V} + f_i T + h_i l + j_i F + k_i D + m_i Q)$

表3.7(2) 01の係数

表 3.7(3)	log rı の係数
K _i sin ($(a_i l' + b_i g' + c_i g''' + d_i g^{\mathbb{N}} + e_i g^{\mathbb{V}})$

$K_i \cos(a_i l' + b_i g' + c_i g''' + d_i g^{\mathbb{N}} + e_i T)$										
ż .	K _i	ai	bi	c _i	d_i	ei				
1	11	1	99	0	0	0				
2	- 23	2	98							
3	9	3	98							
4	-3	3	97							
5	7	4	97							
6	4	5	97							
7	-1	4	96							
8	1	6	96							
9	1	8	95							
10	6	13	92	0	0	4°5				
11	18	4	0	92	·					
12	-1	1	0	99						
13	10	2	0	98						
14	-8	1	0	98						
15	2	2	0	97						
16	3	2	0	96						
17	1	8	0	85						
18	-1	2	0	0	99	0				
19	-35	1	0	0	99	0				
20	-1	0	0	0	1	0				
. .					00					
21	-3		0	0	98	0				
22		3	0	0	97	0				
23	-1	- 6	97	96	0	0				

 $(K_i$ の単位は×10⁻⁶ rad)

i	K _i	a i	b _i	C _i	d _i	ei
1	- 1146	1	99	0	0	0
2	136	1	98			
3	5822	2	98			
4	- 632	3	98			
5	1044	3	97	0	0	0
6	- 1448	4	97	0	0	0
7	148	5	97			
8	337	4	96			
9	189	5	96			
10	- 91	6	96	0	0	0
11	93	5	95	0	0	0
12	136	7	95	0		
13	- 119	1	0	99		
14	1976	2	0	98		
15	137	1	0	98	0	0
16	201	2	0	97	0	0
17	- 125	3	0	96		
18	- 96	2	0	96		
19	- 94	4	0	94		
20	- 193	2	0	0	99	0
21	- 7067	1	0	0	99	0
22	- 89	0	0	0	1	
23	203	2	0	0	98	
24	- 486	1	0	0	98	
25	- 278	3	0	0	97	0
					07	
26	104	2	0	0	97	0
27	-73	3	0	0	96	99
28	- 79	1	0	0	0	99
		- 9				

(K_iの単位は×10⁻⁹rad)

表 3.7(4) log r1 の 係数

	T	1	1	T	·	r	1	,
i	$K_i (\times 10^{-9})$	ai	b _i	Ci	<i>d</i> _i	ei	f_i	h _i
1	30570	0	0	0	0	0	0	0
2	- 7274120	0	1					
3	- 91380	0	2					
4	-1450	0	3					
5	-85	0	0	0	1			
6	-2062	0	1	0	99			
7	84	0	1	0	98			
8	3593	0	2	0	98			
9	-596	0	3	0	98			
10	-381	0	4	0	97			
11	126	0	5	0	97			
12	-166	0	4	0	96			
13	-134	0	5	0	95			
14	-80	0	6	0	94			
15	- 92	0	1	0	0	99		
10	52	Ŭ	1			55		
16	-573	0	2	0	0	98		
17	154		3			97		
18	- 77		2			97		
19	461		3			96		
20	87	0	4	0	0	95		
21	87	0	3	0	0	95		
22	-102		4			94		
23	91		3			92	3	
24 05	- 91 70	0	5			92	3	
25	- 78	0	2	0	0	0	99	
26	227	0	0	0	0	0	1	0
27	79	0	1				1	
28	102	0	3	1			98	
29	4021	0	2				98	
30	1376	0	1	0	0	0	98	
0.1	7 00	0				~	~~	
31 22	796 172	0	2	0	0	0	97 97	
32 33	172	0	1 2				97 00	
33 34	110 422	0	1			0	96 0	
34 35	422 	0 0	1 2	0	0 0	0	0	99 02
- 55	-152	U			U	0	0	98
36	-103	0	1	0	0	Ð	0	98
37	1336	0	0	1	-	-	-	
38	-133	1	0	99				
39	-150 T	0	0	0	0	0	0	0
40	1 81 40 T	0	1					
41	460 T	0	2					
			L					LJ

 $K_i \cos\left(a_i l + b_i l' + c_i D + d_i g' + e_i g''' + f_i g^{\mathbb{N}} + h_i g^{\mathbb{V}}\right)$

i	$K_i (\times 10^{-6} \text{ rad})$	a_i	bi	C _i	d _i	ei	fi	hi	ji	k _i
1	-607	0	0	0	1	0	0	0	0	0
2	11490				2					
3	2				3					
4	67	<u>^</u>			4					
5	1	0	0	0	6					
6	1	0	0	2	97					
7	-267		. –		98					
8	3				99					
9	-1996				0					
10	1	0	0	0	1					
11	- 28	0	0	0	2					
12	2	0	0	4	0					
13	2	0	1	98	98					
14	- 7				2					
15	- 9	0	1	0	96					
16	- 801	0	0	0	98					
17	3	-			99					
18	- 3238	0	0	0	0					
19	87				1					
20	-118				2					
21	1	0	0	0	3					
22	- 1	0	0	0	4					
23	- 10	0	1	2	98					
24	2	0	0	0	0					
25	- 1	0	2	0	96					
, 26	- 39	0	0	0	98		a -			
27	- 36				0					
28	- 1	0	0	0	2					
29	- 2	0 1	3	0	98					
30	12	1	98	U	98					
31	12									
32	4	0	0	0	2					
33	- 2	1	99 00	98	2					
34 35	3 - 1	1	99	0	96 97					
55	1				51					
36	138	0	0	0	98					
37	- 5				99					
38 39	716	0	0	0	0 1					
39 40	- 1 71	0	v	U	2					
41	1	0	0	0	4					
42	- 1	1	9 9	2	0					
43 44	1 45	1	0	98	96 98					
44 45	45 192				0					
40	152			L	L					

表 3.7 (5) $\theta_2 \mathcal{O}$ 係数 $K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i l' + h_i V + j_i J + k_i T)$

表3.7(5) θ2の係数(つづき)

i	$K_i(\times 10^{-6} \mathrm{rad})$	a _i	bi	Ci	d _i	ei	fi	h _i	ji	k _i
46	- 31	0	0	0	2	0	0	0	0	0
47	- 2	1	0	0	94					_
48	-186				96					
49	16				97					
50	22236	0	0	0	98					
51	90	0	0	0	9 9					
52	109760				0					
53	-41	0	0	0	1					
54	931				2					
55	10	0	0	0	4					
56	- 1	1	0	2	96					
57	- 1				98		1			
58	-219				0					
59	- 5	0	0	0	2					
60	2	1	1	98	98					
61	-21	1	1	0	96					
62	1				97					
63	- 999				98					
64	1	0	0	0	99					
65	- 532									
66	6	0	0	0	1					
67	-14				2					
68	1	1	1	2	0					
69	- 2	1	2	0	96					
70	- 36	0	0	0	98					
71	- C					-				
72	-6	-	3	0	98					
73	-1 1	1 2	- 3 - 98	0	98					
74	1	2	50	U	0					
75	2	2	99	0	96					
		2	55	v						
76	- 12	0	0	0	98					
77	- 2	· ·			99					
78	47				0					
79	6	0	0	0	2					
80	1	2	0	98	96					
						1				
81	3	0	0	0	98					
82	- 6				0		ł			
83	- 2				2		1			
84	- 3	2	0	0	94					
85	- 149				96					
86	6	0	0	. 0	97					
87	- 1026				98					
88	8				99					
89	3728				0					
90	- 3	0	0	0	1					

 $K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V + j_i J + k_i T)$

i	$K_i(\times 10^{-6} \text{ rad})$	ai	b _i	C _i	d_i	ei	f_i	h _i	ji	k _i
91	70	0	0	0	2					
92	1				4					
93	3	2		2	98					
94	- 19				0					
95	- 1	0	0	0	2					
	10	0	-	0	00					
96	- 13	2	1	0	96 08					
97	-42 - 37	0	0	0	98 0					
98 99	-37 -1	0	0	0	2					
100	- 1	2	2	0	96					
100	1	2	-	v	50					
101	- 1	0	0	0	98	0	0	0	0	0
102	- 1	3	99	0	98					
103	3				0					
104	- 1	3	0	0	94					
105	- 6				96					
106	- 64				98					
107	1				99					
108	175				0 2					
109 110	5 - 2	3	0	2	0					
110	- 2	5	Ū	2	v					
111	- 2	3	1	0	98					
112	- 3				0					
113	- 5	4	0	• 0	98					
114	9				0					
115	1	5	0	0	0					
		_	_							
116	2.002 <i>T</i>	0	1	0	98					
117	8.096 <i>T</i>	0	0	0	0					
118	-0.218 T	0	U	0	1 2					
119 120	0.296 T 0.194 T	0	0	2	98					
120	0.1541	Ū	0	2		•				
121	0.179 T									
122	-0.344 T	1	99	0	98					
123	- 1.789 T				0					
124	- 0. 175 T				2					
125	2.497 T	1	1	0	98					
		~	_				_		0	0
126	1.328 T	0	0 2	0	0	0	0	0		V
127 128	0.179 <i>T</i> 1	1 99	2	0	98 2	0	84	18		
128	3	33					97	3		
125	- 6	0	0	0	0	0	2	0	98	
		Ĩ			-					
131	- 1	1	0	0	0	0	3	90		
132	- 61						16	82	0	1°.8
133	- 2	0	0	0	0	99		1		
134	2				_	1				
135	- 1	0	0	0	2	0	16	82		

表 3.7(5) θ_2 の 係 数(つづき) K_isin($a_il+b_il'+c_iF+d_iD+e_iQ+f_iL'+h_iV+j_iJ+k_iT$)

i	$K_i(\times 10^{-6} \text{ rad})$	a _i	b _i	C _i	di	ei	fi	hi	ji	k _i
136	- 3	2	0	0	0	0 -	16	82		
137	- 1	0	0	0	98	0	16	82		
138	3				F		84	18		
139	3						99	0	1	
140	- 4	0	0	0	0	0	1	99		
141	- 1	0	0	0	0	0	13	92		
142	3	0	0	0	0	0	0	0	0	20° 2
143	-49	0	0	0	0	1				
144	- 1						16	82		
145	2	0	0	2	0	1				
146	1	0	0	0	0	2				
147	- 1			2	0	2				
148	- 6	0	0	2	98	2				

表 3.7 (5) θ_2 の 係数(つづき) $K_i \sin(a_i l+b_i l'+c_i F+d_i D+e_i Q+f_i l'+h_i V+j_i J+k_i T)$

表3.7(6) 02の係数(つづき)

i	K_i (×10 ⁻⁶ rad)	a_i	b _i	C _i	<i>d</i> _i	ei	f_i	h _i	Ĵi	k _i
1	1	0	0	0	0	0	21	80	0	0
2	- 1	1					3	90		
3	32	0	0	0	0	0	16	82	0	1.°8
4	1									20°.2
5	1	0	0	0	0	0	0	0	0	-20°2
1										
6	1	0	0	0	98	0	0	0	0	20.2
7	1				98					-20°.2
8	2	2	0	0	0	0	16	82	0	0
9	2						84	18	0	0
10	1			:			13	92	0	0
11	3	0	0	0	0	0	0	0	0	20°.2
12	- 1	0	0	0	0	1				

 $K_i \cos \left(a_i l + b_i l' + c_i F + d_i D + e_i \mathcal{Q} + f_i L' + h_i V + j_i J + k_i T\right)$

表3.7(7) Ø2の係数

				+a _i D+e			-	
i	K_i (×10 ⁻⁶ rad)	<i>ai</i>	b _i	Ci	di	ei	f_i	h _i
1	6	0	0	1	4	0	0	0
2	569				2			
3	- 26				1			
4	89503				0			
5	23	0	0	0	99			
6	- 3023	0	0	0	98			
7	2				97			
8	- 18				96			
9	- 1	0	0	3	2			
10	- 30				0			
	10				98			
11	- 10	0	1	1	50 2			
12	- 6 4	U	1	ł	1			
13					0			
14	- 31	0	0	0	98			
15	144	U	U	U	50			
16	- 2				96			
17	- 1	0	1	99	4			
18	- 58	_	_		2			
19	4				1			
20	- 24	0	0	0	0			
21	- 39	0	0	0	98			
22	- 1				96			
23	- 6	0	2	1	98			
24	- 1	0	2	99	2			
25	- 2				98			
	_	_		â				
26	- 5	1	0	3	0			
27	- 2				98			
28	1	1	0	1	4			
29	$\begin{array}{c c} 73 \\ - 3 \end{array}$	0	0	0	2 1			
30	- 3	U		0				
31	4897				0			
32	2	0	0	0	99			
33	- 807	-		-	98			
34	2				97			
35	- 32	0	0	0	96			
36	2	1	0	99	4			
37	161	1	0	99	2			
38	- 3			1	1			
39	4847				0			
40	1	0	0	0	99	1		
41	_ 067	0	0	0	98			
41	- 967				98			
42 43	1 - 15				97			
43 44	-15 -1	1	0	97	2			
44 45	14				0			
40	14		<u> </u>			1	<u> </u>	

 $K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V)$

i	$K_i(\times 10^{-6} \text{ rad})$	ai	b _i	C _i	di	ei	fi	h _i
46	1				98	0	0	0
47	- 1	1	1	1	2			
48					1			
49 50	-26 -36				0			
50	- 30	0	0	0	98			
51	- 3	0	0	0	96			
52	- 4	1	1	99	2			
53	- 25				0			
54	- 43				98			
55	- 2	0	0	0	96			
56	6	1	99	1	2			
57	33				0			
58	4				98			
59	1	1	99	99	4			
60	8	0	0	0	2			-
61	28	0	0	0	0			
62	6				98			
63	- 1	1	2	1	98			
64	- 2	1	2	99	98			
65	1	1	98	1	2			
66	1	0	0	0	98			
67	1				96			
68	1	1	98	99	0			
69	1				98			
70	1	0	0	0	96			
71	7	2	0	1	2			
72	301				0			
73	1				99			
74	-75				98			
75	- 2	0	0	0	96			
76	11	2	0	99	2			
77	154				0			
78	8				98			
79	-12	-	_		96			
80	- 1	0	0	0	94			
81	- 1	2	0	97	0			
82	1				98			
83	- 3	2	1	1	0	1		
84	- 3	c .			98	ł		1
85	- 1	2	1	99	2			
86	- 1	0	0	0	0			
87	1				98			
88	- 1				96			
89	1	2	99	1	2			
90	4	0	0	0	0			

表 3.7(7) ϕ_2 の係数(つづき) $K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V)$

					1			
i	<i>K_i</i> (×10 ⁻⁶ rad)	a_i	b _i	C _i	d_i	ei	fi	h _i
91	1	2	99	99	2	0	0	0
92	2				0			
93	1	3	0	1	2			
94	20				0			
95	- 8	0	0	0	98			
96	1	3	0	99	2			
97	8				0			1
98	-1				98			
99	1	4	0	1	0			
100	1	0	0	0	98			
101	1	4	0	99	0			
102	0.4 <i>T</i>	0	1	1	98			
103	0.1 <i>T</i>	0	1	99	98			
104	0.1 <i>T</i>	1	1	1	98			
105	0.1 <i>T</i>	1	1	99	98			
106	-3	1	0	1	0	0	16	82
107	-3	1	0	99	0	0	16	82
108	- 40	0	0	1	0	1	0	0
109	1	0	0	1	0	1		
110	-2	1	0	1	0	1		
		0	0					
111	-1	0	0	1	0	99 00		
112	-2	1	0	99	0	99	L	

表 3.7(7) ϕ_2 の 係 数 (つづき) $K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V)$

表3.7(8) \$2の係数

i	$K_i \ (\times 10^{-6} \ rad)$	a_i	bi	Ci	di	ei	fi	hi
1	1	1	0	1	0	0	16	82
2	1	1	0	99	0	0	16	82
3	7	0	0	1	0	1	0	0

 $K_i \cos \left(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V \right)$

表3.7(9) Pの係数

	(++)		1	$+c_i t + a$	Y	1	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>
i	<u>K</u> i (註)	ai	bi	Ci	d_i	ei	fi	h _i	Ĵi	k _i
1	107	0	0	0	0	0	0	0	0	0
2	- 2858	0	0	0	1					
3	82488				2					ľ
4	6				3					
5	763	0	0	0	4					
6	9	0	0	0	6					
7	9	0	0	2	96					
8	- 6				97					
9	-307				98					
10	20	0	0	0	99					
11	- 35				0					
12	- 3	0	0	0	2					
13	6	0	1	98	0					
14	3				2				ļ	
15	3	0	1	0	94					
16	99	0	0	0	96					
17	3				97					
18	5604				98					
19	-12	0	0	0	99					
20	- 1169				0					
21	435	0	0	0	1					
22	- 877				2					
23	9				3					
24	-15				4					
25	- 20	0	1	2	98					
26	3	0	0	0	0					
27	9	0	2	0	96					
28	269				98					
29	-26				0					
30	- 9	0	0	0	2					
31	12	0	3	0	98					
32	-61	1	98	0	98					
33	58				0					
34	32				2					
35	- 9	1	99	98	0					
36	- 9	0	0	0	2					
37	- 29	1	99	0	96					
38	12				97					
39	- 660				98					
40	3369	0	0	0	0					
41	- 3	0	0	0	1					
42	672				2					
43	18				4					
44	- 32	1	0	98	98					
45	3				99			1		
				1	L	1	I	L	l	

 $K_i \cos \left(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i l' + h_i V + j_i J + k_i T \right)$

〔註〕 K_i の単位は ×(1.65929422×10⁻⁹)radとなる。

i	K _i	$\frac{K_i \cos{(a_i)}}{a_i}$	<i>b</i> _i	C,	di	ei	fi	h _i	ji	k _i
		<i>u</i> _i	~	-1				·		
46	- 2086				0	0	0	0	0	0
47	-140	0	0	0	2				1	
48	26	1	0	0	94				l	
49	1756				96					
50	-114	0	0	0	97					
51	100247	0	0	0	98					
52	35		_	_	99					
53	545008				0					
54	-318				1			1		
55	9017	0	0	0	2					
56	126	0	0	0	4					
57	3				6					
58	3	1	0	2	96					
59	-242				98					
60	3	0	0	0	99					
61	- 3				0					
62	- 3	1	1	98	98					
63	6	-			0					
64	3				2					
65	6	1	1	0	94					
	U	1	1		54					
66	196	0	0	0	96					-
67	- 6				97					
68	4219				98					
69	- 2773				0					
70	47	0	0	0	1					
71	-140	0	0	0	2				1	
72	- 3		Ů		4					
73	- 9	1	1	2	98					
74	12	1	2	0	96					
75	140	0	0	0	98					
76 77	- 32	0	0	0	0					
	3	1	3	0	98					
78	6	2	98	0	0				1	1
79	3				2					
80	- 12	2	99	0	96					
81	- 6	0	0	0	98					
82	- 9				99					
83	371				0					
84	61				2					
85	3	0	0	0	4					
86			^	00						
	- 41	2	0	98	. 98					
87	- 15				2					
88	32	2	0	0	94					
89	- 3				95					
90	1087	0	0	0	96					

表 3.7 (9) Pの 係数(つづき)

表 3.7 (9) Pの 係数(つづき)

,		$K_i \cos(a)$	<i>iii</i> + <i>Diii</i> -	$+c_iF+d_i$	$D - e_i \Sigma$	$f_i L + h_i$	i ^r + j _i , 1	- n _i I)		
i	K _i	<i>a</i> ,	bi	C _i	<i>d</i> _i	ei	fi	h _i	ji	k _i
91	-26	0	0	0	96	0	0	0	0	0
92	-888				98					
93	47				9 9					
94	29700				0					
95	-29	0	0	0	1					
		<u> </u>								
96 07	827	0	0	0	2					
97 09	15 00			0	4					
98 99	26 6	2 2	0 1	2 0	98 94					
100	93	0	0	0	96					
100		v	Ŭ	Ū	50					
101	56	0	0	0	98					
102	-304	_			0					
103	6				1					
104	-15				2					
105	6	2	2	0	96					
106	- 3	0	0	0	98					
107	- 3				0					
108	- 6	3	99	0	98					
109	35				0					
110	6	0	0	0	2				1	
111	- 3	2	0	98	96					
111 112	15	3 3	0	98 0	90 94					
112	13 20			Ū	96					
114	-348				98					
115	6	0	0	0	99					
116	1817	0	0	0	0			ł		
117	- 3				1					
118	70				2	-				
119	3				4					
120	- 3	3	0	2	98					
	2				00					
121	3	3	1	0	96 98					
122	-12 -29				98					
123 124	-29 - 3				2					
124	-38	4	0	0	98					
120										
126	117	0	0	0	0					
127	6				2		1			
128	- 3	5	0	0	98					
129	9			1	0	1				
130	2.19 <i>T</i>	0	1	0	2					
131	2.92 <i>T</i>	0	1	0	0		1			
132	-14.01 T	0	1	0	98					
133	6. 93 T	1	1	0	0				1	
134	-10.55 T	1	1	0	98					
135	-1.68 T	1	99	0	2	l				

 $K_i \cos(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V + j_i J + k_i T)$

		·								
i	K _i	a _i	b _i	c _i	d_i	ei	fi	h _i	j i	k _i
136	- 8. 42 T	1	99	0	0	0	0	0	0	0
137	1.65 <i>T</i>	1	99	0	98					
138	- 1.34 T	0	2	0	98					
139	- 1.09 <i>T</i>	0	1	0	1					
140	0.76 <i>T</i>	2	1	0	0					
141	-0.93 T	2	99	0	0					
142	- 0. 70 T	1	2	0	98					
143	17	0	0	0	0	0	16	82	0	0
144	- 3	0	0	0	2	0	16	82	0	0
145	5				2	0	99	0	1	0
146	- 5	0	0	0	2	0	2	98	0	0
147	2	1	0	0	0	0	0	0	0	20.2
148	- 2	0	0	0	0	0	0	0	0	-20°2
149	2						84	18	0	0
150	- 5	0	0	0	2	0	16	82	0	0
151	16	99	0	0	2	0	97	3	0	0
152	- 28				2	0	2	0	98	0
153	11				2	0	2	0	97	0
154	-17	2	0	0	0	0	16	82	0	0
155	3		-		98	0	16	82	0	0
								0.0		
156	- 2	3	0	0	0	0	16	82	0	0
157	5	1	0	0	98	0	16	82	0	0
158	3			1	2	1				
159	- 3				2	99			0	0
160	12	1	0	0	0	1	0	0	0	U
161	-12	1	0	0	0	99	0	0	0	0
L	l	l	L	L	L	1	I	1	L.,	

表 3.7 (9) Pの係数(つづき)

 $K_i \cos \left(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V + j_i J + k_i T \right)$

表3.7(10) Pの係数

		1 ()					2.			
i	K _i	a _i	bi	C _i	d_i	e i	fi	h _i	Ĵi	k _i
1	9	0	0	0	0	0	16	82	0	0
2	-2				2	0	16	82	0	0
3	-2				2	0	0	0	0	20. 2
4	$-2 \\ -2$				2	0	· 0	0	0	-20°2
5	-3	1	0	0	0	0	0	0	0	20.2
								1		
6	-3									-20°2
7	-3	0	0	0	2	0	16	82	0	0
8	2				98	0	0	0	0	20°.2
9	2				98	0	0	0	0	-20°2
10	-9	2	0	0	0	0	16	82	0	0
11	2				98	0	16	82	0	0
12	3	1	0	0	98	0	16	82	0	0
			L	1		I	[L	1	

 $K_i \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q + f_i L' + h_i V + j_i J + k_i T)$

3.2.3 太陽輻射圧による加速度

- ① ここでは衛星の形状を板状とし、その法線方向の 単位ベクトルは常に太陽中心を向いていると仮定し ている。(3.43)式で aspd は直接の輻射圧によっ て衛星に生じる摂動加速度,また aspr は地球の反 射光による輻射圧によって生じる加速度である。
- ② **r**.**r**,は地球中心から測った衛星と太陽の位置べ クトルであり, A,m は衛星の断面積および質量で ある。また Ts, Taは反射係数であるが,光の反射を 正反射(Specularly reflected radiation)と乱反 射(Diffusely reflected radiation)に分け、7s は前者,rd は後者の反射係数とする。
- ③ Pは直接光による輻射圧, P, は地球の反射光によ る輻射圧でそれぞれ次のようになる。(5)

$$P = P_o / |\mathbf{r}_d|^2 \qquad (3.47)$$

$$P_r = \frac{2}{\pi} P(\frac{R_E}{r})^2 \{ \tau_{dE} U(\theta'_T - \theta) \\ \times [I_6 - U(\theta - \theta_T) I_7] + \frac{3}{4} (\frac{1 - \tau_{dE}}{3 - S_1}) \\ \times [C_4 - S_1(C_5 \cos^2 \delta + C_6 \sin^2 \delta)] \} \qquad (3.48)$$

$$I_6 = \pi \cos \theta [\frac{1}{3} + \frac{1}{4} (\frac{R_E}{r}) - \frac{1}{15} (\frac{R_E}{r})^2 \\ + (\frac{1}{12} - \frac{5}{18\pi}) (\frac{R_E}{r})^3 - \frac{1}{105} (\frac{R_E}{r})^4] \qquad (3.49)$$

$$I_{\tau} = \frac{1}{3} \left(\theta \cos \theta - \sin \theta \right) + \frac{\pi}{16} \left(1 + 2 \cos \theta \right) \\ - 3 \cos^{2} \theta \right) \left(\frac{R_{E}}{r} \right) + \left(\left(\frac{107}{120} - \frac{\pi}{4} \right) \sin \theta \right) \\ - \frac{1}{15} \theta \cos \theta - \frac{8}{15} \sin \theta \cos^{2} \theta \right) \left(\frac{R_{E}}{r} \right)^{2} \\ + \left[\left(\frac{\pi}{24} - \frac{5}{36} \right) \cos \theta - \frac{\pi}{8} \cos^{2} \theta \right] \\ + \frac{5}{24} \pi \cos^{4} \theta \right] \left(\frac{R_{E}}{r} \right)^{3} \\ + \left[\left(\frac{11}{16} \pi - \frac{361}{168} \right) \sin \theta - \frac{1}{105} \theta \cos \theta \right] \\ - \frac{8}{21} \sin \theta \cos^{2} \theta + \frac{32}{35} \sin \theta \cos^{4} \theta \\ - \frac{1}{24} \frac{\cos^{2} \theta}{\sin \theta} \right] \left(\frac{R_{E}}{r} \right)^{4} \\ (3.50) \\ C_{4} = \frac{\pi}{2} + \left(\frac{7}{3} - \frac{3}{4} \pi \right) \left(\frac{R_{E}}{r} \right)^{2} \\ + \left(\frac{23}{16} \pi - \frac{27}{6} \right) \left(\frac{R_{E}}{r} \right)^{4} \\ C_{5} = -\frac{3}{8} \pi - \frac{2}{15} \pi \left(\frac{R_{E}}{r} \right) + \left(1 - \frac{17}{48} \pi \right) \\ \times \left(\frac{R_{E}}{r} \right)^{2} + \frac{4}{105} \pi \left(\frac{R_{E}}{r} \right)^{3} \\ C_{6} = \frac{\pi}{4} + \frac{4}{15} \pi \left(\frac{R_{E}}{r} \right) + \frac{\pi}{12} \left(\frac{R_{E}}{r} \right)^{2} \\ - \frac{8}{105} \pi \left(\frac{R_{E}}{r} \right)^{3} \\ + \left(\frac{4}{9} - \frac{17}{96} \pi \right) \left(\frac{R_{E}}{r} \right)^{4} \\ (3.51)$$

ここで用いられている定数は

- P。: 太陽定数(太陽から1AUのところでの輻 射エネルギー密度)で4.7×10⁻⁵dyn/cm²
- rdE: 地球のアルペドで 0.40
- S₁: Delayed IR (赤外線)の輻射係数で 0.40

としている。また θは地心から見て,太陽および衛 星の方向のなす角度で、 θ_T は衛星から見たとき、 地平線に terminator (地球の明るい部分と暗い部 分の境界)が入ってくる瞬間の 0の値で, 04 は terminator が地平線から消える瞬間の 0の値であ る。衛星の視界に地球の反射面が入っているのは

 $heta_T < heta < heta_T$ の範囲においてである。図 3.7からわ かるように $heta_T$ および $heta_T$ は次のようになる。

$$\theta_T = \sin^{-1}\left(\frac{R_E}{r}\right)$$

$$\theta'_T = \frac{\pi}{2} + \cos^{-1}\left(\frac{R_E}{r}\right)$$

$$(3.52)$$

そこで step 関数Uは次のように定義される。

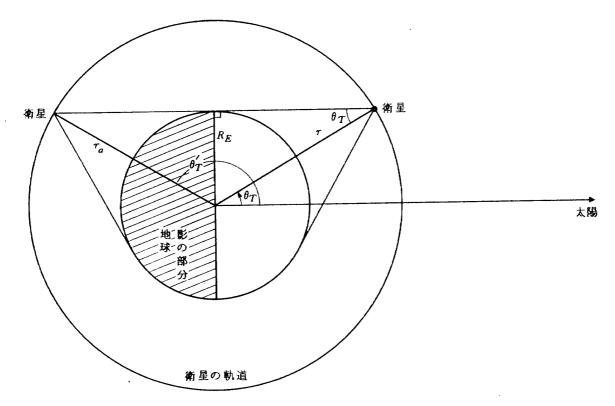
$$U(\theta - \theta_T) \begin{cases} = 1 & (\theta_T \le \theta) \\ = 0 & (\theta_T > \theta) \end{cases}$$
$$U(\theta_T' - \theta) \begin{cases} = 1 & (\theta_T' > \theta) \\ = 0 & (\theta_T' \le \theta) \end{cases}$$

以上は radial 成分であって、との外に transverse 成分もあるが、その効果は小さいので省略している。 また T_{de} の緯度によるちがいも特に考慮しないで一 定としている。

④ 地球による影は円筒状を仮定し,衛星が影に入っているかどうかの判定は次のように行う。(3.43)
 式における F(s) は影の関数で次のようにきめられる^(3,6)

$$F(s) = \begin{cases} 0 : 衛星が地球の影にあるとき。 \\ 1 : 衛星が地球の影にないとき。$$

- (i) $|\mathbf{r}_{SE} + \mathbf{r}| \le |\mathbf{r}_{SE}|$ の場合 F(s) = 1
- (ii) |r_{SE}+r|>|r_{SE}|の場合


$$D_{1} = 0 \mathcal{O} \geq 2 = F(S) = \begin{cases} 1 ; D_{1} > 0 \\ 0 ; D_{1} \leq 0 \end{cases}$$
$$D_{1} = 0 \mathcal{O} \geq 2 = F(S) = \{ 1 ; D_{2} \geq 0 \\ 0 ; D_{2} < 0 \end{cases}$$
$$C \subset \mathcal{C}$$
$$D_{1} = |\mathbf{r} \times \frac{\mathbf{r}_{SE}}{|\mathbf{r}_{SE}|} | - R_{E}$$
$$D_{2} = |(\mathbf{r} + \dot{\mathbf{r}}) \times \frac{\mathbf{r}_{SE}}{|\mathbf{r}_{SE}|} | - R_{E}$$

ここで \mathbf{r}_{SE} は太陽中心から測った地球の位置ベクト ルで $\mathbf{r}_{SE} = -\mathbf{r}_1$ となる。また図3.8,3.9からわ かるように $D_2 \ge 0$ のときは衛星が影を離れるとこ ろであり, $D_2 < 0$ の場合が衛星が影に入るところ である。

3.2.4 大気抵抗によって生じる加速度

$$\boldsymbol{a}_{D} = -\frac{1}{2} \rho C_{D} \left(\frac{A}{m}\right) V \boldsymbol{V} \qquad (3.53)$$

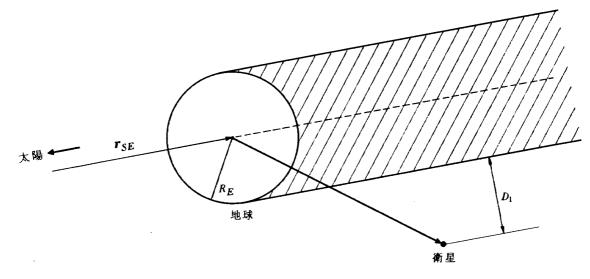
- ① A, mは衛星の断面積および質量, C_D は大気抵抗係数である。またV = |V| は地球固定座標系での衛星の速度である(大気は地球に全く一致して自転しているものとしている)。
- ② 大気抵抗による摂動加速度は衛星の高度が 90km

から1000kmの範囲で考慮する。

- ③ ρ は大気密度でJacchia 71年モデルによって求め られるが、その概要は図3.10のようになる。基本テ ーブルの内容は基本密度 ρ_B とへりウム(He)の数 密度(Number Density) d_{He} を大気外圏温度(Exospheric Temperature) T_{∞} と高度の関数として与 えたもので、その常用対数をとった値($\log_{10} \rho_B$, $\log_{10} d_3$) を表3.7、3.8にそれぞれ示す。これ らの値の求め方については別の報告で示す予定なの てここでは省略する。
- ④ pを求めるのに必要な計算を以下に示す。
- (i) 大気外圏温度 T_∞の計算

$$T_{\infty} = T_{\ell} + \Delta T_{\infty}$$
(3.54)
$$T_{\ell} = T_{N} \left\{ 1 + \left(\frac{T_{D} - T_{N}}{T_{N}} \right) \cos^{3} \frac{\tau}{2} \right\}$$
(3.55)

$$\Delta T_{\infty} = 14^{\circ} K_{p} + 0.^{\circ} 02 \exp(K_{p}) \qquad (3.56)$$
(高度: 90 ≤ h < 200 km のとき)


$$\Delta T_{\infty} = 28^{\circ} K_{p} + 0.^{\circ} 03 \exp(K_{p}) \qquad (3.57)$$
(高度: 200 ≤ h ≤ 1000 km のとき)

ここで T_l は日周変化, ΔT_{∞} は地磁気活動による変 化で, K_p は地磁気変化の指標 (3-hour geomagnetic planetary index)である。 ΔT_{∞} の変化は K_p の変化に対して6,7 時間の時間遅れがある。(3: 54)式の右辺には次の各値を代入する。

$$T_{D} = T_{C} (1 + 0.3 \cos^{2 \cdot 2} \eta)$$

$$T_{N} = T_{C} (1 + 0.3 \sin^{2 \cdot 2} \theta)$$

$$T_{C} = 379^{\circ} + 3^{\circ} 24 \overline{F}_{10.7} + 1^{\circ} 3 (F_{10.7} - \overline{F}_{10.7})$$

(3.59)

🖾 3.8

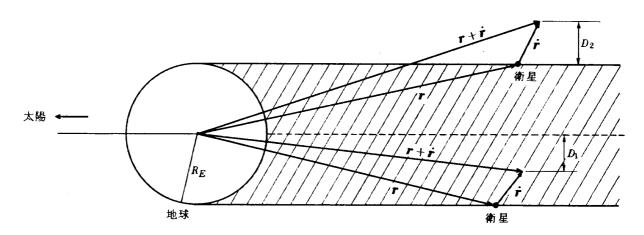


図 3.9

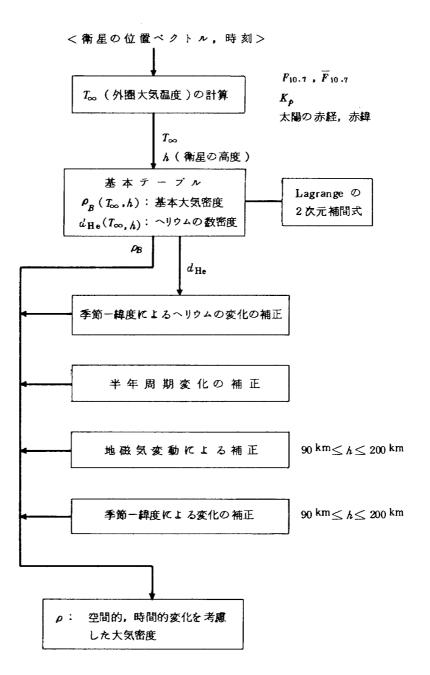


図 3.10 Jacchia 71 モデルによる大気密度

η	$= \delta - \delta_1 / 2$ = $\delta + \delta_1 / 2$	(3.60)
θ	$= \delta + \delta_1 / 2^{-1}$	(3.00)
τ	$= H - 37^{\circ} + 6^{\circ} \sin(H + 43^{\circ})$	(3.61)
H	$= \alpha - \alpha_1$	(3.62)

ここで T_D , T_N はそれぞれ昼間最高温度, 夜間最低 温度で, T_C は太陽活動(EUV 放射)による変化, $F_{10.7}$ は 10.7 cm波長の solar fluxの指標で $\overline{F}_{10.7}$ は 90日間の平均である。また α , δ および α_1 , δ_1 は それぞれ衛星と太陽の赤経, 赤緯である。以上のよ うにして求まった T_∞ および衛星の高度 h から 2 次 元の Lagrange 補間公式(共通 $n - + \nu$ 参照)によ って ρ_B および d_{He}を求める。 (ii) 基本密度 ρ_Bの補正

衛星の高度:
$$90 \le h < 200 \text{ km}$$

 $\rho = \rho_B \cdot 10^{(\epsilon_g + \epsilon_{sl} + \epsilon_s)} + \Delta \rho$ (3.63)
衛星の高度: $200 \le h \le 1000 \text{ km}$
 $\rho = \rho_B \cdot 10^{\epsilon_s} + \Delta \rho$ (3.64)

 ρ が求めたい大気密度で,

項

ε_g: 地磁気活動による変動の補正項
 ε_{sl}: 季節-緯度による低温度圏の変化の補正

はそれぞれ次のように与えられる。

$$\varepsilon_{g} = 0.012 K_{p} + 1.2 \times 10^{-5} \exp(K_{p})$$
(3.65)

$$\varepsilon_{s_{I}} = S \frac{\delta}{|\delta|} P \sin^{2} \delta$$
(3.66)

$$S = 0.014 (h - 90) \exp[-0.0013 (h - 90)^{2}]$$

$$P = \sin(2\pi\phi + 1.72)$$

$$\phi = (MJD - 36204) / 365.2422$$
(3.67)

$$\varepsilon_{s} = f(h) \cdot g(t)$$
(3.68)

$$f(h) = (5.876 \times 10^{-7} h^{2 \cdot 331} + 0.06328)$$

$$\times \exp[-2.868 \times 10^{-3} h]$$
(3.69)

$$g(t) = 0.02835 + 0.3817 (1 + 0.4671 \sin(2\pi\tau + 4.137)) \times \sin(4\pi\tau + 4.259)$$
(3.70)

$$\tau = \phi + 0.09544 \{ (\frac{1}{2} + \frac{1}{2} \sin(2\pi\phi + 6.035))^{1.650} - \frac{1}{2} \}$$
(3.71)

$$\Delta\rho = M_{He} \cdot \Delta d_{He}$$
(3.72)

$$\Delta d_{He} = d_{He} (10^{6}He - 1)$$
(3.73)

$$\varepsilon_{He} = 0.65 | \frac{\delta_{1}}{\epsilon} | (\sin^{3}(\frac{\pi}{4} - \frac{\delta}{2} \frac{\delta_{1}}{|\delta_{1}|}) - \sin^{3}(\frac{\pi}{4})$$
(3.74)

(3.72)式でM_{He}はヘリウムの分子量で $M_{\rm He} = 4.0026$ (g/mole) (3.74)式の € は黄道面傾斜角で $\epsilon = 23^{\circ}.44$ でそれぞれ与えられる。また(3.69)式における高 度ムはkmを単位とする。 3.2.5 制御力によって生じる加速度 制御推力の大きさによって次の三つに場合を分ける。 1 Impulsive thrust : 推力が 10³ Newton 以上 2. Medium thrust : 推力が 10 Newton 以上 3. Low thrust : 推力が 0.1 ~ 1 Newton さらに接線方向(速度ベクトル方向)に推力を加える 場合を特に考慮している。図 3.11に各推力形式に対応し た入力および数値積分の取りあつかいを示した。そこで 一般の制御力というのは任意の方向に加えられる制御力

を意味する。

3.2.5.1 Impulsive thrust

(1) 一般の制御力の場合

$\boldsymbol{r}_{t+} = \boldsymbol{r}_{t-} + \frac{1}{2} \Delta \boldsymbol{V} \cdot \boldsymbol{\delta} t$	(3.75)
$\dot{\boldsymbol{r}}_{t+}=\dot{\boldsymbol{r}}_{t-}+\boldsymbol{\varDelta}\boldsymbol{V}$	(3.76)
$m_{i} + = m_{i} - \Delta m$	(3.77)

