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Foreword

This report consists of three papers, which deal with a new approach to the small
disturbance theory of transonic flow (the transonic approximation). The bhasic idea of the
method and its formulation are given in the first paper: based on the view peint that it is

r ' the quadratic nonlinearity of the basic equation which is essential to the characteristic feature
Y of transonic flow, such as shock waves, the nonlinear eorrection term of the velocity field is
estimated in as general a manner as possible in order to complement the solution of the
linearized transonic flow theory recently proposed by Oswatitsch and Maeder. To use the
linearized theory as a starting point is advantageous for the formalism of solutions, Here it
is worthwhile to note that recently Maeder and Thommen*®* derived almost the same method
as the author’s, by dealing with the integral equation transformed from the original basic
equation (through Green’s theorem). The other papers illustrate interesting examples of
application of the method: about the flows on & sinusoidal wall and on a symmetric cirenlar-are
aercfoil, We shall then grasp a physical image of the continuous transition of the fransonie
flow with increasing Mach number from subsonic to supersonic in a reasonable manner.

* The Fnst Aerodynamics Division
#* P, T, Maeder and H. G. Thommen: Linearized Transonic Flow About Slender Bodies at Zero Angle
of Attack, Transact. ASME, J. Appl. Mech., 481-490 (Deec. 1961)
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A Refinement of the Linearized Transonic Flow Theory*

A new method is proposed to caleulate the velocity and pressure distribu-
tions around a thin symmetrical aerofoil or a slender body of revolution
flying at transonic speed. It is essentially a refinement of the linearized
transonic flow theory due to Oswatitsch and Maeder, such that g correction
term is introduced to take account of the nonlinear character of the
transonic flow. As examples of application, a symmetrical cireular-arce
aerofoil and a cireular-ave body of revolution in the sonic flow are dealt
with, and the results are found to be in good agreement with experiments,
except for the rear portion in the latter case,

§1. Iniroduction

Ag is well known, the flow around an obstacle in the nearly sonic free stream 18 governed
by & nonlinear differential equation of mixed type. As a practieal approximation method,
the method of integral equation has been contrived by Oswaititsch and developed by Gullstrand
and Spreiter”s®, But the method is only applicable to flows with free stream Mach number
near critical, though it can aecount for the appearance of normal shock waves.

Qawatitsch® and Maeder? tried linearization of the transonie flow theory. Although this
method seems to be very powerful, it has two unsatisfactory points; first the calculated flow
is not influenced by the mixed-flow character that makes the essence of the transonic flow
ag Miles® has pointed out before, and secondly, according to Maeder’s method of defermining
the value of the assumed constant K {(see (2.2)), the movement of the sonic point on the
aerofoil with inereasing Mach number seems to be incorrectly given at least for a circular-
are aerofoil, as is seen in Fig, 1,

In this paper, a refinement of the method is proposed to remove such defects and take
account of the mixed-flow and nonlinear characters, by approximately calculating a correction
term to the lineavized transonic flow theory,

Recently, Spreiter® ™ has put forward ancther simple and powerful method, called loeal
linearization method. Qur present method seems to given results which are comparable with
those given by Speriter’s method (gee Fig. 2 and 8), but ours is different from his in account-
ing for the occurrence of the transonic normal shock waves on the obstacle,

§2. Basic Equation
The basic equation for the transonic flow can be written in the form:
(I_Mm2)¢xr+ @yg“}‘@zz: (r"l‘l)]‘{m?(pxq)r.r (2'1)

where U.® is the perturbation velocity potential, U, and M.. are the free stream velocity
and Mach number respectively, y is the ratio of specific heats, and the w-axis is taken in the
direction of the free stream. Maeder has approximated (2.1) by a linear equation;

(l_ﬂ{m2)50:x+soyy+§ozz:-[(§9m (2-2)

where K i3 a certain constant to be determined appropriately. ‘This can be integrated
subject to the usual linear boundary condition, thus giving a fintte continucus selution

o=, y, % K) (2.3)
for each M..
Let us introduce a correction potential ¢ defined as
P=p+tg (2.4)

* Journal of the Physical Society of Japan, Vol. 15, No. 1, P. 149~157, January, 1960, ‘
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TFig. 1. Sonic point behaviour on the symmetrical circular-are aerofoil with &e.