① 入力として必要なのは

▲V: Impulsive な速度増分ペクトル

Am : 燃料消費にともなう質量減少

δt: 推力付加時間

である。

推力形式	入力	形式	運動方程式の数値積分
12757074	一般の制御力	接線方向の制御力	
Impulsive Thrust	dV : 速度増分(ペクトル) dm: 質量減少 δt: 推力付加時間	ΔV : 速度増分(スカラー) Δm: 質量減少 δt: 推力付加時間	推力付加以前と同じステップサイ ズんで積分を再スタートさせる。
Medium Thrust	F _c : 推力(ベクトル) [•] n: 質量減少率 h _c : 指定ステップサイズ	F _c : 推力(スカラー) [•] n : 質量減少率 ^h c : 指定ステップサイズ	推力付加中は指定したステップサ イズん。で積分し、付加終了後、付 加以前のステップサイズんで積分 を再スタートさせる。
Low Thrust	F _c : 推力(ベクトル) ^元 : 質量減少率	F _c : 推力(スカラー) [•] n : 質量減少率	ステップサイズは特に変えない。

$500^\circ \leq T_\infty \leq 950^\circ$)
$(90 \text{ km} \le \hbar \le 1000 \text{ km})$
基本密度 PB(
3.8 (1)

表

•

500.0 550.0
0.9
8.0205 -8.6205 -8.6206 -8.0
<u>8.1005 -8.7006 -8.7008 -8.70</u>
8.4349 -8.4402 -8.9405 -8
-9.0983 -9.0988
9.2543 -9.2551 -9
-9.4090 -9.4099 -9
-9.2616 -9.5626 -9
-9.7116 -9.7125 -9
-9.4583 -9.6590 -9
0.0009 -10.0011 -10.0013
-10.3379 -10.3361
12 -10.6424 -10.6374
38 -10.7132 -10.9040
-11.1515 -11.1
26 -11.3607 -11.3421
35 -11. 5459 -11.5225
+56 -11.7121 -11.6438
• 9031 -11.8636 -11.8305
-12.0037 -11.9656
5 -12.1348 -12.091
2.4399 -12.3763 -12.3231
<u> 12.0719 -12.5966 -12.5336 -1</u>
2+8874 -12.8009 -12.7283 -1
• 0900 -12.9924 -12.9107 -1
3.2821 -13.1/37 -13.0828 -1
3.4657 -13.3466 -13.2467 -1
13.6425 -13.5125 -13.4035 -1
• U136 -13.6726 -13.5246 -1
13,9606 -13.6281 -13,7008 -1
6 -13.9797 -13.8430 -
4.3036 -14.1280 -13.9818 -
14.4609 -14.2735 -14.1177 -1
• • 159 - 14.4167 - 14.2511 -
14.7689 - 14.2579 - 14.3825
-14.6972 -14.5120 -
15.0693 -14.0349 -14.6399 -
2167 -14.9710 -14.7662 -
3022 -15.1056 -14.8912 -
5.0056 -15.2387 -15.0149 -

369.0 -15.6467 -15.3101 370.0 -15.7251 -15.3101 370.0 -15.7251 -15.7293 390.0 -16.0525 -15.7294 390.0 -16.0525 -15.7294 400.0 -16.0525 -15.7294 400.0 -16.0525 -15.7294 420.0 -16.0523 -16.151 420.0 -16.0223 -16.151 420.0 -16.0223 -16.151 420.0 -16.0223 -16.7263 420.0 -16.7119 -16.7263 590.0 -16.7119 -16.7263 590.0 -16.7692 -16.9437 590.0 -16.719 -16.72637 590.0 -16.9957 -17.0675 580.0 -16.9957 -17.0675 580.0 -16.9957 -17.0576 580.0 -16.9957 -17.0576 580.0 -16.9957 -17.125370 580.0 -17.0347 -17.25662	-15,3701 -15,279 -15,279 -15,279 -15,753 -16,151 -16,3396 -16,340 -16,943 -16,9433 -17,017 -17,0575 -17,0575 -17,0575	137				••••			01004
-15.951 -15.951 -15.9506 -16.4218 -16.4218 -16.4218 -16.4218 -16.4218 -16.4218 -16.923 -16.923 -16.923 -16.923 -16.923 -16.923 -17.0115	5.4998 5.6276 5.75276 5.7534 5.7549 6.3349 6.7563 6.7563 6.7563 7.0111 7.0575	-15.2584 -15.2584 -15.4464	-14.9400	-14.7713	-14.6257	-14.4987	-14.3872	-14.2886	-14.2006
-16.0225 -16.0225 -16.0225 -16.4218 -16.0402 -16.049 -16.049 -16.049 -16.049 -16.049 -16.0451 -16.0451 -16.0451 -16.0451 -16.0453 -16.0479 -17.0115	6.151 6.1151 6.1151 6.3396 6.3396 6.7340 6.7340 6.8600 6.8600 7.0011 7.0015	-15.444	-15.0533	-14.6776	-14,7259	5	4,477	-14,3746	
-16,1006 -16,4206 -16,4206 -16,4208 -16,9402 -16,9402 -16,949 -16,949 -16,949 -16,945 -16,9559 -16,9559 -16,9553 -16,9553 -17,0115	6.151 6.1396 6.1396 6.73469 6.7563 6.8600 6.8600 6.9433 7.0111 7.0575	3	+201.01-	-14.4529	-14.0251	-14,6875	566	4 4 5	-14.3644
-16.4218 -16.4218 -16.923 -16.923 -16.923 -16.923 -16.923 -16.923 -16.923 -16.925 -16.9259 -16.9259 -16.9259 -17.0115	6.1151 6.3196 6.3196 6.7940 6.7563 6.8600 6.8600 7.0111 7.0075		+9/2·CT-	*15.Us72	-14.4234	-14,7806	-14,6551		.445
-16,6402 -16,6402 -16,6402 -16,6497 -16,649 -16,749 -16,9451 -16,9259 -16,9259 -16,9259 -17,0115	6.1396 6.7369 6.7363 6.8600 6.8600 6.9433 7.0111		2002-21-	-12.1402	6020.01-	-14.8728	4.742	-14.6274	
-16,0323 -16,0323 -16,0971 -16,049 -16,0491 -16,0780 -16,079 -16,9259 -16,9259 -16,9874 -17,0115	6, 2469 6, 7940 6, 7563 6, 8600 6, 9433 7, 0111 7, 0575	2149-01-	-15,6020	-15.3942	-15.2133	-15,0549	-14,9155	-14.7920	
-16,9971 -16,9971 -16,9971 -16,9750 -16,9750 -16,9759 -16,9759 -16,9259 -16,9259 -16,9259 -16,9259 -17,0115	6.7340 6.7340 6.8600 6.9433 7.0111 7.0575	-10-000	-12.0122	1666.01-	-15,4022	-15,2340	290-	-14.4540	626
-16.7119 -16.7649 -16.8082 -16.8082 -16.8750 -16.9359 -16.9359 -16.9874 -17.0115	6.7563 6.8600 6.9433 7.0111 7.0675	-10,2091	-16,0154	-12,7883	-15, 2874	-15,4100	-15,2529	-15,1134	4,988
-16,7649 -16,6083 -16,6087 -16,9451 -16,9359 -16,9359 -16,9359 -16,9359 -16,9359 -16,9359 -16,9359 -17,0115 -17,0347	6.8600 6.9433 7.0111 7.0575	ØJO	-16.3526	-16.1552	-15, 4431	-12,7517	578	-15,2704	51.93
- 16.6082 - 16.0451 - 16.0451 - 16.9359 - 16.9359 - 16.9359 - 16.9359 - 16.9357 - 17.0115 - 17.0347	6.9433 7.0111 7.0675	-16.7517	-16.5498	-16.3275	-16.1132	-15 0140	116 -276	- 12	
-16.0451 -16.0750 -16.9359 -16.9359 -16.9359 -16.9823 -17.0115 -17.0347	7.0675	6.8	-16.7015	1.4	-16.2762	014.0749	-15 K003	2902 91-	610+°CT-
-16, e7 & 0 -16, y 959 -16, y 623 -16, y 623 -15, y 874 -17, 0115 -17, 0347	7.0075	ው	-16.0368	-16.0391	-16.4311	-16.2301	-16,0430	-15 275	-15,7120
-16, y079 -16, y359 -16, y623 -16, y874 -17, U115 -17, U347		-17.0741	-16.9554	-16.7760	-16.5765	-16.3777	-16.1890	0710171-	
-16.4929 -16.9023 -16.9874 -17.0115 -17.0347	-17.1160	0007.71-	-17.0584	-16.8392	-16.7116	-16.5177		-16.1522	-15.0482
-16,9623 -16,9874 -17,0115 -17,0347	7.1587	-17.2150	-17.1474	-17.0088	-16,8353	-16.6492	6	-16.2859	-16,1194
-16.9874 -17.0115 -17.0347	7.1974	-17,2720	-17,2249	-17.1056	-16,9475	-16.7714	-16.5908	-16.4144	-16.2467
-110.71- 740.71-	7.2330	-17.3229	-17.2329	-17.1909	-17.0484	-16.8838	-16.7103	-16.5370	16.3696
-17.0347	7.2662	-17,3693	-17.3535	-17.2664	-17.1385	-16,9864	-16.8216	-16.6531	-16.4875
	2.2576	-17.4123	-17.4084	-17.3337	-17.2189	2	-16.9243	-16.7623	-16.6000
-17.0571 -1	1.3273	-17.4526	-17.4589	-17.3445	-17 2410				
0768	1.3557	-17.4907	-17.5061	-17 4501	12		-0TO - T-	-00	-10,1065
	-17.3828	-17.5269	-17,5507	-17.5017	-17.4152	11.3067	-1/,1046	-10,9364	-16,8068
	1.4089	-17.5616	-17,5931	-17.2501	0	-17.3688	-17.2530	-17.1248	-16.0475
800.0 -17.1404 -1	7.4339	-17,5949	-17.0338	-17.2460	0	-17.4257	-17.3175	-17.1976	-17,0680
	7.4580	•	-17.6730	-17.6599	900.1	-17.4784	-17.3766	-17.2642	-17.1423
	. 4012	-0-	-17.7108	-17.6023	-17.6139	-17.5277	-17.4310	-17.3252	-17.2105
	1.2026	9	-17.7475	-17.7232	7 . 6 5 7	ŝ		-17.3814	-17.2732
- 1917	6626.1	1-1	-17.7630	-17,7630	7.099	- 0	-17.5290	-17.4534	-17.3310
11- 146241-	6946.		-17.6175	-17.6018	-17.7405	-17.6608	-17,5738	-17.4819	-17,3845
-17.2518	1,5666	-17,7698	-17,8509	-17.8397	-17.703	-17,7018	-17.6165	-17.5274	-17.4340
-17.2692	. 2063	-17.7454	-17.6034	-17.8767	-17,6192	-17.7416	-17.4574	-17.5704	212.4906
<u>س</u> د	-17.6055	-17.8201	-17.9150	7.7	-17.0573	-17,7804	-17.6969	-17,6114	-17,5243
		-1 (.8440	-11.426	11.948	-17.8447	-17.8184	-17,7352	-17.6508	-17.5656
667511-	. 04/4	-11,00010	-17.9753	.982	5164.74-	-17,8556	-17,7726	-17,6881	-17.6050

炭 3.8(2) 基本密度 μ_B(90 km ≤ h ≤ 1000 km , 500° ≤ T∞ ≤ 950°) (しびき)

42

航空宇宙技術研究所資料 359 号

(つつき)
$500^\circ \leq T_\infty \leq 950^\circ$)
基本密度
3. 8.(3)

裠

	1000.0	1050.0	1100.0	1150.0	1200.0	1220.0	1300,0	1350,0	1400.0	1450.0
90.06	-8.409	-8.4609	-8,4609	-8,4609	-8.4609	-8,4009	-8,4609	-8.4609	-8.4609	
	-8.6207	8.6	8,6	8	8.62	8.620	-8.6208	-8,6208	-8.0209	-8,6209
94.0	-8.7415	[9]	8.1	-8.761/	-8.(01/			670) 0-		•
96,0	-8.9422	+2+6 . R-	5. 0	-8,9426	8244.8	6775°81	0046.8-	1040.0		•
0, 96	-2101.6-	5	٦	-9.1024	-9.1026	2	-9.1030	2501.2-		-
100.0	-9.2591	-9.2595	9.2	-9.2601	-9.2604	<u>م</u>	-9,2610	-9,2613	.261	•
102.0	-9.4148	\$7.7	7	-9.4161	416	-4	-9.4171	-9.4175	744	-
104.0	-9.2679	. 568	ŝ	-9.5093	5	-9.5701	-9.5704	-9,5708	9.571	.571
106.0	-9,7175	-9,7180	9.7	-9.7188	5	9.71	.719	9.720	.720	2
104,0	-9,8027	D D	-9.8634	6	-9.0639	-9.8642	-9,8645	-9.8647	-9.8650	-9,8652
0.011	-10.002B	-10.0029	-10.0030	-10.0032	0.003	00.03	0.003	10	-10.0038	10
0 2 1 1	-10.3273	-10.3267	0.326	-10.3255	0.3		-10.3240	-10.3235	-10.3231	-10.3227
120.0	-10.6128	-10.6109	609	-10.6075	-10.6060	÷09.	0.6	10	-10.6009	5
125.0	-10.0598	-10.6564	658	-10.8505	-10.0478	0	-10.8430	-10.6408	-10, 8388	-10.8368
130.0	-11.0720	10	062	-11.0582	-11.0544)))	-11.0474	-11.0442	-11.0412	-11,0384
135.0		-11.2490	5	-11.2376	-11.2526		-11.2235	-11.2194	-11,2155	-11.2119
140.0	-11.4159	-11.4081	400	-11.3943	-11.3083	5	-11,3773	-11.3724	-11.3678	-11,3634
145.0	50	<u>_</u>	11.540	-11,5330	-11,5259	11.519	<u>_</u>	Ĵ	-11.5024	-11.4973
150.0	ę	674		-11.6570	-11.0491	۰.	-	-11.6287	-11.6227	-11.0171
5	1,80		17.8	-11,7693	-11.7605	11.752	٦	128	151	725
						1 1 2 2	370 11	8764	7058 II-	0408-11-
160.0	e!		700 • 1 1		700 1			_		
170.0	2.09	٠	2.06	5	2. 2		2,0235	-12.0146	-12.0064	1964 11-
180.0	2.264	2.2	2.230	21212	2.202	0 4 7 • 2 T	12.1 (40	-12.1001		
190,0	.416	ຕ. ຈ	2,376	-12,3598	-12,3445	2.530	8116,51	-12,3061	223	5.5
200.0	2.256	2.2	2.511	2.491	2.474	12.45	2.4439	-12.4306	874.	4.
210.0	2.605	2.6	2,635	2,014	2.594	12.5	,5601	\sim	164	12,51
220.0	2.009	2.7	247.2	2.728	2.706	12,65	2,668	199.	6.73	12.62
230.0	2.2	-12.8928	.803	-12, 8363	-12.0119	-12.7898		-12,7510		-1
240.0	13.036	3.0	2.967	2.938	2.411	12.00	2.865	845	2.826	12.00
250.0	.142	3.1	3,068	3,03	3.007	12.	.956	et –	616.	12,89
260.0	-13.2439	-13.2020	-13,1641	-13,1297	960.	-13,0698	.043	019	-12,4972	•
270.0	3.342	-13.2472	62.6	3.21	3.186	13.155	3.127	.101		.054
280.0			10	-13,3066	0.270	13.237	3,207			, 13
290.0	529	13.4	3.43	96.6	3.352	13,317	3,285	3.256	0	20
300.0	9.619	-13.5057	13.51	3.47	432	13.	3,361	.329	•	27
310.0	3.707	13.6	3.59	3.55	9.510	13.470	3.434	3,401	5	3.34
320.0	3. 793	13.73	3.67	3.63	686.6	13.544	3,506	3,471	6	2
330.0	677	3.815	3.75	3.70	3.659	13.616	3,576	3,539	5	3.47
340.0	-13.9001	13.09	-13.8356	-13.7817	-13.7324	3.00	-13,6453	-13,6067	13.	e.
350.0	4.041	3.473	3.91	3.05	5.003	13.756	3,712	, 672	3	5

1450,0	-13,6611	-13.7212	-13.7803	-13,6385	-13,6958	-14.0082	-14,1179	-14,2253	-14.3306	-14.4336	-14.5358	-14.6360	-14.7349	-14.8326	-14,9290	-15.0243	-15,1185	-15.2116	-15,3037	-15,3948	. 15.4640	 -15,5757 -15,6616	-15.7483	-15.8339	-15,4182	-16.0013	-16.0029	-16,1631	-16.2418	-16,3188	-16,3941	-16,4676	-16.6086
1400.0	-13.6975	-13.7591	-13.8197	-13.8794	-13.9382	-14.0536	-14.1663	-14.2767	-14.3849	-14.4910	-14.5961	-14.6994	-14.8()12	-14,9018	-15.0012	-15.0994	-15.1965	-15,2924	-15.3873	-15.4810	-15 5736	-17,007L	-15.8443	-15,9319	-16,0182	-16.1029	-16.1360	-16.2675	-16,3471	-16.4248	-16.5004	-16.5/39	-16.7139
1350.0	-13.7366	-13.7998	-13.8620	-13.9233	-13.9838	-14.1024	-14.2183	-14.3319	-14,4434	-14,5527	-14.6610	-14.7675	-14,8725	-14.9763	-15,0788	-15,1401	-15,2802	-15,3792	-15,4769	÷15,5735	15 / 40B	-15.0554	-15.9466	-16,0362	-16.1242	-16.2105	-16.2948	-16.3771	-16,4573	-16,5352	-16.6106	-16,6835	-16,8212
0,0061	-13,7787	-13.8437	-13,9076	-13.9707	-14.0329	-14.1549	-14.2743	-14,3914	-14.5063	-14,6191	-14,7309	-14.8409	-14,9494	-15.0566	-15,1624	-15.2671	-15,3704	-15.4725	-15,5733	-15,6728	15, 7708	-15,9623	-16.0556	-16,1471	-16,2366	-16.3240	-16,4091	-16,4918	-16,5720	-16.6494	-16,7239	-16,7955	-16,9294
1250.0	-13.0242	-13.6911	-13,9269	-14.0218	-14,0059	-14,2117	-14.3349	-14.4257	-14.5/44	-14.6410	-14.0066	-14.9203	-15.0325	-15,1433	-15,2528	-15,3610	-15.4078	-15,5/31	-15,6771	-15.7795	-15.4403	-10,7173	-16.1716	-16.2646	-16.3552	-16.4432	-16.2286	-16.61.10	-16,0904	-16.7665	-16.0393	-16.9086	-17.0369
1200.0	-13.0736	-13.4425	-14,0104	-14.0773	-14.1434	-14.2734	-14,4006	-14.2255	-14.0484	-14.1691	-14.8887	-15,0064	-15.1227	-15.2374	-15,JD08	-15.4626	-15.5730	-15.6818	-15.7689	-15.4942	-15.0077	-16-0790	-16.247	-16.3087	9414.91-	-16.5678	-16.022	-16.7337	-16.0112	-16.8850	-16.9350	-17.0212	-17,1422
1150.0	-13.9274	-13.9985	-14.0686	-14,1377	-14,2061	-14.3405	-14.4722	-14.6016	2	-14.8541	-14.9781	-15,1003	-15,2208	-15.3398	-15,4572	-15,5729	-15,6470	-12,1392	2906.či-	-16.0177	-16.1235	-10,2,01-	-16.4247	-16.5189	-16.6096	-16.6965	-16.7794	-16.6582	-16.9329	-17.0032	-17,0694	-17.1314	-17.2438
1100.0	-13,9861	-14.0597	-14.1322	-14.2038	-14.2745	-14,4138	-14.5505	-14.6848	コ		-15.0759	-15.2028	-15.3279	-15.4514	-15,5731	-15.6929	-15,6107	-15,9263	-16,0395	-16.1201	-16.2579	-16,4636	-16.5609	-16.6542	-16,7432	-16.8277	-16.9075	-16.9827		-17,1189	-17,1403	-17,2376	-11.3407
1050.0	-14, 4206	-14.1267	-14.2019	-14.2762	-14.3497	-14.4943	-14.0364	-14.1161	-14.9138	-15.0492	-15.1432	-15,1152	-15.4452	-15.5734	-15.6995	-15.0233	-15.9448	-16.0036	-16.1793	-16.2918	-16.4007	-16.000	-16.7019	-16.7928	-16.0786	-16.9591	-17.0343	-17.1044	-17,1696	-17.2301	-17.2062	-17.3384	-17.4326
1000.0	-14,1217	-14.2008	-14.2790	-14.3562	-14.4327	-14.5033	E16741=-	-14.0769	-15.0204	-15.1016	-1.5.013	-15-4387	-15,5739	-15,7069	-15.0374	-15,9652	-16.0901		-16,3290	-16.4423	0144.91-	-16.0346	-16,8453	-16.9319	-17.0127	-17.0877	-17.21.70	-17.2212	-17.2004		-17.3862	-17,4338	-17.5202
	350.0	370.0	340.0	390.0	4.00.0	420.0	440.0	460.0	434.0	50U,O	520.0	540.0	560,0	580.0	600,0	620.0	640.0	660,0	680.0	700.0	0.027	760.0	780.0	800,0	820.0	840.0	860.0	880.0	900,00	920.0	940.0	960,0	1000.0

表 3.8(4) 基本密度 $ho_{
m B}$ (90 km < h < 1000 km, 500° < T∞< 950°) (つづき)

(つづき)	
$500^\circ \le T_\infty \le 950^\circ$)	
km $\leq h \leq 1000$ km. 50	
基本密度	
装 3. 8 (5)	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1500.0	1550.0	1600.0	0.0001	1/00.0	1750.0	1800.0	1850.0	1900.0	1950.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0, 10	6	-á.409	୍	8.40	H . 40	9 t	8.460	-8.4609		-8.4409
$ \begin{array}{c} -11201 & -11201 & -11221 & -91.1221 & -91.1222 & -91.1223 & -91.1223 & -91.1223 & -91.1223 & -91.1223 & -91.1224 & -91.1223 & -91.1224 & -91.1223 & -91.1224 & -91.12224 & -91.12224 & -91.12224 & -91.12224 & -91.1224 & -91.12222 & -91.12222 & -91.12222 & -91.1224 & -91.12222 & -91.1222 & -91.12222 & -91.12222 & -91.12222 & -91.12222 & -91.12222 & -91.12222 & -91.12222 & -91.12222 & -91.12222 & -91.1222 & -91.1222 & -91.1222 & -91.1222 & -91.1222 & $	2,0	30	-8.6209	B	8.62	8.62	ა. მ	8.62	-8,6209	•	8.621
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0-41	201	-3.7021	-8,7421	9.1	8.762	9.7	8.78	-8.7623	.7d	.782
$ \begin{array}{c} -9.1037 & -9.1039 & -9.1043 & -9.1042 & -9.1026 & -9.1046 & -9.1046 & -9.1046 \\ -9.1717 & -9.1703 & -9.1231 & -9.1243 & -9.1213 & -9.1213 & -9.1213 & -9.1214 \\ -9.1711 & -9.1721 & -9.1214 & -9.1243 & -9.1221 & -9.1223 & -9.1224 \\ -9.1711 & -9.1721 & -9.1243 & -9.1243 & -0.1214 & -0.10144 & -0.10144 & -0.1214 \\ -9.1054 & -10.1014 & -10.0014 & -10.0014 & -10.0014 & -10.0014 & -10.0014 \\ -10.1237 & -10.1217 & -10.1217 & -10.1214 & -0.1214 & -0.1214 & -10.1223 & -9.1222 \\ -10.1237 & -10.1227 & -10.1214 & -10.1244 & -10.1244 & -10.10149 & -10.1222 \\ -10.1237 & -10.1227 & -10.1214 & -10.1244 & -10.1244 & -10.10149 & -10.1222 \\ -10.1237 & -10.1227 & -10.1214 & -10.1249 & -10.1222 & -10.1222 \\ -10.1237 & -10.1227 & -10.1214 & -10.1249 & -10.1222 & -10.1222 \\ -11.12097 & -11.12027 & -10.1214 & -10.1249 & -11.1241 & -11.1222 & -10.1222 \\ -11.12097 & -11.12027 & -11.1214 & -11.1249 & -11.1241 & -11.1222 & -10.1222 \\ -11.12097 & -11.12027 & -11.1214 & -11.1249 & -11.1241 & -11.1222 & -10.1222 \\ -11.12097 & -11.1204 & -11.1204 & -11.1241 & -11.1222 & -11.1241 & -11.1222 & -11.1241 \\ -11.12097 & -11.1200 & -11.1214 & -11.1201 & -11.1241 & -11.1222 & -11.1241 & -11.1222 & -11.1241 \\ -11.12097 & -11.1200 & -11.1214 & -11.1201 & -11.1242 & -11.1222 & -12.1214 & -12.1241 & -11$	0,0	Ð	-8.7435	8.94	8.5	5+2.	6.9	9	-8.9440	-8.9441	-8.9442
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8	-	-9,1039	91.19	ማ	401	-9,1045	4	-9.1047	-9.1049	-9.1050
$ \begin{array}{c} -9.4183 & -9.4126 & -9.4129 & -9.4129 & -9.4126 & -9.4126 & -9.4128 & -9.4218 & -0.4218 $	0,0	N.	-9.2022	62	J.	.262	-9.2030	-9,2632	-9.2634	-9.2636	-9.2638
-9.717 -9.712 -9.711 -9.711 -9.711 -9.711 -9.711 -9.711 -9.712 -9.711 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712 -9.712<	12.0	1	-9.4186	-9.4189	ON	-9.4194	-9,4196	-9.4198	-9.4201	-9.4203	5
$ \begin{array}{c} -9.1214 & -9.1213 & -9.1216 & -9.1219 & -9.1221 & -9.1225 & -9.1666 & -9.1666 \\ -9.16666 & -9.161200 & -11.1202 &$	0 4	2	-9.5720	-9.5723	ው	-9.5728	-9,5731	-9.5733	-9.5736	-9.738	574
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0	7	-9.7213	-9,7216	סי	C I	6	9.7	. 722	-9.7230	9.723
$\begin{array}{c} -10, .0640 & -10, .064 & -10, .0045 & -10, .0044 & -10, .0045 & -10, .0046 & -10, .0047 \\ -10, .2828 & -10, .3268 & -10, .348 & -10, .348 & -10, .3269 & -10, .3269 & -10, .3269 \\ -10, .2838 & -10, .3328 & -10, .3418 & -10, .3418 & -10, .3428 & -10, .3269 & -10, .3269 & -10, .3269 \\ -10, .2957 & -10, .3328 & -10, .3418 & -10, .5491 & -11, .0220 & -12, .0220 & -$	۹°0	65	-9.ub56	- 9.8058	on –	σ-	6	9.6	9,866	-9.8670	-9,8671
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	10.004	0	10.004	400	10.0	0.04	0.004	00.00	-10.0048	-10.0040
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5	225.0	-10.3220	0.321	321	-10.3211		0.500	-10.2202	-10.3200	
$ \begin{array}{c} -10.8350 & -10.8328 & -10.8316 & -10.8300 & -10.8284 & -10.8270 & -10.8255 & -70.8242 \\ -11.0357 & -11.0357 & -11.0308 & -11.0562 & -11.0270 & -11.0220 & -11.0864 \\ -11.0565 & -11.0553 & -11.0210 & -11.0562 & -11.016 & -11.0220 & -11.0865 \\ -11.01.4916 & -11.0068 & -11.0106 & -11.0169 & -11.0169 & -11.0689 & -11.0665 \\ -11.016 & -11.0068 & -11.006 & -11.016 & -11.016 & -11.0169 & -11.0696 & -11.0665 \\ -11.016 & -11.0068 & -11.006 & -11.016 & -11.016 & -11.006 & -11.006 \\ -11.016 & -11.006 & -11.006 & -11.006 & -11.016 & -11.006 & -11.006 & -11.006 \\ -11.016 & -11.006 & -11.006 & -11.006 & -11.006 & -11.006 & -11.006 & -11.006 \\ -11.016 & -11.006 & -11.006 & -11.006 & -11.006 & -11.006 & -11.006 \\ -12.006 & -12.006 & -12.006 & -12.003 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.006 & -12.006 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.006 & -12.006 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.006 & -12.007 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.006 & -12.007 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.006 & -12.006 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.007 & -12.006 \\ -12.006 & -12.006 & -12.007 & -12.007 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -12.000 & -1$	0.0	د . 0	-10.2478	396	595	-10.5950	1.	-10.5934	0.59	-10.5918	-10.5911
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0	D 1	-10.6332	-10.6216	830	-10.8284	0	-10.8255	0.82	-10.6228	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	Э.	-11.0332	-11,0308	028	-11.0262	-	-11,0220	12	-11.0181	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5	. Vғ	-11.2052	-11,2020	922.	-11,1962	1.193	1	188	•	-11.1432
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	935.	-11.3553	-11.3515	347	-11.3445	1.341	338	334	•	.329
$\begin{array}{c} -11.6118 & -11.0069 & -11.0120 & -11.0074 & -11.0037 & -11.0069 & -11.00696 & -11.00697 \\ -11.0016 & -11.7140 & -11.0168 & -11.7017 & -11.0169 & -11.0056 & -11.0057 & -11.00497 \\ -11.0016 & -12.01217 & -11.0161 & -11.0106 & -11.0060 & -11.0064 & -11.0050 & -11.00497 \\ -12.016 & -12.01217 & -12.01219 & -12.01219 & -12.01299 & -12.0299 & -12.0299 \\ -12.016 & -12.0056 & -12.0166 & -12.0166 & -12.016 & -12.0167 & -12.0169 & -12.0169 & -12.0169 \\ -12.006 & -12.0056 & -12.0166 & -12.01696 & -12.01696 & -12.0167 & -12.0199 & -12.0199 \\ -12.006 & -12.0066 & -12.0066 & -12.0099 & -12.0199 & -12.0191 \\ -12.006 & -12.0066 & -12.0109 & -12.0109 & -12.0109 & -12.0049 \\ -12.0076 & -12.0006 & -12.0099 & -12.0109 & -12.01698 & -12.0016 & -12.0016 \\ -12.0098 & -12.0006 & -12.0099 & -12.0109 & -12.0016 & -12.0016 \\ -12.0099 & -12.0109 & -12.0109 & -12.0109 & -12.0016 & -12.0016 \\ -12.01016 & -12.0109 & -12.0109 & -12.0109 & -12.0109 & -12.0016 \\ -12.01016 & -12.0109 & -12.0109 & -12.0109 & -12.0108 & -12.0016 & -12.0016 \\ -13.0108 & -13.0108 & -13.0108 & -13.0099 & -13.0016 & -12.0016 & -12.0016 \\ -13.0108 & -13.0108 & -13.0108 & -13.0099 & -13.0016 & -13.0016 \\ -13.0108 & -13.0108 & -13.0099 & -13.0049 & -13.0049 & -13.0016 & -12.0016 \\ -13.0108 & -13.0108 & -13.0099 & -13.0049 & -13.0016 & -13.0016 \\ -13.0108 & -13.0108 & -13.0049 & -13.0049 & -13.0016 & -13.0016 \\ -13.0049 & -13.0108 & -13.0049 & -13.0049 & -13.0016 & -13.0016 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0016 & -13.0016 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0016 & -13.0016 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0046 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0046 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 \\ -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 & -13.0049 \\ -13.0049 & -13.0049 & -13.0049 & -13.004$	2-0-2	192	-11.4081	-11,4,6,37	419	-11.4/56	1.4/1	468	1.464	*	ົ
$ \begin{array}{c} -11.(192 -11.(196 -11.(066 -11.(195 -11.0949 -11.0949 -11.0969 -11.0950 \\ -11.91.(177 -11.0117 -11.0161 -11.09719 -12.0137 -12.01012 -12.01953 \\ -12.0126 -12.051 -12.0518 -12.0210 -12.0213 -12.0265 -12.0299 -12.0293 \\ -12.0166 -12.0966 -12.0773 -12.01696 -12.0293 -12.0266 -12.0299 -12.0293 \\ -12.0166 -12.0966 -12.0776 -12.07696 -12.0293 -12.0263 -12.0295 -12.0396 \\ -12.0166 -12.0966 -12.0770 -12.0197 -12.0293 -12.0263 \\ -12.0166 -12.0966 -12.0765 -12.0109 -12.0294 -12.0295 \\ -12.0166 -12.0966 -12.0100 -12.0109 -12.0294 -12.0295 \\ -12.0194 -12.0066 -12.0100 -12.0109 -12.0101 -12.0101 \\ -12.0104 -12.0501 -12.0109 -12.0109 -12.0101 -12.0101 \\ -12.0104 -12.006 -12.0109 -12.0109 -12.0109 -12.0101 \\ -12.0104 -12.0104 -12.0109 -12.0109 -12.0109 -12.01016 -12.0101 \\ -12.0104 -12.0104 -12.0104 -12.0109 -12.0109 -12.01016 -12.01016 \\ -12.0104 -12.01016 -12.0109 -12.0109 -12.0102 -12.01016 -12.01016 \\ -12.01016 -12.0101 -12.0109 -12.0109 -12.0109 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01019 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.0101 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.0101 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.0101 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.0101 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.0101 -12.0102 -12.01016 \\ -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 -12.01016 -12.01016 \\ -12.01016 -12.01016 -12.01016 \\ -12.0101$	0, 0,0	611	-11.0069	-11.6020	1.547	-11.5430	1.508	,584	11,580	91c.	1.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	-11. (140	11.708	1.703	11.09	11.094	689	11.685	.681	-11.6773
-11.9914 -11.974 -11.9719 -11.960 -11.9550 -11.9697 -12.4472 -12.4261 -12.4211 -12.4211 -12.4201 -12.4299 -12.4299 -12.4476 -12.456 -12.4756 -12.456 -12.4599 -12.4291 -12.4291 -12.4956 -12.4756 -12.4755 -12.4501 -12.4599 -12.4291 -12.4291 -12.4066 -12.4956 -12.4755 -12.4593 -12.4591 -12.4291 -12.4291 -12.5064 -12.4956 -12.4755 -12.4593 -12.4594 -12.4594 -12.4594 -12.4594 -12.5074 -12.4956 -12.4755 -12.4593 -12.4597 -12.4594 -12.4694 -12.4694 -12.4694 -12.4694 -12.4694 -12.4694 -12.4694 -12.4694 -12.4944 -12.4944 -12.4944 -12.4944 -12.4954	0'0	11.61	1.611	1.8	1.600	11.745	1.740	11.7457	-11.7810	-	-11.772
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	1.4	-11.9846	-11.9781	1.971	11.96	96	9550	-11.0497	11.9447	-11.9397
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-0	-	-12.1344	-1211211	2.120	2.11	.10	1012	-12.0953	12.0897	-12.0843
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	N.	-12.2071	-12,2588	2.251	-12.2431	2.2	2.2299	-12.2235	12.2173	-12,2113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	-12.3464	-12,3065	Ч	2.368	2.5	2.3	2,3451	-12,3380	12, 3312	-12,3247
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		-12.5066	2.495	ŝ	2.475	* ~	2 4 5	2.4494	-12,4416	12,4341	-12,4269
$\begin{array}{rclcrccccccccccccccccccccccccccccccccc$		-12.004	960-7	a 1	21213		2	2,5450	-12 1363	-	2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		-12, 1034	V - 0 0 V	- •	2,607	9 1 • •	5 ° 0 *	2,6332	-12.6237	12.01	-12,0061
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		52		<u> </u>	02172	961-5	2 - 2	2.7125	-12.2051	12.69	-12.6857
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	•	110.2	000.2	Ū.	050.2	110.2	2	N	2.1	2,17	م
-13.0343 -13.0450 -12.9970 -12.9970 -12.9970 -12.9952 -12.9352 -12.9352 -12.9352 -12.9872 -13.1081 -13.0875 -13.0681 -13.0499 -13.0329 -13.0417 -13.0654 -12.9672 -13.1073 -13.1573 -13.1266 -13.0500 -13.0674 -13.0500 -13.249 -13.1273 -13.1269 -13.0500 -13.0676 -13.0500 -13.249 -13.2267 -13.1621 -13.2050 -13.105 -13.1691 -13.3546 -13.22671 -13.2245 -13.2050 -13.1691 -13.3506 -13.2451 -13.2266 -13.2269 -13.2259 -13.3665 -13.2064 -13.2269 -13.2259 -13.2068 -13.23661 -13.4443 -13.2066 -13.2646 -13.2259 -13.2068 -13.2651 -13.4645 -13.2064 -13.2064 -13.2259 -13.3268 -13.3269 -13.4645 -13.2061 -13.2646 -13.3213 -13.3068 -13.3558 -13.2065 -13.4022 -13.3258 -13.3539 -13.3268 -13.3568 -13.2069 -13.4022 -13.4322 -13.3680 -13.3539 -13.2069 -13.4922 -13.4095 -13.3680	0.0	12.457	12.939	. 422	h	\mathbf{n}	12.6/8	2.86	-12,8534	2	.830
-13.1081 -13.0875 -13.0681 -13.0499 -13.0329 -13.0168 -13.0016 -12.9872 -13.1794 -13.1573 -13.1366 -13.0500 -13.0674 -13.0500 -13.2484 -13.2249 -13.1269 -13.050 -13.1691 -13.2494 -13.2249 -13.1269 -13.105 -13.2494 -13.2249 -13.2267 -13.1691 -13.2405 -13.22671 -13.2245 -13.2050 -13.1691 -13.3606 -13.2296 -13.2245 -13.2259 -13.2259 -13.3605 -13.2905 -13.2661 -13.2646 -13.2059 -13.2259 -13.4443 -13.2905 -13.2661 -13.2646 -13.2058 -13.2259 -13.4443 -13.2905 -13.2661 -13.3213 -13.2358 -13.2353 -13.2065 -13.4022 -13.3258 -13.3353 -13.3268 -13.3353 -13.2069 -13.4012 -13.3274 -13.3558 -13.3269 -13.3353 -13.2069 -13.4012 -13.3272 -13.4095 -13.3289 -13.3289	0,0	0.6	13.015	166.	2.900	2	12.449	2.935	-12,9218	Ň	2.697
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,0	-13.1081	3.087	068	3.049	ຕ.	13.016	3,001	-12,9872	2.973	2,960
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0	-13.1794	3.157	136	3.117	m	13.001	3.065	-13.0500	3,03	3.021
-13.2124 -13.2903 -13.2671 -13.2451 -13.2245 -13.2050 -13.1865 -13.1691 -13.3606 -13.3543 -13.3296 -13.3064 -13.2646 -13.2039 -13.2444 -13.2259 -13.4443 -13.4465 -13.4905 -13.3661 -12.3431 -13.3213 -13.3008 -13.2513 -13.5065 -13.4774 -13.4501 -13.4244 -13.4012 -13.3774 -13.3558 -13.3553 -13.5674 -13.2369 -13.5083 -13.4815 -13.4561 -43.4322 -13.4095 -13.3880	ں ہ	-13.2484	3.224	202	3.142	പ	13.144	3.126	-13,1105	-13.0449	3,080
-13.2606 -13.2543 -13.3296 -13.3064 -13.2646 -13.2039 -13.2644 -13.259 -13.4443 -13.4165 -13.4205 -13.3661 -13.3431 -13.3213 -13.3008 -13.2813 -13.5065 -13.4774 -13.4501 -13.4244 -13.4002 -13.3774 -13.3558 -13.3558 -13.5574 -13.2369 -13.5083 -13.4815 -13.4551 -13.4322 -13.4095 -13.3880		-13.3154	9.2.0	267	3.245	CD	13.205	3.186	3.169	-13.1525	136
-13.2413 -13.4402 -13.2802 -13.3661 -13.3431 -13.3213 -13.3008 -13.2813 -13.5065 -13.4774 -13.4501 -13.4244 -13.4002 -13.3774 -13.3558 -13.3553 -13.5674 -13.2369 -13.5083 -13.4815 -13.4561 -13.4322 -13.4095 -13.3680		-13.3806	99994	13 , 329	3,306	<u>د</u> اً:	13.203	3,244	3,225	-13.2084	3,19
-13,2062 -13,4064 -13,4201 -13,4244 -13,4002 -13,3774 -13,3558 -13,3353 -13,31 -13,2674 -13,2369 -13,5083 -13,4815 -13,4261 -13,4322 -13,4095 -13,3880 -13,36			0 + + 0	1, 1990	3,366	2	13.321	3,300	3.241	-13.2627	3.245
		-10.000	3.4.1	400	9.424	е́т.	13.377	13,355	3,335	13,31	3,297
	2.2		000.01	206	9.49	n!	3.432	406	3,368	13.367	348

1950,0		-13,4469		-13.5420		-13,5671 -13,7673	l	-13.9373	14.0191	-14,1003	-14.1794	-14,2573	-14.3339	-14.4094	-14.4838	-14.5572	-14.6297	-14.7014	-14,7722			-14.9401	-15.0480	-15.1152	-15,1818	-12,2477	-15,3130	-17,3,3777	-15.4417	-15,5052	-12,2680	-15,6302	-12,6918
1900.0	-13.4183	-13.4081	-13,5170	-13.5650	2200 67	-13.7445	-13.8821	-13.9678	-14.0512	-14.1339	-14.2147	-14,2941	-14.3723	-14.4494	-14.5254	-14.6004	-14-6744	-14.7476	-14.8200	710 41 -	0720047-	-14.7064	-15.1019	-15.1707	-15,2387	-15,3061	-15.3729	-15.4390	-15.5044	-15.5692	-15.6334	-15.6769	1841.61-
1850.0	-13.4397	-13.4904	-13.5402	-13,5891		-13,7314 -13,4230	-13. u124	-13.9998	-14,0849	-14.1693	2	-14,3328	-14.4127	-14,4914	-14.5691	-14.6457	-14.7215	-14.7963	-14,8703	<		0970°CT-	-15.1587	-15.2290	-15,2986	-15.3676	-15,4358	-15,5034	-15,5703	-15,6365	-15,7020	-15.7668	-15.8309
1800.0	-13,4622	-13,5139	-13,5646	-13.6145		-13,4530	-13.9442	-14.0334	-14,1203	-14,2065	-14.2907	-14.3736	-14.4552	-14,5357	-14.6151	-14.6935	-14.7710	-14,8476	-14.9233				-15.0145	-15.2905	-15,3617	-15,4323	-15,5021	-15.5712	-15,6396	-15.7072	-15,7742	-15.8403	-15,9056
0.0671	-13,4059	-13,5386	-13,5403	-13,6412	CT 20 CT 4	-13.7893 -13.0846	-13.4777	-14.0088	-14,1576	-14.2457	-14.3318	-14.4165	-14.5000	-14,5824	-14.6637	-14,7439	-14. 5233	-14.9017	-14, 4793	.16 (VE/1	1900.01-	-15 2070	-15 1817	-15.3554	-15.4283	-15.5005	-15,5/20	-15,6427	-15.7126	1101.21-	-15.8200	-15.4175	-15,9841
1700.0	-13.5109	-13.5647	-13.6175	-13.0094	-12.12	-13.6206	-14.0131	-14.1062	-14.1970	-14,2071	-14,3752	-14.4619	-14.5474	-14,6317	-14.7150	-14.7972	-14.0785	-14.5289	-15.0385			-10.1400	-15 3484	-15.429	-15.4987	-15,5726	-15.6457	-15.7140	-15,7895	-15.8601	-15,4298	-15,9985	-16.0664
1650.0	-13.5374	-13.5423	-13.6462	-13.6992	270101-	-13,853/ -13,853/	-14.0505	-14.1458	-14.2387	-14.3309	-14.4211	-14.5100	-14.5976	-14.6840	-14.7694	-14,6537	-14.9371	-15.0196	-15.1012		-12.1017	-10.2618	-15 407	-15.4965	-15,5731	-15.6488	-15,7236	-15,7976	-15.8706	-15.9426	-16.0137	-16.0837	-16,1527
1600.0	-13,5655	•	-13.6766	-13,7309	- + 0 / · C Y -	-13.6888	-14.0002	-14.1877	-14.2630	-14.3774	-14.4699	-14.5610	-14.6508	-14.7395	-14.8272	-14,9137	-14.9394	-15,0440	-15.1678		1022.41-	-15.3327	00707 31-	-15.5734	-15.6519	-15.7294	-15.8060	-15.8816	-15,9561	-16,0296	-16,1020	-16.1732	-16,2431
1520.0	-13.5953	-13.6526	-13.7090	-13.7645	י הרי	-13,9261		-14.2329	-14.3300	-14.4268	7120.41-	-14.0152	-14.1075	4.745	-14.0086	-14.9176	-15.0656	-15.1526	-15.2386		-17.323d	-10.4080	-15 -736		-15.7354	-15.0148	-15,8431	-15.9704	-16.0464	-16.1213	7	-16.2670	-16.3378
1506.0	-13.6271	171	-13.7+35	-13.8003	-13.0262	-13.4658		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-14.3401	-14.4795	517	-14.6731	-14.7079	-14.0016	3	-15,0457	-15.1361	-15.2256	-15,3141	•	-15.4016	-15.4482		-17.7417	5.8241	5.000	5.9054	6.0641	6.1416	-16.2176	-16.2422	-16.3652	-16.4365
	360.0	370.0	380.0	390.0	400,0	420.0			500.0	520.0	540.0	560.0	580.0	600.0	620.0	640.0	660.0	680.0	700.0		720.0	740.0	160.0		820.0	840.0	860.0	860.0	0,006	920.0	940.0	960,0	980.0

46

航空宇宙技術研究所資料 359 号

表 3.9(1) ヘリウム (He) O Number density d_{H_6} (90 km $\leq h \leq 1000$ km, $50^{\circ} \leq T_{\infty} \leq 950^{\circ}$)

	500.0	50.0	600.0	650.0	100.0	0.047	800.0	850.0	0.006	0.024
0,06	6.6457	8.6457	8.6457	8.6457	8,6457	8.6457	8.6457	8.6457	8.6457	8.6457
92,0	.48	8.4861	8+4861	8.4861	*	.486	• 4 8	.48	485	8,4859
94.0	8.3262	8.3260	8,3259	8.3258	7	8.3256	8.3255	8.3254	8.3253	8,3252
96.0	8.1068	8.1664	8,1661	8.1659	8.1656	8.1054	8,1652	8,1650	8,1648	8.1646
98.0	B. UU89	6 JU84	B.0078	8.0074	8.0070	8.0066	8,0062	8.0059	8.0056	200.
100.0	7,8531	7.8523	7,8516	7.8509	7,6503	7.8498	7,8493	•	7,8483	7,8479
102.0	7.8273	7.6261	7.5250	7.8240	7,6231	7.6222	7.8214	7.8207	, R	7.6194
104.0	7.0008	1.1991	7,7975	7,7961	7.7948	m.	7,7925	7,7914	~	7.7896
106.0	7,7136	7,77,3	7.7092	7.7674	7,7056	7.7640	7.7626	7.7612	7.7600	7.7588
108.0	~	7.1430	7,7404	7.7380	7.7358	~	7,7321	7.7304	7,7288	7.7274
110.0	7.7178	7.7143	7.7111	1	705	703	12	009.	7.6973	7.404.7
	7.6470	5.4		- 4		2	7.6240	7 4 2 1 3		7717 2
120.0	7.5786	7.5725	7.5671	25			3 V I	7 5470	7 5440	7 5.12
125.0	5	•	7.5016	١ - 4		7.4×70	7.4830	4024	7.4761	
130.0	7.4566	7.4495	7.4432	5.3	7.4.25	8 / 9 ·	7.4230	7.4201	7 4167	7 4135
	7.4160	0071 - 1	7.2026				7.3728	10414	7 3454	
140.0	7.3626	2456.7	7.3490	ገም	7.3379		7.3288] [7.3212	7.178
141.0	7.3246	7 1 1 7 7	7.3113		7.3002	10.1	7.2008		7.0400	
150.0	7.2906	7.2642	7.2731	1.2	7.2071	202	7.2576	7.2534	7.2495	7.2458
155.0	7.2597	•	7.2482	7.2428	7.2377	7.2328	7.2282	1 6	7.2199	7.2161
								4		
160.0	N	7.2260	7,2209	215	7.2110	7.2063	.20	7,1975	7.1934	7
170.0	٠	7.1751		167	7.1636	7,1594		7,1512	7.1472	
180.0	•	7,1286	-	12	.121	.118	.11	-	7.1074	7
190.0	7.0526	7.0849	C J	•09	0	٠	•	7,0750	7.0718	5
200,0	•1	7.0431	-	40.	• 1	•	• 0 4 4		7.0394	<u>. </u>
210.0	•	7.0027		.011	•	10.	,012	7,0109	7,0091	7,0070
220,0	6.9523	6, 9635	- 1	.976	•	•	,981	- 1	6.9606	. 97
30.	6.7108	. 925	6,9254	•	•	•	6,9526	3		• 95
240.0	6.6700	5	6,9004	606-	6.9166	6.9213	.924	200	6.9275	6.9277
250.0	6.6297	6.4205	6.8060	• 877	• 8 8 6	. 692	897	6,9003	6,9023	. 40
260.0	6,1400	6.8140	6, 8322	6.8461	6.8567	1 -	6.8706	6,8749	6.8780	6.8600
270.0	6.7506	6,7780	6.7989	39	6.8275	6,6371	6,8445	6,8501	6.8242	. 85
280,0	6,7117	6.7423	• 766	6.7844	.798	70.	8	•	.631	6,8349
290.0	616130	6,7069	6.7333	7	6,7705	.7	\sim	6.8018	۰ م	6.6131
300.0	6,6347	6.6719	-		.74	٢.	5	6,7783	~	6.7917
310.0	6.2465	6,6371	6.6690	69.	6,7147	5	٦	6.7550	6.7637	6,7706
320,0	6.2586	6.0025	6.6372	•	100.		-	6,7320	6,7418	•
	612210	6.2682	61.6056	5	6.6299	6797	9	6.2092	120	6,7292
340,0	6,4035	, JÚ4	6.5742	•••	5	ŝ.	6,6720	99	٩.	6,7089
350.0	6.4462	6,5000	612429	Ĵ.	6404.9	629	6463	6,6643	6.6776	616892

	0.066	600.0	650.0	700.0	0.027	800,0	850,0	0.006	950,0
0604.4	6.4562	6.5119	6.5489	1616.9	6.6041	•	6,6421	6,6565	6.6687 .
6.572	6.4325	024	6.5202	6.2225	6.2192	6.6014	6.6200	6.6356	• • •
	6.2789	6.4501		6.5260	6.5244	6,5781	6.5980	6,6149	6.6291
390,0 6.2985	6.3655	64195	6,4634	4	8624.9	6.5550	6.5762	6, 5942	6,6095
9	6.3323	6,3689		6.4734	6,5052	6,5319	6.5545	6.5737	6,2900
	6,2061	6,3262		6,4212	6.4265	6,4862	6.5114	6.5329	6,5513
0711.0 0.044	6.2004	612979	613234	6496.1	6.4081	6.4408	6.4686	6.4924	615130
	6,1351	6,2061		6.3181	6,JoU1	6,3958	6,4262	6.4523	6 • 4 7 4 9
ŝ	6,0703	6.1486		25	6,3125	6.3511	495.	412	6,4372
	6,0059	õ		6.2165	6,2053	6,3068	6.3424	6,3732	6662'9
5.0327	5.7418	6,0308	6.1044	6,1660		6,2626	6.3008	6.3338	.96
0 5.7628	5.4782	6.	်း	6,1160	6.1114	6.2183	2	.29	613256
5.0	5.8150	5,9145	5.	6.0663	-	6,1752	,218	• 5 5 •	, 2 8 8 2
580.0 5.6241	5,7521	\sim	94	.016	6.0789	6,1320	61178	6.2176	6.2523
5.5	ŝ	.79	9.9	•	6,0330	6.0890	6,1373	6,1794	6,2162
620.0 5.4870		5,7426	3	2	2	6.0462	6.0971	-	6.1802
	5	5,6660		٠	2 + 5 .	٠	6.0571	6.1036	6.1444
21.56.5		¢.	Ľ	24 20 10	-	기		•	6.1UB8
5.2444		5,5737 5,5161	5,6824 5,6310	5.7764	5,8023	5.9195 5.8777	5,9778 5,9385	6.0287 5.9916	6, U785 6, U383
720.0 5.1512	5,3222	5.4627	5.5400	5.6790	5.7634	5,8362	5,8994	5.9547	6,0033
5.045	5.2622	.40	5,5292	0		795	5.8606	.918	5,9686
· •	5.2025		5,4787	ŝ	5.6157	~	5,8220	.841	5.9340
4		5,2985	5,4285	3	5.0321	5,7131	5.7835	5.0452	5,8496
4		. 244	5.3785	*	5.5089	2	5.7454	. 609	5,8654
		5,1408	5.3289	\$	5.2458	\$	5.7074	. 773	5,6314
4		137	5.2795	- 1	5.5030	ว	5.6696	151	5, 7976
860.0 4.0969		+ D Q +	5.204	•	5.4605	Ĵ	5,6321	. 702	5,7640
4.633	4.8514	160.	5.1016	-1	5.4182	•	5,5947	.666	2
4.2103	4.7941		5	•	5.3761	4	ŝ	5.6318	69
0 4.5075	4.1370	4.9263		1915.2		17	.520	237	5,6643
940.0 4.4451	4.003	4,8743	-	5.1745			5.4839	562	-
री द भ	44	4.8225	4.9890 4.9415	5.1302	5.2012	50	5.4474	5.72. 5.4635	5.5988 5.5663

表 3.9(2) \sim リクム (He) O Number density d_{He} (90 km < h < 1000 km $\cdot 500^{\circ} < T_{\sim} < 960^{\circ}$) (

 航空宇宙技術研究所資料359号

1

density $d_{H_{\bullet}}$	500℃ T∞≤ 960°) (つづき)
〜リウム (He) ONumber	$(90 \text{ km} \le h \le 1000 \text{ km})$
表 3.9(3)	

	1000,0	0.0601	1100,0	1150.0	1200.0	0.0621	0.0061	0.0561	0.00.4T	010017
	4 . h 457	8.4457	8.6457	A.6457	R.6457	8.6457	8.6457	8.6457	8.0457	45
34.4	77000	6 4350	8 459	b 4	544	405	485	8.4858	8.4458	8
		0.10/) H 3051	0.000 B	•	8.3249			8,3248	8,3247	8,3247
24.0	0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	H. 1643	8.1642	1-	163	8.1638		8,1635	8,1634	8,1633
		2 + 0 + 4 Z	B.0045	00	8.0040	-		8.0035	8.0033	8,0031
0001	7.8475	7.4472	7.8468	1 *	7.8462	٩.	7,8456	7.8454	7.8451	7.8449
		7.8182	7.8177	20	7.5167			7.8155	7.6151	741817
104.0	7.7888	7.7880	7.7873	7.7466	7.1059	~	784	7.7842	7.7637	7,7832
	7.7578	7.7568	7.758	7	7.7541	<u>ξ</u>	.752	7,7518	7,7512	7.7505
106.0	7.7261	7.7248	7.7237		7.7215	•	7,7196	7,7188	7.7179	7,7171
0	4	604	7 2611	0	7.4486	617	646		684	7.6834
0.011			7760°1	n	7.6070	209		7.6027	60	7.6001
<u> </u>	o ,	2767 -		ŝŝ	7 5201	2			í	7.5219
				12	7.4409	0654 1	7.4571		7.4537	7.4521
0.021	1.3	7.4080	7.4055	15	7.4010	7.5490		345	7,3935	7,3918
		7.2564	00011	5	7.3493	7.3472	7,3452	646-	7,3416	2
	7.3147	7.3119	7.3092	7.3067	7.3044	7.3023	8	7.2983	7.2965	7,2947
	0910.1	7.2732	7.2704	5	\sim	7.2630	~	.258	7.2569	
150.0	7.2424	7.2393	7.2363	5	7.2310	7.2485	2	7,2241	7.2221	7,2201
155.0	7.2126	7,2093	7.2062	3	0	7.1479		551.	7.1910	
0 1 2 1	7.1050	7.1.25	7.1702	7.1762	6671.7	7.1706	7.1680	7,1655	7.1632	7,1610
0 02		7.1	7.1527	0	126	1		7,1178	7,1152	7,1127
	!-	2701	10	0	.086	6.3		.077	• 74	7.0721
190.0	7.0652	7.0619	7.0566	550.	10	10 1		7.0428	, 039	7,0371
0.002		7.0507	7.0276	.02	.021	18		1012	600.	7.0064
210.0	7,0046	7.0020	6.9992	946	665.	6.9906	6,9876	6,9847	6,4818	6 4 7 8 9
220.0	4.774	6.9753	6.9730	تر	702.	5		655	926.	6.9541
230.0	6.9517	6. 4502	6.9484	6.9463	ササペ・	4		6,9366	457.	6.5
240.0	6.9273	6.9264	50	6.9235	1220		5	<u>ה</u>	212.	on¦∶
250,0	6, 4038	505	6,9029	106.	. 500	20	5	6,8951	679.	•
260.0	6.8×12	6.4817	6.8816	.681	6.4403	1.1	.877	876		6.8724
270 O			9.00	.801	ЧĊ,	5	6.8592	153.	59.	4
280.0		12	× 30	841	.042	Υ.	.841	6,6405	6,4395	*
290.0	20	30	യ	.823	823	2	.824	8	• 62	6,8222
300.0	-	6.8000	1 30	6,8047	• • • •	20	, 807	6,8075	6.0072	6.8067
310.0	~	6.7606	~	.786	8 2	7	62	Ч	141	1161.9
320.0	61,7563	6.7616	6.7058	769	.77	6.1737	6.7751	6,7761	6.7767	6.7770
330.0	~	6.7428	~	151-	221.	7	57	2	162	4291.9
340.0	-	6.7242	~	.73	m	<u> </u>	5 - C -	6,7460	6 14 10	0 1 1 4 8 0
				1	•	ſ				

宇宙飛行体の汎用軌道解析用プログラム "STANPS"

	0.00.0	050.0	1100.0	1150.0	1200.0	1250,0	1300.0	1350,0	1400,0	1450,0
0 5.6600 6.6915 6.6175 6.6443 6.6443 6.6443 6.6443 6.6443 6.6443 6.65213 6.6432 6.65213 6.652314 6.6132 6.65213 6.65233 6.65233 6.65233 6.65233 6.65233 6.65233 6.65233 6.65233 6.65233 6.65333 6.65333 6.65333 6.65333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.63333 6.64435 6.64435 6.63333 6.64435 6.64435 6.64435 6.64435 6.64435 6.64435 6.64465 6.44435 6.44435 6.44435 6.44435 6.44435 6.44435 6.44435 6.44435 6.44455 6.44655 6.44655 6.64325 6.64655 6.44355 6.44655 6.44655 6.44655 6.12039 6.612 6.23641 6.23641 6.23641 6.23641 6.2365661 6.236561 6.236	9 6	.0275	6.6948	700	~	6.1103	6.7138	6.7168	6.7191	6.7211
0 $6_{10}212$ <	6600 6	. 6695	6,6775	.644	ŀΟ	9	669.	17	6.7052	6.7076
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6412 6	-01	616403	2941	୍ୟ	6.0796	9		.691	6.6943
0.0040 0.0140 0.0100 0.01200 0.0120 0.0120 <	225 6	. 0	6,6432	.651	3	.064	669		•	6.6811
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6040 6	.6160	6.6263	كلف	4	6.6495	6.6552	6.6601	6.0044	6.6680
0.72307 6.2461 6.5265 6.5112 6.4713 6.5112 6.4775 6.51395 6.51395 6.51395 6.51395 6.51395 6.52395 6.52395 6.52355	2672 6	908c.	6.5427	.603	. 612	679.	,626	•	6.6377	6.6422
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	307 6	.5461	6.5595	777	102.	6.2904	598		6.6113	6.6167
0 6.4232 6.4436 6.4416 6.4775 6.4465 6.4775 6.4465 6.4775 6.4465 6.4775 6.4775 6.4465 6.4775 6.4465 6.4775 6.4465 6.4775 6.4465 6.4465 6.4465 6.4465 6.4465 6.4465 6.4465 6.4465 6.33541 6.33554 6.4465 6.33554 6.4465 6.3101 6.33241 6.32534 6.4257 6.2561 6.23574 6.2361 6.23574 6.2261 6.23574 6.2261 6.2261 6.2257 6.2261 6.2257 6.2261	4-0-4-0 	Δ.	6,5265	.539	124.	, 561	51		2	•
0 6.4232 6.4436 6.4233 6.4165 6.4165 6.4165 6.4165 6.4165 6.4165 6.4165 6.4165 6.3456 6.23661 6.232661 6.23661 <t< td=""><td>287</td><td>4774</td><td>6.4439</td><td>805.</td><td>.521</td><td>6.5325</td><td>542</td><td>•</td><td>6.5594</td><td>6.5665</td></t<>	287	4774	6.4439	805.	.521	6.5325	542	•	6.5594	6.5665
0 6.3877 6.4098 6.4293 6.4465 6. 0 6.3226 6.3101 6.3431 6.3456 6. 0 6.2487 6.3101 6.3341 6.3456 6. 0 6.2487 6.2173 6.3341 6.3556 6. 0 6.2487 6.2173 6.3028 6.3255 6. 0 6.2487 6.2173 6.32467 6.2495 6. 0 6.2447 6.2473 6.3247 6.2295 6. 0 6.1496 6.1491 6.1794 6.2295 6. 0 6.1283 6.1491 6.1794 6.2794 6. 0 6.1481 6.1794 6.2794 6. 6.2765 0 6.0431 6.1893 6.1495 6. 6.2774 6.2707 6. 0 6.0433 6.1496 6.1495 6.2914 6.1207 6. 6.2914 6.1207 0 5.4504 6.1488 5.9493 5.9493 5.9493 5.9107 6.05207 6.00520 5.91207 </td <td>4232 6</td> <td>す</td> <td>.461</td> <td>774.</td> <td>• 4 4 1</td> <td>400.</td> <td>,515</td> <td>6,5252</td> <td>•</td> <td>6.5420</td>	4232 6	す	.461	774.	• 4 4 1	400.	,515	6,5252	•	6.5420
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 6	3	.429	• •	104.	4	6,4877	6.4986	6.5085	6112.9
0 6.3451 6.3451 6.3454 6.3254 6.3554 6.3554 0 6.2487 6.2173 6.3241 6.3255 6.3255 6.3255 6.3255 6.3255 6.3255 6.3255 6.3255 6.3255 6.3255 6.3255 6.3255 6.2367 6.2357 6.2367 6.2357 6.2367 6.2357 6.2357 6.2357 6.2367 6.2357 6.2357 6.2367 6.2357 6.2357 6.2367 6.2357 6.2367 6.2357 6.2367 6.1799 6.1799 6.1799 6.1207 6.2207 6.1207 6.2207 6.1207 6.2207 6.1207 6.2059 6.1207 6.2059 6.1207 6.10520 6.10520 5.99107 6.10520 5.91077 6.10520 5.9128 5.9128 5.9128 5.9128 5.9128 5.9128 5.1242 5.1242 5.1242 5.1242	26	÷163	720-		64.	447	ব	47	6.4433	6.4020
0 $6:2487$ $6:2173$ $6:3254$ $6:3255$ $6:2487$ $6:2216$ $6:2257$ $6:2276$ $6:2257$ $6:2276$ $6:2272$ $6:2276$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $6:2272$ $5:9272$ $6:2272$ $5:9272$ $6:2272$ $5:9272$ $6:2272$ $5:92722$ $5:92722$ $5:92722$ $5:9272$	3177 6	ŝ	• 365		.40	4	-	• •	6.4283	6.4688
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2831	1016	-	-	476.	-	6.4070		6.4335	6.4448
0 6.2447 6.2467 6.2457 6.2461 6.2457 6.2461 6.2467 6.2467 6.2461 6.2467 6.2467 6.2467 6.2467 6.2467 6.2467 6.2467 6.2467 6.2467 6.2467 6.2467 6.2467 6.2261 6.2267 6.261 6.2499 6.2497 6.2267 6.2207 6.20928 6.1280 6.1280 6.1280 6.1280 6.1280 6.1280 6.1207 6.2207 6.20928 6.10922 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10292 6.10272 6.102	2487	217	•	•	345	364	ື	9	6.4088	6.4210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6144	442	-	-	-	6.3366	6,3541	6.3700	6,3843	6.3974
0 6.1496 6.1461 6.299 6.2367 $6.$ 0 6.1129 6.1461 6.1794 6.2367 $6.$ 0 6.0793 6.1461 6.1784 6.2367 $6.$ 0 6.0793 6.162 6.1490 6.1784 6.2074 $6.$ 0 6.0763 6.0531 6.0888 6.1207 $6.$ 0 5.9478 5.9997 6.1252 $6.$ 0 5.9478 5.9973 6.0232 6.0358 6.0232 6.0358 6.0232 6.0358 6.0353 6.0353 6.0353 6.0353 6.0353 6.0353 6.0352	1404 6	2	•	٠	•	6.3094	•	6.3447	6,3600	6.3738
0 6.1129 6.1461 6.1794 6.2074 6.1784 6.1784 6.1784 6.1784 6.1784 6.1784 6.1784 6.1784 6.1784 6.12077 6.0988 6.12077 6.0988 6.12077 6.09282 6.10222 6.10222 6.10222 6.10222 6.10222 6.10222 6.10222 6.10232 5.17412 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.124232 5.12422 5.12422 5.124232 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422 5.12422	1466	1801	- 1	2	•1	6,2023	-	6.3196	6.3358	6.3505
0 6.0463 6.1462 6.1490 6.1784 $6.$ 0 6.0463 6.0346 6.1188 6.1495 $6.$ 0 6.0433 6.0531 6.0389 6.1207 $6.$ 0 5.9478 5.9293 6.02899 6.1207 $6.$ 0 5.9478 5.9293 6.0232 6.0238 $6.$ 0 5.9478 5.9293 6.0273 6.0238 $6.$ 0 5.9423 5.9293 6.02742 6.0273 6.02742 6.02742 6.02742 6.02742 6.02742 6.02742 6.02742 6.02742 5.7242 5.7242 5.7242 5.7242 5.7242 5.7242 5.02742 5.02742 5.02742 5.02742 5.02742	Q 671	140	•	?	٠	6.2254	6.2760	6.2947	6,3117	6.3273
0 6.0463 6.0846 6.188 6.1495 6. 0 6.0133 6.0518 6.0589 6.1207 6. 0 5.4478 5.4918 6.0589 6.1207 6. 0 5.4478 5.4918 6.0292 6.0438 6. 0 5.4478 5.4947 6.0292 6.0438 6. 0 5.4123 5.4948 5.9497 6.0475 6. 0 5.4123 5.4948 5.9411 5.9795 6. 0 5.419 5.9411 5.9793 6.0075 6. 0 5.419 5.918 5.918 5. 5.918 5. 0 5.413 5.9121 5.9218 5.9242 5. 0 5.1517 5.0178 5.8433 5.9242 5. 0 5.1718 5.8433 5.9242 5. 5.9242 5. 0 5.1748 5.8433 5.9244 5.9244 5. 5.9244 5. 0 5.1243 5.1748 5.8463 5.8423	6 (45	911	•	7	-1	6.2287	6,2503	6.2699	6.2878	6.3042
0 6.0133 6.0531 6.0688 6.1207 $6.$ 0 5.9478 5.9497 6.0292 6.0928 6.0028 6.0028 6.0028 6.0028 6.0028 6.0028 6.0028 6.0028 6.0028 6.0028 6.0284 6.0028 6.0284 6.0028 6.0284 6.0028 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284 6.0284	0463 6	0846	. 1	,149	.177	6.2021	6.2247	6.2453	6.2641	6.2413
0 5:4804 6:0248 6:0292 6:0222 6 0 5:4478 5:4997 6:0292 6:0538 6 0 5:4418 5:4998 5:9497 6:0255 6 0 5:4533 5:4298 5:9497 6:0255 6 0 5:4533 5:4298 5:9411 5:9795 6 0 5:4293 5:4234 5:9411 5:9795 6 0 5:4293 5:4374 5:9421 5:9248 5 0 5:727 5:4374 5:846 5:846 5:846 0 5:757 5:8246 5:846 5:846 5 0 5:723 5:8246 5:8246 5 5 0 5:723 5:8246 5:8246 5 5 0 5:7243 5:7134 5:7133 5 5 0 5:6299 5:7134 5 5 5 0 5:6299 5:7134 5 5 5	0133 6	0531	•	6.1207	.149	17	199	6.2208	240	6. 0585
0 5,9478 5,5907 6,0292 6,0638 6, 0 5,9493 5,9997 6,0355 6, 6,0355 6, 0 5,6030 5,9794 5,9941 5,9795 6,0355 6, 0 5,6190 5,4581 5,9411 5,9795 6, 6, 6,0455 6, 0 5,6190 5,4581 5,9411 5,9795 6,	9604	UZ18	9	6.0922	.122	6.1494		6,1965		6.2358
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9478	5407	•	6.U638	260 .	-	,148	6,1723	193	6.2133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	4248	2	6.0355	•	୍	.12	6.1482	6.1705	6.1909
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1626	016+		•	э.	1660.9	6,1243	6,1474	6,1686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		зi.	11/1		•	기	5	001.	6.1245	6.1464
No. 5.7357 5.8078 5.8033 5.9242 5.9 .0 5.7243 5.7779 5.8260 5.8694 5.9 .0 5.743 5.7786 5.7776 5.8423 5.9 .0 5.6620 5.7486 5.77976 5.8453 5.7 .0 5.6620 5.7186 5.7794 5.7844 5.7 .0 5.6631 5.7486 5.77413 5.7844 5.7 .0 5.6512 5.6892 5.7443 5.7844 5.7 .0 5.6035 5.6599 5.7134 5.7817 5.8	0140	0707	216.		184.	6.0202	6,0498	6,0769	6.1016	,124
0 5.7243 5.7779 5.626 5.694 5.9 0 5.7243 5.7779 5.626 5.694 5.9 0 5.620 5.7482 5.7745 5.6423 5.7 0 5.6620 5.7186 5.7694 5.7 0 5.6620 5.7186 5.7694 5.7 0 5.6621 5.7186 5.7743 5.7844 0 5.6912 5.6999 5.7134 5.7814			000		. 7 . 1	2	.025	. (53	6.0790	6,1025
0 5.7243 5.7779 5.6260 5.8694 5.9 0 5.6931 5.7482 5.7976 5.8423 5.8 0 5.6620 5.7186 5.7694 5.8153 5.8 0 5.6312 5.6892 5.7413 5.7884 5.8 0 5.6005 5.6599 5.7134 5.7617 5.8		5	408.		405.	э.	6.0011	.029	6.0564	.080
0 5.6931 5.7482 5.776 5.6423 5.8 0 5.620 5.7186 5.7694 5.8153 5.8 0 5.6312 5.6892 5.7413 5.7884 5.9 0 5.6005 5.6599 5.7134 5.7617 5.8	5	111	826	12	r.			6.0067	6.0340	50.
,0 5.6620 5.7186 5.7694 5.6153 5.6 0 5.6312 5.6892 5.7413 5.7884 5.8 0 5.6005 5.6599 5.7134 5.7617 5.8		7482	747	- ?	2	5.4194		5.9836		6,0375
0 5.7134 5.7134 5.764 5.76 5.7134 5.7617 5.8	~ ~	7186	769	-00		5.8446	5,9290	5,9606	5,4495	5
0 5.7134 5.7134 5.7617 5.8		0892	1	7	2	. 669	_	5,9377	.967	5.9948
	c con	6469	713	-	30	5.0453	5,8816	5.9149	5.9455	5,9736

表 3.9(4) ヘリウム(He)のNumber density d_{He} (90 $km \le \hbar \le 1000 km$, 500° $\le T_{\infty} \le 960^{\circ}$)(つうき

航空宇宙技術研究所資料 359 号

density $d_{H_{\Theta}}$	500℃1∞≤ 960℃) (つづき)
5) $\sim \eta \not \Rightarrow \Delta$ (He) \oslash Number	$(90 \text{ km} \le h \le 1000 \text{ km})$
表 3.9 (5)	

	1500.0	1550.0	1600,0	1650.0	1700.0	17>0.0	1600.0	1850.0	1900.0	1950,0
0.06	8.0457	8,0457	8.6457	8.6457	8.0457	8,6457	8.6457	8.6457	8.6457	8.6457
92.0	Č F 4	•	8.4858	Ǥħ.	8.4857	8.4857	485	8.4857	485	849
94,0		324	8,3245	8.3245	8.3245	8,3244	8.3244	8.3243	8.3243	8.3243
90.0	.163	.163	8,1031	6.1630	8.1629	8.1628	8,1627	8,1626	7	8,1625
0.96	6.0029	8, UU28	8,0026	8,0025	8.0023	8,0022		8.0019	2	8.V017
100.0	7.0447	7.8444	7,6442	7.6440	7.0438	7.8436	7,8434	7,8432	ъ •	7,8429
102.0	7.8144	. 614	7.8137	7.6134	7.0131	7.6128		7.8122	7	7118.7
104.0	7.7627	7.7822	7.7018	7.7813	7.7809	7,7805		7,7797	~	7,7789
106.0	7.7499	.749	7,7487	7.7481	7,7476	7.7470	\sim	7.7460	٦	7.7450
100.0	7.7163	7.7156	7.7149	7.7142	7.1135	7.7129	1	7,7116	-	7.7104
110.0	7.0225	7.0016	7.6808	.679	7.6792	18	5	.676	7,6762	7.6755
115.0	7.5989	7.5977	7.5966	7.5455	7.2445	$-\pi$	5	.59	7.5906	7.5897
120.0	7.5205	7,5192	7.5179	7, 2166	7,5154	7.0142	7.5131	7,5120	7.5109	6
125.0	7.4506	7.4491	7.4477	44	7.4450	9	- 47	441	7.4402	7.4391
130.0	7.3403	7.5088	7,3673	56.	7.3846	ŝ	പ	.380	7.3796	7.3785
0.251	7,3383	7,3368	1255 E. T	f	7.3325	E	m	328	2726.1	7.3263
140.0	7,2431	7.2415	7,2900	7.2085	7.2071	Ð	2	7.2832	7.2020	7,2807
0.201	6531	71,25,17	7,25.02	42.0	7,2472	Ĵ	N	243	7.2418	7.2406
150.0	7.2183	7.2165	7.2149	.21	7.2117	2	~	.207	7.2061	7.2048
155.0	7,1670	7,1052	7.1834	91.	7.1000	2		2	7.1741	7.1727
140.0	7.1589	7.1569	7.1550	7.1532	7.1515	7.1498	-	7.1466	7.1451	7.1437
170.0	7.1104	7.1081	106	.103	101.	0.01	.098	0.96	460.	10
180.0	7.0695	7.0670	1 C	7.0624	7.0602	7.0580	7.0560	7.0540	7.0521	7,0202
190.0	7.0344	7,0317	029	.026	.024	. 022	.019	.017	· 015	0.
200,0	7,0035	7,0008	998	399.	664.	. 490	.988	286.	.963	5
210.0	6, 9761	6.4733	016	5	. 465	. 402	• 960	146,	664,	5
220.0	6,9513	6.9486	945	. 143	540	926	3591	932	064.	2
230.0	6, 4287	6.9201	.923	. 420	916.	614.	913	<u>ۍ</u>	, 908	2
240.0	6,4079	6.9054	N	100	. 8 4 7	\$75	. 892	. 890	888.	3
250.0	6.0385		. 883	30	• • 7	• 1 6	• A 7 4	6,8719	6,8695	6.8672
260.0	6.8704	86	866	1 -	6,0017	6	JO I	6.8549	102	•
270.0	59	. ہ 5		.0	÷ 9 •	4 Q .	.841	• 8	.836	8
280.0	6.0368	6.8352	6,8336	3	60.	6,0281	,826	6.8242	22	30
290.0	12	10,	818	-30	19.	10.	.812	4	1001	3
300,0	5	90	, 803	30	. 8.		, 798	-	. 795	~
310.0	5	. 79	209	1	٥٢.	.70	.785	7	782	Ч
320,0	1			1.	6,7748	11.	, 772	6.7716	.770	7
330.0	163	2	162	7	21	2	160	Ч	.758	7
340,0	.149	. 749	542.	ς.	÷	-	.748	-	. 7 4 7	~
250 0	, 1250	121.6 1	737	f		r	r < {		1	1

	1500.0	1550.0	1600,0	1650,0	1700.0	1750.0	1800,0	1850,0	1900;0	1950.0
360.0	6,1226	6.7238	6.7246	6.7252		6.7257	2	6.7255	6.7252	6.7247
	6,7095	6.7110	6,7123	~	-	.114	.714	6,7146	6.7145	6,7143
390.0	4,6966	6.4985	6.7000	~	2	6.7030	7	6.7038	6.1039	6,7039
390.0	6.4438	6.0061	6.6880	6.6895	6.6908	•	6,6926	6.6932	6.6436	6.0938
400.0	6,0111	6.6138	6.6760	Qi.		ဍ	9	6,6827	~ L	6.6838
420.0	6,6461	6.6495	6,6524	9	2	6,6291	9	6,6620	6,6631	6,6641
140.0	6,6214	6.6255	616292	۰Q	្ន	٩	9	6,6417	~	6.6447
460.0	0196.9	6.vU19	6,6063	0	•	6,6166	•	6,6217	6.0238	6,6257
480.0	61272B	6.2785	615036	^	1	2	- 4	6,6020	+09-	مؤد
500.0	6.2492	6.2556	6,5014	ົ	Ĵ.	6.2755	6,5793	6.5828	6,2054	6,5887
520.0	6.5252	6.5324	6.2388	544	055.	6,2548	.559	6,5631	.566	.57
540.0	2	6.5096	6,5168	ويرب	n,	534	6 5395	6.5440	6.5480	6.5518
560.0	6.4783	6.4870	6.4948	. j U 2	ć 80c.9	5	.520	6,5250	624	53.
530.0	6.4551	7	6.4731	400		7 3 .	2	6.5061	6,2112	7
0.005	6.4321	6.4422	6,4515	6,4299	.407	47	6,4814	6,4874	6,4429	6,4980
520 . 0	•	6.4201	6.4300	439	4	4	46	5	474	1
640,0	6.3865	6.3901	6,4087	.418	6,4274	6,4357		4	,456	6.4629
5600	6,3632	6, 2762	6,3875	145.	1	7	4	1	439	4
680.0	6.3415	6,3545	6,3665	176.	6.3877	6.3470	6.4057	4	6.4212	6,4282
100.0	6.3192	6,3329	613456	ולני	`	115.	.387	7	604.	
720.0	6.2470	6.3115	6,3248	755.	- 1	•	-	6.3777	6.3061	6.3939
740.0	6.2750	•	6,3041	6,3170	6,3269	6,3400	6,3502	6,3598	30	.376
760.0	6.2530	6.2689	6,2835	.247	-	•	-	6,3420	-	6.3600
780.0	6.2313	ۍ و	6,2631	.277		•	م	6,3243	6,3341	6,3433
800.0	N	•	6.2428	762.		•	~	6.3067	•	6.3266
820,0		•	6,2226	.238	*	•	2	6,2693	٠	6,3100
840.0	-1	6.1853	6.2025	218		•	~	6.2719	6.2831	6.2935
860.0	6.1454	-	6.1020	.199			2	6,2546	٠	6,2771
880.0	6.1242	6.1442	6.1027	119	-		~	6,2374	6.2495	6.2609
0.006	6.1031	6.1238	-	.160	-		2	6.2204	•	6.2446
920.0	6.0822	6.1036	6.1233	141	2	Γ.	.189	20	.216	22
940.0	6.0614	6.0834	6.1038	122	3		.172	91.	149	2
960.0 980.0	6.0407	6.0634 6.0434	6,0844 6.0551	6.1040 6.0452	6.1221 6.1040	6.1391 6.1214	6,1549 6,1377	6,1697 6,1530	6,1836 6,1673	6,1966 6,1807

6 表 3.9(6) \sim リウム (He) O Number density d_{He}

52

航空宇宙技術研究所資料359号

- ② 添字 t は Impulsive thrust を付加する瞬間の時 刻を表わし、t-は推力が付加される前、t+は付 加された後を意味している。例えば r_i-とr_{i+}で時 刻 t における位置ベクトルの推力が付加される直前 と付加された直後の状態を区別した。
- ③ Impulsive thrust の場合には形式的に推力付加 時間の長さを無視するが、位置ベクトルは推力付加時 間中の変化を補正してある。
- ④ 運動方程式の数値積分は r_{i+}, r_{i+} をもとに出発 値を計算して再スタートさせる。
- (2) 接線方向の制御力の場合

$$r_{t+} = r_{t-} + \frac{1}{2} \Delta V \cdot \delta t \qquad (3.78)$$

$$\dot{r}_{t+} = \dot{r}_{t-} + \Delta V \qquad (3.79)$$

$$m_{t+} = m_{t-} - \Delta m \qquad (3.80)$$

$$\Delta V_x = |\Delta V| \cos \alpha \cos \beta$$

$$\Delta V_y = |\Delta V| \cos \alpha \sin \beta$$

$$\Delta V_z = |\Delta V| \sin \alpha$$

$$\sin \beta = \dot{y}_{t-} / \sqrt{\dot{x}_{t-}^2 + \dot{y}_{t-}^2}$$

$$\cos \beta = \dot{x}_{t-} / \sqrt{\dot{x}_{t-}^2 + \dot{y}_{t-}^2}$$

$$\sin \alpha = \dot{z}_{t-} / |\dot{r}_{t-}|$$

$$\cos \alpha = \sqrt{\dot{x}_{t-}^2 + \dot{y}_{t-}^2} / |\dot{r}_{t-}|$$

$$(3.82)$$

$$\delta z_0$$

$$(3.79)$$

$$(3.79)$$

$$(3.79)$$

$$(3.80)$$

$$(3.81)$$

$$\Delta V_z = |\Delta V| \sin \alpha$$

$$(3.81)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$(3.82)$$

$$($$

- 入力は(1)の場合と比べて,速度増分の絶対値|AV| を与えればよいわけである。
- 3. 2. 5. 2 Medium thrust
- (1) 一般の制御力の場合

$$a_{c} = F_{c} / (m_{t} - \frac{1}{2} \dot{m} h_{c}) \qquad (3.83)$$

$$m_{t} + h_{c} = m_{t} - \dot{m} h_{c} \qquad (3.84)$$

① 入力

 F_c : 推力(単位はニュートン)