Then we have, by (2.1)42.4),
1
Gyt 0= %[{(MJ— D+ G+ 1D Moo g.+ 5 (r+ I)Mmg.f] H+ DMl e~ Klo:.  (2.5)

The left-hand side of the equation is reduced to g,, in the two-dimensional case, while it
may be expressed as g,,.--(1/7)g, in the axisymmetric case where r=(y*+2%)'"% Also (2.5)
shows the mixed-flow character such that it changes type according as

(Mot — 1)+ {7+ M0, 20 (2.6)

as should be expected. Here the equality holds for the sonic line or surface.

Now as a first step to find the selution g of (2.5) valid in the neighbourhood of the ob-
stacle, let us consider the order of magnitude of various quatities in (2.5). According to
Guderley?, the hoth sides of (2.1) are considered to be of the same order O(s?), Here 7 is
defined as an expansion parameter such that

& =0{r), (r-+ VM2 /(1 — ML2)=0(1) (2.7
and
z= Lz, Y=L 1%, g=Lr V% (2.8}

where L is the length of the thin or slender obstacle, &, ¥ and z being O(1). If ¢ is the
thickness ratio, it is related to r as

=00*%  or =03 (2.9)

in the two-dimensional or axisymmntetric case respectively.

Then the boundary eondition of g on the obstacle will be that ¢,=0(""%), g.=0(r*'%) there,
provided that ¢ has already been determined so as to satisfy the usual linear boundary
condition. That is, if U.®,=% and U.P,=v,

By v v v,
/17-}:§TK:(’D‘F+ Ger Uatu Us Us Us t
v
Y=g

and hence, with the aid of (2.7) and (2.8) we have

gy:o(L i)zo{,%)zo(rs,Z)
Ue U 2.10)
and similarly )
g,=0(*'%)
except near the nose and tail of the obstacle. Therefore it i3 concluded that
Pyt 9=0(r%) (2.11)

in the neighbourhood of the obstacle, while the right-hand side of (2.5) is generally considered

This document is provided by JAXA.
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A Refinement of the Linearized Transonic Flow Theory 3

as O(¢?). Thus we may consider the left-hand side of (2.5) to be negligible in comparison
with the right-hand side, at least near the obstacle. (I'or the axisymmetric case the estima-
tion of order of magnitude should be performed in a slightly different manner. But the
conclusion ig the same ag for the two-dimensional case.)

Now the bagic equation can be simplified in the form:

%[{(Mmz— D+ 4+ DMl tgs+ %(H l)Mmgﬁ} FH{(r+ DM — K}pe=0, (2.12)

Further ¢ is subjected to the condition, that it should vanish when the last inhomogeneous
term in (2.5) or (2.12) vanishes identically. That is,

g=0, when {(r+ 1Mo, — Kl =0 (2.18)
This means that Maeder’s linearization is perfectly valid, or that there is no obstacle.

&3, Approximate Solution
The approximate equation (2.12) near the obstacle can be easily integrated to give

1-— M2 i 1 M2 )2 z K
Y= — {‘P-r_ ()—i—l)Mmz} + N/ {(’0"5—~ Tr—{— I)ME} B zgc {So.m— ﬁ lm] (deﬂl ®.1)
in which the double sign should be taken according as
1-Mo

- 3.2
P (T+1)Mm2 <0 ( )
in order to satisfy the condition (2.13). It can readily be seen that g, also satisfies the
boundary condition at lateral infinity (y—co or r-—»w), since ¢ tends to zero there. The
unknown constants ¢ and K are uniquely determined in the following way.

Tirst, g. will in general be discontinuous at a point where

1— M2
O G M (3.8)

But, from the physical point of view, any accelerating discontinuity of the flow velocity
must be forbidden, so that we should have

g:{c*)=0 (3.4)
where m=c* is the point satisfying (3.3) in the accelerated flow region, This gives
¢=c* (3.5)

Secondly, we know ¢.(¢*)=@,(c*) from (2.4) and (3.4). Together with (2.6) and (3.8), this
means that ¢* is the sonic point and it is the same for the original linearized flow as for the
corrected flow. This is in agreement with Oswatitsch’s® inference that the lincarized
transonic flow field would be valid in the neighbourhood of the senie point at least on the
obstacle. Therefore it may be expected that the best agreement of (2.1) and (2.2) would
oceur in the neighbourhood of n=c*. Hence it is natural to take