- m : 燃料消費による質量減少率
- h_c: 推力付加時間における数値積分のステップ サイズ
- ② この制御推力によって生じる加速度は他の摂動加

速度に比較してはるかに大きいため,推力を付加している間は特に数値積分の適当なステップサイズ h_cを指定する。

(2) 接線方向の制御力の場合

$$a_{c} = F_{c} / (m_{i} - \frac{1}{2} \dot{m}h_{c}) \qquad (3.85)$$

$$m_{i}+h_{c} = m_{i} - \dot{m}h_{c} \qquad (3.86)$$

$$F_{cx} = |F_{c}| \cos \alpha \cos \beta$$

$$F_{cy} = |F_{c}| \cos \alpha \sin \beta$$

$$F_{cx} = |F_{c}| \sin \alpha$$

$$\sin \beta = \dot{y}_{i} / \sqrt{\dot{x}_{i}^{2} + \dot{y}_{i}^{2}}$$

$$\cos \beta = \dot{x}_{i} / \sqrt{\dot{x}_{i}^{2} + \dot{y}_{i}^{2}} \qquad (3.88)$$

$$\sin \alpha = \dot{z}_{i} / |\dot{r}_{i}| \qquad (3.88)$$

$$cos \alpha = \sqrt{\dot{x}_{i}^{2} + \dot{y}_{i}^{2} / |\dot{r}_{i}|} \qquad (3.88)$$

$$C \subset \mathcal{T}$$

$$\sqrt{F_{cx}^{2} + F_{cy}^{2} + F_{cz}^{2}} = |F_{c}|$$

$$\sqrt{\dot{x}_{i}^{2} + \dot{y}_{i}^{2} + \dot{z}_{i}^{2}} = |\dot{r}_{i}|$$

$$\mathcal{T} \Rightarrow Z_{0}$$

 入力として推力の大きさ | F_c | を与えると(3.87),
 (3.88) 式によって推力の各成分が求められるわけ である。 n, h_c については(1)の場合と同じ。

3. 2. 5. 3 Low thrust

Low thrust の場合には生じる加速度が他の摂動加速 度と同程度と考えられるので, Medium thrust の場合 のように数値積分の指定を行わない。したがって(3.83) ~(3.86)式における h_c を推力付加時刻まで用いられ てきたステップサイズんで置き変えればよい。

3.3 数值積分法

運動方程式の数値積分は2階の常微分方程式を直接積 分できる Gauss-Jackson 法(予測子一修正子法)によ っている。数値積分を開始するとき必要な出発値は8次 のRunge-Kutta 法により求める。なお積分のステップ サイズ制御も可能になっている。

衛星の運動方程式は(3.22)式で表わされるが、これ を次のように書き直す。

$$\vec{r}_i = f_i (t, r, \dot{r})$$
 (3.89)
(*i*=1~3)

ここで $\mathbf{r} = (r_1, r_2, r_3) = (x, y, z)$ を意味する。 いまエポック t_0 における衛星の位置,速度ベクトルを $\Gamma_{to}, \Gamma_{to}, ステップサイズをんとして$

$$f_{i}(t_{o}, \mathbf{r}_{i_{o}}, \dot{\mathbf{r}}_{i_{o}}) \equiv f_{i,o}$$

$$f_{i}(t_{o}+kh, \mathbf{r}_{i_{o}}+kh, \dot{\mathbf{r}}_{i_{o}}+kh) \equiv f_{i,k}$$

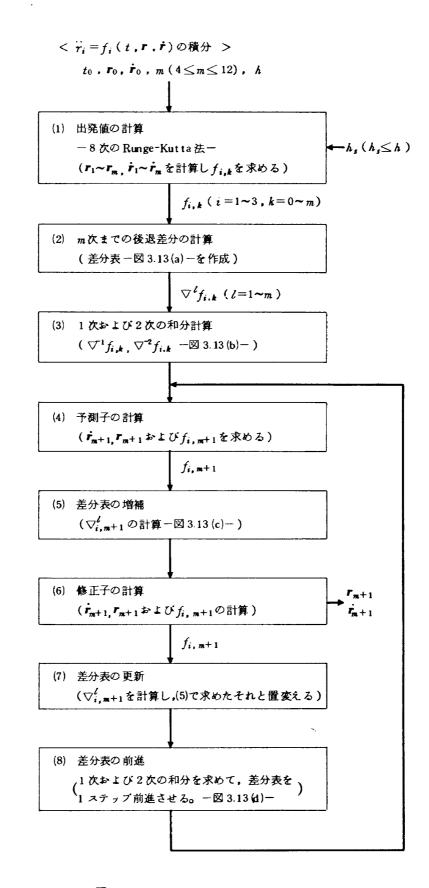


図 3.12 Gauss-Jachson 法

とおくとき, Gauss-Jackson 法による運動方程式の数 値積分のプロセスは図 3.12のようになる。なお修正子は 1回だけ使用している。図3.12に示された8つのプロセ スで用いられる計算式を以下に示す。なおG-J法の次 数は4~12次の間で任意にえらべる。

3.3.1 Grauss-Jackson法

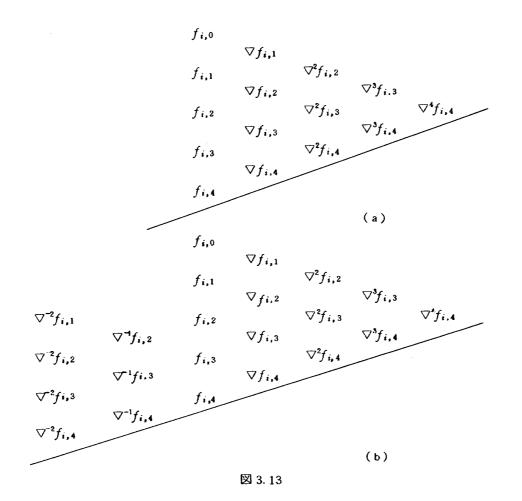
(1) 出発値の計算

出発値の計算は 8 次の Runge-Kutta 法^(3,8)を用いる。 出発値の計算ではステップサイズ制御は行なわない。 こ こに用いている 8 次の R K 法は一階の方程式を積分する ための方法であるので(3.89)式を 6 個の一階の常微分 方程式になおす。

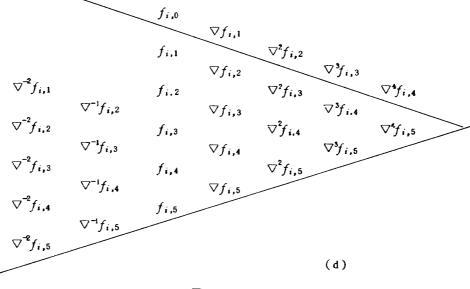
 $\dot{\mathbf{R}} = \mathbf{F}(t, \mathbf{R})$ (3.90) ここで $\mathbf{R} = (R_1 \cdots R_6), \mathbf{F} = (F_1 \cdots F_6)$ とする。 初期値として t_o, \mathbf{R}_o が与えられたとき, (3.90)式は 次の方法で積分する。

 $\vec{K}_{o} = F(t_{o}, R_{o})$ $K_{n} = F(t_{o} + \alpha_{n} h_{s}, R_{o} + h_{s} \sum_{\lambda=0}^{n-1} \beta_{n\lambda} K_{\lambda}$

(3.91)


$$\mathcal{L} \subset \mathcal{T}_{n} = 1 \sim 14, \ \mathbf{K} = (K_{1}, \cdots K_{6}) \mathcal{L} \neq \mathcal{L}_{0}$$

 $\mathbf{R} = \mathbf{R}_{o} + h_{s} \sum_{n=0}^{14} C_{h} K_{n}$ (3.92)


- ① h_s は出発値を計算するときのステップサイズで、 $h_s \leq h$ とする。
- ② 係数 α_n , C_n , β_n , は表 3.10に示した。
- ③ m次のG-J法を用いる場合、出発値の計算で $f_{i,o} \sim f_{i,m}(i=1\sim3)$ が求められる。
- (2) 差分表の作製(加次のG-J法)

m次までの後退差分の計算式は次のようになる。

$$\nabla^{l} f_{i,k} = \nabla^{l-1} f_{i,k} - \nabla^{l-1} f_{i,k-1} \qquad (3.93)$$
$$(\ell=1 \sim m, \quad i=1 \sim 3, \quad k=1 \sim m)$$

- (1) (3.93)式で求められた後退差分を用いて差分表 を作る。m=4の場合の例を図13(a)に示した。
- (3) 1次および2次の和分計算

🖾 3. 13

表 3.10(1)

α1	=	0.44	36	8940	3764	9818	
α2	=	0. 6 6	55	3410	5647	4727	
α3	=	0. 99	83	0115	8471	2091	
α4	==	0. 31	55	0000	0000	0000	
αs	=	0. 50	54	4100	9481	6906	
α_6	=	0.17	14	2857	1428	5714	
a 7	=	0.82	85	7142	8571	4285	
αs	=	0.66	54	3966	1210	1156	
α,	= (). 24	87	8317	9680	6265	
α ₁₀	= (D. 1 09	90	0000	0000	0000	
a 11	= (). 89]	10 (0000	0000	0000	
a_{12}	= (). 399	95 (0000	0000	0000	
α13	= (. 600)5 (0000	0000	0000	

.

$\alpha_{14} = 1$
$\alpha_{15}=0$
$a_{16} = 1$
$c_0 = 0.3225 \ 6083 \ 5002 \ 1624 \cdot 10^{-1}$
$c_8 = 0.2598 3725 2837 1540$
$c_9 = 0.9284 7805 9965 7702 \cdot 10^{-1}$
$c_{10} = 0.1645 \ 2339 \ 5147 \ 6434$
$c_{11} = 0.1766 5951 6378 6007$
$c_{12} = 0.2392 \ 0102 \ 3203 \ 5275$
$c_{13} = 0.3948 \ 4274 \ 6042 \ 0285 \cdot 10^{-2}$
$c_{14} = 0.3072 \ 6495 \ 4758 \ 6064 \cdot 10^{-1}$

表 3.10 (2)

$\beta_{10} = 0.4436 8$	8940 3764	9818
$\beta_{20} = 0.1663 8$	8352 641	8681
$\beta_{21} = 0.4991$	5057 923	5 6045
$\beta_{30} = 0.2495$	7528 9613	7 8022
$\beta_{32} = 0.7487$	2586 8853	3 4068
$\beta_{40} = 0.2066$	1891 1634	0060
$\beta_{42} = 0.1770$	7880 3779	9 8634
$\beta_{43} = -0.68197$	7715 4138	8 694 9 ⋅ 10 ⁻¹
$\beta_{50} = 0.1092$ 7	7823 1520	6 664 0
$\beta_{53} = 0.4021$ S	5962 6423	$36799 \cdot 10^{-2}$
$\beta_{54} = 0.3921 4$	4118 1690	7898
$\beta_{60} = 0.9889$	9281 4093	6466 • 10 ⁻¹
$\beta_{63} = 0.3513$ 8	8370 2279	$9 6396 \cdot 10^{-2}$
$\beta_{64} = 0.1247$ 6	5099 9831	6001
$\beta_{65} = -0.5574$	5546 8349	$9 8979 \cdot 10^{-1}$
$\beta_{70} = -0.3680$	6865 2862	2 4220
$\beta_{74} = -0.2227$	3897 4694	7600 · 10 ⁺¹
$\beta_{75} = 0.1374$	2908 2561	$7 0291 \cdot 10^{+1}$
1	7390 0273	
$\beta_{80} = 0.4546$ 7	7962 6413	$3 4715 \cdot 10^{-1}$
$\beta_{85} = 0.32542$	2131 7019	5 8914
$\beta_{85} = 0.2847$ (6660 1389	5 2790
•		$7915 \cdot 10^{-2}$
$\beta_{90} = 0.60842$	2071 062	$5\ 2205\cdot 10^{-1}$
$\beta_{95} = -0.2118$	4565 7440	$3700 \cdot 10^{-1}$
1	6 557 266 1	
$\beta_{97} = -0.42742$		
$\beta_{98} = 0.1743$		
$\beta_{100} = 0.5405$ §	9783 2969	$3191 \cdot 10^{-1}$
$\beta_{106} = 0.1102$ §		
$\beta_{107} = -0.1256$		
$\beta_{108} = 0.3679$ (
$\beta_{109} = -0.5778$ (
$\beta_{110} = 0.1273$		
$\beta_{117} = 0.1144$ 8		
$\beta_{118} = 0.2877$ 3		
$\beta_{119} = 0.5094$		
$\beta_{1110} = -0.1479$		
$\beta_{120} = -0.3652$ 6		
$\beta_{125} = 0.8162$		
$\beta_{126} = -0.3860$		
$\beta_{127} = 0.3086 2$	2242 9240	$5\ 0510\cdot 10^{-1}$

$\beta_{128} = -0.5807 7254 5283 2060 \cdot 10^{-1}$
$\beta_{129} = 0.3359 8659 3288 8497$
$\beta_{1210} = 0.4106\ 6880\ 4019\ 4995$
$\beta_{1211} = -0.1184 \ 0245 \ 9723 \ 5598 \cdot 10^{-1}$
$\beta_{130} = -0.1237 5357 9212 4514 \cdot 10^{+1}$
$\beta_{135} = -0.2443 \ 0768 \ 5513 \ 5478 \cdot 10^{+2}$
$\beta_{136} = 0.5477 \ 9568 \ 9327 \ 7865$
$\beta_{137} = -0.4441 \ 3863 \ 5334 \ 1324 \ \cdot 10^{+1}$
$\beta_{138} = 0.1001 \ 3104 \ 8137 \ 1326 \cdot 10^{+2}$
$\beta_{139} = -0.1499577310205175 \cdot 10^{+2}$
$\beta_{1310} = 0.5894 \ 6948 \ 5232 \ 1701 \ \cdot 10^{+1}$
$\beta_{1311} = 0.1738 \ 0.0377 \ 5034 \ 2898 \cdot 10^{+1}$
$\beta_{1312} = 0.2751 \ 2330 \ 6931 \ 6673 \cdot 10^{+2}$
$\beta_{140} = -0.3526 \ 0.859 \ 3.883 \ 3.452$
$\beta_{145} = -0.1839 \ 6103 \ 1448 \ 4827$
$\beta_{146} = -0.6557 0189 4497 4164$
$\beta_{147} = -0.3908 \ 6144 \ 8804 \ 3986$
$\beta_{148} = 0.2679 \ 4646 \ 7128 \ 5002$
$\beta_{149} = -0.1038 \ 3022 \ 9913 \ 8249 \cdot 10^{+1}$
$\beta_{1410} = 0.1667 \ 2327 \ 3242 \ 5867 \cdot 10^{+1}$
$\beta_{1411} = 0.4955 1925 8553 1597$
$\beta_{1412} = 0.1139 \ 4001 \ 1323 \ 9706 \ \cdot \ 10^{+1}$
$\beta_{1413} = 0.5133\ 6696\ 4246\ 5861\ \cdot 10^{-1}$
$\beta_{150} = 0.1046 \ 4847 \ 3406 \ 1481 \ \cdot \ 10^{-2}$
$\beta_{158} = -0.6716 \ 3886 \ 8449 \ 9028 \cdot 10^{-2}$
$\beta_{159} = 0.8182 \ 8762 \ 1894 \ 2502 \cdot 10^{-2}$
$\beta_{1510} = -0.4264 \ 0.342 \ 8644 \ 8334 \cdot 10^{-2}$
$\beta_{1511} = 0.2800 \ 9029 \ 4741 \ 6893 \cdot 10^{-3}$
$\beta_{1512} = -0.8783533387623867 \cdot 10^{-2}$
$\beta_{1513} = 0.1025 4505 1108 2555 \cdot 10^{-1}$
$\beta_{160} = -0.1353\ 6550\ 7861\ 7406\ \cdot\ 10^{+1}$
$\beta_{165} = -0.1839 \ 6103 \ 1448 \ 4827$
$\beta_{166} = -0.6557 0189 4497 4164$
$\beta_{167} = -0.3908 \ 6144 \ 8804 \ 3986$
$\beta_{168} = 0.2746 \ 6285 \ 5812 \ 9992$
$\beta_{169} = -0.1046 \ 4851 \ 7535 \ 7191 \cdot 10^{+1}$
$\beta_{1610} = 0.1671 4967 6671 2315 \cdot 10^{+1}$
$\beta_{1611} = 0.4952 3916 8258 4180$
$\beta_{1612} = 0.1148 \ 1836 \ 4662 \ 7330 \cdot 10^{+1}$
$\beta_{1613} = 0.4108 \ 2191 \ 3138 \ 3305 \cdot 10^{-1}$
$\beta_{1615} = 1$

$$\nabla^{-1} f_{i,k} = h^{-1} \dot{r}_{i,k} - d_o f_{i,k} - \sum_{\ell=1}^{m} d_\ell \nabla^\ell f_{i,k}$$
(3.94)
$$\nabla^{-2} f_{i,k} = h^{-2} r_{i,k} - b_o f_{i,k} - \sum_{\ell=1}^{m} b_\ell \nabla^\ell f_{i,k}$$
(3.95)

- 係数 bi, di は表3.11に示した。
- ② これらの和分を(2)で作った差分表に加える。(図 3.13(b)参照)
- (4) 予測子の計算

$$\dot{r}_{i,m+1} = h \left(\nabla^{-1} f_{i,m} + C_o f_{i,m} + \sum_{\ell=1}^{m} C_\ell \nabla^\ell f_{i,m} \right)$$
(3.96)
$$\tau_{i,m+1} = h^2 \left(\nabla^{-2} f_{i,m} + a_o f_{i,m} + \sum_{\ell=1}^{m} a_\ell \nabla^\ell f_{i,m} \right)$$
(3.97)
$$f_{i,m+1} = f_i \left(t_o + (m+1) h, \mathbf{r}_{m+1}, \dot{\mathbf{r}}_{m+1} \right)$$
(3.98)

(5) 差分表の増補

(4)で求まった f_{i,m+1} から次式を用いて差分表の増補 を行う。(図3.13 (c))

$$\nabla^{l} f_{i,m+1} = \nabla^{l-1} f_{i,m+1} - \nabla^{l-1} f_{i,m}$$
(3.99)

(6) 修正子の計算

$$\dot{r}_{i,m+1} = h \left(\nabla^{-1} f_{i,m} + (1+d_o) f_{i,m+1} \right) + \sum_{\ell=1}^{m} d_\ell \nabla^\ell f_{i,m+1} \right) (3.100) r_{i,m+1} = h^2 \left(\nabla^{-2} f_{i,m} + b_o f_{i,m+1} \right) + \sum_{\ell=1}^{m} b_\ell \nabla^\ell f_{i,m+1} \right) (3.101) f_{i,m+1} = f_i \left(t_o + (m+1) h, r_{m+1}, \dot{r}_{m+1} \right)$$

(3.102)

- (3.100), (3.101) 式の右辺には予測子で求めら れた値を入れる。
- ② ここでは修正子を1回しか用いないので、ここで 求められた r_{n+1} , r_{n+1} がG-J法によって積分さ れた1ステップ後の値となる。

(7) 差分表の更新

修正子によって求められた f_{i,m+1} をもとにして, (3.99)式を再び用いて差分表(図3.13(c)にあたるもの) の更新を行う。

(8) 1 次および 2 次の和分計算

 $\nabla^{-1} f_{i,n+1}, \nabla^{-2} f_{i,n+1}$ を求めて差分表を前進させる。 (図3.13(d))

$$\nabla^{-1} f_{i,m+1} = \nabla^{-1} f_{i,m} + f_{i,m+1}$$
(3.103)
$$\nabla^{-2} f_{i,m+1} = \nabla^{-2} f_{i,m} + \nabla^{-1} f_{i,m+1}$$
(3.104)

3.3.2 ステップサイズ制御

指定された G-J 法の次数をmとして、数値積分の打切り誤差 E_{GJ} を次の値によって推定する。

$$(\dot{E}_{GJ})_{i} = h^{2} C_{m+1} \nabla^{m+1} f_{i,m}$$
(3.105)

$$(E_{GJ})_{i} = h a_{m+1} \nabla^{m+1} f_{i,m}$$
(3.106)

$$\dot{E}_{GJ} = \sqrt{(\dot{E}_{GJ})_{1}^{2} + (\dot{E}_{GJ})_{2}^{2} + (\dot{E}_{GJ})_{3}^{2}}$$

$$E_{GJ} = \sqrt{(E_{GJ})_{1}^{2} + (E_{GJ})_{2}^{2} + (E_{GJ})_{3}^{2}}$$
(3.107)

誤差許容範囲の上限を ϵ_2 ,下限を ϵ_1 とすると、 $\epsilon_1 \leq E_{GJ} \leq \epsilon_2$, $\epsilon_1 \leq E_{GJ} \leq \epsilon_2 \epsilon_2$ をいつも滞足しているように するために、ステップサイズんを次のように制御する。

(i) $E_{GJ}(h), \dot{E}_{GJ}(h) < \varepsilon_1$ のとき ステップサイズを2倍($h \rightarrow 2h$)にする。この操作 を $\varepsilon_1 \leq E_{GJ}, \dot{E}_{GJ} \leq \varepsilon_2$ が満足されるまで行う。 (ii) $E_{GJ}(h), \dot{E}_{GJ}(h) > \varepsilon_2$ のとき ステップサイズを半分($h \rightarrow h/2$)にする。この操作 を $\varepsilon_1 \leq E_{GJ}, \dot{E}_{GJ} \leq \varepsilon_2$ が満足されるまで行う。 (iii) $E_{GJ}(h), \dot{E}_{GJ}(h) < \varepsilon_1$ で $E_{GJ}(2h), \dot{E}_{GJ}(2h)$ > ε_2 のとき ステップサイズを h とする。 (iv) $E_{GJ}(h), \dot{E}_{GJ}(h) > \varepsilon_2$ で $E_{GJ}(h/2), \dot{E}_{GJ}(h/2)$ $/2) < \varepsilon_1$ のとき ステップサイズを h / 2 とする。

59

表 3.11(1)

l	a_l
-2	1.0
-1	0,0
0	0,833333333333333333470D-01
1	0,833333333333333333333640D-01
2	0.791666666666666666590D-01
3	0,7500000000000000360D-01
4	0,713458994708994708400-01
5	0,68204365079365079260D-01
6	0.654957561728395054800-01
7	0,63140432098765432750D-01
8	0.61072649861712361600D-01
9	0,59240564123376622070D-01
10	0,57603625837453136710D-01
11	0,561299808845071742800-01
12	0.547943791070711469100-01
13	0,535765937449663811900-01
14	0.52460247680248765460D-01
15	0,51431942901177079190D-01

 b_l

-2	
-1	0.1000000000000000000000000000000000000
0	-0,100000000000000000000000000000000000
•	0.8333333333333333350-01
1	0.0
2	-0.4166666666666666733D-02
3	-0,4166666666666666666050-02
4	-0.3654100529100529420-02
5	
6	-0.3141534391534391600-02
7	-0.2708608906525573120-02
8	-0,2355324074074074310-02
-	-0,2067782237053070240-02
9	-0,1832085738335738360-02
10	-0.1636938285923487620-02
11	-0,147364495294596128D-02
12	-0.133560177743602729D-02
13	-0,1217785362104765080-02
14	
15	-0.111634606471761700D-02
10	-0,102830477907168590D-02

l

表 3.11 (2)

-1 1.0	
0 0.5	
1 0,4166666666666666666666670D+0(}
2 0,37500000000000000000000000000000000000)
³ 0,3486111111111111090D+00	
4 0,32986111111111111120D+00)
5 0,31559193121693121690D+00)
6 0,30422453703703703720D+00)
7 0,29486800044091710710D+00	ý
8 0,286975446428571428900+00)
⁹ 0,28018959644393672220D+00	•
10 0,274265540031599059400+00	}
11 0,26902884677364871440D+00)
12 0.26435134836660651000D+00	
13 0,260136396127601037300+00	ł
14 0,25630949657438915220D+00	ļ
15 0,25281214672903923450D+0U	

l	d_{i}
1 0 1 2 3 4 5 6 7 8 9 10 11	d_1 0.100000000000000000000000000000000000
12	-0.4677498407042264520-02
13	-0,421495223900547286D-02
14	-0,382689955321188443D-02
15	-0,349734984534991764D-02

4. 特殊摂動法による惑星間飛行宇 宙船の軌道生成(STANPS-C)

地球の Parking Orbit より出発して惑星間を飛行する 宇宙船の軌道を,前節に示した人工衛星の場合と同様に Cowell 法によって生成する。目標の天体としては水星, 金星,火星,木星,土星,天王星,海王星,冥王星の八 惑星および月の中から任意に選ぶことができる。宇宙船 の運動方程式の中心天体は,それが地球の作用圏にある ときは地球,太陽の作用圏にあるときは太陽,惑星の作 用圏に入ったときにはその惑星に切り変るようになって いる。月,惑星の運動はすでにわかっているものとして いる。(月,惑星のエフェメリスはSTANPS-Dによっ て生成されるが,その詳しい内容は別に報告する。)

4.1 時系および座標系

4.1.1 時系

基本的な時系, すなわち運動方程式の積分は暦表時で 行われる。しかし座標系の変換においては世界時, 原子時, 視恒星時などが当然必要になるが, それらの時系の 間の変換については 3.1.1 に示した通りであるのでここ では省略する。

- 4.1.2 座標系
- 4.1.2.1 座標系の種類

STANPS-C において用いられる座標系は次の6つ である。

- (1) 1950.0 平均赤道面座標系(C_i¹⁹⁵⁰)
 原 点: 各天体(i=0~10)の重心
 基準軸: (地球の)1950.0 平均春分点方向
 基準面: (地球の)1950.0 平均赤道面
- ここで添字i(0~10)は次の天体を意味する。

0	:	太陽	6	:	土星
1	:	水星	7	:	天王星
2	:	金星	8	:	海王星
3	:	地球	9	:	冥王星
4	:	火星	10	:	月
5	:	木星			

これは基準座標系となるもので,運動方程式の積分は この座標系で行われる。原点にどの天体の重心をとるか は、宇宙船がどの天体の作用圏に属しているかできめら れる。

また赤経(α)と赤緯(δ)は次のようになる。

- 赤 経 : 春分点方向から基準面にそって反時 計まわりに測った角度(単位は時間)
- 赤緯:基準面から上向きに測った角度
- (2) 瞬時の真の赤道面座標系 (Cⁱ)

- 原点:各天体(i=0~10)の重心
 基準軸:(地球の)瞬時の真(True of date)
 の春分点方向
- 基準面 : (地球の)瞬時の真の赤道面

赤程(α_i),赤樟(δ_i)は C_i^{1s50} の場合と同様に定義される。

- (3) 地球に固定した座標系(C_3^{f})
 - 原 点 : 地球重心
 - 基準軸 : グリニジ子午線方向
 - 基準面 : 地球の赤道面
- 経度(λ)と緯度(φ)は次のようにきめる。
 - 経度: グリニジ子午線から基準面にそって 反時計まわりに測られる角度
 - 緯度:基準面から上向きに測った角度
- (4) 月に固定した座標系(C1))
 - 原 点 : 月重心
 - 基準軸 : 月の赤道面上で地球を望む方向
 - 基準面 : 月の赤道面
- (5) 太陽の赤道面に準拠する座標系(C₀)
 - 原点:太陽軍重心
 - 基準軸 : 1950.0 の 黄道 面に対する太陽の赤 道面の昇交点方向
 - 基準面 : 太陽の赤道面
- (6) 惑星の赤道面に準拠する座標系(C^M_i)
 - 原 点 : 惑星重心(i=1~9,i+3)
 - 基準軸 : 各惑星の瞬時の平均の春分点方向
 - 基準面 : 各惑星の瞬時の平均の赤道面

以上の各座標系の間の関係を図4.1 に示した。宇宙船 の運動方程式は太陽または惑星を原点とする C_i^{150} にお いて積分されるわけで、他の座標系は必要に応じて C_i^{1950} を補足することになるわけである。

4.1.2.2 座標系の変換

次にこれらの座標系の間の変換では次の5 つが必要に なる。

(i) $C_i^{1950} \ge C_i^t$ の間の変換

- ① r_i^{1950} , r_i^{i} , r_i^{i} , r_i^{i} はそれぞれ C_i^{1950} および C_i^{i} での位置ベクトルと速度ベクトルを表わす。
- (2) H₁, H₁は(3.7)式と同じもので(3.8)~
 (3.16)式を用いて計算できる。

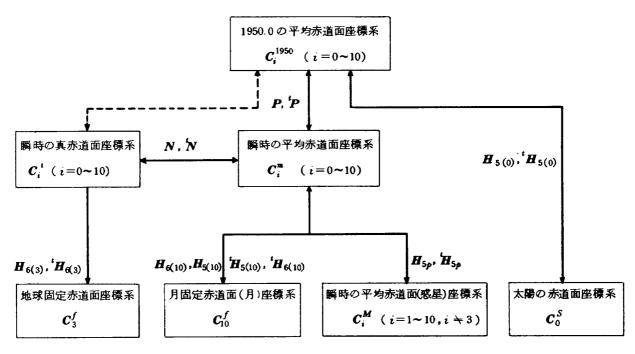


図 4.1 座標系の関係

③ 泊1. 泊1 は次のように与えられる。なおSTANPS -B においてはこれらの値が非常に小さいこと,速度の変換が必要なのは初期値を瞬時の真の座標系での要素で与えた場合と出力する場合だけで,運動方程式の積分の過程では必要ないので省略している。

$$\dot{H}_{1} = \dot{N}P + N\dot{P} \qquad \{4.3\}$$

$$\dot{H}_{1} = \dot{P} iN + \dot{P} \dot{N} \qquad \{4.3\}$$

$$\dot{P} = \begin{pmatrix} \dot{P}_{11} & \dot{P}_{12} & \dot{P}_{13} \\ \dot{P}_{21} & \dot{P}_{22} & \dot{P}_{23} \\ \dot{P}_{31} & \dot{P}_{32} & \dot{P}_{33} \end{pmatrix} \qquad \{4.4)$$

$$\dot{P} = \begin{pmatrix} \dot{P}_{11} & \dot{P}_{21} & \dot{P}_{31} \\ \dot{P}_{12} & \dot{P}_{22} & \dot{P}_{32} \\ \dot{P}_{13} & \dot{P}_{23} & \dot{P}_{33} \end{pmatrix} \qquad \{4.4)$$

$$\dot{P} = \begin{pmatrix} \dot{N}_{11} & \dot{N}_{21} & \dot{P}_{31} \\ \dot{P}_{12} & \dot{P}_{22} & \dot{P}_{32} \\ \dot{P}_{13} & \dot{P}_{23} & \dot{P}_{33} \end{pmatrix} \qquad \{4.5)$$

$$\dot{N} = \begin{pmatrix} \dot{N}_{11} & \dot{N}_{12} & \dot{N}_{13} \\ \dot{N}_{21} & \dot{N}_{22} & \dot{N}_{23} \\ \dot{N}_{31} & \dot{N}_{32} & \dot{N}_{33} \end{pmatrix} \qquad \{4.5)$$

$$\dot{P}_{11} = -(\cos Z \cos \theta \sin \zeta_{0} + \sin Z \cos \zeta_{0}) \dot{\zeta}_{0} \\ -(\sin Z \cos \theta \cos \zeta_{0} + \cos Z \sin \zeta_{0}) \dot{Z} \\ -\cos Z \sin \theta \cos \zeta_{0} \cdot \dot{\theta} \\ \dot{P}_{12} = -(\cos Z \cos \theta \sin \zeta_{0} - \sin Z \sin \zeta_{0}) \dot{\zeta}_{0} \\ +(\sin Z \cos \theta \sin \zeta_{0} - \cos Z \cos \zeta_{0}) \dot{Z} \end{vmatrix}$$

$$+ \cos Z \sin \theta \sin \zeta_{o} \cdot \dot{\theta}$$

$$\dot{P}_{13} = \sin Z \sin \theta \cdot \dot{Z} - \cos Z \cos \theta \cdot \dot{\theta}$$

$$\dot{P}_{21} = - (\sin Z \cos \theta \sin \zeta_{o} - \cos Z \cos \zeta_{o}) \dot{\zeta}_{o}$$

$$+ (\cos Z \cos \theta \cos \zeta_{o} - \sin Z \sin \zeta_{o}) \dot{Z}$$

$$- \sin Z \sin \theta \cos \zeta_{o} \cdot \dot{\theta}$$

$$\dot{P}_{22} = - (\sin Z \cos \theta \cos \zeta_{o} + \cos Z \sin \zeta_{o}) \dot{\zeta}_{o}$$

$$- (\cos Z \cos \theta \sin \zeta_{o} + \sin Z \cos \zeta_{o}) \dot{Z}$$

$$+ \sin Z \sin \theta \sin \zeta_{o} \cdot \dot{\theta}$$

$$\dot{P}_{23} = - \cos Z \sin \theta \cdot \dot{Z} - \sin Z \cos \theta \cdot \dot{\theta}$$

$$\dot{P}_{31} = -\sin \theta \sin \zeta_{o} \cdot \dot{\zeta}_{o} + \cos \theta \cos \zeta_{o} \cdot \dot{\theta}$$

$$\dot{P}_{32} = -\sin \theta \sin \zeta_{o} \cdot \dot{\zeta}_{o} + \cos \theta \cos \zeta_{o} \cdot \dot{\theta}$$

$$\dot{P}_{33} = -\sin \theta \sin \theta \sin \zeta_{o} \cdot \dot{\zeta}_{o} - \cos \theta \sin \zeta_{o} \cdot \dot{\theta}$$

$$\dot{P}_{33} = -\sin \theta \cdot \dot{\theta}$$

$$(4.6)$$

$$\dot{N}_{11} = -\sin \Delta \phi \cdot \Delta \dot{\phi}$$

$$\dot{N}_{12} = -\cos \Delta \phi \cos \xi_{M} \cdot \Delta \dot{\phi}$$

$$+ \sin \Delta \phi \sin \xi_{M} \cdot \dot{\theta} \dot{\phi}$$

$$\dot{N}_{21} = -\sin \xi_{1} \sin \Delta \phi \cdot \dot{\epsilon}_{1}$$

$$+ \cos \xi_{1} \cos \Delta \phi \cos \xi_{M} \cdot \Delta \dot{\phi}$$

$$\dot{N}_{22} = -(\sin \xi_{1} \cos \Delta \phi \cos \xi_{M} \cdot \Delta \phi)$$

$$-\cos \xi_{1} \sin \Delta \phi \cos \xi_{M} \cdot \Delta \phi$$

$$-\cos \xi_{1} \sin \Delta \phi \cos \xi_{M} \cdot \Delta \phi$$

$$-\cos \xi_{1} \sin \Delta \phi \cos \xi_{M} \cdot \Delta \phi$$

$$-\cos \xi_{1} \sin \Delta \phi \cos \xi_{M} \cdot \Delta \phi$$

$$\dot{N}_{23} = -(\sin \xi_{1} \cos \Delta \phi \sin \xi_{M} - \sin \xi_{1} \cos \xi_{M}) \dot{\epsilon}_{M}$$

$$\dot{N}_{23} = -(\sin \xi_{1} \cos \Delta \phi \sin \xi_{M} - \sin \xi_{1} \cos \xi_{M}) \dot{\epsilon}_{M}$$

$$\begin{aligned} &+\cos \epsilon_{i} \cos \epsilon_{j} \dot{\epsilon}_{i} \\ &-\cos \epsilon_{i} \sin d\phi \sin \epsilon_{j} \dot{\epsilon}_{j} \\ &+\cos \epsilon_{i} \cos d\phi \cos \epsilon_{j} \\ &+\sin \epsilon_{i} \sin \epsilon_{j} \dot{\epsilon}_{j} \\ &+\sin \epsilon_{i} \cos d\phi \dot{\epsilon}_{j} \dot{\epsilon}_{j} \\ &+\sin \epsilon_{i} \cos d\phi \dot{\epsilon}_{j} \dot{\epsilon}_{j} \\ &+\sin \epsilon_{i} \sin \epsilon_{j} \dot{\epsilon}_{j} \\ &-\sin \epsilon_{i} \sin d\phi \cos \epsilon_{j} \dot{\epsilon}_{j} \\ &+\cos \epsilon_{i} \cos \delta\phi \sin \epsilon_{j} \\ &+\cos \epsilon_{i} \cos \delta\phi \sin \epsilon_{j} \\ &+\cos \epsilon_{i} \cos \delta\phi \sin \epsilon_{j} \\ &-\sin \epsilon_{i} \sin d\phi \sin \epsilon_{j} \dot{\epsilon}_{j} \\ &-\cos \epsilon_{i} \sin \delta\phi \sin \epsilon_{j} \dot{\epsilon}_{j} \\ &-\cos \epsilon_{i} \sin \epsilon_{j} \dot{\epsilon}_{j} \\ &-\sin \epsilon_{i} \\ &+\epsilon_{i} \dot{\epsilon}_{i} \\ \\ &+\epsilon_{i} \dot{\epsilon}_{i} \\ &+\epsilon_{i} \\ \\ &+\epsilon_{i} \dot{\epsilon}_{i} \\$$

$$\Delta \dot{\epsilon} = \sum_{i=1}^{40} \left[K_{2i} \cos(a_i l + b_i l' + c_i F + d_i D) + e_i Q \right] - (K_{1i} + K_{2i} T) (a_i \dot{l} + b_i \dot{l}' + c_i \dot{F} + d_i \dot{D} + e_i \dot{Q}) \times \sin(a_i l + b_i l' + c_i F + d_i D + e_i Q) \right]$$

$$(4.12)$$

- (4.8)~(4.12)式で求められる量の単位は arc sec/Julian century または degree /Julian century である。
- ② (4.12)式におけるi,i, F, D, Qの値は(3.16)
 式を微分して得られる。

 $m{C}_i^{1950}$ と $m{C}_j^{1950}$ および $m{C}_i^i$ と $m{C}_j^i$ の間の変換,すなわち 原点の移動は次のように行われる。

$$\begin{bmatrix}
 r_{j}^{1950} = r_{i}^{1950} - \rho^{1950} \\
 \dot{r}_{j}^{1950} = \dot{r}_{i}^{1950} - \dot{\rho}^{1950}
 \end{bmatrix}$$

$$(4.13)$$

$$r_{j}^{t} = r_{i}^{t} - \rho^{t} \\
 \dot{r}_{j}^{t} = \dot{r}_{j}^{t} - \dot{\rho}^{t}
 \qquad (4.14)$$

① ここで P^{1950} およびP'は C_i^{1950} および C_i' から見た C_j^{1950} と C_j' の原点の位置ベクトルである。 (ii) $C_3' \ge C_3'$ の間の変換

$$\mathbf{r}_{3}^{f} = \mathbf{H}_{6(3)} \mathbf{r}_{3}^{i}$$

$$\mathbf{r}_{3}^{i} = {}^{t}\mathbf{H}_{6(3)} \mathbf{r}_{3}^{f}$$

$$\mathbf{r}_{3}^{f} = \mathbf{H}_{6(3)} \mathbf{r}_{3}^{i} + \mathbf{H}_{6(3)} \mathbf{r}_{3}^{i}$$

$$\mathbf{r}_{3}^{f} = {}^{t}\mathbf{H}_{6(3)} \mathbf{r}_{3}^{f} + {}^{t}\mathbf{H}_{6(3)} \mathbf{r}_{3}^{f}$$

$$(4.16)$$

① $r_3^i, r_3^i, r_3^f, r_3^f, r_3^f$ はそれぞれ地球重心を原点とする 座標系 C_3^i および C_3^f における速度ベクトルと位置 ベクトルである。

$$H_{6(3)} = \begin{pmatrix} \cos \theta_{3}, \sin \theta_{3}, 0 \\ -\sin \theta_{3}, \cos \theta_{3}, 0 \\ 0, 0, 1 \end{pmatrix}$$

$$\dot{H}_{6(3)} = -\dot{\theta}_{3} \begin{pmatrix} \sin \theta_{3}, -\cos \theta_{3}, 0 \\ \cos \theta_{3}, \sin \theta_{3}, 0 \\ 0, 0, 0 \end{pmatrix}$$

$$(4.17)$$

$$\theta_{3} = 279^{\circ} \cdot 690983 + 360^{\circ} \cdot 9856473356 D_{ET}$$

$$+2^{\circ} \cdot 902 \times 10^{-13} D_{ET}^{2} - 1.0027379 \, dT + d\alpha$$

$$\dot{\theta}_{3} = 360^{\circ} \cdot 9856473356 + 5^{\circ} \cdot 804 \times 10^{-13} D_{ET}^{2}$$

$$-1.0027379 \, dT + d\alpha$$

$$D_{ET} = MJ ED - 15019.5 \qquad (4.18)$$

$$\Delta \dot{a} = \Delta \dot{\phi} \cos \epsilon_{t} - \Delta \phi \dot{\epsilon}_{t} \sin \epsilon_{t} \qquad (4.20)$$

$$\Delta \dot{T} = P(t) + \frac{d \Delta_{s}}{d t} \qquad (4.21)$$

- た春分点の時角である。またMJED は修正ユリウ ス暦表日である。
- ② (4.21)式におけるP(t)は1820~1970年間にお る地球自転速度の変動分, $\frac{d \varDelta_s}{dt}$ は地球自転速度の 季節的変化と呼ばれる変動量の変化率で次のように 与えられる。

$$P(t) = C_0 + C_1 t + \sum_{i=1}^{12} A_i \cos(\omega_i t - \theta_i)$$

$$(4.22)$$

$$\frac{d\Delta_s}{dt} = \frac{2\pi}{B_y} \{S_1 \cos 2\pi t - S_2 \sin 2\pi t + 2S_3 \cos 4\pi t - 2S_4 \sin 4\pi t\}$$

$$(4.23)$$

$$B_y = 365.^d 2422$$
その他の定数はすべて 3.1.1 節に与えられて
いる。 P(t), $\frac{d\Delta_s}{dt}$ の単位は sec/day であ
るo