I(:(r“l‘I)Mmzdjzx(c*)m(r'{'l)sz‘f”zr(c*) (3-6)
Thus, the solution @, valid near the obstacle is completely determined as
1— M2 —
:7—--—03 h € . 3'7
@, G DM +/ Y (%) (3.7
where
1—M.% )? * K
D=t ——— = U e e d 3.8
vw={e (r+1)Mw2} 250* le (r+1)Mm2}‘P d @8
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4 TECHNICAL REPORT OF NATIONAL AERONAUTICAL LABORATORY TR-oT

1-M.2 32 * 1-M? . _I{NA o O ¥
= {W} +¢.%e )*2"(]?1)51? Puw)+2 T DAE {¢(2)—p(c™)} (3.9)
the double sign corresponding to ¢.(m)=(1— M.B/G+1)M2

It is interesting to note that the proposal of (3.6) satisfies the two remarkable requirements,
The one is that it can also assure the continuous connection with Prandtl-Glauert’s theroy
at the critical Mach number as well as Maeder’s proposal, since then we have K=0. The
other is an essential analytical behaviour that the square root in (3.8) or (3.9) must not be
imaginary.

Indeed we have, from (3.8),

AY/do=2{¢..(c*)¢.()— ¢{c*)prl)} (3.10)

AP Y /A =2{ 0 (e%)Pa(®) — Lo{C ) Prral) } (3-_11)
with the aid of {3.3) and (3.6), Hence

Y{c*)=0, Y'(e*)=0 (8.12)
and

Y(e*)=2{[:(e*) P — (™) Prnclc™)} (3.13)

But, if we confine ourselves to the transonic case such that ¢.(e*)=0, we should have Y"(c*)
>0. From this and (3.12) we have

Y(@)20 3.14)

in the neighbourhood of the sonic point w=e*. Further it seems to the author that the rela-
tion (3.14) will be generally valid for the main portion on the obstacle. But, in ecase it
breaks down, for example in the neighbourhood of the nose and tail of the body of revolu-
tion in the supersonic flow, ¢, as given by the lineavized transonic flow theory will give
rather good approximation there.

§4. Physical Implications

1) Sonie Point Behaviour

In the present method, the sonic point ¢* is deterinined simultaneously with X by the
equations:

1 M.* .
G e K) @.1)
K '
G+ Dats =Pl KO, “2)

Above the free stream ecritical Mach number, K=0 and ¢* moves monotonically forward
with inereasing Mach number.

In the present approximation, freezing of the flow field at M.=1 cannot be accounted for,
though the sonic point behaviour with inereasing M., for the entire transonic range is quali-
tatively more reasonably given by this than by any other one single approximation method..
In Fig. 1, the sonic point behaviour of a symmetrical eircular-are serofoil is shown and is
compared with the results by Maeder® and Spreiter® (the integral equation method) and
with experiments by Bryson®” and Kawamural®, ‘

2) Transonic Normal Shock Wave
In some cases, (3.3) has another root ¢** which is in the decelerated flow region. Then,

*> This result was calculated by the author according to Maeder's theory (by use of {A1) and (A 2)).
Then it is remarkble that in the fiow with £~ below —{&/m)*/3, K vanishes so that there is no drag,
while in the present method K does not vanish for {w over the critical value, —(4/7)*7%, The detailed
explanation about the reason will be performed in the author’s later paper. (see the third paper) Here
{w is a transonic similarity parameter, {(Moo®-1)/[(y+1)tM]%3, defined by Spreiter.
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A Refinement of the Linearized Transonie Flow Theory b

as is known from (3.7), the flow velocity has a finite discontinuous jump of equal amount
A~ ¥ from the sonic veloeity at the point m=¢** which may be quantitatively interpreted
as a transonic normal shock wave. Appearance of such an irregular point is due to the
quadratic behaviour of ¢, in (2.12) and hence in (2.5) as well as in the cage of the integral
equation method,

It appears usually in the supercritical flow, but arrvives at the trailing edge when M.=1
in the two-dimensional biconvex case, as is assured by investigating the behaviour of ..

3) ILimiting Form of @,

We have so far considered the transonic case such that the root of (3.3) exists. But it is
also possible to predict the asymptotic approach to the sub- or supersonic linear theory as
M.. tends to zero or infinity.

In order to achieve the continuty of our transonic solution to the sub- and supersonic
solutions through the lower and upper critical Mach numbers respectively, we adopt the
following prescriptions to determine the values of ¢ and K, when the real root of (3.8) does
not exist. - For the subsonic case, (either two-dimensional or axisymmetric), ¢ is taken to be
the critical value ¢* corresponding to the lower critical Mach number, which corresponds to
the point of maximum flow velocity for the incompressible flow. On the other hand, for the
two-dimensional supersonic case, we take c=c*=0, that means the leading edge. (It is not
necessary to consider the axisymmetric supersonic case.) And hence K is uniquely given by
3.6).