(4.17)~(4.23)式については参考文献(3.1)に 記述してある。

(iii) **C**₀¹⁹⁵⁰ と **C**₀^s の間の変換

$$r_{0}^{s} = H_{5(0)} r_{0}^{1950}$$

$$r_{0}^{1950} = {}^{t} H_{5(0)} r_{0}^{s}$$

$$H_{5(0)} = \begin{pmatrix} h_{011}, h_{012}, h_{013} \\ h_{021}, h_{022}, h_{023} \\ h_{031}, h_{032}, h_{033} \end{pmatrix}$$

$$(4.24)$$

$$H_{5(0)} = \begin{pmatrix} h_{011}, h_{012}, h_{013} \\ h_{021}, h_{022}, h_{023} \\ h_{031}, h_{032}, h_{033} \end{pmatrix}$$

$$(4.25)$$

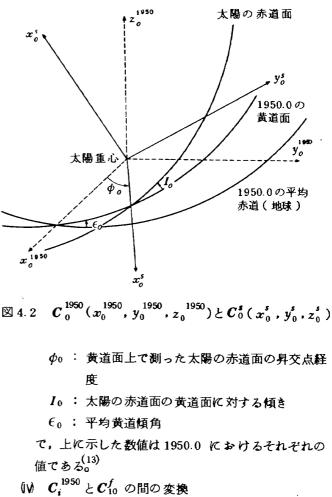
$$h_{011} = \cos \phi_{0}$$

$$h_{012} = \sin \phi_{0} \cos \xi_{0}$$

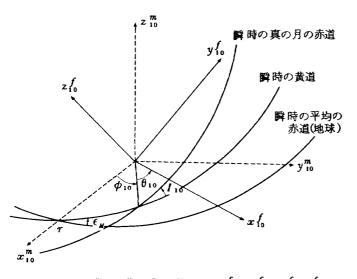
$$h_{013} = \sin \phi_{0} \sin \xi_{0}$$

$$h_{021} = -\sin \phi_{0} \cos \xi_{0} - \sin I_{0} \sin \xi_{0}$$

$$h_{022} = \cos \phi_{0} \cos I_{0} \sin \xi_{0} - \sin I_{0} \sin \xi_{0}$$


$$h_{031} = \sin \phi_{0} \sin I_{0}$$

$$h_{032} = -\cos \phi_{0} \sin I_{0} \cos \xi_{0} - \cos I_{0} \sin \xi_{0}$$


$$h_{033} = -\cos \phi_{0} \sin I_{0} \sin \xi_{0} + \cos I_{0} \cos \xi_{0}$$

$$\begin{array}{rcl}
I_0 &= 7^{\circ}.25 \\
\phi_0 &= 75^{\circ}.0625 \\
\epsilon_0 &= 23^{\circ}.4457878
\end{array}$$
(4.26)

- ① C_i^{1950} から C_{10}^f への座標変換は次のプロセスで行 われる (図4.3)
- (a) $C_i^{1950}(i \neq 10)$ から C_{10}^{1950} への原点移動 ((4.13) および(4.14)式で与えられる)。
- (b) C¹⁹⁵⁰から瞬時の平均 (Mean of Date)の座標系 C_{10}^m への変換(**P**)。
- (c) 瞬時の平均の座標系から月の真の赤道面を基準面 とし、その黄道面に対する昇交点方向を基準方向に とった座標系への変換(H₅₍₁₀₎)。

 $\boxtimes 4.3 \quad C_{10}^{n}(x_{10}^{n}, y_{10}^{n}, z_{10}^{n}) \geq C_{10}^{f}(x_{10}^{f}, y_{10}^{f}, z_{10}^{f})$

- (d) さらに基準方向だけを地球を望む方向に移した C^f₁₀への変換(H₆₍₁₀₎)。月の場合には地球を回る公 転周期と自転周期が一致しているため,基準方向を このように定めると月に固定した座標系となる。
- ② また月の赤道面,軌道面と黄道面は一点で交り,赤道面の降交点は軌道面の昇交点になっている。これは Cassiniの法則の1つであるが,このため座標変換が他の惑星に比べて少し簡単になる。⁽¹²⁾

$$H_{5(10)} = \begin{pmatrix} h_{1011} & h_{1012} & h_{1013} \\ h_{1021} & h_{1022} & h_{1023} \\ h_{1031} & h_{1032} & h_{1023} \end{pmatrix} (4.29)$$

$$h_{1011} = \cos \phi_{10}$$

$$h_{1012} = \sin \phi_{10} \cos \dot{\epsilon}_{M}$$

$$h_{1013} = \sin \phi_{10} \sin \epsilon_{M}$$

$$h_{1021} = -\sin \phi_{10} \cos I_{10} \cos \epsilon_{M}$$

$$-\sin I_{10} \sin \epsilon_{M}$$

$$h_{1023} = \cos \phi_{10} \cos I_{10} \sin \epsilon_{M}$$

$$h_{1031} = \sin \phi_{10} \sin I_{10} \sin \epsilon_{M}$$

$$h_{1031} = \sin \phi_{10} \sin I_{10} \sin \epsilon_{M}$$

$$h_{1032} = -\cos \phi_{10} \sin I_{10} \cos \epsilon_{M}$$

$$-\cos I_{10} \sin \epsilon_{M}$$

$$h_{1033} = -\cos \phi_{10} \sin I_{10} \sin \epsilon_{M}$$

$$h_{103} = I_{M} + \rho \qquad (4.32)$$

$$(I_{M} = 5549.'' 0)$$

$$g = 259^{\circ} 183275 - 0^{\circ} 0529539222 d$$

$$+1^{\circ} 557 \times 10^{-12} d^{2} + 5.0 \times 10^{-20} d^{3}$$

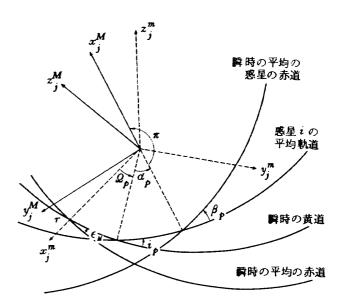
(4.33)
(こ こ て d は 1900 年 1月 0.5 ET (15019.5MJED)
から起算した時間経過を日数で到ったもので
ある。)

$$\rho = -3.''3\cos(2L-2Q)$$

 $+11.''0\cos(2M-2Q)$
 $+24.''3\cos(M+\Gamma'-2Q)$
 $-2.''0\cos(2L-M-\Gamma')$
 $-99.''1\cos(M-\Gamma')$ (4.34)
 $I_{M\sigma} = -3.''2\sin(2L-2Q)$
 $+10.''6\sin(2M-2Q)$
 $+24.''1\sin(M+\Gamma'-2Q)$
 $+2.''5\sin(2L-M-\Gamma')$
 $-0.''9\sin(2L-2\Gamma')$ (4.35)
 $H_{5(10)} = \begin{pmatrix} \cos\theta_{10}, \sin\theta_{10}, 0\\ -\sin\theta_{10}, \cos\theta_{10}, 0\\ 0, 0, 1 \end{pmatrix}$
 (4.36)
 $\theta_{10} = \ell_M + (\tau - \sigma)$ (4.37)
 $\ell_M = 11^{\circ}.250889 + 13^{\circ}.229350449d$
 $-2^{\circ}.407 \times 10^{-12}d^{2} - 1^{\circ}.1 \times 10^{-20}d^{3}$
 (4.38)
(C こ て d k1 (4.33) 式 と 同じ)
 $\tau = 1.''7\sin(2L-2Q)$
 $+91.''6\sin(L-\Gamma')$
 $-1.''2\sin(\Gamma - \Gamma')$
 $+4.''1\sin(2\Gamma - \Pi - \Gamma')$
 $-3.''5\sin(L - \Gamma')$
 $+0.''4\sin(2\Gamma - 2\Gamma')$
 $+0.''4\sin(2\Gamma - 2\Gamma')$
 $+0.''9\sin(L + \Gamma - 2\Gamma')$
 $+31.''1\sin(2Q - 2\Gamma')$
 $+10.''0\sin(2L - 2\Gamma')$ (4.38)
 $L = 279^{\circ}.69668 + 129602768.''13T + 1.''089T^{2}$
 $M = 270^{\circ}.434358 + 1336^{\circ}.307^{\circ}.52^{\circ}.59.''.31T$
 $-4.''08T^{2} + 0.''068T^{3}$
 $\Gamma' = 334^{\circ}.329653 + 11^{\circ}.10^{\circ}.02^{\circ}.''52T$
 $-37.''17T^{2} - 0.''045T^{3}$
 $Q := 259^{\circ}.183275 - 5^{\circ}.134^{\circ}.08'.31.''.23T$
 $+7.''48T^{2} + 0.008T^{3}$
 (4.39)
 $(T kt (3.16) 武 2 k \Box U)$

 φ₁₀: Mean of dateの春分点から黄道面上に そって御った月の真の赤道面の昇交点黄 経

I10 : 月の赤道面の黄道面に対する真の傾角
 である。


 M は平均黄道傾角で(3.15)式で与えら
 れる。さらに

- IM: 月の赤道面の黄道面に対する平均傾角
- *l_M*: 月のMean argument
- σ : 月の physical libration の Ø 方向成分
- ρ : 月の physical libration の I_M 方向成分
- τ : 月の physical libration の黄経成分
- ② (4.34), (4.35), (4.38)式の引数に現れる
 - 変数は
 - L : 太陽の mean of date の春分点に基づく 平均黄経

 - M : Mean of date の春分点に基づく月の平 均黄経
 - Γ': Mean of date の春分点に基づく月の近
 地点の平均黄経
- (V) **C**¹⁹⁵⁰ と **C**^M_jの間の変換

$\begin{vmatrix} \mathbf{r}_{j}^{M} = \mathbf{H}_{8p} \mathbf{r}_{j}^{1950} \\ \mathbf{r}_{j}^{1950} = \mathbf{H}_{8p} \mathbf{r}_{j}^{M} \end{vmatrix}$	}	(4.40)
$ \begin{array}{l} H_{bp} = \boldsymbol{H}_{5p} \cdot P \\ {}^{t}H_{\delta p} = {}^{t}\boldsymbol{P} \cdot {}^{t}\boldsymbol{H}_{5p} \end{array} $	}	(4.41)

- ① C^M_j は惑星 j の平均赤道面および平均春分点に基準面および基準方向を置く座標系である。ただ惑星の場合に真の瞬時(True of date)および惑星に固定した座標系を考えていないのは,惑星の章動,自転に関する詳しい情報が得られないためである。
- ② この変換は次のブロセスで行う。(図 4.4)
- (a) C_i¹⁹⁵⁰からC_j¹⁹⁵⁰への原点移動((4.13)および(4.14)式で与えられる)。
- (b) C_j^{1950} から Mean of date (地球の赤道,春分点) の座標系 $C_j^m(x_j^m, y_j^m, z_j^m)$ への変換 (**P**)
- (c) さらに惑星の Mean of date の赤道,春分点に準 拠する C_j^M への変換(H_{5p})
- ③ 変換行列Pは(3.8)式で与えられる。

$$\mathbb{Z} 4.4 \quad \boldsymbol{C}_{j}^{\boldsymbol{n}}(x_{j}^{\boldsymbol{n}}, y_{j}^{\boldsymbol{n}}, z_{j}^{\boldsymbol{m}}) \succeq \boldsymbol{C}_{j}^{\boldsymbol{M}}(x_{j}^{\boldsymbol{M}}, y_{j}^{\boldsymbol{M}}, z_{j}^{\boldsymbol{M}})$$

$$\begin{split} H_{5p} &= W_2 \cdot W_1 \\ {}^{t}H_{5p} &= {}^{t}W_1 \cdot {}^{t}W_2 \end{split} (4.42) \\ \begin{split} H_{5p} &= {}^{t}W_1 \cdot {}^{t}W_{2} \\ \\ W_{11} &= \begin{pmatrix} W_{111} &, W_{112} &, W_{113} \\ W_{121} &, W_{122} &, W_{123} \\ W_{131} &, W_{122} &, W_{133} \\ \end{pmatrix} \\ \end{split} (4.43) \\ \cr W_{111} &= \cos \mathcal{Q}_p \\ \\ W_{112} &= \sin \mathcal{Q}_p \cos \mathcal{E}_M \\ \\ W_{113} &= \sin \mathcal{Q}_p \sin \mathcal{E}_M \\ \\ W_{121} &= -\sin \mathcal{Q}_p \cos i_p \cos \mathcal{E}_M^{-1} \sin i_p \sin \mathcal{E}_M \\ \\ W_{122} &= \cos \mathcal{Q}_p \cos i_p \sin \mathcal{E}_M + \sin i_p \cos \mathcal{E}_M \\ \\ W_{123} &= \cos \mathcal{Q}_p \cos i_p \sin i_p \cos \mathcal{E}_M^{-1} \cos i_p \sin \mathcal{E}_M \\ \\ W_{131} &= \sin \mathcal{Q}_p \sin i_p \\ \\ W_{132} &= -\cos \mathcal{Q}_p \sin i_p \cos \mathcal{E}_M^{-1} \cos i_p \sin \mathcal{E}_M \\ \\ W_{133} &= -\cos \mathcal{Q}_p \sin i_p \cos \mathcal{E}_M^{-1} \cos i_p \cos \mathcal{E}_M \\ \\ \\ W_{133} &= -\cos \mathcal{Q}_p \sin i_p \sin \mathcal{E}_M^{-1} \cos i_p \cos \mathcal{E}_M \\ \\ \\ W_{2} &= \begin{pmatrix} -\cos \alpha_p &, -\sin \alpha_p &, 0 \\ \cos \beta_p \sin \alpha_p &, -\sin \beta_p \cos \alpha_p &, -\sin \beta_p \\ \sin \beta_p \sin \alpha_p &, -\sin \beta_p \cos \alpha_p &, -\sin \beta_p \\ \sin \beta_p \sin \alpha_p &, -\sin \beta_p \cos \alpha_p &, \cos \beta_p \\ \\ \\ & (4.45) \\ \\ \\ \mathcal{Q}_p &= a_2 + b_2 T + C_2 T^2 + d_2 T^3 & (4.46) \\ i_p &= a_i + b_i T + C_i T^2 & (4.47) \\ (T td (3.16) d d \mathcal{K} \in \mathbb{P} \cup 1) \\ \\ \alpha_p &= K_1 - \mathcal{Q}_p \\ \\ \beta_p &= K_2 \\ \end{split}$$

① *ϵ_M*: 平均黄道傾角

- Q,: 黄道面に対する惑星軌道の昇交点黄経
- ip : 黄道面に対する惑星軌道の傾き

- α。: 惑星軌道面上で測った,惑星軌道の昇交 点から惑星の秋分点までの角度
- β_p : 惑星の軌道面に対する赤道面の傾き 4.2 運動方程式
- られる。(その他の惑星については不明)
 - 金星 : $K_1 = 170^\circ$, $K_2 = 176^\circ7$

火星 : $K_1 = 88^\circ$, $K_2 = 23^\circ 99$ 木星 : $K_1 = 316^\circ$, $K_2 = 3.07$

 ② (4.46), (4.47)式における各定数は表4.1 に
 惑星間宇宙船の運動方程式を中心天体で2つに分類し、
 与えられている。
 また(4.48)式におけるK₁, K₂の
 それが太陽である場合を運動方程式I,惑星(月を含む) 値は金星,火星,木星についてだけ次のように与え である場合を運動方程式 []として次のように与える。 (図4.5)

(1) 運動方程式 [(中心天体-太陽)

planets	a _g	bo	Cg	d _o	a_i	b _i	Ci
Mercury	47°8′45″40	4266." 75	0."626	0	7°0′10.″ 37	6." 699	- 0."066
Venus	75°46′46″ 73	3239." 46	1.″ 476	0	3° 23′37.′′ 07	3." 621	- 0!"0035
Mars	48°47′11″19	2775." 57	- 0." 0. 05	- 0." 0192	1°51′1.″ 20	- 2." 430	0.10454
Jupter	99°26′36.″19	3637." 908	1." 2680	-0."03064	1°18′31.″ 45	20." 506	0.14
Saturn	112°47′25″ 40	3143!' 5025	- 0." 54785	- 0." 0191	2°29′33″ 07	- 14." 108	- 0." 05576
Uranus	73°28′37.″ 55	1795." 204	4." 722	0	0 [°] 46′20″87	2." 251	0." 1422
Neptune	130°40′52″89	3956." 166	0." 89952	-0."016984	1°46′45.″ 27	-34" 357	-0."0328

表4.1

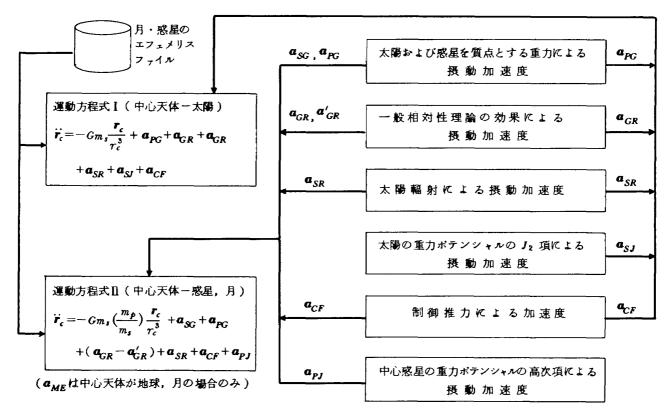


図4.5 宇宙船の運動方程式

67

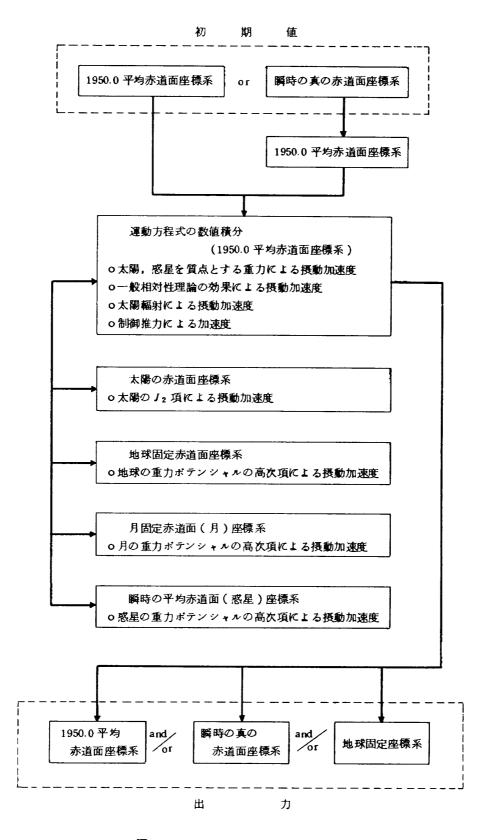


図 4.6 摂動加速度の計算と座標系

$$\vec{r}_{c} = -Gm_{s}\frac{r_{c}}{r_{c}^{3}} + a_{PG} + a_{GR} + a_{SR} + a_{SJ} + a_{CF}$$
(4.49)

- r_c は太陽重心から測った宇宙船の位置ベクトル, Gは万有引力定数, m_sは太陽の質量であるが, Gm_s はガウスの定数をk(=0.01720209895)とすると Gm_s = k²となる。
- ② 次の摂動加速度を考慮している。
 a_{PG} : 惑星を質点とする重力による摂動加速度
 a_{GR} : 一般相対性理論の効果による摂動加速度
 a_{SR} : 太陽輻射による摂動加速度
 a_{SU} : 太陽の J₂ 項による摂動加速度
 a_{CF} : 制御推力による加速度
- ③ 宇宙船の運動は(4.49)式の数値積分によって求 めるが,数値積分法は3.3節に示したものである。
- (2) 運動方程式Ⅱ (中心天体-惑星,月)

$$\begin{aligned} \ddot{\mathbf{r}}_{c} &= -G_{m_{s}} \left(\frac{m_{p}}{m_{s}}\right) \frac{\mathbf{r}_{c}}{\mathbf{r}_{c}^{3}} + \mathbf{a}_{SG} + \mathbf{a}_{PG} \\ &+ (\mathbf{a}_{GR} - \mathbf{a}_{GR}') + \mathbf{a}_{SR} + \mathbf{a}_{CF} + \mathbf{a}_{PJ} \end{aligned}$$

$$(4.50)$$

- (1) r_cは惑星または月の重心から測った宇宙船の位置 ベクトル, m_pは惑星または月の質量であるが,計 算では太陽の質量を単位にとっているので,データ は(m_p/m_s)で与えられる。
- ② 次の摂動加速度を考慮している。
 - a.Sc : 太陽を質点とする重力による摂動加速度
 - **a**_{PG}:惑星を質点とする重力による摂動加速度
 - a_{GR}: 中心天体が太陽重心の場合に宇宙船が受ける一般相対論の効果(4.49式における
 a_{GR}と同じもの)
 - **a**_{GR} : 中心天体が太陽重心の場合に惑星または 月が受ける一般相対論の効果
 - **a**_{SR}: 太陽輻射による摂動加速度
 - **a**_{CF}: 制御推力による加速度
 - **a_{PJ}**: 中心惑星(または月)の重力ポテンシャ ルの高次項による**摂動**加速度

各摂動加速度の計算は必要に応じて4.1.2に示した各種の座標系で求められるが,それらの関係は図4.6に示した通りである。

また (4.49) および (4.50) 式の数値積分 (4次から 12次まで次数可変の Gauss-Jackson 法) によって宇宙 船の運動が求められる。 Gauss-Jackson 法については 3.3.1 節に示してある。

- 4.2.1 運動方程式 【における摂動加速度
- 4.2.1.1 惑星を質点とする重力による摂動加速度

$$\boldsymbol{a}_{PG} = Gm_s \sum_{n=1}^{10} \left(\frac{m_n}{m_s}\right) \left(\frac{\boldsymbol{r}_n - \boldsymbol{r}_c}{|\boldsymbol{r}_n - \boldsymbol{r}_c|^3} - \frac{\boldsymbol{r}_n}{|\boldsymbol{r}_n|^3}\right)$$
(4.51)

- ① r_n, r_c はそれぞれ各惑星と月 $(n=1 \sim 10)$ および 宇宙船の太陽重心から測った位置ベクトルである。
- ② (4.51)式の右辺にあらわれる

$$\frac{\mathbf{r}_n - \mathbf{r}_c}{|\mathbf{r}_r - \mathbf{r}_c|^3} - \frac{\mathbf{r}_n}{|\mathbf{r}_r|^3}$$

の項は 3.2.2 節に示したように,次のように変形して計算される。

$$\frac{\mathbf{r}_{n} - \mathbf{r}_{c}}{|\mathbf{r}_{n} - \mathbf{r}_{c}|^{3}} - \frac{\mathbf{r}_{n}}{|\mathbf{r}_{n}|^{3}} = -\frac{1}{d_{n}^{3}} (\mathbf{r}_{c} + f(q)\mathbf{r}_{n})$$
(4.52)
$$f(q) = \frac{3q + 3q^{2} + q^{3}}{1 + (1 + q)^{\frac{3}{2}}}$$
(4.53)
$$q = \frac{1}{|\mathbf{r}_{n}|^{2}} (|\mathbf{r}_{c}|^{2} - 2\mathbf{r}_{n} \cdot \mathbf{r}_{c})$$
(4.54)
$$d_{n} = |\mathbf{r}_{n} - \mathbf{r}_{c}|$$
(4.55)

③ 惑星および月の各位置ベクトル には惑星のエフェ メリス生成プログラム(STANPS-D)によって計 算され。 0.5 日間隔で必要な期間だけデータファイ ルに登録されることになる。STANPS-D につい ては別に報告を行う予定なので、ここではその概要 を説明する。これは月および惑星の比較的短期間 (10~20年)における高精度な位置および速度ベク トルを,月と9惑星を合わせた10天体の運動方程式 を同時に数値積分することによって求めるものであ る。運動方程式は図4.7 に示したように、太陽に対 する10天体の相対運動の方程式を(I)8惑星(地球 と月を除く)の運動方程式。(Ⅱ)地球−月系の重心 の運動方程式と地球に対する月の相対運動の方程式、 の二つに整理し、Gauss-Jackson 法によって数値 積分を行うが、月の公転周期が惑星のそれに比べて 小さいので, 方程式系 (11)のステップサイズは(1) に比較して小さくとるようになっている。このプロ

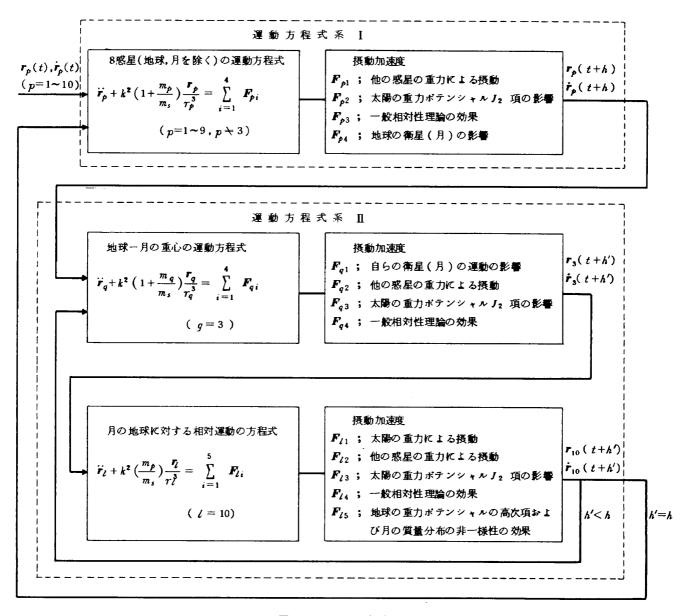


図 4.7 運動方程式

グラムの入出力の内容は図4.8 に示した通りである。4.2.1.2 一般相対性理論の効果による摂動加速度

$$\boldsymbol{a}_{GR} = \frac{G m_s}{C^2 |\boldsymbol{r}_c|^3} \left\{ \left(2 \left(1+\gamma \right) \phi_c - \gamma |\dot{\boldsymbol{r}_c}|^2 \right) \boldsymbol{r}_c + 2 \left(1+\gamma \right) \left(\boldsymbol{r}_c \cdot \dot{\boldsymbol{r}_c} \right) \dot{\boldsymbol{r}_c} \right\}$$
(4.56)

- (4.56) 式は Brans Dicke の重力理論に基づい て定式化されたもので、左辺のrは0~1の間で変 えるパラメータであるがr=1とおくと Einstein による一般相対性理論の結果と一致する。(このプ ログラムではr=1としている)
- ② ϕ_c , Cはそれぞれ次のようなものである。 ϕ_c : ニュートンポテンシャルで $\phi_c = Gm_s / |r_c|$ C: 光速= 299792.5 (km/sec)

4.2.1.3 太陽輻射による摂動加速度

太陽輻射による摂動加速度の計算においては次の仮定 を行っている。

(1) 太陽からの直接の輻射圧のみを考慮することにし, 惑星による反射の影響は無視する。

(2) 惑星の影による影響は宇宙船がその作用圏にある ときだけ考慮する。

(3) 太陽の輻射圧定数の変動は無視する。

(4) 宇宙船の形は板状とし、その法線方向は常に太陽 中心の方向に一致しているものとする。

$$\boldsymbol{a}_{SR} = P\left(\frac{A_c}{m_c}\right) \left(1 + \gamma_s + \frac{2}{3}\gamma_d\right) F(s) \frac{\boldsymbol{r}_c}{|\boldsymbol{r}_c|}$$

$$(4.57)$$

$$P = P_0 \swarrow |\boldsymbol{r}_c|^2$$

$$(4.58)$$

--< 入 カ >---月・惑星の軌道要素(Epoch: 暦表時) 座 標 系: Mean of 1950.0 or True of Date (原点は太陽の重心) 軌 道要素: ケプラー要素 or 位置,速度ペクトル 月・惑星の Reciprocal Mass 計算時間: 計算開始時刻と終了時刻(暦表時) 数 値 積 分: Gauss-Jackson 法の次数(4~12次) ステップサイズ(8惑星,地球と月) 時間の進行: 前進 or 後進(時を過去にさかのぼる) 力: 出力開始時刻と出力時間間隔 出 XYブロッターへの出力 ------ 出 カ >-月・惑星の軌道要素 座 標 系: Mean of 1950.0 or True of Date 軌道要素: ケブラー要素 and/or 位置,速度ペクトル 赤释, 赤緯: Mean of 1950.0 or True of Date 加速度: 月・惑星の加速度および各摂動加速度 補助変数 歳差, 章動, 黄道傾角などに関連する量

図4.8 STANPS-Dの入出力

 A_c, m_c は宇宙船の断面積および質量で, 7_s, r_d はそれぞれ正反射係数および乱反射係数である。
 P₀ は太陽定数で4.7×10⁻⁵ dyn/cm² とする。
 F(s) は影の関数で
 F(s) = {

 9 = {
 0 : 宇宙船が惑星の影にあるとき, 1 : 宇宙船が惑星の影にないとき, となるが, (4.57)式は中心天体が太陽の場合であ るから, 仮定(2)によってF(s) = 1 としておく。

 4.2.1.4 太陽の J₂ 項による摂動加速度

$$a_{SJ_x} = \frac{3}{2} Gm_s J_2 R_s^2 \left(\frac{x_c}{r_c^5}\right)$$

$$\times \left(5 \left(\frac{z_{c}}{r_{c}} \right)^{2} - 1 \right)$$

$$a_{SJ_{y}} = \frac{3}{2} G_{m_{s}} J_{2} R_{s}^{2} \left(\frac{y_{c}}{r_{c}^{5}} \right)$$

$$\times \left(5 \left(\frac{z_{c}}{r_{c}} \right)^{2} - 1 \right)$$

$$a_{SJ_{z}} = \frac{3}{2} G_{m_{s}} J_{2} R_{s}^{2} \left(\frac{z_{c}}{r_{c}^{5}} \right)$$

$$\times \left(5 \left(\frac{z_{c}}{r_{c}} \right)^{2} - 3 \right)$$

$$(4.59)$$

$$r_{c}^{2} = x_{c}^{2} + y_{c}^{2} + z_{c}^{2}$$

$$(4.60)$$

- ① (4.59)式は太陽の赤道面に準拠する座標系 C_0^5 系での摂動加速度の各軸成分である。したがって (4.49)式における a_{SJ} はこれらの加速度の C_0^{1950} 系に変換されたものである。
- ② x_c , y_c , z_c は C_0° における宇宙船の位置ベクトル の各軸成分である。
- ③ J₂, R, はそれぞれ太陽の重力ポテンシャルのJ₂ 項および太陽の赤道半径で次のようなものである。

 $J_2 = 0.0000070$

- $R_s = 696000$ (km)
- 4.2.1.5 制御推力による加速度

STANPS-B においては推力の大きさによって3つ の場合に分類している(3.2.5節)が、ここではそこに おける Medium thrust の場合のみを考慮している。こ れは Low thrust, Medium thrustの場合もその特殊な 場合として考慮できるからである。また接線方向に推力 を加える場合を特に別にしているのは3.2.5節と同様で ある。

(1) 一般の制御力の場合

$$\boldsymbol{a}_{CF} = \boldsymbol{F}_{c} \nearrow \left(m_{t} - \frac{1}{2} \dot{m} h_{c} \right) \qquad (4.61)$$
$$m_{t+h_{c}} = m_{t} - \dot{m} h_{c} \qquad (4.62)$$

- ① F_c , m, h_c は入力として必要なもので, それぞ れ
 - F_c:
 推力(単位はニュートン)

 m
 燃料消費による質量減少率(kg/sec)

 h_c:
 推力付加時間における数値積分のステッ
 - である。
- (2) 接線方向の制御力の場合

プサイズ

$$\boldsymbol{a}_{CF} = \boldsymbol{F}_{c} / \left(\boldsymbol{m}_{i} - \frac{1}{2} \boldsymbol{\dot{m}} \boldsymbol{h}_{c} \right)$$
(4.63)
$$\boldsymbol{m}_{i+\boldsymbol{h}_{c}} = \boldsymbol{m}_{i} - \boldsymbol{\dot{m}} \boldsymbol{h}_{c}$$
(4.64)
$$\boldsymbol{F}_{cx} = |\boldsymbol{F}_{c}| \cos \alpha \cos \beta$$

$$\boldsymbol{F}_{cy} = |\boldsymbol{F}_{c}| \cos \alpha \sin \beta$$
(4.65)
$$\boldsymbol{F}_{cz} = |\boldsymbol{F}_{c}| \sin \alpha$$

$$\sin \beta = \dot{y}_{i} / \sqrt{\dot{x}_{i}^{2} + \dot{y}_{i}^{2}}$$
(4.66)
$$\sin \alpha = \dot{z}_{i} / |\dot{\boldsymbol{r}}_{i}|$$
(4.66)

(1) $CC(F_{cx}, F_{cy}, F_{cz}) \neq U(\dot{x}_t, \dot{y}_t, \dot{z}_t)$

- はそれぞれ F_c と \dot{r}_i の各軸成分であるが、入力としては $|F_c|$ を与えればよいわけである。
- 4.2.2 運動方程式 [] における摂動加速度
- 4.2.2.1 太陽を質点とする重力による摂動加速度

$$\boldsymbol{a}_{SG} = Gm_s \left(\frac{\boldsymbol{r}_s - \boldsymbol{r}_c}{|\boldsymbol{r}_s - \boldsymbol{r}_c|^3} - \frac{\boldsymbol{r}_s}{|\boldsymbol{r}_s|^3} \right) \quad (4.67)$$

- ① **r**_s, **r**_cは中心天体である惑星の重心から測った太陽および宇宙船の位置ベクトルである。
- (2) (4.67)式の実際の計算は(4.52)~(4.55)式の形に直して行われる。

4.2.2.2 惑星を質点とする重力による摂動加速度

$$a_{PG} = Gm_s \sum_{\substack{n=1\\n \neq P}}^{10} \left(\frac{m_n}{m_s}\right) \left(\frac{r_n - r_c}{|r_n - r_c|^3} - \frac{r_n}{|r_n|^3}\right)$$
(4.68)
(孫字Pに当る惑星が中心天体)

- 「n,r,cは中心天体である惑星の重心から測った摂動加速度を生じさせる他の惑星および宇宙船の位置 ペクトルである。
- ② (4.68)式の計算も(4.52)~(4.55)式の形に 直して行われる。
- 4.2.2.3 一般相対性理論の効果による摂動加速度

$$a_{GR} = \frac{Gm_s}{C^2 |\mathbf{r}_c|^3} \{ (2(1+\gamma)\phi_c - \gamma |\dot{\mathbf{r}}_c|^2) \mathbf{r}_c + 2(1+\gamma)(\mathbf{r}_c \cdot \dot{\mathbf{r}}_c)\dot{\mathbf{r}}_c \}$$

$$(4.69)$$

$$a'_{GR} = \frac{Gm_s}{C^2 |\mathbf{r}_p|^3} \{ (2(1+\gamma)\phi_p - \gamma |\dot{\mathbf{r}}_p|^2) \mathbf{r}_c + 2(1+\gamma)(\mathbf{r}_c \cdot \dot{\mathbf{r}}_c)\dot{\mathbf{r}}_c \}$$

$$(P=1\sim 10) \qquad (4.70)$$

- (4.69)式は(4.56)式と全く同じものであり、 *a*'_{GR}は(4.69)式における宇宙船の位置,速度のベ クトルを惑星または月のそれらに置き変えたもので ある。したがって(4.69)および(4.70)式におけ る*r_c*,*r_p*,*r_p*はそれぞれ太陽重心を原点として *调った宇宙船および惑星*(または月)の位置ベクト ルと速度ベクトルである。
- ② ニュートンボテンシャル øは(4.56)式の場合と 同様であるが、中心天体が地球または月の場合には

特にお互の効果を考慮している。

$$\phi_{c} = Gm_{s} / |r_{c}|$$

$$\phi_{p} = Gm_{s} / |r_{p}| \quad (P = 1 \sim 9, P \neq 3)$$

$$\phi_{3} = Gm_{s} / |r_{3}| + Gm_{s} / |r_{3} - r_{10}|$$

$$\phi_{10} = Gm_{s} / |r_{10}| + Gm_{s} / |r_{3} - r_{10}|$$

$$(4.71)$$

4.2.2.4 太陽輻射による摂動加速度

太陽輻射による摂動を考慮するときの仮定は4.2.1.3 のところに示した通りで、今考えているのは中心天体が 惑星の場合の運動方程式であるから、その惑星による影 の効果を考慮する。

$$\boldsymbol{a}_{SR} = P\left(\frac{A_c}{m_c}\right) \left[1 + \gamma_s + \frac{2}{3}\gamma_d\right] F(s) \frac{(\boldsymbol{r}_c - \boldsymbol{r}_s)}{|\boldsymbol{r}_c - \boldsymbol{r}_s|}$$

$$(4.71)$$

$$P = P_0 \swarrow |\boldsymbol{r}_c|^2 \qquad (4.72)$$

- r_c, r_sは中心天体(惑星)の重心を原点として測 った宇宙船と太陽の位置ベクトルであり,その他の バラメータについては(4.57)~(4.58)式の場合 とまったく同じである。
- ② 影の関数 F(s) は

 $F(s) = \begin{cases} 0 : 宇宙船が惑星の影にあるとき、 \\ 1 : 宇宙船が惑星の影にないとき、$ として与えられるが、それは次のようにきまる。

(1)
$$|\mathbf{r}_{c}-\mathbf{r}_{s}| \leq |\mathbf{r}_{s}|$$
 の場合 $F(s) = 1$
(1) $|\mathbf{r}_{c}-\mathbf{r}_{s}| > |\mathbf{r}_{s}|$ の場合
 $D_{1} \neq 0$ のとき $F(s) = \begin{cases} 1; D_{1} > 0\\ 0; D_{1} \leq 0 \end{cases}$
 $D_{1} = 0$ のとき $F(s) = \begin{cases} 1; D_{2} \geq 0\\ 0; D_{2} < 0 \end{cases}$
 $C \subset \tau$
 $D_{1} = |\mathbf{r}_{c} \times (-\frac{\mathbf{r}_{s}}{|\mathbf{r}_{s}|}) - R_{p}$
 $D_{2} = |(\mathbf{r}_{c} + \dot{\mathbf{r}}_{c}) \times (-\frac{\mathbf{r}_{s}}{|\mathbf{r}_{s}|})| - R_{p}$

ここでr_c→r,r_s→-r_{SE}, R_p(中心惑星の半径)
→ R_E とおき変えれば図3.8, 3.9と全く同じになるので説明と図は省略する。
4.2.2.5 制御推力による加速度
(1) 一般の制御力の場合

$$a_{CF} = F_c / (m_t - \frac{1}{2} \dot{m} h_c)$$
(4.73)
$$m_{t+h_c} = m_t - \dot{m} h_c$$
(4.74)

- 入力値F_c(推力)が惑星重心を原点とした1950.0 mean の座標系での値で与える以外は(4.61),(4. 62)式と同じである。
- (2) 接線方向の制御力の場合

$\boldsymbol{a}_{CF} = \boldsymbol{F}_c / (m_t - \frac{1}{2} \dot{m} h_c)$		(4.75)
$m_{t+h_c} = m_t - \dot{m}h_c$		(4.76)
$F_{cx} = F_c \cos \alpha \cos \beta$)	
$F_{cy} = F_c \cos \alpha \sin \beta$	}	(4.77)
$F_{cz} = F_c \sin \alpha$	J	
$\sin\beta = \dot{y}_i / \sqrt{\dot{x}_i^2 + \dot{y}_i^2}$]	
$\cos\beta = \dot{x}_t / \sqrt{\dot{x}_t^2 + \dot{y}_t^2}$	ļ	(4.78)
$\sin \alpha = \dot{z}_t / \dot{r}_t $		(4.10)
$\cos \alpha = \sqrt{\dot{x}_i^2 + \dot{y}_i^2} / \dot{r}_i $	J	

 f_tが中心惑星の重心を原点として測った宇宙船の
 位置ベクトルである以外は(4.63)~(4.66)式と
 全く同じである。

4.2.2.6 中心惑星(または月)の重力ポテンシャル の高次項による摂動加速度

$$a_{PJx} = \frac{1}{2} G_{m_s} \left(\frac{m_p}{m_s}\right) \frac{x_c}{|r_c|} \left[J_2 \left(\frac{R_p}{|r_c|}\right)^2 + \left\{15\left(\frac{z_c}{|r_c|}\right)^2 - 3\right\} + J_3 \left(\frac{R_p}{|r_c|}\right)^3 + \left\{35\left(\frac{z_c}{|r_c|}\right)^2 - 3\right\} + J_3 \left(\frac{R_p}{|r_c|}\right)^3 + \left\{35\left(\frac{z_c}{|r_c|}\right)^3 - 15\left(\frac{z_c}{|r_c|}\right)\right\}\right] + \left\{35\left(\frac{x_c}{|r_c|}\right)^2 + \left[\frac{R_p}{|r_c|}\right]^2 + \left[\frac{1}{|r_c|}\right]^3 \left(5\left(\frac{x_c}{|r_c|}\right)^2\right] + \left(c_{2*2}x_c^2 - c_{2*2}y_c^2 + 2s_{2*2}x_cy_c\right) + 2\left(c_{2*2}x_c + s_{2*2}y_c\right)\right] + 2\left(c_{2*2}x_c + s_{2*2}y_c\right)\right] + \left(4.79\right) + \left(4.79\right) + \left(15\left(\frac{x_c}{|r_c|}\right)^2 - 3\right) + \left(\frac{R_p}{|r_c|}\right)^3 + \left(15\left(\frac{z_c}{|r_c|}\right)^2 - 3\right) + \left(\frac{R_p}{|r_c|}\right)^3 + \left(35\left(\frac{z_c}{|r_c|}\right)^3 - 15\left(\frac{z_c}{|r_c|}\right)\right)\right)$$

$$-3 G m_{s} \left(\frac{m_{p}}{m_{s}}\right) \left(\frac{R_{p}}{|r_{c}|}\right)^{2} \frac{1}{|r_{c}|^{3}} \left(5\left(\frac{y_{c}}{|r_{c}|^{2}}\right) \times \left(c_{2}, 2x_{c}^{2} - c_{2}, 2y_{c}^{2} + 2s_{2}x_{c}x_{c}y_{c}\right) + 2\left(s_{2}, 2x_{c}^{2} - c_{2}, 2y_{c}\right)\right)$$

$$(4.80)$$

$$a_{PJz} = \frac{1}{2} G m_{s} \left(\frac{m_{p}}{m_{s}}\right) \frac{z_{c}}{|r_{c}|^{3}} \left(J_{2}\left(\frac{R_{p}}{|r_{c}|}\right)^{2} \times \left\{15\left(\frac{z_{c}}{|r_{c}|}\right) - 9\right\} + J_{3}\left(\frac{R_{p}}{|r_{c}|}\right)^{3} \times \left\{35\left(\frac{z_{c}}{|r_{c}|}\right)^{3} - 30\left(\frac{z_{c}}{|r_{c}|}\right)\right\}\right)$$

$$+ \frac{3}{2} G m_{s} \left(\frac{m_{p}}{m_{s}}\right) \frac{J_{3}}{|r_{c}|^{2}} \left(\frac{R_{p}}{|r_{c}|}\right)^{3} - 15 G m_{s} \left(\frac{m_{p}}{m_{s}}\right) \left(\frac{R_{p}}{|r_{p}|}\right)^{2} \left(\frac{z_{c}}{|r_{p}|^{5}}\right) \times \left(c_{2}, 2x_{c}^{2} - c_{2}, 2y_{c}^{2} + 2s_{2}, 2x_{c}y_{c}\right)$$

$$(4.81)$$

① 宇宙船の位置ベクトルトは中心天体が地球ある いは月の場合にはそれらの天体に固定の座標系 C_3^f あるいは C_{10} において測られたものであり、中心天 体がそれ以外の惑星の場合にはその中心惑星の赤道 面に準拠する座標系 C^Mにおいて測ったものである。 このようにした理由は地球と月以外の惑星について は歳差、章動および自転について詳しい情報を得る ことが困難なことと、重力ボテンシャルの non-zonal C について、その入力および出力について示す。 な harmonics についてもあまりわかっていないため である。(4.80)~(4.81)式でもとまる摂動加速 度は1950.0 mean の座標系でのそれらに変換される。

② ms, mp は太陽および中心惑星の質量, Rp は惑 星の赤道半径, J2, J3, C2,2, S2,2 は重力ポテンシ ャル定数で表4.2に与えられているが, C2.2, S2.2 については地球と月の場合のみ考慮する。

4.2.3 定数

以上の方程式で用いられている定数は次のようなもの である。

(1) 基本定数

	1 天文	単位	(1AU)	:	14959	97900) (km)
	ガウス	の重	力定数(k)	:	0.017	2020	9895
	光速度	(c)		:	29979	92.5	(km/sec)
(2)	太陽に	関す	る定数				
	赤道半	径(R _s)	:	69600)0 (1	(m)
	重力ホ	テン	シャル(J2)	:	0.000	0070	
	赤道面	jの 黄	道面に対す	る傾	(ð (I,	;):	7.°15′
(3)	惑星に	関す	る定数				
	Recip	oroca	1 mass 12t	たの	ようれ	てなる	, (16) 50
			5983000		星		
	金星	:	408522	天	王星	:	22930
	地球	:	328900.1	海	王星	:	19260
	火星	:	3098700	冥	王星	:	1812000
	木星	:	1047. 3908				

5. 入力および出力

この報告で記述する STANPS-Bおよび STANPS-5.1 STANPS-B の入力および出力 実行に必要な入力カードは次の5種類からなる。 (1) 衛星に関する情報

表 4.2

Р	planet	J ₂	J ₃	C 2, 2	S2,2	<i>R_p</i> (km)	(mp/ms) ⁻¹
1	Merculy						5983000
2	Venus						408522
3	Ear th	1082.637 × 10 ⁻⁶	-2.541×10 ⁻⁶	1.5362×10 ⁻⁶	-0.8815×10 ⁻⁶	6378.140	328900.1
4	Mars	1.964×10^{-3}	0.036×10 ⁻³				3098700
5	Jupiter	0.0147					1047. 3908
6	Saturn	0.0167					3499.2
7	Uranus	0.012				<u></u>	22930
8	Neptune	0.005					19260
10	Moon	2.071×10^{-4}	-0.210×10 ⁻⁴	0.207×10 ⁻⁴		1736	27068807. 13010

衛星の名称,番号,質量,断面積,大気抵抗係数,反 射係数(diffuse 成分, specular 成分)について定義す る。(図 5.1)

(2) エポックにおける衛星の軌道要素

エボックは協定世界時(UTC)で与え,軌道要素(接触要素)はケプラー要素または位置および速度ペクトル の形で与えられる。また軌道要素を定義する座標系は瞬時の真の座標系(True of Date)あるいは1950.0の平均 座標系(Mean of 1950.0)のいずれかを選択できる。(図 5.2)

(3) 数値積分の指定

数値積分は4次~12次の Gauss-Jackson 法によって 行われる。したがってステップサイズの大きさと共に, その次数を指定する必要がある。またステップサイズの 制御を行う場合にはその旨の指定と打切り誤差の上限お よび下限値を与える。(図5.3)

- (4) 摂動項の選択
- 考慮している摂動項は
 - 地球の重力ポテンシャルの高次項,
 - 月および太陽の引力,
 - 太陽輻射,
 - 大気抵抗,
 - 制御推力,

の5つである。これらのうちから任意のいくつか,また は全部,あるいはすべて考慮しない(二体問題)ことも できる。さらに重力ボテンシャルの高次項においては Zonal 項のみの場合と, non-zonal な項を含めた場合と に分けられる。また大気密度の計算(後述)は高度と大 気外圏温度によってきまる基本テーブルに動的変化の補 正を行っているが, この補正を行うかどうかの選択がで きる。(図 5.4(1))

制御推力は加える推力の大きさによって,次の三つに 分類する。

 Impulsive
 :
 10³ニュートン以上の推力

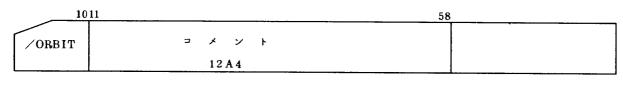
 Medium
 :
 10 ニュートン以上の推力

 Low
 :
 0.1~1ニュートンの推力

図 3.11にも示すように、Impulsiveの場合には速度増分、 質量減少,推力付加時間を与え、その他の場合には推力、 質量減少率,推力付加時間を与える。なお Mediumの場 合には,推力付加中は,指定する任意のステップサイズ で計算が行われる。推力付加の開始は,指定した時刻の 場合と,近地点通過時のいずれかを選び,また推力の方 向は指定した任意の方向の場合と,速度ベクトルの方向 の二つが考慮できる。なお速度増分あるいは推力の大き さはすべて 1950.0 平均赤道面座標系を基準とする。 (図 5.4(2))

(5) 出力内容の指定

軌道計算の結果は Mean of 1950.0 の座標系における ケブラー要素ならびに Mean of 1950.0, Trne of date の赤道面座標系および地球固定座標系における位置およ

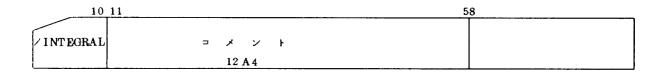

10 11		58	
SATELLI TE	コ メ ン ト 12 A4		

	20 23 30	
名称	番号	
5 A 4	2X, 2A4	

20)21 40	<u>41</u> <u>60</u>	
質量(kg)	断面積(m²)	大気抵抗係数	
D20.0	D20.0	D 20.0	

20	21 40	
反射係数 (diffuse成分)	反射係数(specular成分)	
D 20.0	D20.0	

図 5.1 衛星に関する情報の入力カード

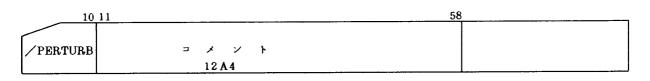

15	21 24	31 34	41 44	
エボック (西歴)①	2	3		
1	座標	軌道要	軌道	
年月日時分秒	系	素の型	要素	
12 12 12 12 12 F 5.0	5X A4	5X A4	5X A4	

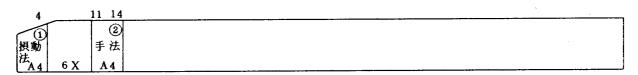
- ① エボックの時系はUTC
- ② 座標系は"TRUE"(True of dateの座標系)または"MEAN"(Mean of dateの座標系)
- ③ 軌道要素の型は "KEPL"(ケブラー要素) または "CART"(位置, 速度ベクトル)。
- ④ 軌道要素は "OSCU" (接触要素)とする。

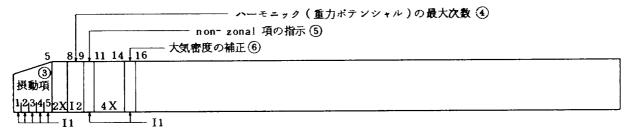
20	214(60	
a (km) or τ_x (km)	e or τ_y (km)	i or r_{x} (km)	
D20.0	D 20.0	D 20.0	

20	21 40	41 60	
\mathcal{Q} (deg) or τ_x (km/sec)	ω(deg) or \dot{r}_y (km/sec)	M(deg) or <i>†</i> (km∕sec)	
D20.0	D 2 0.0	D20.0	

図5.2 エポックにおける軌道要素の入力カード






① ステップサイズ制御指示は0(制御を行なわない)または1(制御を行う)。

② ブロセスの次数は4次~12次の間で可能。

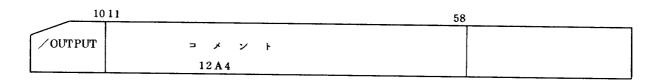
図 5.3 数値積分に関する入力カード

- ① 摂動法は STANPS- Bの場合は "SPEC" とする。
- ② 手法は STANPS-Bの場合は "GAUS" とする。
- ③ 摂動項は1:地球の偏平,2:月,太陽の引力,3:大気抵抗,4:太陽輻射,5:制御推力に対応し, 各コラムにおける指示は0(考慮しない)または1(考慮する)となる。
- (4) ハーモニック(重力ポテンシャル)の最大次数は22次。
- ⑤ non-zonal項の指示は0(zonal項のみ考慮)または1(zonal項および non-zonal項を考慮)となる。
- (6) 大気密度の補正は0(動的補正を行なわない)または1(動的補正を行なう)となる。

図5.4(1) 摂動項の選択に関する入力カード

101	l	58
/CFORCE	コ メ ン ト 12 A 4	

制御力の型(1: Impulsive, 2: Medium, 3: Low) 推力方向の制御(0:次のカード成分が与えられた方向,1:速度ベクトルの方向) 推力開始時刻の制御(0:指示した時刻に開始,1:n回後の近地点通過時刻に推力を付加) 近地点通過回数n(nは2ヶタまでの整数) 11 24 28 37 41 5051 60 質量減少(kg), ステップサイ 推力開始時刻① 推力付加時間② 質量減少率 ズ(4) 年月日時分 秒 I2/I2/I2/I2/I2/F4.1 日時分秒 (kg/sec) (3) I3 121213 D10.0 3 X 33 D10.0


5 速度増分(m/sec)または 推力(Newton)の <i>x</i> 成分 D20.0	速度増分(m/sec)または推	速度増分(m/sec)または推 力(Newton)のz成分 D20.0	
---	-----------------	---	--

(1) 推力を近地点通過時に付加する場合にはこの指定は不要。

(2) 推力付加時間は Impulsive の場合には秒のみを指定

- ③ 質量減少 (kg)は Impulsiveの場合,質量減少率 (kg/sec)は Mediumまたは Lowの場合になる。
- ④ 推力付加中のステップサイズの指定はMediumの場合のみ可能。
- ⑤ Impulsiveの場合には速度増分(m/sec)を指定し、他の場合には推力(Newton)を指定する。 推力方向が速度ベクトルの方向に付加する場合はx成分のコラムに速度増分または推力の大きさを与える。

図 5.4(2) 制御力の入力カード

- ① 軌道要素のコラムは"OSCU"(接触軌道)と指定する。
- ② 出力座標は1:1950.0平均赤道面座標系,2:True of dateの赤道面座標系,3:地球固定座標系,で いずれも0(出力しない)または1(出力する)と指定。
- ③ 摂動力の出力は 1: 地球の重力ボテンシャルの髙次項による摂動加速度
 - 2: 月および太陽の引力による摂動加速度
 - 3: 大気抵抗による摂動加速度
 - 4: 太陽輻射による摂動加速度
 - 5: 制御力による摂動加速度
- ④ データの出力は1:大気密度、2:月、太陽のエフェメリスで0(出力しない)または1(出力する)と指定。

図 5.5 出力内容の入力カード

び速度ペクトルの形で出力することができる。また摂動 加速度および大気密度,月太陽のエフェメリスも必要に 応じて出力される。(図 5.5)

- 5.2 STANPS-C の入力および出力
- 実行に必要な入力カードは次の6種類からなる。
- (1) 宇宙船に関する情報

宇宙船の名称,番号,質量,断面積,大気抵抗係数, 反射係数(diffuse 成分, specular 成分) について定義 する。(図 5.6)

(2) エポックにおける宇宙船の軌道要素

エポックは暦表時(Ephemeris Time) で与え,軌道 要素(接触要素)はケブラー要素または位置および速度 ベクトルの形で与える。軌道要素を定義する座標系は瞬 時の真の座標系あるいは 1950.0 の平均座標系で,原点 は太陽,月,9惑星のいずれかを指定する。単位は天文 単位(AU, day)あるいは MKS(km, sec) である。 (図 5.7)

(3) 数値積分の指定

数値積分は4次~12次の Gauss-Jackson 法によって 行われるが,STANPS-C では時間を逆にたどって軌 道を求めることもできる。したがって次数およびステッ プサイズの大きさの他に時間の前進または後進の指定も 行う。さらに任意の指定した時刻からステップサイズの 大きさを変えることができるが、STANPS-Bのよう に自動的なステップサイズ制御は行わない。またGauss -Jackson 法の出発値は8次の Runge-Kutta 法で求め るが,そのステップサイズの大きさも指定できる。(図 5.8)

であり、0(出力しない)

または1(出力する)と指定。

(4) 摂動項の選択

考慮できる摂動項は

太陽および惑星を質点とする重力。

一般相対性理論の効果。

太陽輻射,

太陽の重力ポテンシャルの」2項,

中心惑星の重力ポテンシャルの高次項。

(中心天体が太陽の場合をのぞく)

制御推力,

の6つである。これらのうちから任意のいくつか,また は全部,あるいはすべて考慮しない(二体問題)ことも できる。一般相対性理論の効果を考慮する場合には Brance-Dicke のパラメータ(0~1)を与えるが,これ が1つの場合には Einstein の理論に一致する。(図5. 9(1))

制御推力は STANPS-B の場合と異なり,推力の大 きさによる分類を行っていない。したがって指定するの は推力制御の回数,推力方向(速度ベクトルの方向また は任意に指定した方向),推力開始時刻,推力付加時間, 質量減少率,推力付加中の積分のステップサイズなどで ある。推力の大きさを定義する座標系は1950.0 meanの 赤道面座標系である。(図5.9(2))

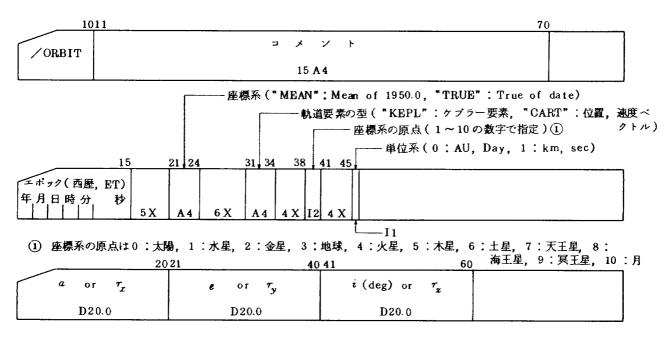
(5) 出力内容の指定

軌道計算の結果は Mean of 1950.0 座標系(原点は中 心天体-太陽,月,惑星)におけるケブラー要素ならび に Mean of 1950.0, True of date の赤道面座標系(原 点は中心天体)および地球固定座標系における位置およ び速度ベクトルの形で出力することができる。また考慮 した摂動加速度の出力も可能である。(図 5.10)

(6) 定数の変更

太陽,地球,月に関する諸定数ならびに各惑星の reciprocal mass はプログラムの中で与えられているが (4章),必要の場合には入力データとして,別の値を 与えることができる。(図5.11(1)~図5.11(4))

5.3 具体的な出力例


5.3.1 STANPS-Bの出力例

例題として取上げた人工衛星は図 5.12の proof list に示された通りである。入力データとしては 1950.0 平 均赤道面座標系におけるケブラー要素で与えたが、list には位置および速度ベクトルの値および True of date における値も出力される。重力ポテンシャルは 5 次まで の Zonal 項および non-zonal 項を考慮している。図 5.5

1011		
SPACE CRFT	コ メ ン ト 15 A 4	

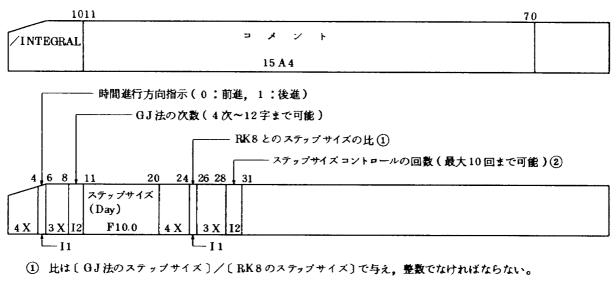
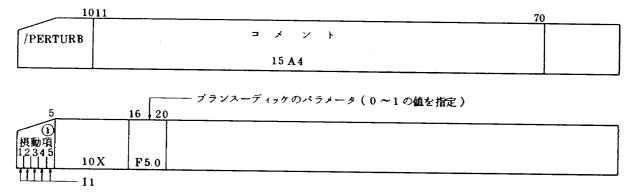

	10	1 20	21 30	31 40	41 60	<u>)</u>	5 <u>3</u> 70	I
質量 ()	(g)	断面積(m²)	反射係数 (specular成分)	反射係数 (diffuse成分) F100	宇宙船の名称		番号	
F 10.	0	F10.0	F10.0	F10.0	5 A 4	2X	2 A 4	

図5.6 宇宙船に関する情報の入力カード

20	21 4	041	60
Q (deg) or $\dot{\tau}_x$	ω(deg) or τ _y	M (deg) or $\dot{\tau_{g}}$	
D 20.0	D20.0	D 20.0	


図5.7 エポックにおける軌道要素の入力カード

② ここで指定した数だけ、以下のカードを用意する。

1011 20	
ステップ の時到 年月日時分 	
121212121212 F10.0	

図 5.8 数値積分法に関する入力カード

(1) 摂動項の数字はそれぞれ

- 1: 太陽および惑星を質点とする重力による摂動。
- 2: 一般相対性理論による効果。
- 3: 太陽輻射による摂動。
- 4: 太陽の重力ポテンシャルの」。項による摂動。
- 5: 近くの惑星の重力ポテンシャルの高次項の効果による摂動。

に対応し、0(考慮しない)または1(考慮する)と指定。

図 5.9(1) 摂動項の選択に関する入力カード

1011		70
CFORC	コメント	
	15 A 4	

— 推力制御の回数(最大5回まで可能)①

2	 		
1			 <u></u>
	113 > 7	•	

① ここで指定した制御の回数だけ、以下の2枚の組のカードを与える。

,		0:次のか	ード	において与えられた成分	方向, 1	し:連度ベク	トルの方向)
	11	20	23	3031 404	41	50	

2 推力開始時刻 年月日時分	時間 日時分	質量減少率 (kg/sec)	ステップサ ② イズ(Day) F10.0	
9X I2I2I2I2I2Z	I4 I2I2	F10.0	F 10.0	

— I 1

ſ

20	21 40	41 60	
③ 推力の <i>x</i> 成分 (Newton)	推力の y 成分(Newton)	推力の z 成分 (Newton)	

② 推力を付加している間の数値積分のステップサイズは,数値積分に関する入力データによって定義されたものに優先する。

③ 推力が速度ペクトルの方向である場合には、このコラムに推力の大きさを与える。

図5.9(2) 制御推力に関する入力カード

1011		70
/OUTPUT	コメント	
	15 A 4	

٢					の型(0:	出力し	tav,	1 :出ナ	ける)①									
	ſ								ける)②									
	34	6,	9		摂動項(0 20		1しない, 31	1:出 40-	力する)③ 41) 50	54	56	一単位系	(0:	AU /	Day, 1	1 : km	/sec)
\square	T			出力開始時刻 (ET) 年月日時4			出力終了 (ET) 年月日	,時刻	出力間隔 (Day)					_				
112	123	Щ	<u>ex</u>	12 12 12 12 12	2 10		121212		F10 .0		4 X							
U	ĮЩ	}	l	<u> </u>	1 X								- I1					

① 軌道要素の型

- 1: 位置および速度ベクトルで,指示された出力座標系において出力する。(出力座標の指示のない場合には 1950.0 mean の座標系において出力する)。
- 2: ケブラー要素で、中心天体を原点とする1950.0 平均赤道面座標系で出力される。


② 出力座標

- 1: Mean of 1950.0の赤道面座標系(原点は中心天体)。
- 2: True of Date の赤道面座標系(//)。
- 3: 地球固定座標系。
- ③ 摂動項

出力されるのは考慮した摂動力のみで、座標系は中心天体を原点とする1950.0平均赤道面座標系。

図 5.10 出力内容のデータカード

航空宇宙技術研究所資料 359 号

	2021	40	41 60)
太陽の赤道半径		太陽 の重力ポテンジャル 定数J₂	太陽定数 P _o (dyn/cm²)	
D20.0		D 20.0	D 20.0	

< ブログラムの中で与えられている定数値>

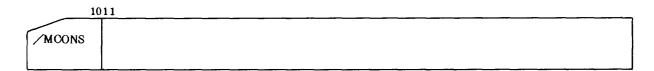
 $R_s = 696000 \text{ km}$

 $J_2 = 0.0000070$

 $P_o = 4.7 \times 10^{-5} (\,\mathrm{dyn}\,\mathrm{/cm^2}\,)$

図 5.11(1) 太陽に関する定数の変更入力カード

1	011		
/ECONS			


20	21 40	041 6	0
地球の赤道半径 R _E (km)	地心重力定数 G m _E (km³/sec²)	太陽と地球の質量比 <i>m_S /m_E</i>	
D 20.0	D 20.0	D 20.0	

20	21 40	41	60	
重力ポテンシャル定数 」2	J ₃	C 2,2		
D 20.0	D 20. 0	D 20. 0		

20 21	

S2,2		
D 20.0		

図 5.11(2) 地球に関する定数の変更入力カード

20	21 40	41 60)
月の赤道半径 R _M (km)	太陽と月の質量比 ms / m _M	地球と月の質量比 m _E /m _M	
D 20.0	D 20.0	D 20.0	

20	214)41	60	
月の慣性モーメントα	ß	r		
D 20.0	D 2 0.0	D20.0		

20	21	_	
$I_z / m_M R_M^2$			
D 20. 0			

図 5.11(3) 月に関する定数の変更入力カード

10	
	٦
/ RMASS	
/ 10.02100	

20	21 40	0 41	60
1. 火星	2. 金星	3. 地 球	
D20.0	D 20. 0	D 20.0	

20	2140	41	60
4. 火星	5. 木 星	6. 土 星	
D2 0.0	D20.0	D20.0	

20	21 4	1041	60
7. 天王星	8. 海王星	9. 冥王星	
D 20.0	D 20.0	D 2 0.0	

20	21	
10. 月		
D 20.0		

図 5.11 (4) 惑星,月の Reciprocal mass の変更入力カード

における出力内容の入力カードにおいて,出力に関する 部分をすべて on (1)にしたときの出力の一部を図 5.12~ 図 5.24(に示した。

5.3.2 STANPS -- Cの出力例

火星に向う宇宙船の軌道で,地球の引力圏を脱出する ための双曲線軌道に乗ったところの値を1950.0 平均赤 道面座標系におけるケブラー要素で入力したものである。 (図5.25)図5.26~図5.30に出力の一部を示したが,単 位は km, secと指定した場合である。

6. むすび

プログラム "STANPS" はある意味で未完成のプログ ラムである。常にユーザーの改良や補足を期待している からである。この報告では人工衛星および惑星間宇宙船 の軌道生成の部分の説明を行った。ここに示した STA-NPS-Bおよび STANPS - C によって,かなり滞足す べき軌道生成ができると思う。しかしさらに高精度で, かつ高速度の軌道生成が可能になるような運動方程式の 定式化や数値積分法の改良を目的として,これらのプロ グラムが利用されることを望むのである。

最後に、このプログラムは富士通株式会社の多大の協 力があって初めて完成されたものであることを記さなく てはならない。富士通(株)の小坂義裕氏,笹原昭彦氏, 卓種継氏, 宮下徹氏, 大興電子通信(株)の坂本邦雄氏, 果田博氏,山本富嘉氏,山本信夫氏に深く謝意を表する 次第である。特に STANPS-BおよびSTANPS-Cの 作製にあたって、システム設計に当った山本富嘉氏の労 力の大なるものがあったことを付したい。また種々の資 料やデータの提供、討論などを通して、宇宙開発事業団 ·追跡管制部,東京天文台,海上保安庁·水路部,富士 通・国際情報社会科学研究所の方々のお世話になった。 またSTANPS - データファイルにおける恒星,小惑星, 彗星のデータは計算センター,磯部俊夫主任研究官の労 によるものである。さらにこれらのプログラムの計画遂 行にあたっては、計算センター、三好甫計算研究室長の 多大の助力をいただいた。

参考文献

- 松島弘一: "衛星運動のシミュレーションシステム における世界時の予測",航技研報告TR-430, 1975.
- L. E. Cunningham: On the Computation of the Spherical Harmonic Terms Needed During the Numerical Integration of the Orbital Motion of an Artificial Satellite, Celestial Mechanics Vol.

2, No. 2 (1970).

- E. M. Gaposchkin: 1973 Smithsonian Standard Earth (III), SAO Special Report 353 (1973).
- E. W. Woolard: Theory of the Rotation of the Earth around its Center of Mass, Astronomical Papers, Vol. XV, Part I (1953).
- 5) R. M. L. Baker: Astrodynamics, Academic Press (1967).
- G. W. Spier: Design and Implementation of Models for the Double Precision Trajectory Program (DPTRAJ), JPL TM-33-451 (1971).
- L. G. Jacchia: Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles, SAO Special Report 332 (1971).
- E. Fehlberg: Classical Fifth-, Sixth-, Seventh-, and Eighth- Order Runge-Kutta Formula with Step Size Control, NASA TRR-287 (1968).
- 9) M. E. Ash: Determination of Earth Satellite Orbits, Technical Note 1972-5, Lincoln Laboratory, MIT (1972).
- R. H. Merson: Numerical Integration of the Differential Equations of Celestial Mechanics, RAE-TR (1973).
- 11) S. Herrick: Astrodynamics, Vol. 2, Van Nostrand Reinhold Co. (1972).
- M. D. Moutsoulas: Libration of the Lunar Grobe, Chapter 2 in Physics and Astronomy of the Moon (2nd Edition) edited by Z. Kopal, Academic Press (1971).
- 13) H. M. Nautical Almanac Office: Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty's Stationary Office (1961).
- 14) T. D. Moyer: Mathematical Formulation of the Double-Precision Orbit Determination Program (DPODP), Technical Report 32-1527, JPL (1971).
- 15) A. E. Roy: The Foundation of Astrodynamics, The MacMillan Company (1965).
- D. A. O'Handley, D. B. Holdridge, W. G. Melbourne and J. D. Mulholland: JPL Development Ephemeris Number 69, Technical Report 32-1465, JPL (1969).
- 17) R. H. Battin: Astronautical Guidance, McGraw-Hill (1964).
- 18) 海上保安庁水路部: "天体位置表",昭和50年

S.B.)	* * * * * * * *		*		PERJ 00	7,4574686407437D+03 (SEC)								с KM)	с км .)	C KM)	(KM/SEC)	(KM/SEC)	(KM/SEC)				
LIST (STANPS	* * * * * *	SATELLITE 1.D 1 1111	MJED 40966.0000000 40967.1250000	i KEPLAR]AN	TRUE OF DATE	8,250000000000000003	2.0000000000000000	4.49812703705280+01	1.0155285280041D+01	1.0165274413982D+01	1.1647539116688D-18		TRUE OF DATE	6.2493511289909D+03	1.95643774030700+03	8,23384378575430+02	-2.5239738701165D+00	5.56935255571580+00	5,923245 ₀ 269657 _{D+00}		RMULA	STEP SIZE	
A CARD PROOF	NDITION	SAT	о н о о т о о о о о о о		AL EPOCH Mean Of 1950.0	8,250000000000+03	2,00000000000000000	4.5000000000000+01	1,0000000000000001	1.000000000000001	0.0	. INTEGRATION	MEAN OF 1950.0	5.2602612511605D+03	1.9267541897130D+03	8,1039950619522D+02	-2.4852517434123D+00	5.5814576246035D+00	5,92822217810 ⁵⁸ D+00		8-TH ORDER RUNGE-KUTTA FORMULA	FIXED ORDER AND FIXED	30,00 SEC
ROLDAT	TION CO	SMAP.TEST1	Y 1 1 15 71 1 16 71 1 16	EAN OF 195	ELEMEN S	< KM)		(DEG)	(DEG)	(DEG)	(DEG)	FOR NUMERICAL INTEGRATION		×	>	7	XDOT	YD ⁰¹	2007	NO	180	MODE	STEP-SIZE 4
C 0 N 1	****** S] Σ] L A]	SATELLITE NAME	EPOCH (INITIAL TIME) 1971 FINAL TIME 1971	-	* * * * * OSCULATING ORBITAL	S.M AXIS	ECCENTRICITY	INCLINATION	LONG, OF NODE	ARG. OF PERIGEE	MEAN ANOMALY	* * * * INITIAL CONDITIONS		POSITION VECTOR			VELOCITY VECTOR			* * * * * NUMERICAL INTEGRATION	CALCULATION OF STARTING VALUES	GAUSS-JACKSON FORMULA	

図 5.12(1) STANPS-Bの入力データ

ORDER 1

60

This document is provided by JAXA.

*

*

* *

*

*

図 5.12(2) STANPS-Bの入力データ

	v -	25 20	2	10,88		57.48	4,98		Ň	55,63		1,22	37,25	11 20	2	31,62		6.54	9,67	× م		9.71	10 JE	-	37,16
	Σ.			5		2	20			60 47		28	2			6 04		19	50	• •	0	13 1	с У С		6
	Ι	-	4	-	4	n	42	đ		37		11	11		4	5		14	-22	1	9	-39	4	11	44-
(0,0	R.A Dec			DEC	•	R. N	DEC	•		DEC		R. N	DEC			DEC		R.A	DEC	•		DEC	•		DEC
EQUINOX AND EQUATOR OF 1950	ACCELERATION (KM/SEC++2)	-8,6917631368832D-03 -2.6752243744471D-03	-1,12889971104570-0			-5.43539562777830-03 -5.12212972994160-03		3,16626102821050-03 -2.90493616599205-03	3,40837795136400-0	5,4846060283850D-03	.0904344369617D-0		.32084624644560-0	3,72645894351170-03 8 97925040694636-04	.46540625159180-0	8410347455131D	•9285241327451D-0	2,03365389621080-03 1,50330330279450-03	. 8693568697959D-0	1,4663457618944D-03 3 00130013206740-03	.79676363917600-0	41907153747970-0	-1.6788688210826D-03 2 74376022211680-03	3,97816247823950-0	5.71490313324560-0
I T E (MEAN	VELOCITY (KM/SEC)	-2,48525174341230+00 5.58145762460350+00	5,92822217810580+00	8.5131054049838D+00	-7,33720557927530+00	1.23664446/38/80+00 2.50310832293260+00	7,85361651131520+00	-6,1582164911486D+00 -2.5819815054596n+00	-1,48493804595120+00	6, 84070901637420+00	2,68566392550740+0	-4,0201362/882330+00	6,0056361481879D+00	8,73645024146670-01 -3.86294841085050+00		, 59668	3.8998765	-2,2223555540000+00 -3,16110554464930+00	.6226671	5,9533411909772D+00 -2 21456203509160-01		.084012249417	6.0417726518582D+00 2.92985692389490+00		•
SATELL	POSITION C KM)	6,26026125116050+03 1,9267541897130D+03	•	6,60000000000000+03	1,3188426659639D+03		7.2426758407146D+03	-5,0646131391918D+03 4.4160174270429n+03	219292380+0	7700	-9,0960482766697D+03	2,61589475121230+03	9.6072618476964D+03	-9,8862210338491D+03 -2.3821375183890D+03	5350622650+0	125706	380273697D+0	-3,53636930778726D+03 -3,9396930778726D+03	1,0151361879590D+04	-3,1530200967247D+03 -6.64716349206650+03	0699508350+0	9.4966534753888D+03	2.45521912080740+03 =5.47484824874800+03	-5,80651958329720+03	8,3497146028599D+03
		×≻	2	ABS	×>	- ~	ABS	××	, 7	ADA	×>	- 71	ABS	×≻	2	ABS	×>	- 14	ABS	×≻	2	ABS	×≻	7	ABS
	V M D H M S	71 1 15 0 0 0.00	TIME = 0.0	(A =U C)= 8.9824 SEC	71 1 15 0 15 0.00	TIME - 900.0	(TAI-UTC)- 8,9825 SEC	71 1 15 0 30 0.00	TAL_[[TC)_ 0 00000 TAL_[[TC)_ 0 0005 SEC		71 1 15 0 45 0.00	TIME - 2700.0	(TA;-UTC)- 8,9825 SEC	71 1 15 1 0 0,00	TIME = 3600.0	(TAI-UTC)= 8,9826 SEC	71 1 15 1 15 0,00	TIME = 4500.0	(TA]=UTC)= 8.9826 SEC	71 1 15 1 30 0.00	TIME = 5400.0	(TAI=UTC)= 8.9826 SEC	71 1 15 1 45 0.00	TIME = 6300.0	(TAI=UTC)= 8.9826 SEC

図 5.13 1950.0 平均赤道面座標系における衛星の位置,速度ベクトルと赤経,赤緯

	υ: Σ- Ι	1 9 32,01	7 9 59,83	5 4 27,81	42 21 55,55	9 16 59,29	37 43 38,49	11 29 7,67	16 55 36,27	12 55 17,12	-3 47 27.20	14 20 18,56	-22 56 3.04	16 19 55,69	-39 16 27.60	19 38 7,50	-44 0 48,17
^	R.A DEC	R.A	DEC	R. A	DEC	R. A	DEC	R. N	DEC	R. A	DEC	R. A	DEC	R. A	DEC	R, A	DEC
EQUINOX AND EQUATOR OF DATE	ACCELERATION (KM/SEC++2)	-8,6766072331191D-03 -2,7164369434654D-03	9,16395037301770-03	4518738 4169279	7,5952989030458	3,18705626892820-03 -2,88972687089320-03	3.4019191990581D-0 5.4846060283850D-0	4.0957271246 5.5498723542	. 2346310324644560-0 . 32084624644560-0	3,7216344128806D-03 9,1560665156451D-04 0,5550505156451D-04	410347455131D-0	2,91571997211200-03 2,04748215214250-03	3,86935686979590-03	1,44586600133340-03 3,0981191103530-03 2,79981201460348001		-1,70484544069830-03 3,73538409454050-03 3,9747995114160-03	71490313324560-0
L I T E (TRUE	VELOCITY (KM/SEC)	5239738701165 56935255557158 22326525557158	8.5131054049838D+00	.34824556347030+0 .22167698936740+0	2,40/700076/230+00 7,85361651131520+00	-6,1428022464766D+00 -2,61114606280790+00	-1,49/7304984768D+00 6,8407090163742D+00	2.65910176750740+0 4.0627075723495D+0	6,00563614818790+00	9.0014946083261D-01 -3.85859694605500+00 -3.0554545005500+00	5,5966820547341D	3,9183814101001D+00 -2,5136587378722D+00 -3,1531224400		5,9568625157131D+00 -1,9312454800779D-01 -1,22212454800779D-01	10	393828544 844968673 992890574	966842263772
SATELL	POSITION C KM)	6,24935112899090+03 1,9564377403070D+03 8 23384378430400+03	6,6000000000000000000000000000000000000	1,2841033118946D+03 5,1949878965135D+03	7,24267584071460+03	-5.09629187792510+03 4.39170135577560+03	2,204/2461/60220+03 8,50579179988720+03	-9,10780988830600+03 1,23421037547230+03	9.60726184769640+03	-9.87342355705250+03 -2.42904651198680+03 -6.737225547928035.403	57062870+0	-7.65094988772580+03 -5.37265569044280+03 -3.9551544197150+03	18795900+0	-3.1090010743828D+03 -6.6618263972821D+03 -6.01170596449767454.03	47538880+0	2.49318418666160+03 -5.46289172859350+03 -5.80160154804320+03	<u> </u>
		X > ~	ABS	× > •	ABS	×≻	2 ABS	×≻ı	ABS	×	ABS	X > r	ABS	××丶	ABS	X > N	ABS
	V M D H M S	71 1 15 0 0 0,00 Time = 0.0	(TAI-UTC)= 8,9824 SEC	71 1 15 0 15 0,00 Tite - 000 0	(TA1-UTC)= 8,9825 SEC	0 30	TAI-UTC)- 8.9825 SEC	71 1 15 0 45 0.00 Time - 2700 0	(TAI-UTC)= 8,9825 SEC	71 1 15 1 0 0.00 Time - 3600.0	(TA1=UTC)= 8,9826 SEC	71 1 15 1 15 0.00 Time = 4500.0	(TA1-UTC)= 8.9826 SEC	71 1 15 1 30 0.00 Time - 3400.0	(TAI-UTC)= 8.9826 SEC	71 1 15 1 45 0.00 Time = 6300.0	(TA =UTC)= 8,9826 SEC

:

True of dateの座模系における衛星の位置、速度ベクトルと赤経、赤緯

図 5. 14

	-	-96 22 17,25	7 9 59.83	-41 23 57,29	42 21 55,55	17 58 18.07	37 43 38.49	47 14 49,72	16 55 36,27	65 1 31,58	-3 47 27.20	82 31 16,14	-22 56 3,04	108 39 56,20	-39 16 27,60	154 27 16,40 -44 0 48,17	
		LNG	LAT	- LNG	LAT	LNG L	LAT	LNG	LAT	LNG	LAT	LNG	LAT	LNG	LAT	LNG	
ATE SYS	ACCELERATION (KM/SEC++2)	1,00865252992180-03 9,03574896278710-03	,1469279373582D-0 ,16395037301770-0	-4,20472465399790-03 3,70699880670250-03	59529	1243637488913D 2237126772684D	00	-2,80572004141320-03 -3,03495083331950-03	64456D-0		2,5426299910198D=04 3,8410347455131D-03	-4.63733410821840-04 -3.53250016883260-03	0-06262698920-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	.094192817545 .239075886423	2,7998790569218D-03 4.4190715374797D-03	3,7048071129546D-03 -1,7707317018265D-03 3,9747995318416D-03 5,7149031332456D-03	
~	VELOCITY (KM/SEC)	6,1142201027937D+00 6,6667244453614D-02	5,9232450269657D+00 8,5131054049838D+00	4,47825280982900+00 5,95268504951080+00	.4879880987239D+ .8536165113152D+		-1,49773049847680+00 6,84070901637420+00	-1.7999720834141D+00 4.5096025908407D+00	-3,53429632344220+00 6,0056361481879D+00	571310683 716035967	-3,9526966210221D+00 5,5966820547341D+00	-4.50164904418410+00 -1.18631741473170+00	-3,12312433/33040+00 5,62266717956570+00	44118313350410+ 9745943814218D+	-1 ,22216894450390+00 6,08401224941740+00	-2,72116567113860+00 -6,13477908371170+00 1,86992890574830+00 6,96684226377220+00	
SATELL	POSITION (KM)	544362150+0 025943580+0	8,23384378575430+02 6,600000000000+03	4,01414455868130+03 -3,53885066406450+03	4.88052587055240+03 7.24267584071460+03	6,3992575278422D+03 2,0757492130991D+03	5,20473461760550+03 8,50579179988720+03	6,23923068892430+03 6,74888706549700+03	11254170+0 184769640+0	87092870D 01078413D	654796930+0 25706287D+0	1.21685850626030+03 9.26939689129130+03	044197150+0 618795900+0	42226148D+0 13238383D+0	-6.0117059644976D+03 9.4966534753888D+03	-5,41790691512280+03 2,58948606600210+03 -5,80160154804320+03 8,34971460285990+03	
		×≻	2 ABS	×≻	2 ABS	×≻	2 ABS	×≻	2 ABS	×≻	Z ABS	×≻	Z ABS	×≻	2 ABS	A × × B × × ×	I
	рат е (та!) Үмрнм S	71 1 15 0 0 0.00	TIME = 0.0 (TAI-UTC)= 8.9824 SEC	71 1 15 0 15 0.00	TIME = 900.0 (TAI=UTC)= 8.9825 SEC	71 1 15 0 30 0,00	TIME = 1800.0 (TAI-UTC)= 8.9825 SEC	5	TIME = 2700.0 (TAI=UTC)= 8.9825 SEC	1	TIME = 3600.0 (TAI=UTC)= 8.9826 SEC	5 1 15	TIME = 4500.0 (TAI-UTC)= 8.9826 SEC	71 1 15 1 30 0.00	TIME = 5400.0 (TAI-UTC)= 8.9826 SEC	71 1 15 1 45 0.00 TIME = 6300.0 (TAI-UTC)= 8.9826 SEC	

図5.15 地球固定座標系における衛星の位置、速度ベクトルと経度、緯度

	(DEG)	๛๚๚๗๗	~~~~		~~~	~~~~~	~~~~	~~~~~	
	5		00000000000000000000000000000000000000	930+0 930+0 990+0 190+0	760+00		6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Σ	17677477 56539349 15373527 20045464	946 926 9098 9093 9093 9093	9921 9369 5368 5568	91722 07650 24650 39856	0135 5455 92027 92027 92027	51229 56527 266327 786337 78923	29636 462759 61765 770569	633605 552734 0111709 727956 727956
0.0		- 4 - 4 - 4	04000 04000 04000	9.12 9.27 9.12	ñ 04 ññ N nn N v	2000 2000 2000 2000 2000 2000 2000 200		4 0 0 0 0 0 1 0 0 0 0 0	48044
+01		10+01 10+01 10+01 10+01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10+00 10+00 10+00+00 10+00+00 10+000 10+00000000	50+01 40+01 40+01 40+01	100000			000000 100000 100000
0+00000000	E62	1000000 1055170 1911660 1364990	748558330 753760610 762221710 748162160 776790660	837410+ 958800+ 687990+ 791590+ 864750+	792050 158070 489960 072440 157100	506280 282380 471860 701790 075540	25730+(13250+(33050+(94400+(99750+(205360+(396400+(041170+(764780+(760310+(00000 00000 00000 00000
0000	OME	000444		202 202 200 200 200 200 200 200 200 200	487 487 490 490 490 490 490 490 490 490 490 490	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	823631	8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-н									
. S 100+01	_	000+01 +20+00 60+00 60+00	40+00 00+00 90+00 10+00	130+00 020+00 560+00 990+00	90 90 90 90 90 90 90 90 90 90 90 90 90 9	80+00 90+00 60+00 520+00	000+06	530+00 530+00 530+00 740+000	00+00+06
M E N T S	OME G1	000000 524324 551280 551200 551200 551200 551200 5512000 55120000000000	595181 398877 945554 965554 364538	8916 9918 9918 9918 9918 9918	722992 202678 8813628 650936(916300	589688 544935 5276905 391096 0223335	490965 341340 853749 212206	006713 961246 752856 294932 842497	738126 042894 566324 566324 461998
พศ		19999 19999 19999 19999 19999 19999 19999 19999	00000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 00 00	0 00 00 0 00 00	00000	9 100 9 00 9 00 9 00 9 00 9 00 9 00 9 00	0 0 0 0 0 0 0 0 0 0 0 0
• • •		0+01 10+01 10+01 10+01			11111			11111	
• • •	_	000000 890180 301170 797530	35410+ 60980+ 63030+ 6460+ 86180+	4780 8510 0920 1660 5170	0480 9290 9750 7930 4260	48650+(90270+(86420+(81250+(36820+(17420+(82560+(09320+(72650+(28250+(6480 1430 8530 8710 8710	664090+ 460270+ 842980+ 953390+ 872820+
L < 6 > E L .50000000+01		0000 0000 0000 0000 0000 0000 0000 0000 0000	49853 49736 49696 498966 498986	497908 497908 49908 49918	49704 49741 49991 49972 49687	4 6 6 4 4 6 6 4 4 6 6 6 4 4 6 6 6 4 4 6 6 6 4 4 6 6 6 6 4 4 6	49821 49680 49680 49737 49882	. 49913 49841 49723 49691 49916	4 4 4 4 4 0 0 0 0 0 0 0 4 0 0 0
∢ ≉ 		4 4 4 4 4	4 4 4 4 4	4 4 4 4 4 4	व व व व व	4 4 4 4 4	44444	4 4 4 4 4	4 4 4 4 4
1 N I T 000000-01		00-01 80-01 90-01	50-01 6001 80-01 80-01	03500-01 6080-01 2270-01 6230-01	11860-01 5240-01 3010-01 13050-01	60-01 90-01 70-01	3001 1001	90-01 60-01 90-01 60-01	60-01 20-01 20-01
00000	ш	000000 843060 97759 45339	63813 92818 79034 18244 38113	0 0 4 0 0 0 4 4 0 0	410500	80313 54275 86062 86062 88973	58383330-0 77813700-0 56747490-0 59890600-0	45786 65851 94128 79380 79380 24512	34 80 90 190 90 190 90 190 90 190 90 190 90 190 90 190 90 190 90 190
2.00		2006 2006 2006 2006	20066	000000 00000 00000 00000 00000	00040 000 000 000 000 000 000 000 000 0	88 88 8 00 00 0 00 00 0	00000 00000 0000	00000	00000 00000 00000
60			00000 000000	000000	000000	000000	000000	55555	00000
50000000 + 0	KM)	00000+ 1150+ 9400+ 940+	4990+ 0970+ 6710+ 7610+ 7610+	1750+ 1010+ 5080+ 5610+	5590+ 3130+ 7180+ 9410+	8150+ 6830+ 4320+ 8770+ 2200+	5000+ 7480+ 7260+	0900+ 4030+ 7530+ 7220+	0250+ 7360+ 6320+ 2390+
2	∨ ∢	235000 23711 49364 49687	49584 49145 49145 499176 49982 49982 49982	49069 49520 49520 49583 49583	49282 49282 50376 49411 49194	49627 49728 49634 49422 49181	00000 00000 00000 00000 00000 00000 0000	49707 49568 49326 49180 50013	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
8		00 00 00 00 00 • • • • • •	0 0 0 0 0 0 • • • • •	00 00 30 00 00 •••••	80 80 80 80 80 • • • • • •	0 0 0 0 0 0 • • • • •	80 40 40 40 40 8 • • • • • •	00 40 40 40 40 • • • • • •	60 60 60 60 60 • • • • • •
0		000000	88888	888888	88888	888888	888888	8 88888	80000
0 0		၀၀၀၀၀ ၀ရစ္စစ္န္ ၀	10401 0000	00000	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	10404		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0		00004	~~~~~	~~~	n 4 4 4 4	n nn n e		~~60 60 6 0	
1 15		*****			99999 4444	9 99 99 7 77 77 7 77 77	22222		8.8888
71		*****	*****	22222	22222	22222	22222	22222	11111

(MEAN EQUINOX AND EQUATOR OF 1950.0)

SATELLITE

図 5.16 1950.0 平均赤道面座標系における衛星のケブラー要素

ルの高次項による摂動加速度
+
\$
2
地球の重力ポテン
図 5.17

(CM/SEC+#2) Ars	7 00	1,37820057506110+00 1,00716208113500+00 4,8917942264398D-01 2,8559478380497D-01 2,39559545421436D-01		8,50133679873630-01 3,7345280997634D-01 2,7036188345600-01 2,3535097674364D-01 2,3535097674364D-01	4,03721996144590-01 6,89460513018270-01 1,18494728342530+00 1,05139512915020+00 6,47501674562770-01	3.1584261461357D-01 2.5707645922136D-01 2.2353388294009D-01 2.7106323878007D-01 4.9915251295977D-01	7,72069146643630-01 1,25302400105250+00 9,99927108032020-01 4,75416549596230-01 2,85488734611380-01	2,41695473401970-01 2,24087088669360-01 3,30970527406090-01 5,94372373866720-01 9,45616115733930-01	1,12857909474400+00 8,3716428649575D-01 3,6712428459382D-01 2,6903198945753D-01 2,2906943472312D-01
THE EARTH 2	7	-5,13653286203540-01 -4,68933998338390-01 -3,48721866720310-01 -2,31012685696740-01 -2,431758556950-00	2,13865548259920-01 2,0293820717223D-01 2,2233391678621D-01 8,5769346862680D-01 -1,08633333024024D+00	-2,6957679845908D-01 -3,5988726931386D-01 -1,3064092630074D-01 1,2430476816537D-01 2,3152264563267D-01	1,67876397878910-01 4,24021446453830-01 3,83024954579250-01 -8,55919302212550-01 -2,93189460726890-01	-3.07717854802420-01 -2.88791100886700-02 1,83859310014130-01 2.25726133627210-01 1,60506295599080-01	7,3359777196843D-01 -5,9721255410695D-01 -4,2219797308179D-01 -3,5321663791941D-01 -2,1814474551072D-01	6,18521223777700-02 2,20413590812210-01 1,98259379498310-01 2,38158758558910-01 8,31396381047260-01	-1.1136915132246D+00 -2.6473955718197D-01 -3.5699164192445D-01 -1.1578726243402D-01 1.3596689172450D-01
ГО АSPHER 1950.0)	•	-3,70534444254620-01 8,6662164990210-01 2,27554789619730-01 -2,06245393757430-02	051457961012 29384517392 070538812265 021014407018 620883455360	7.91397563552640-01 4.87868239612000-02 1.29956977043090-03 6.90528781885380-02 -2.80959315578390-02	-3,6059371438328D-01 -3,8508559724950D-01 -6,2344609949986D-02 4,9353046668646D-01 4,8216189567605D-01	-2,2320516491189D-02 3,1362104817864D-02 5,9135784466952D-02 -1,2084038378044D-01 -4,6962081830774D-01	-1,0554913070474D-01 -3,5725261895308D-01 8,8540158411583D-01 2,0069012801099D-01 -2,5010328952380D-02	5,5431655566541D-02 2.2804219067720D-02 -2,4264913177967D-01 -4,8955765642685D-01 1,0198185169794D-01	-1,1196799904032D-01 7,7483854878503D-01 3,6608922808246D-02 1,5416036946280D-03 6,5630238660241D-02
ING ACCEL	×	-1,22405120493050+00 -2,0742794045281D-01 -2,56726284066350-01 1,66649776355460-01	3983120496 3983120496 3095087990 5911009760	-1,54095813671180-01 -9,52145562026680-02 2,36928242877360-01 1,81240225231340-01 -3,15905910570700-02	-6.91457761070400-02 3.7652491371152D-01 -1.1196004190231D+00 3.5952961512633D-01 -3.1751892075647D-01	6,7587523675010-02 2,53516708064130-01 1,12243813418950-01 -8,89977171811060-02 5,33596034382410-02	2,1629715016486D-01 -1,0420061797714D+00 1,9408020957347D-01 -2,4694609704513D-01 1,82458683108710-01	2,26976537072710-01 3,3359254882094D-02 -1.0656503788291D-01 2,3852091223095D-01 -4,3882752630332D-01	-1,4437850828852D-01 -1,7430499925054D-01 -7,7440265401314D-02 2,4283563302686D-01 1,7227443818671D-01
₹ 2	Σ I Δ	71 1 15 0 0 0.0 71 1 15 0 0 0.0 71 1 15 0 30 0.0	1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	71 1 15 2 30 0,0 71 1 15 2 45 0,0 71 1 15 3 0 0,0 71 1 15 3 15 0,0 71 1 15 3 30 0,0	71 1 15 3 45 0.0 71 1 15 4 0 0.0 71 1 15 4 15 0.0 71 1 15 4 15 0.0 71 1 15 4 45 0.0	71 1 15 5 0 0.0 71 1 15 5 15 0.0 71 1 15 5 30 0.0 71 1 15 5 45 0.0 71 1 15 6 45 0.0	71 1 15 6 15 0.0 71 1 15 6 30 0.0 71 1 15 6 45 0.0 71 1 15 6 45 0.0 71 1 15 7 0 0.0	71 1 15 7 30 0.0 71 1 15 7 45 0.0 71 1 15 8 0 0.0 71 1 15 8 15 0.0 71 1 15 8 15 0.0	71 1 15 8 45 0.0 71 1 15 9 0 0.0 71 1 15 9 15 0.0 71 1 15 9 15 0.0 71 1 15 9 30 0.0

る摂動加速度
74
<u>7</u>
Π <u>Γ</u>
a
水陽
ĸ
ند
Ш
18
ŝ
\boxtimes

(CM/SEC+*2) ABS	8,02039968327610-05 8,57083839508820-05 1,608865225555590-04 1,75365638428290-04 1,38546059072310-04	8,9925909640636D-05 9,8039570650465D-05 1.3707601251523D-04 1.2774907969457D-04 1.2774907969457D-06	1,14028973878920-04 1.7171318501300-04 1,66709579134830-04 1,20182097398120-04 8,22308624049890-05	1,10326905848880-04 1,40294499360940-04 1,602344195151110-04 5,84817268427120-05 1,38807126456800-05	1,7543678815716D-04 1,5354853207798D-04 1,0198102572421D-04 8,3234755144016D-05 1,2252968016625D-05	1,36651956080470-04 7,90323884213200-05 8,18875844619400-05 1,57032374053970-05 1,72742091280720-04	1.3704082340626D-04 8.6595769562726D-05 9.1749642155121D-05 1.3179272889689D-04 1.2421037557639D-04	5,54849204349690-05 1.10164140556930-04 1,68056746778570-04 1.64496680874100-04 1.18542126948700-04
TIONS OF SUN AND MOON 2	-2,93185630076350-05 -2,44864859667430-05 8,17339753472890-07 2,81874032538660-05 4,56591565661370-05	4,83219360172160-05 3,56624821324370-05 1,07511643965060-05 -1,76877454834830-05 -3,15463759578650-05	-1,836435146949D-05 9,3738815316185D-06 3,4657806322222D-05 4,8109650533672D-05 4,6206957690384D-05	2,93604476560470-05 1,900916416429310-06 -2,45694574632900-05 -3,03198474206550-05 -1,07371746021380-05	1,7607815378608D-05 4,0061161078724D-05 4,9220179538106D-05 4,2735066901418D-05 2,19554932025100-05	-7,11302467938360-06 -2,94561566309770-05 -2,65599709058070-05 -2,45710915375780-06 2,52324285525860-05	4,42832046655490-05 4,8955117275724D-05 3,7930233042096D-05 1,3612379779103D-05 -1,5719040931178D-03	-3,17588620920050-05 -2,0791408264860D-05 6,0176096780826D-06 3,20277093265170-05 4,72352351712390-05
TO GRAVITATION ATTRACTIONS F 1950,0) Y	-7,17577951945420-05 1,58843601216580-05 9,92899624091770-05 1,35914727150000-04 1,22308800078350-04	7,03946409651060-05 -1,72648411302460-06 -6,91937122886810-05 -9,57377683436720-05 -4,71850706684360-05	4,56876609890260-05 1,14726155437510-04 1,34074069523050-04 1,07180280081230-04 4,77607934633890-05	-2,47080696042680-05 -8,24850500338980-05 -8,64595786116280-05 -1,724955256595950-05 7,15686110000710-05	1,2406138710896D-04 1,2745778516961D-04 8,9237165593444D-05 2,45119972182140-05 -4,54995087584140-05	-8,95705225528545-05 -6,88466261291050-05 1,32704471587520-05 9,19627938515560-05 1,27703530042910-04	1,16756033212880-04 6,92013485315610-05 1,47085281545240-06 -6,29498777740580-05 -8,918625335520990-05	-4,46522403131780-05 4,15128558586780-05 1,06532795192390-04 1,26205270976160-04 1,02660271516330-04
ERTURBING ACCELERATION DUE 1 C MEAN EQUINOX AND EQUATOR OF X	2,0589361406883D-05 -8,0585523084678D-05 -1,2659110734789D-04 -1,0717165848725D-04 -4,6376818881123D-05	2,82179773838890-05 9,13069769190100-05 1,1784089209993D-04 8,2711853655300D-05 -1,3638320912365D-05	-1,0285436142105D-04 -1,2741591935474D-04 -9,2817369698629D-05 -2,5329540506074D-05 4,8432823587055D-05	1,0343839501875D-04 1,1372826161679330D-04 -4,69390260142670-05 -1,1844857684362D-04	-1,2278763661336D-04 -7,5679412625141D-05 -3,7725072361939D-06 6,7088751018259D-05 1,1163007454365D-04	1,02957678053350-04 2,52704437386670-05 -7,63153960004190-05 -1,27263402683760-04	-5.6435414025665D-05 1.7703026862495D-05 8.3529221527321D-05 1.1498408322489D-04 8.5011418823429D-05	-8,7231652884116D-06 -9,9902642635034D-05 -1,2983690561645D-04 -1,0052668019847D-04 -3,5804148810315D-05
PERTU DATE (TAL) YMDHMS	71 1 15 0 0 0.0 71 1 15 0 15 0.0 71 1 15 0 30 0.0 71 1 15 0 45 0.0 71 1 15 0 45 0.0	71 1 15 1 15 0.0 71 1 15 1 30 0.0 71 1 15 1 45 0.0 71 1 15 2 0 0.0 71 1 15 2 15 0.0	71 1 15 2 30 0.0 71 1 15 2 45 0.0 71 1 15 3 0 0.0 71 1 15 3 15 0.0	71 1 15 2 4 5 0.0 71 1 15 4 4 9 0.0 71 1 15 4 15 0.0 71 1 15 4 30 0.0	71 1 15 5 0 0.0 71 1 15 5 0 0.0 71 1 15 5 30 0.0 71 1 15 5 45 0.0 71 1 15 6 0 0.0	71 1 15 6 15 0.0 71 1 15 6 30 0.0 71 1 15 6 30 0.0 71 1 15 6 45 0.0 71 1 15 7 0.0	71 1 12 7 30 0.0 71 1 12 7 30 0.0 71 1 15 8 0 0.0 71 1 15 8 15 0.0 71 1 15 8 15 0.0	71 1 13 8 45 0.0 71 1 15 9 00 0.0 71 1 15 9 15 0.0 71 1 15 9 30 0.0

航空宇宙技術研究所資料 359 号

(CM/SEC**2)	ABS	2,45024359259570-02 7,79889269147290-07 0,0 0,0	0.0 0.0 0.0 6.4629019573292D-06 6.56166035668190-04	0 0 0 0 0 0 0 0 0 0	0.0 0.0 2.55530749372890-04 2.33552160335900-05 0.0	00000	0,0 1,60482870011800-03 6,00884772172470-07 0,0 0,0	0.0 0.0 0.0 0.0 1.2589022148750D-05	6.57249118095650-04 0.0 0.0 0.0
	2	-1,7757623314193D-02 -2,6070316563092D-07 0,0 0,0	0.0 0.0 0.0 -4.4199222765541D-06 -4.1841825777893D-04	00000	0.0 0.0 -1.8789098169990D-04 -1.1464682757866D-05 0.0	00000	0,0 -1,1479120746964D-03 -1,8295504599958D-07 0,0 0.0	0,0 0,0 0,0 0,0 -8,7426940105358D-06	-4,08549918358300-04 0.0 0.0 0.0
TO ATMOSPHERIC DRAG F 1950,0)	>	-1,535261971222D-02 -1,2097946746098D-07 0,0 0,0	0.0 0.0 0.0 -4,3949389643178D-06 -3,2382817629547D-06	0 0 0 0 0 0 0 0 0 0	0.0 0.0 -1.7295598015108D-04 -7.5964342412260D-06 0.0	00000 00000	0,0 -9.7779217702277D-04 -8.2600116446339D-08 0,0 0.0	0,0 0,0 0,0 0,0 -8,5617789687295D-06	-3.1641706217814D-04 0.0 0.0 0.0
VG ACCELERATION DUE T AN EQUINOX AND EQUATOR OF	×	7.0238893397224D-03 7.2500006897515D-07 0.0 0.0 0.0	0.0 0.0 0.0 -1.7081862542452D-06 3.8809192230566D-04	00000	0.0 0.0 8.89785372405150-06 1.88764761556770-05 0,0	•••••• ••••••	0,0 5,49268134923010-04 5,66363117915620-07 0,0	0.0 0.0 0.0 0.0 -2,9571474414490D-06	4.0613250326646D-04 0.0 0.0 0.0
		71 1 15 0 0 0.0 71 1 15 0 15 0.0 71 1 15 0 30 0.0 71 1 15 0 45 0.0 71 1 15 1 0 0.0	71 1 15 1 15 0.0 71 1 15 1 30 0.0 71 1 15 1 45 0.0 71 1 15 2 0 0.0 71 1 15 2 15 0.0	71 1 15 2 30 0.0 71 1 15 2 45 0.0 71 1 15 3 45 0.0 71 1 15 3 15 0.0 71 1 15 3 30 0.0	71 1 15 3 45 0.0 71 1 15 4 0 0.0 71 1 15 4 15 0.0 71 1 15 4 30 0.0 71 1 15 4 45 0.0	71 1 15 5 0 0.0 71 1 15 5 15 0.0 71 1 15 5 30 0.0 71 1 15 5 30 0.0 71 1 15 5 45 0.0	71 1 15 6 15 0.0 71 1 15 6 30 0.0 71 1 15 6 45 0.0 71 1 15 7 0 0.0 71 1 15 7 15 0.0	71 1 15 7 30 0,0 71 1 15 7 45 0,0 71 1 15 8 0 0,0 71 1 15 8 15 0,0 71 1 15 8 15 0,0 71 1 15 8 15 0,0 71 1 15 8 15 0,0 71 1 15 8 15 0,0	71 1 15 8 45 0.0 71 1 15 9 15 0.0 71 1 15 9 15 0.0 71 1 15 9 30 0.0

1001
助加速
授制
2
ч
R
太陽輻射
20
ທ່
\boxtimes

He.

<pre>CM/SEC++2)</pre>	ABS	1,4067036862516D-05 1,3537268640666D-06 1,6845038149397D-06 1,827807382279D-05 1,7619159611601D-05	1,7287550422109D-05 1,566935252854D-05 1,24957296266170-05 1,404904524545451D-05 1,7856803784637D-05	1,8679582123897D-06 1,4137463438661D-06 1,7985071812110D-05 1,7535324915065D-05 1,6947323032617D-05	.46748589413200-0 .18786636137620-0 .62971646140740-0 .17925544280530-0 .85039292020670-0 .85994839153740-0	.77622125801720-0 .74614791768300-0 .65984691981080-0 .35048911691450-0	1,23689884739070-03 1,74800945614380-03 1,6828996892896220-06 1,67763516462200-06 1,82399200247390-03	1,7611725538870D-05 1,7271148227526D-05 1,5604064914722D-05 1,2399157221134D-05 1,4202006115914D-05 1,8755014130438D-06 1,4005662327290D-06 1,7969452346617D-05 1,732461129891D-05
	7	5.13401942989250-06 6.6997555346789D-07 7.60549904238620-07 6.67168655627990-06 6.3945077723052D-06	6,2279810646962D-06 5,39914908938880-06 3,96248448039850-06 4,9295973235440D-06 6,56877998083550-06	9.0155877417323D-07 6.0724472475135D-07 6.5348094872821D-06 6.36929830436430-06 6.0391654240011D-06	91861902264990-0 75887491816590-0 94032779885800-0 910604434458200-0 63244080118970-0 81075899220690-0	.43676036208380-0 .31849132437800-0 .75040991525180-0 .38201892181410-0	4,09140518058510-06 6,36034953866260-06 8,32780350446460-07 7,50402026975780-07 6,64498446570440-06	6.37717242135370-06 6.20322310545410-06 5.35073954235620-06 3.91668901648420-06 5.00849682031160-06 6.58571438422050-06 9.01472333156780-07 5.939799306036770-07 6.35550555141630-06
TO SOLAR RADIATION 1950.0)	*	1.18404171847890-05 1.1390226638074D-06 1.2722863476857D-06 1.5201113702507D-05 1.4737834342095D-05	1,44360412986960-03 1,30314868771640-05 1,06505048481520-05 1,22667813176590-05 1,50488808891620-05	1,51806172284680-06 1,01812682024540-06 1,49725107127300-05 1,46892112628600-05 1,41104373357330-05	.22301553677890-0 .03127262966390-0 .39410346862460-0 .01758863368150-0 .44851778011720-0	48065565901320-0 45923635398440-0 36211880139580-0 13378326075490-0	1,08345368049190-05 1,46629798280290-05 1,40990939018610-06 1,26037898361480-06 1,51543406585060-05	1,47020247860230-05 1,43893717670480-05 1,29505268573940-05 1,05619850281300-05 1,20641813781900-05 1,51662272282160-06 1,00274518412950-06 1,49289025086340-05 1,46572204666040-05
ING ACCELERATION DUE EAN EQUINOX AND EQUATOR OF	×	-5.59713243322050-06 -2.93830794003130-07 -8.00252707087920-07 -7.64870729933410-06 -7.23472837596240-06	-7,18834912042370-06 -6,82335308820550-06 -5,19699164167200-06 -4,75403183005450-06 -7,01767446881100-06	-6,09875614837070-07 -7,70292377577030-07 -7,52216697560460-06 -7,15169430708320-06 -7,18580525395460-06	.44840844995080- .94110780273480- .99646829202150- .61861154133570- .61944786697050- .83895395102000-		-4.29317019416530-06 -7.07790097314610-06 -3.88296731244420-07 -8.14126133439430-07 -7.72106339608340-06	-7,30445176286340-06 -7,26350909346310-06 -6,86587811781180-06 -9,18103759314780-06 -4,87560321838700-06 -7,10033402005930-06 -7,76708252820140-07 -7,59199209727260-06 -7,2222316945920500606
PERTUR8	Y M D H M S	71 1 15 0 0 0 0 1	71 1 15 1 15 0.0 71 1 15 1 30 0.0 71 1 15 1 45 0.0 71 1 15 2 20 0.0	71 1 15 2 30 0,0 71 1 15 2 45 0,0 71 1 15 3 0 0,0 71 1 15 3 15 0,0 71 1 15 3 15 0,0		71 1 1 5 15 0 0 71 1 1 5 5 0 0 0 71 1 15 5 5 0 0 0 71 1 15 5 5 0 0 0 71 1 15 5 5 0 0 0 71 1 15 5 5 0 0 0 71 1 15 5 5 0 0 0 0 71 1 15 5 5 0 <	71 1 15 6 15 0.0 71 1 15 6 30 0.0 71 1 15 6 30 0.0 71 1 15 7 0 0.0 71 1 15 7 0 0.0	71 1 15 7 30 71 1 15 7 30 0.0 71 1 15 8 0 0.0 71 1 15 8 0 0.0 71 1 15 8 10 0.0 71 1 15 8 10 0.0 71 1 15 8 30 0.0 71 1 15 9 9 0.0 71 1 15 9 9 0.0 71 1 15 9 9 0.0 71 1 15 9 9 0.0 8 9 0.0 0 0 0 9 9 0.0 0 0 0 9 0.0 0.0 0 0 0 9 0.0 0.0 0 0 0 0.0 0.0 0.0 0 0 0 0.0 0.0 0.0<

(CM/SEC**2) Abs	0.0 0.0 1.24052347833030+01 0.0	00000 00000	00000	00000	00000 00000	00000	00000	00000
2	0,0 0,0 -2.6928502666305D+00 0,0	00000	00000	00000	00000	00000 00000	00000	00000
TO CONTROL FORCE 1950.0) Y	0,0 0,0 -4,6822758729694D+00 0,0	00000 00000	00000	00000	00000 00000	00000	00000 00000	00000
NG ACCELERATION DUE TO CON An EQUINOX AND EQUATOR OF 1950.0 X	0,0 0,0 -1.11675736003750+01 0,0 0,0	00000 00000	00000 00000	00000 00000	00000 00000	00000	00000 00000	0 00 00 0 0 0 0 0
PERTURBING D A T E (TAI) (MEAN Y M D H M S	71 1 15 0 0 0.0 71 1 15 0 15 0.0 71 1 15 0 30 0.0 71 1 15 0 45 0.0 71 1 15 1 0 0.0	71 1 15 1 15 0.0 71 1 15 1 30 0.0 71 1 15 1 45 0.0 71 1 15 2 0.0	71 1 15 2 30 0,0 71 1 15 2 45 0,0 71 1 15 3 45 0,0 71 1 15 3 15 0,0 71 1 15 3 15 0,0	71 1 15 3 45 0.0 71 1 15 4 0 0.0 71 1 15 4 15 0.0 71 1 15 4 30 0.0 71 1 15 4 45 0.0	71 1 15 5 0 0.0 71 1 15 5 15 0.0 71 1 15 5 30 0.0 71 1 15 5 45 0.0	71 1 15 6 15 0.0 71 1 15 6 30 0.0 71 1 15 6 45 0.0 71 1 15 7 0 0.0 71 1 15 7 15 0.0	71 1 15 7 30 0.0 71 1 15 7 45 0.0 71 1 15 8 0 0.0 71 1 15 8 15 0.0 71 1 15 8 30 0.0	71 1 15 8 45 0.0 71 1 15 9 45 0.0 71 1 15 9 15 0.0 71 1 15 9 35 0.0 71 1 15 9 45 0.0

制御力による加速度 図 5.21

95

DENSITY GM/CM3	1,66467E-13 6,32627E-18 0,0 0,0	0.0 0.0 0.0 4.00546E-17 3.69647E-13	00000 00000	0.0 0.0 1.47310E-15 1.38652E-16 0.0	00000	0.0 8.99153E-15 3.88827E-18 0.0	0.0 0.0 0.0 7.74231E-17
SITY VARIATIONS OF HELIUM	1,73311E-21 7,64946E-22 0,0 0,0 0.0	0.0 0.0 0.0 -5.72787E-22 2,48450E-21	00000 00000	0,0 0,0 -4,90882E-22 1,72547E-21 0,0	00000 00000	0.0 1,18671E-21 6.01627E-22 0.0	0.0 0.0 0.0 -6.27978E-22
OF BASIC DENSITY SEMIANNUAL VARIATIONS	1,66467E-13 6,32591E-18 0,0 0,0 0,0	0.0 0.0 0.0 4.00551E-17 3.69647E-15	00000	0.0 0.0 1,47310E-15 1,38650E-16 0,0	00000 00000	0.0 8.95153E-15 3.88767E-18 0.0	0.0 0.0 0.0 1.74237E-17
MODIFICATION H SEASONAL LATITUDINAL VARIATIONS	1,75753E-13 7,36076E-18 0,0 0,0	0.0 0.0 0.0 4.66620E-17 4.09767E-15	00000 00000	0.0 0.0 1.66595E-15 1.59653E-16 0.0	00000	0.0 9.82813E-15 4.51381E-18 0.0	0,0 0,0 0,0 0,0 9,01236E-17
THE VARIATIONS WITI GEOMAGNETIC ACTIVITY	1,75753E-13 7,36076E-18 0,0 0,0	0,0 0.0 0,0 4,66620E-17 4,09767E-15	00000 00000	0,0 0,0 1,66595E-15 1,59653E-16 0,0	00000	0.0 9.82813E-15 4.51381E-18 0.0	0.0 0.0 0.0 0.0 9.01236E-17
BASIC DENSITY	1.75753E-13 7.36076E-18 0.0 0.0	0.0 0.0 0.0 4.66620E-17 4.09767E-13	00000	0.0 0.0 1.66595E-15 1.59653E-16 0.0	00000	0.0 9.82813E-15 4.51381E-18 0.0	0.0 0.0 0.0 0.0 9.01236E-17
EX.TEMP Deg K	1144.82 1029.94 0.0 0.0	0.0 0.0 0.0 1151.88 1031.50	00000	0.0 0.0 1151.88 1009.70 0.0	00000 00000	0.0 1107.46 999.35 0.0	0.0 0.0 0.0 1206.76
НЕ І GHT Км	222,19 874,27 0,0 0,0	0.0 0.0 0.0 161.78	00000 00000	0.0 4880.00 988.98 0.0	00000	0.0 364.16 923.37 0.0	0.0 0.0 0.0 132.59
DATE (TAI)	71 115 0 0 0 71 115 0 15 0 0 71 115 0 35 0 0 71 115 0 45 0 0 71 115 0 45 0 0 71 115 0 45 0 0	71 1 15 1 15 0.0 71 1 15 1 30 0.0 71 1 15 1 45 0.0 71 1 15 2 10 0.0	71 1 15 2 30 0.0 71 1 15 2 45 0.0 71 1 15 3 0 0.0 71 1 15 3 15 0.0 71 1 15 3 15 0.0	71 1 15 3 45 0.0 71 1 15 4 0 0.0 71 1 15 4 15 0.0 71 1 15 4 30 0.0 71 1 15 4 45 0.0	71 1 15 5 0 0.0 71 1 15 5 5 0 0.0 71 1 15 5 50 0.0 71 1 15 5 50 0.0 71 1 15 6 0 0.0	71 1 15 6 15 0.0 71 1 15 6 30 0.0 71 1 15 6 45 0.0 71 1 15 7 0 0.0 71 1 15 7 15 0.0	71 1 15 7 30 0.0 71 1 15 7 45 0.0 71 1 15 8 0 0.0 71 1 15 8 15 0.0

DENSITY ATMOSPHER I C THE ٩ EST I MAT I ON

THE

航空宇宙技術研究所資料359号

96

閔 矈 颩 К

以 5. 22

APPARENT APPARENT HT ASCENSION DECLINATION	н ж. н	19 44 19.72 -21 16 53.40 19 44 22.41 -21 16 46.72 19 44 25.10 -21 16 40.72 19 44 27.79 -21 16 30.35 19 44 30.48 -21 16 26.66	19 44 33,17 -21 16 19,97 19 44 35,86 -21 16 13,28 19 44 38,58 -21 16 13,28 19 44 41,24 -21 15 56,89 19 44 41,24 -21 15 53,18	19 44 46.62 -21 15 46.48 19 44 49.30 -21 15 39.77 19 44 51.99 -21 15 33.07 19 44 54.68 -21 15 33.07 19 44 57.37 -21 15 19.64	19 45 0.06 -21 15 12.92 19 45 2.75 -21 15 6.20 19 45 5.44 -21 14 59.48 19 45 8.13 -21 14 52.76 19 45 10.82 -21 14 46.03	19 45 13,51 -21 14 39,30 19 45 16,19 -21 14 32,57 19 45 18,88 -21 14 25,83 19 45 21,57 -21 14 19,09 19 45 24,26 -21 14 12,35	19 45 26,95 -21 14 5,61 19 45 29,64 -21 13 58,86 19 45 32,32 -21 13 52,11 19 45 35,01 -21 13 45,36 19 45 37,70 -21 13 38,61	19 45 40.39 -21 13 31.85 19 45 43.08 -21 13 25.09 19 45 45.76 -21 13 25.09 19 45 48.45 -21 13 18.33 19 45 51.14 -21 13 14.80	19 45 53.8321 12 58.03 19 45 56.51 -21 12 51.26 19 45 59.20 -21 12 44.48 19 46 1.89 -21 12 37.70 19 46 4.58 -21 12 30.92
E) R1G	ABS	1,471435480+08 1,471436450+08 1,471437430+08 1,471438400+08 1,471438400+08 1,47143980+08	1,471440360+08 1,471441330+08 1,471442310+08 1,471442310+08 1,471443290+08 1,471443290+08	1,471445260+08 1,471446240+08 1,471447220+08 1,471448220+08 1,471448210+08	1,471450180+08 1,471451170+08 1,471452160+08 1,471453150+08 1,471453150+08	1,471455130+08 1,471456120+08 1,471457120+08 1,471458110+08 1,471458110+08	1,471460100+08 1,471461100+08 1,471462100+08 1,471463100+08 1,471463100+08 1,471464100+08	1.471465110+08 1.471466110+08 1.471467110+08 1.471467110+08 1.471468120+08 1.471469130+08	1,471470130+08 1,471471140+08 1,471472150+08 1,471472150+08 1,471474170+08
AND EQUATOR OF DAT N (KM)	2	-5,340580550+07 -5,340140060+07 -5,33969390+07 -5,339258540+07 -5,3338817510+07	-5,338376300+07 -5,337934920+07 -5,337493350+07 -5,337051610+07 -5,336609680+07	-5,336167580+07 -5,335725300+07 -5,335282840+07 -5,334840200+07 -5,334840200+07	-5,333954380+07 -5,333511200+07 -5,333067850+07 -5,3332624310+07 -5,332280600+07	-5,331736710+07 -5,331292630+07 -5,330848380+07 -5,330403950+07 -5,329959340+07	-5,329514560+07 -5,329069590+07 -5,328624450+07 -5,328179120+07 -5,328179120+07	-5,327287940+07 -5,326842070+07 -5,326396030+07 -5,325949810+07 -5,325503410+07	-5,325056830+07 -5,324610060+07 -5,324163120+07 -5,323716000+07 -5,323268700+07
N (TRUE EQUINOX O S I T I O	۶	-1,231469810+08 -1,231368200+08 -1,231266560+08 -1,231166870+08 -1,231164870+08	-1,230961380+08 -1,230859570+08 -1,230757710+08 -1,230655820+08 -1,230553820+08	-1.230451910+08 -1.230349900+08 -1.230247840+08 -1.23024740+08 -1.230145740+08	-1,229941420+08 -1,229839200+08 -1,229736930+08 -1,229634630+08 -1,22953280+08	-1,229429890+08 -1,229327460+08 -1,229327460+08 -1,229122490+08 -1,229122480+08	-1.228917340+08 -1.228814700+08 -1.228712020+08 -1.228609310+08 -1.228509310+08	-1.228403750+08 -1.228300315+08 -1.228198020+08 -1.228995100+08 -1.227995100+08	-1,227889130+08 -1,227786080+08 -1,22768290+08 -1,227579860+08 -1.227579860+08 -1.22747680+08
ວ ^Δ	×	6.028154570+07 6.030643590+07 6.033132400+07 6.035621000+07 6.038109400+07	6,040597600+07 6,043085590+07 6,045573370+07 6,048060940+07 6,050548310+07	6.053035470+07 6.055522430+07 6.058009180+07 6.060495720+07 6.062982060+07	6,065468190+07 6,067954120+07 6,070439840+07 6,072925360+07 6,075410670+07	6,077895780+07 6,080380680+07 6,082380540707 6,085349880+07 6,087349880+07	6,090318250+07 6,092802130+07 6,095285810+07 6,097769290+07 6,100252560+07	6.102735630+07 6.105218490+07 6.107701160+07 6.112663880+07	6,115147940+07 6,117629809+07 6,120111460+07 6,122592910+07 6,122074170+07
T 6 / TAI		71 1 15 0 0 0.0 71 1 15 0 15 0.0 71 1 15 0 30 0.0 71 1 15 0 45 0.0 71 1 15 0 45 0.0	71 1 15 1 15 0.0 71 1 15 1 30 0.0 71 1 15 1 45 0.0 71 1 15 2 0 0.0 71 1 15 2 15 0.0	71 1 15 2 30 0.0 71 1 15 2 45 0.0 71 1 15 3 0 0.0 71 1 15 3 15 0.0 71 1 15 3 30 0.0	71 1 15 3 45 0.0 71 1 15 4 0 0.0 71 1 15 4 15 0.0 71 1 15 4 15 0.0 71 1 15 4 5 0.0	71 1 15 5 0 0 0 71 1 15 5 15 0 0 0 71 1 15 5 30 0 0 0 71 1 15 5 45 0 0 0 71 1 15 5 45 0 0 0 71 1 15 6 0 0 0 0 0	71 1 15 6 15 0.0 71 1 15 6 30 0.0 71 1 15 6 30 0.0 71 1 15 6 45 0.0 71 1 15 7 0 0.0	71 1 15 7 30 0.0 71 1 15 7 45 0.0 71 1 15 8 15 0.0 71 1 15 8 15 0.0	71 1 15 8 45 0.0 71 1 15 9 0 0.0 71 1 15 9 15 0.0 71 1 15 9 15 0.0 71 1 15 9 45 0.0

97

英の黄道面座標系における太陽の位置と視赤経、視赤緯

5. 23

 \boxtimes

This document is provided by JAXA.

APPARENT DECL INATION	-	9 50 42,57 9 47 29,36 9 44 8,09 9 40 50,59 9 37 33.04	9 34 15.37 9 30 57.58 9 27 39.69 9 24 21.68 9 21 3.96	9 17 45,39 9 14 26,99 9 11 26,99 9 7 49,99 9 31,39	9 1 12,56 8 57 53,68 8 54 34,70 8 51 15,62 8 47 56,43	8 44 37.14 8 41 17.14 8 37 59.23 8 34 38.65 8 31 18.96	8 27 59,16 8 24 39,27 8 21 19,28 8 17 59,19 8 14 39,01	8 11 18,73 8 7 58,73 8 4 57,98 7 57 58 7 56,67	7 54 35,92 7 51 15,08 7 47 34,16 7 44 39,14 7 41 12,03
APPARENT RIGHT ASCENSION	Σ	10 16 42,71 10 17 92,86 10 17 36,99 10 18 4,12 10 18 31,23	10 18 58,34 10 19 25,34 10 19 52,51 10 20 19,58 10 20 46,64	10 21 13.68 10 21 40.72 10 22 7.74 10 22 34.76 10 23 1.76	10 23 28,75 10 23 59,74 10 24 22,71 10 24 49,67 10 25 16,62	10 25 43.56 10 26 10.49 10 26 37.49 10 27 31.21	10 27 58.10 10 28 24.98 10 28 51.85 10 29 18.70 10 29 45.55	10 30 12,39 10 30 39,22 10 31 6,04 10 31 39,65	10 32 26,44 10 32 59,22 10 33 19,99 10 33 46,79 10 34 13,50
E)	ABS	4.040934740+05 4.041083900+05 4.041232140+05 4.041379480+05 4.041379480+05	4.041671400+05 4.041815980+05 4.041959640+05 4.041959640+05 4.042102380+05	4,042385080+05 4,042525030+05 4,042664050+05 4,042862140+05 4,042939290+05	4,043075500+05 4,043210770+05 4,043345100+05 4,043478480+05 4,043478480+05	4.043742390+05 4.043872920+05 4.044002492+05 4.044131110+05 4.044238170+05	4.044385470+05 4.044511210+05 4.044635980+05 4.044759780+05 4.044759780+05	4,045004470+05 4,045125350+05 4,045245250+05 4,045364170+05 4,045364170+05	4.045599050+05 4.045715010+05 4.045715010+05 4.0459829980+05 4.045943960+05 4.046056940+05
AND EQUATOR OF DATI C KM >	7	6.909436570+04 6.871620830+04 6.833771970+04 6.795890190+04 6.757975670+04	6.72002861D+04 6.68204919D+04 6.64403761D+04 6.60599407D+04 6.56791874D+04	6.529811820+04 6.491673500+04 6.453503980+04 6.415303450+04 6.415303450+04	6,338810100+04 6,300517680+04 6,262195000+04 6,223842270+04 6,185459680+04	6.147047410+04 6.100805670+04 6.070134640+04 6.031634520+04 5.993105490+04	5,954547760+04 5,915961520+04 5,877346950+04 5,838704250+04 5,800033610+04	5,761335220+04 5,722609280+04 5,68385980+04 5,645075510+04 5,606268060+04	5,56743384D+04 5,52857302D+04 5,48968581D+04 5,45077239D+04 5,41183297D+04
C TRUE EQUINOX /	>	1.734219680+05 1.727490090+05 1.720752150+05 1.71400591D+05 1.707251380+05	1,70048861D+05 1,69371764D+05 1,68693849D+05 1,68015120D+05 1,67335580D+05	1,666552330+05 1,659740820+05 1,652921310+05 1,646093830+05 1,639258420+05	1,632415100,05 1,62553920+05 1,618704910+05 1,611838100+05 1,604963530+05	1,598081240+05 1,591191250+05 1,584293600+05 1,577388330+05 1,570475460+05	1,563555050+05 1,556627120+05 1,549691700+05 1,542748830+05 1,533798550+05	1,528840880+05 1,521875870+05 1,514903540+05 1,507923940+05 1,500937100+05	1,493943050+05 1,486941830+05 1,479933470+05 1,472918010+05 1,4578918010+05
zο ο α ο Σ	×	-3.583885120+05 -3.588028060+05 -3.592153240+05 -3.596260640+05 -3.696260640+05	-3.604422050+05 -3.608476020+05 -3.612512140+05 -3.616530390+05 -3.616530390+05	-3.624513210+05 -3.628477750+05 -3.632424350+05 -3.6352990+05 -3.6426352990+05	-3.644156320+05 -3.648030980+05 -3.651887610+05 -3.655726190+05 -3.655726190+05	-3.663349150+05 -3.667133480+05 -3.670899700+05 -3.674647790+05 -3.674547790+05	-3.682089490+05 -3.685783080+05 -3.689458460+05 -3.689458460+05 -3.693115630+05 -3.69673450+05	-3.700373230+05 -3.703977640+05 -3.707561750+05 -3.711127570+05 -3.711127570+05	-3,718204220+05 -3,721715030+05 -3,725207470+05 -3,728681520+05 -3,732137170+05
	DATECTAI) YMDHMS	71 1 15 0 0 0.0 71 1 15 0 15 0.0 71 1 15 0 30 0.0 71 1 15 0 30 0.0 71 1 15 0 45 0.0	71 1 15 1 15 0.0 71 1 15 1 30 0.0 71 1 15 1 30 0.0 71 1 15 2 0 0.0 71 1 15 2 15 0.0	71 1 15 2 30 0.0 71 1 15 2 45 0.0 71 1 15 3 60 0.0 71 1 15 3 15 0.0	71 1 15 3 45 0.0 71 1 15 4 0 0.0 71 1 15 4 15 0.0 71 1 15 4 15 0.0 71 1 15 4 30 0.0	71 1 15 5 0 0.0 71 1 15 5 15 0.0 71 1 15 5 30 0.0 71 1 15 5 90 0.0	71 1 15 6 15 0.0 71 1 15 6 15 0.0 71 1 15 6 45 0.0 71 1 15 7 0 0.0 71 1 15 7 15 0.0	71 1 15 7 30 0.0 71 1 15 7 30 0.0 71 1 15 8 0 0.0 71 1 15 8 15 0.0	71 1 15 8 45 0.0 71 1 15 9 0 0.0 71 1 15 9 15 0.0 71 1 15 9 30 0.0 71 1 15 9 45 0.0

98

真の黄道面座標系における月の位置と視赤経、視赤緯

図 5.24

~
SPACECRAFT
I DF INTERPLANETARY SPAC
٩.
C TRAJECTORY GENERATION
J
STANPS-C

CONTROL DATE CARD PROOF LIST

FLIGHT TO MARS

NAME 1 MASS 1 200.0000 (KG)	CROSS SECTION	t 4.000 (M##2)	REFLECTIVE COEFFICIENT	(DIFFUSE = 0,300) (SPECULAR = 0,300)
EPOCH (INITIAL TIME) 1 FINAL TIME 1	Y M D H 1972 10 14 0 1972 10 23 0	0 X 0,0 S 0,0 S	MJED DAY 41604.0000000 41613.0000000	
INITIAL COORDINATE SYSTEM	MEAN OF 1950.0	ORIGIN : EARTH	ELEMENT ;	KEPLERIAN
* * * * * * OSCULATING OR	ORBITAL ELEMENTS AT	EPOCH		
S.M AXIS ECCENTRICITY INCLINATION LONG. OF NODE ARG. OF PERIGEE MEAN ANOMALY	(KM)	MEAN OF 1950.0 5823990396328D+04 14922620000000+00 344250000000000001+01 0 0	TRUE OF DATE -4.58240037420280+04 1.14922615600980+00 2.34435471161580+01 3.59999258665190+02 3.2299774885510+02 3.5999999999240+02	
* * * * * * INITIAL CONDITION FOR NUME		RICAL INTEGRATION		
POSITION VECTOR VELOCITY VECTOR	X X 4.03341 2 XDOT 2.3.34811 1.74891 1.74891 1.74891 2001 2.005 2.007 2.02690	0F 1950.0 3995568050+03 2367753130-17 1154170200-17 7459018080-20 0066694880+01 251355320+00	TRUE OF DATE 6.83803173072530+03 3.52783538255810+01 1.53365180832540+01 -6.29651873293530-02 1.02687628452602+01 4.45295938922110+00	(KM (KM (KM (KM/SEC) (KM/SEC) (KM/SEC)
* * * * * * * CONDITION OF NUMERICAL	NUMERICAL INTEGRATION	7		
CALCULATION OF STARTING VALUES	ALUES	1 8-TH ORDER RUNGE-KUT	RUNGE-KUTTA FORMULA. STEP SI	SIZE = 0.001388

図 5.25(1) STANPS-Cの入力データ

,

0,001388 8

-- --

STEP SIZE ORDER

GAUSS JACKSON INTEGRATION

S T A N P S - C (TRAJECTORY GENERATION OF INTERPLANETARY SPACECRAFT

CONTROL DATA CARD PRODF LIS

* ^ * * * * * * * * * * * THE CAUSES OF PERTURBING ACCELERATION * * * *

- * * * NE*TONIAN POINT-MASS ACCELERATION OF PERTURBING BODY
- * * * GENERAL RELATIVITY : BRANS-DICKE PARAMETER = 1.00
- SPECULAR 0.300) : REFLECTIVE COEFFICIENT (DIFFUSE = 0.300 SOLAR RADIATION PRESSURE * * *
- * * * THE EFFECT OF SUN'S GEOPOTENCIAL J2 TEAM
- * * * OBLATE BODY AND INDIRECT OBLATENESS
- * * * CONTROL FORCE
- THRUST TIPE I MEDIUM

| Y M D H M THRUST STARTING TIME = 1972 11 17 15 0 | = 1972 | 2 11 17 15 0 0.0 | °°, | 41638.6250000 |
|--|--------|---------------------------|-----------|---------------|
| THRUSTING DURATION | | 00.009 | (SEC) | |
| MASS DECREASE RATION | | 0.0222222 | (KG/SEC) | |
| THRUST DIRECTION | •• | VELOCITY VECTOR DIRECTION | RECTION | |
| INTEGRATION STEP SIZE | | 0.0006944 | (VAQ) | |
| CONTROL FORCE X | | 1.000000000000000000 | (NEW TON) | |
| > | | 0.0 | | |
| 2 | | 0.0 | | |

図 5. 25 (2) STANPS - C の入力データ

EARTH-FIXED

TRUE OF DATE CARTESIAN S 0.00 0.00 Σ MEAN OF 1950.0 00 I KEPLERIAN 00 ۵ 5 5 7 7 7 Σ 99 •• > --1972 1972 OUTPUT ORBITAL ELEMENT OUTPUT COORDINAE SYSTM STARTING TIME FINAL TIME

* * * * *

CONDITION

OUTPUT

-

١

INTERVAL DAY 0.25000

DAY

MJED 41604.0000000 41613.0000000

 $\hat{}$

| | - ^ | | | 3.098700000+06
1,926000000+04 | | 2.272759180-05
1.644408110-04 |
|-----------------|--|---|--|---|---|---|
| P.C.) | <pre>< KM) < KM/SEC) UEFINING A.U < KM) < KM) < RAD) < DYN/CM##2</pre> | (KM)
(KM3/SEC++2 | с жж о | MARS
NEPTUNE | 0.0
8.815000-07
9.100000-07
0.0
0.0
0.0
0.0 | MARS
NEPTUNE |
| | 1.495979000000+08
2.997925000000+05
1.72020989500000-02
6.960000000000+05
7.000000000000+05
1.26536370700000-05 | <pre>6.378140000000+03 3.9860130000000+03 3.3294556192540+05 -1.082637000000-03 2.541000000000-06 1.5362000000000-06 -8.815000000000-07</pre> | 1.73600000000000000
4.00000000000000000
6.30000000000000000
2.300000000000000000
3.98000000000000000
3.9800000000000000
2.70688071301000000001
8.130100000000000101 | <pre>3.329455620+05 3.229300000+04</pre> | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | <pre>4.26352242D-05 1.73130773D-04</pre> |
| R P R O O F | ••• •••• | ••••• | | +05 EARTH
+03 URANUS
+07 | 0.0
2.541000-06
3.600000-06
0.0
0.0
0.0
0.0
2.100000-05 | -05 EARTH
-04 URANUS
-05 |
| ONTROL DATA CAR | CONSTANT
SUN
For Sun 1 J2
JN EQUATOR TO ECLIPTIC | EARTH
VAL CONSTANT
V AND EARTH ; GS/GE
FOR EARTH ; J2
FOR EARTH ; J3
FOR EARTH ; J3
FOR EARTH ; C22
FOR EARTH ; S22 | CR MOON
INT I ALPHA
I BETA
I GAMMA
SUN AND MOON I GS/GM
EARTH AND MOONI GE/GM | IS OF PLANETS TO SUN
VENUS = 4.085220000+05
Saturn = 3.49920000+03
MOON = 2.706880710+07 | J2
0.0
0.0
1.08264D-03
1.96400D-03
1.47000D-02
1.67000D-02
1.67000D-02
2.07100D-04
2.07100D-04
2.07100D-04
2.07100D-04
2.07100D-04
2.07100D-04 | PLANETS (AU)
VENUS = 4.04551133D-05
Saturn = 4.01075149D-04
Moon = 1.82890268D-05 |
| U | MEASURE OF 1 A.U
VELOCITY OF LIGHT
GAUSSIAN GRAVITAIONAL CONSTANT
GAUSSIAN GRAVITAIONAL CONSTANT
EQUATORIAL RADIUS FOR SUN
DYNAMICAL FORM-FACTOR FOR SUN
MEAN INCLINATION OF SUN EQUATOR
SOLAR ENERGY DENSITY i | EQUATORIAL RADIUS FOR EARTH
GEDCENTRIC GRAVITATIONAL CONST
RATIO OF MASSES OF SUN AND EAR
DYNAMICAL FORM-FACTOR FOR EART
DYNAMICAL FORM-FACTOR FOR EART
DYNAMICAL FORM-FACTOR FOR EART
DYNAMICAL FORM-FACTOR FOR EART | EQUATORIAL RADIUS FOR
LUNAR INERTIAL MOMENT
RATIO OF MASSES OF SU
RATIO OF MASSES OF EAU | RECIPROCAL MASS RATIONS (
MERCURY = 5.983000000+06
JUPITER = 1.047390800+03
PLUTO = 1.812000000+06 | DYNAMICAL FORM-FACTOR
MERCURY
VENUS
EARTH
MARTH
JUPITER
SATURN
SATURN
NEPTUNE
PLUTO
MOON | EQUATORIAL RADIUS FOR
MERCURY - 1.559513870-05
JUPITER - 4.737365970-04
PLUTO - 1.938529890-05 |

R | S

F A C O M

1

N N 図 5.25(3) 計算に用いられる定数

101

| \sim |
|----------|
| 2 |
| 12 |
| S |
| J. |
| 1- |
| د |
| \$1 |
| \neq |
| ÷к |
| N'N |
| 2 |
| <u>ا</u> |
| ¥ |
| × |
| |
| |
| è. |
| è. |
| è. |
| 5424 |
| 5424 |
| も見から |
| は地球から |
| は地球から |
| 体は地球から |
| は地球から |
| 体は地球から |
| 心天体は地球から |
| 体は地球から |
| 心天体は地球から |

図 5.26 1950.0 平均赤道面座標系における字宙船の位置。速度ペクトル 赤経,赤緯

| | v = | 29,855 | 4.307 | 13,165 | 9.086 | 49.530 | 51.103 | 20,599 | 1.576 | 40.716 | 32.917 | 41.676 | \$60.05 | 42,695 | 26.645 | 43.776 | 22.750 | 44.920 | 18.344 |
|------------------------------------|-----------------------------------|--|-----------------------|---|-----------------------|--|---------------------|---|----------------------|--|---------------------|---|-----------------------|--|-----------------------|---|-----------------------|--|----------------------------|
| | Σ•
I | 8 | 29 | ñ | 1 55 | n | 151 | 4 | 4 | 28 | 9 17 | 1 29 | 9 23 | 1 30 | 9 29 | 1 31 | 6 35 | 1 32 | 9 41 |
| | _ | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | Ч | - | | - | | - | | - | | |
| QUATOR AND EQUINOX OF 1950.0 | R.A
Dec | R . A | DEC | R.A | DEC | R.A | DEC | R. A | DEC | R. A | DEC | ₽. | DEC | R. A | DEC | R.A | DEC | R.A | DEC |
| | VELOCITY C KM/SEC) | -2.730690455657886510+00
1.414880341470555665+00
6.121930193249490450-01 | .135815211107170690+0 | -2.717038923468844140+00
1.406596257549014120+00 | .119487503413689870 | -2.70582693728170162D+00
1.39960783278597972D+00
4.054545440141327650-00 | .105977923399998900 | -2.696509362455685730+00
1.393587512846932020+00
2.3935934342546932020+00 | .094636305208716910+ | 000 | .24331185138096004 | =1.524442307534707270+01
2.62615183648866850+01
32724573400525137400 | .243413411769557480+0 | -1,535609297929438690+01
2,621326082021084590+01
1,1243188184888994401 | .243598050315496740+0 | -1.546835768413150950+01
2.616026401805822200+01 | .243849581638520720+0 | 558108612182162880
610708884134012880 | .13103003433026655072440+0 |
| EQUATORIAL COORDINATE IN MEAN EQUA | POSITION C KM S | -5.801284525370417260+05
3.265602501216305100+05
1.413164920307829210+05 | 05593062492135870 | -6.389212770589654310+05
3.570099959531378490+05 | 447141051353319616D+0 | -6.974469101199551300+05
3.872956063388139950+05
1.47464063288138950+05 | 51798334034633390+0 | -7.557517847116252490+05
4.174413015241234680+05
1.4043743005241234680+05 | 20102677750873450+0 | 1,357248851525081700+08
5.5304455336685099770+07
0.2020454513120040207 | 85088710495705280+0 | 1.353970149390688310+08
5.587201179423780950+07
2.4224423409688310+07 | +84619561349182450 | 1.350667420829053340+08
5.643842682724467050+07
5.4471072641464407050+07 | 84156268240238300+0 | 1.347340520163226310+08
5.700369915122303690+07 | +8369870351056754D+0 | 1,343989333696595330+08
5.756782366667247390+07
2.222.222505057247390+07 | 193246762586362680+0 |
| EQ | | ×≻N | ABS | × > • | ABS | ×≻∽ | ABS | × > • | ABS | × > • | ABS | ×≻► | ABS | ×≻n | ABS | × > • | ABS | × > r | ABS |
| | K D A T E
K D A T E
S S S S | 72 10 16 6 0 0.0
(MJED 41606.2500000) | ORIG.BODY EARTH | 72 10 16 12 0 0.0
(MJED 41606.5000000) | ORIG.BODY EARTH | 72 10 16 18 0 0.0
(MJED 41606.7300000) | ORIG.BODY EARTH | 72 10 17 0 0 0.0
(MJED 41607.0000000) | ORIG.BODY EARTH | 72 10 17 6 0 0.0
(4JED 41607.2500000) | ORIG.BODY SUN | 72 10 17 12 0 0.0
(MJED 41607.5000000) | ORIG.BODY SUN | 72 10 17 18 0 0.0
(MJED 41607.7500000) | ORIG.BODY SUN | 72 10 18 0 0 0.0
(MJED 41608.0000000) | ORIG.BODY SUN | 72 10 18 6 0 0.0
(mJED 41608.2500000) | ORIG.BODY SUN |

航空宇宙技術研究所資料 359 号

(TRAJECTORY GENERATION OF INTERPLANETARY SPACECRAFT)

STANPS-C

S T A N P S - C

TRAJECTORY GENERATION OF INTERPLANETARY SPACECRAFT)

| C MED | |
|---|---|
| >
()
()
()
()
()
()
()
()
()
() | |
| • | • |
| | |
| L | J |

| DATE |
|-------------------|
| OF D |
| EQUINOX |
| AND |
| E IN TRUE EQUATOR |
| TRUE |
| z |
| COORD I NATE |
| EQUATORIAL |

| ۍ
۱ | 44.048 | 22,291 | 27. 325 | 26.340 | 3,663 | 7.747 | 34.708 | 17.702 | 53,581 | 42,483 | 54.583 | 38,843 | 55.646 | 34.687 | 56.771 | 30,014 | 57.958 | 24.820 |
|---------------------|---|-----------------------|--|-----------------------|---|---|--|-----------------------|---|-----------------------|--|-----------------------|--|-----------------------|--|-----------------------|---|-----------------------|
| Σ.
I., | 10 3 | 11 52 | •
97 | 11 46 | 10 5 | 11 45 | 10 5 | 11 42 | 1 29 | 9 24 | 1 30 | 9 30 | 1 31 | 9 36 | 1 32 | 9 42 | 1 33 | 948 |
| R.A
DEC | A.A | DEC | R.A | DEC | R.A | DEC | R.A | DEC | R.A | DEC | R.A | DEC | R.A | DEC | R.A | DEC | R.A | DEC |
| VELOCITY C KM/SEC) | -2.739325219080688020+00
1.400750029641216450+00
4.00750029641216450+00 | .135815358632276810+0 | -2,725623490254692900+00
1,392536001852439440+00
6,02612622439440+00 | .119487718029383730+0 | 714369160724201390
385605113619660980 | • 74474447447477777777770-0
• 105978219608373880+0 | 705015097053225
3796326395643272
86888312285395643272 | .094636701194855370+0 | -1.529512465881116300+01
2.624097734957841790+01
1.13769184134575260+01 | .243399456093301990+0 | -1,540569591828563120+01
2,61874545354500335D+01
1,135371217420411100401 | .243493520851058350+0 | -1.551702818798021370+01
2.613391687660366820+01
1.133049688814490040+01 | .243670659657148080+0 | | .243914802236524520+0 | -1.574134240225629540+01
2.602645069567202610+01
1.12828801263605450 | .244213502716958120+0 |
| POSITION (KM) | -5,821215982983737550+05
235586004383432090+05
1.400187028344207070+05 | 5592995961505650+0 | -6.411002565509558640+05
3.537041071845012680+05
1.530620337052550780+05 | 0268180692957150+0 | -6.998107264129438930+05
3.836868486137110570+05
1.440344502037470405 | 1798247108969340+ | -7.582995873294343660+05
4.135308083891495650+05
1.780467683342689560+05 | 070257799039971D+ | 1.353834861838991150+08
5.600365156667411490+07
2.428553027146704030+07 | 5088694343667290+ | 1.350521323316702980+08
5.65695165097886396D+07
2.453086394162804854+07 | 84619546726559690+ | 36191
52003
92563 | 415625467648485D+ | 1.343822258081261950+08
5.769777834189783450+07
2.50200281892654450+07 | 369869074976403 | 1.34043646754,154570+08
5.826017134439068560+07
2.526385626483981490+07 | 3246750665253770+0 |
| | ×≻N | ABS | ××~ | ABS | ×≻► | ABS | ×≻N | ABS | ×≻N | ABS | XYN | ABS | ×≻N | ABS | X≻N | ABS | X > N | ABS |
| Y M D H M S | 72 10 16 6 0 0.0
(MJED 41606.2500000) | ORIG.BODY EARTH | 72 10 16 12 0 0.0
(MJED 41606.5000000) | ORIG.BODY EARTH | 72 10 16 18 0 0.0
(MJED 41606.7500000) | ORIG+BODY EARTH | 72 10 17 0 0 0.0
(MJED 41607.0000000) | ORIG.BODY EARTH | 72 10 17 6 0 0.0
(MJED 41607.2500000) | ORIG.BODY SUN | 72 10 17 12 0 0.0
C mJED 41607.5000000) | ORIG.BODY SUN | 18
07.7 | ORIG.BODY SUN | 72 10 18 0 0 0.0
(MJED 41608.0000000) | ORIG.BODY SUN | 72 10 18 6 0 0.0
C mjed 41608.2500000) | ORIG.BODY SUN |

True of dateの赤道面座標系における宇宙船の位置,速度ベクトルと赤経、赤緯

図 5. 27

•

| U
1 |
|--------|
| S |
| ٩ |
| z |
| _
ح |
| F |
| - |
| S |

(TRAJECTORY GENERATION OF INTERPLANETARY SPACECRAFT)

| - | LNG 35 46 37,525
LAT 11 52 22,291 | LNG -54 13 52,466
LAT 11 48 26,340 | LNG -144 16 6.546
LAT 11 45 7.747 | LNG 125 40 19.993
LAT 11 42 17.702 | LNG 35 35 44.709
Lat 11 39 49.920 | LNG -54 29 39.559
Lat 11 37 39.794 | LNG -144 35 43.198
LAT 11 35 43.866 | LNG 125 17 41.137
LAT 11 33 59.485 | LNG 35 10 39,163
LAT 11 32 24.586 |
|--|---|---|--|---|--|---|--|---|---|
| COORDINATE SYSTEM
VELOCITY (KM/SEC) | 2.509878187062226380+00
1.776472749864639160+00
6.060813988258892570-01
3.13411528296346290+00 | 1.748881466508437390+00
-2.510468241161556070+00
6.02514477122128530-01
3.118342647886905980+00 | -2.513082340385459410+00
-1.723013393088067250+00
5.99499148541551270D-01
3.10543994168622710D+00 | -1.698487391646460860+00
2.517213699925318050+00
5.968948122953393940-01
3.094754860666478650+00 | 2.522503056910942530+00
1.675030069207044740+00
5.94601982825114091D-01
3.085822244208561690+00 | 1,65243991026760050+00
-2,528688182365143280+00
5,925481273740229750-01
3,078300645475160140+00 | -2,535572872542932720+00
-1,630564887905296570+00
5,906789991339575730-01
3,071933157746620880+00 | -1.609287978498713090+00
2.543007141046288340+00
5.889531133004023640-01
3.066522278872131080+00 | 2、550874148708243180+00
1、588517494374137220+00
5、873381430406116400-01
3、0619132657132999960+00 |
| EARTH - FIXED COO
POSITION (KM) | 5.403240668797011710+05
3.893656711545752570+05
1.400187028354797060+05
6.80559295961303450+05 | 4.279818615085482130+05
-5.94093982976232865D+05
1.53062033705255081D+05
7.48026818069295728D+05 | -6.47861006638035986D+02
-4.66075923728803910D+05
1.66034622937372961D+05
8.15179824710896950D+05 | -5.036807204652827900+05
7.016635416123314700+05
1.789467683342689590+05
8.820702577990399980+05 | 7.555307308322823760+05
5.408221649727433900+05
1.918062088115266170+05
9.487385947121677730+05 | 5.77521122484571008D+05
+8.09485051722010399D+05
2.04618847672420359D+05
1.01521700571848868D+06 | -8,635440581478402000+05
-6,137946940865682930+05
2,173892325344347350+05
1,081531481406424390+06 | -6,496571128380832160+05
9,177215838144804940+05
2,301208813753698120+05
1,147703310836493820+06 | 9.720285891594494780+05
6.851203847936855480+05
2.428165206671221600+05
1.213750131827817570+06
ける字宙船の位置、速度ベクトルと経度、 |
| | A A X
A B A
A A X | A X X
A A S
A S | A 2 × ×
A 8 × × × | A 2 4 X
A 2 4 X
A 2 4 X | A N X X
A N X
X
A N X
X
X
X X X X X
X
X X X X X X X X X X | A & X × A
A B & X × X | X Y A
B
A
S | ×≻~S
Br≺≺ | x x 9.
Y 6.
2 2.
ABS 1. |
| Υ
Υ
Υ
Υ
Υ
Υ
Υ
Υ
Υ
Υ
Υ
Υ | 72 10 16 6 0 0.0
(MJED 41606.2500000)
Orig.80dy Earth | 72 10 16 12 0 0.0
(mJED 41606.5000000)
Orig.body Earth | 72 10 16 18 0 0.0
(mJED 41606.7500000)
Orig.body Earth | 72 10 17 0 0 0.0
(MJED 41607.0000000)
ORIG.BDDY EARTH | 72 10 17 6 0 0.0
(MJED 41607.2500000)
ORIG.BODY SUN | 72 10 17 12 0 0.0
(MJED 41607.5000000)
ORIG.BODY SUN | 72 10 17 18 0 0.0
(MJED 41607.7500000)
ORIG.BODY SUN | 72 10 18 0 0 0.0
(MJED 41608.0000000)
ORIG.BODY SUN | 72 10 18 6 0 0,0
(MJED 41608,2500000)
ORIG.BODY SUN
図 5.28 地球函 |

۱

(原点はすべて地球重心であって、ORIG.BODYのところで地球から太陽に変っているが、ここでは無関係)

(TRAJECTORY GENERATION OF INTERPLANETARY SPACECRAFT)

STANPS-C

OSCULATING EQUATORIAL ELEMENTS IN MEAN EQUATOR AND EQUINOX OF 1950.0

| (DEG)
M | 0.0
1.3865100338D+02
1.43363544660+02
1.4529243022D+02
1.4636675516002 | 1.47049014470+02
1.47508701790+02
1.47821833030+02
1.48026493130+02
1.48143292660+02 | 1,4818179758D+02
1,4814841729D+02
1,4804558009D+02
3,4325999129D+02
3,4341729056D+02 | 3,4357857358D+02
3,4374323638D+02
3,4391067784D+02
3,4408140529D+02
3,4428317825D+02 | 3,44426649280+02
3,44601585900+02
3,44777796260+02
3,44955120630+02
3,45133424950+02 | 3.45312595850+02
3.45492536760+02
3.45674170260+02
3.45655417720+02
3.45655417720+02
3.46037219100+02 | 3,46219520620+02
3.46402275250+02
3.46585441650+02
3.46585481340+02
3.46952868010+02
3.46952868010+02 | 3.4713809110D+02
3.4732258020D+02 |
|------------------------|---|---|--|--|--|--|---|--------------------------------------|
| 0MG2 | 0.0
8.73667283870-02
8.21342470580-02
7.80599539990-02
8.03044588760-02 | 9.43779155480-02
1.25892506150-01
1.80446105510-01
2.63573982490-01
3.81477978580-01 | 5.38210461910-01
7.3950557194b-01
9.90356004450-01
4.87051855900+01
4.87161047040101 | 4.87253717730+01
4.87333000260+01
4.87401291470+01
4.87460761790+01
4.87512231370+01 | 4.87557227360+01
4.87596699810+01
4.87631425020+01
4.87662043290+01
4.87662043290+01
4.87689087270+01 | 4.87713003510+01
4.87734169060+01
4.87753002230+01
4.87753002230+01
4.87769570100+01
4.87784218670+01 | 4.87797151480+01
4.87808545340+01
4.87818554570+01
4.8782314390+01
4.87827314390+01
4.87834943770+01 | 4.87841581820+01
4.87847248710+01 |
| DMG1 | 0.0
3.5994961164D+02
3.5995073283D+02
3.5995245557D+02
3.5995427212D+02 | 3.59955691840+02
3.59955253560+02
3.599553939480+02
3.59955733990+02
3.59952733990+02
3.59947773870+02 | 3.59940159670+02
3.59929506510+02
3.59915503630+02
3.59996844950+02
3.59996851550+02 | 3.59996857530+02
3.59996862980+02
3.59996867980+02
3.59996877620+02
3.59996872620+02
3.59996876900+02 | 3.59996880900+02
3.59996884640+02
3.59996888160+02
3.5999688160+02
3.59996891470+02
3.59996891470+02 | 3.59996897580+02
3.59996900420+02
3.59996903130+02
3.59996905710+02
3.59996908170+02
3.59996908170+02 | 3.59996910540+02
3.59996912810+02
3.59996915000+02
3.59996917100+02
3.59996919130+02 | 3.59996921090+02
3.5999692298D+02 |
| _ | 2.3442500000+01
2.34324094430+01
2.34318413660+01
2.34308790130+01
2.34298102290+01 | 2.34289478210+01
2.34286171850+01
2.34291441710+01
2.34308477500+01
2.343096477500+01 | 2,34390240660+01
2,34460248660+01
2,34552868960+01
2,34352868960+01
2,34390307310+01
2,34390307310+01 | 2,34390418550+01
2,34390465840+01
2,34390508720+01
2,34390508720+01
2,343905883860+01
2,343905883860+01 | 2.34390616880+01
2.34390647420+01
2.34390675780+01
2.34390675780+01
2.34390702220+01
2.34390702220+01 | 2,34390750110+01
2,34390771900+01
2,34390792540+01
2,34390811930+01
2,3439081030+01 | 2,34390847670+∪1
2,34390864180+01
2,34390879890+01
2,34390874809+01
2,34390894840+01
2,34390909100+01 | 2.34390922770+01
2.34390935760+01 |
| LT. | 1.14922620000+00
1.14832162170+00
1.14829263420+00
1.14827765390+00
1.14832337020+00 | 1.14848297480+00
1.14881253140+00
1.14936957830+00
1.15021282730+00
1.15121282730+00
1.15141007320+00 | 1,15301034690+00
1,15508369090+00
1,15769770180+00
1,89139637870-01
1,88569635350-01 | 1,88069072560-01
1,87625617360-01
1,87229689330-01
1,86872562010-01
1,86572562010-01
1,86551595490-01 | 1,86260083860-01
1,8594074220-01
1,85750296810-01
1,85526022770-01
1,85526022770-01
1,85318956090-01 | 1.8512715062D-01
1.8494894554D-01
1.84782023800-01
1.8462699272D-01
1.84481828600-01 | 1,84345598590-01
1,84217484810-01
1,84096767070-01
1,83982808660-01
1,83982044470-01
1,83875044470-01 | 1.83772419200-01
1.83675615100-01 |
| A (KM) | -4.58239903960+04
-4.61113223570+04
-4.61073093730+04
-4.61073093730+04
-4.61005794420+34 | -4.60799359740+04
-4.60666120760+04
-4.60516421930+04
-4.60352499390+04
-4.60175287920+04 | -4.59988473640+04
-4.59792664300+04
-4.59589296910+04
1.80472845230+08
1.80350485230+08 | 1.80243124150+08
1.80149107400+08
1.80063378870+08
1.79986918140+08
1.79918240+08 | 1,79855948910+08
1,79799096290+08
1,79747007970+08
1,79699095860+08
1,79654865730+08 | 1,7961389912D+08
1,7957583925D+08
1,7954U189780+08
1,7950707933D+08
1,79476074930+08 | 1、79446976766408
1、79419609850+08
1、79393820130+08
1、79369471470+08
1、79346443130+08 | 1.79324509590+08
1.79303816790+08 |
| ORG | ~~~~ | ~~~~~~ | ~~~00 | 00000 | 00000 | 00000 | 00000 | 0 0 |
| M D A T E
M D H M S | 10 14 0 0 0.0
10 14 6 0 0.0
10 14 12 0 0.0
10 14 18 0 0.0
10 15 0 0 0.0 | 10 15 6 0 0.0
10 15 12 0 0.0
10 15 18 0 0.0
10 15 18 0 0.0
10 16 6 0 0.0 | 10 16 12 0 0.0
10 16 18 0 0.0
10 17 0 0 0.0
10 17 6 0 0.0
10 17 12 0 0.0 | 10 17 18 0 0.0
10 18 0 0.0
10 18 6 0 0.0
10 18 12 0 0.0
10 18 18 0 0.0 | 10 19 0 0 0.0
10 19 6 0 0.0
10 19 12 0 0.0
10 19 18 0 0.0
10 20 0 0.0 | 10 20 6 0 0.0 10 20 12 0 0.0 10 21 0 0 0 10 21 0 0 0 10 21 6 0 0 10 21 6 0 0 | 10 21 12 0 0.0 10 21 18 0 0.0 10 22 0 0 0 10 22 6 0 0 10 22 12 0 0 10 22 12 0 0 | 10 22 18 0 0.0
10 23 0 0 0.0 |
| > | 22222 | 22222 | 22222 | 22222 | 22222 | 22222 | 22222 | 72
72 |

1950.0 平均赤道面座標系における宇宙船のケブラー要素

図 5.29

-œ w Σ w I ۹ ш Σ 0 υ ∢ u. I ∢ z

S

EQUATORIAL COORDINATE IN MEAN EQUATOR AND EQUINOX OF 1950.0

| KM/SEC++2)
CF | 0000 | | 0000 | 0000
0000 | 0000 | 0000
0000 | 0000 | 0 000
0000 |
|--|---|---|--|--|---|---|---|---|
| v
v
o | 1.24017D-13
-6.60269D-14
-9.78624D-14
1.71222D-14 | 7.853200-14
7.853200-14
-4.151120-14
-5.994260-14
1.071610-13 | 5.365390-14
-2.602210-14
-3.788680-14
7.064910-14 | 3.543400-14
-1.644460-14
-2.381320-14
4.575000-14 | 2.448390-14
-9.920380-15
-1.496210-14
3.036020-14 | 0000 | 0000 | 0000 |
| CELERATI
SJ | 0000 | 0000 | 0000
0000 | 0000 | 0000 | -1.240360-15
-3.761550-16
-4.578190-16
1.374620-15 | -1.239730-15
-3.824750-16
-4.598080-16
1.376460-15 | -1.239050-15
-3.888030-16
-4.617850-16
1.378280-15 |
| G
SR A C | 1.316550-10
5.027880-11
2.180140-11
1.426060-10 | 1.314840-10
5.088330-11
2.206350-11
1.427030-10 | 1.313100-10
5.148370-11
2.232380-11
1.427980-10 | 1.311310-10
5.208350-11
2.258380-11
1.428910-10 | 1.30947D-10
5.26835D-11
2.28435D-11
1.42984D-10 | 1.307590-10
5.328110-11
2.310300-11
1.430760-10 | 1.305670-10
5.387890-11
2.336220-11 | 1.303710-10
5.447610-11
2.362110-11
1.432550-10 |
| R T ∪ R B I N
Gk | -1.240320-15
-1.603780-14
-6.953270-15
1.752420-14 | -1.153630-15
-1.568870-14
-6.801960-15
1.713860-14 | -1.074100-15
-1.536350-14
-6.661010-15
1.677980-14 | -1.000470-15
-1.505470-14
-6.527130-15
1.643920-14 | -9.322000-16
-1.475830-14
-6.398680-15
1.611270-14 | 1.632210-13
4.748020-14
2.058880-14
1.712290-13 | 1.630180-13
4.842740-14
2.099950-14
1.713500-13 | 1.628060-13
4.936760-14
2.140710-14
1.714680-13 |
| ୍
ଅ
ସ
ପ
ପ | -2.989050-08
-4.391410-09
-2.225670-09
3.029320-08 | -3.385870-08
-7.508700-09
-3.741490-09
3.488260-08 | -3.765820-08
-1.081260-08
-5.341470-09
3.954210-08 | -4.131550-08
-1.429390-08
-7.021280-09
4.427850-08 | -4.483380-08
-1.793450-08
-8.772280-09
4.907820-08 | 3.821040-07
-2.103650-07
-9.09980-08
4.455760-07 | 3.341500-07
-1.831770-07
-7.923470-08
3.892150-07 | 2.947850-07
-1.609790-07
-6.962900-08
3.430160-07 |
| ACCELERATION | 8.742020-07
-5.177870-07
-2.243970-07
1.040520-06 | 6.99882D-07
-4.20414D-07
-1.82423D-07
8.36577D-07 | 5.709370-07
-3.507520-07
-1.524460-07
6.871940-07 | 4.720190-07
-2.992260-07
-1.303200-07
5.738660-07 | 3.942400-07
-2.603330-07
-1.136640-07
4.859200-07 | -5.117150-06
-2.451170-06
-1.062630-06
5.772580-06 | -5.157020-06
-2.449130-06
-1.061760-06
5.806930-06 | -5.188120-06
-2.452040-06
-1.063050-06
5.836030-06 |
| | A A X
A B S | ABS
ABS | A B S | A B A X X | ×××
AB×≺× | A X X
A B S
S | ×≻ ×8
B × ≺ × | X
4
ABS |
| 0 № Т Е
К ^М О Н ^M S | 72 10 16 0 0 0.0
CMJED 41606.00000000
CENT.BODY EARTH | 72 10 16 6 0 0.0
(MJED 41606.2500000)
Cent.body Earth | 72 10 16 12 0 0.0
(MJED 41606.5000000)
Cent.bddy Earth | 72 10 16 18 0 0.0
(MJED 41606.7500000)
CENT.BODY EARTH | 72 10 17 0 0 0.0
(MJED 41607.0000000)
CENT.BODY EARTH | 72 10 17 6 0 0.0
(MJED 41607.2500000)
CENT.BODY SUN | 72 10 17 12 0 0.0
(MJED 41607.5000000)
CENT.BODY SUN | 72 10 17 18 0 0.0
(MJED 41607.7500000)
CENT.BODY SUN |

図2.30 各摂動加速度

航空宇宙技術研究所資料359号

昭和53年8月発行

| 発 行 所 | 航空宇 | 宙技術 | 研究所 |
|-------|--------|----------------|------------|
| | 東京都訂 | 周 布 市 深 ラ | 大寺町1880 |
| | 電話武蔵野三 | 鷹(0422)47-5911 | l(大代表)〒182 |
| 印刷所 | 株式会ジ | 社 共 | 進 |
| | 東京都杉並区 | 区久我山4-1- | - 7(羽田ビル) |

Printed in Japar