With these extended definitions, the limiting form of @, is obtaineda as

oy IHDME 2pryy_ K N lot
R e e A G OR GOl e v TGO RGO “.9)
gince the last term in (3.9) tends to zero as M.—0 or oo, and
Moo—l
(iJr—lm' 19 (4.4)

in the sense of small perturbation, Of course ¢ itself tends 1;0 the conventional sub- or
supersonic linear potential.

In consequence, the final formula (3.7) is still valid throughout the whole Mach number
range.

§5. Examples of Sonic Flow (M.=1)

In the case of the sonic flow, Maeder's formal solution for ¢ can be expressed in the
following simple form, on and near the obstacle.
For the two-dimensional flow past a thin symmetrical aerofoil:

(’B 7_) 1 - ( 1 )anu)( ) gt _1_‘ |F’("t})+0(t3) 0<rg<1 (5 1)
LA \/TK'—“ bl 2n+1 g Y ! ' )
Tor the axisymmetric flow past a slender body of revolution:

oo, 1= ) log i L sy pong D opegy, 0<e<t  62)

4

where F(x) is the cross-sectional area of the obstacle whose length is L=1, and C is Euler’s
constant. {see Appendix.)

A cireular-are aerofoil of thickness ¢ is approximately given by |y|=s(®)=2tz—2%), 0=u
<1, and hence

F(g)=2s(a)=4t(z—a?), HE L (5.8)
Similarly, for the circular-are body of revolution we have

I(s)y=rs¥{m)=4mt*(x—x)?, 0=zl (5.4)
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Fig. 2. C)-distribution on a symmetrical cireular-
arc aerofoil,
Experiment (O by Michel, Marchaud and Le
Gallo
Theory —— by the present method
—— by Maeder
------ by Spreiter (the local lineari-

Fig. 3. C,-distribution on a ecireular-are body of
revolution.
Experiment O by Drougge
Theory —— by the present method
—— by Maeder ‘
------ by Spreiter {(the local lineari-
zation method)

zation method)

Calculating . straightforwardly by the prescribed method, and using the usual approximate
expression for the pressure coefficient C,, we can obtain the distributions of C, on the above
described obstacles of ¢=0.1 and #=1/6 respectively, a¢ in Pigs. 2 and 3. It will be seen
that fhe present resulis are the most satisfactory among the various theoretical resulfs, in
view of the agreement with the experimental ones by Michel, Marchaud and Le Callo! and
Drougge'®. In Fig. 3, the curve has been corrected near the nose and tail, taking account
of the fact described in §3.*

It is noted in particular that a transonic normal shock wave stays on the axisymmetric
body and its nose and tail are the stagnation points. But ag viscous effect destroy such a

x

The details of the correction are as follows: the proposed methed is applied without amy modifica-
tion to the main portion of the body (2=0.15~0.9) and the pressure distribution there, which econtributes
mostly to the total drag, is calculated with the aid of the usual expression of G, for the axisymmetiic
body in the small perturbation theory; while in the vicinity of the nose and the tail, where the method
is anticipated to fail gradually, pr itself is employed in place of @, becaus the former is considered
to be more reasonable in the analytical behaviour than the latter, which does not necessarily tend to
real minus infinity as should be expeeted in the axisymmetric case from the viewpoint of the linearized
theory. The continuation of the Cp-curve at the front part of the bedy is very good; but at the rear
part does not seem to be so smooth, so that interpolation of some kind for rounding off a sharp corner
at the point of connection has to be made.
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A Rejinement of the Linearized Transonie Flow Theory 7

shock wave on the obstacle, any quantiative discussion about it seems to be without physical
significance.

&6, Conclusion

The present method is essentially a refinement of the linearzed transonic flow theory,
such that the nonlinear characteristics of the fundamental equation is taken into account and
the unambiguous determination of the value of K can be made. Also it has an advantage
over the integral equation method in simplieity and applicability and over Spreiter’s local
inearization method in covering the two-dimensional high subsonic flow with a normal shock
wave standing on the obstacle as well.

Since our method starts from the linearized transonic flow equation, any solution can be
constructed by superposition even in the lifting case, although the final velocity @, for a
definite K is no longer superposable. Therefore this method is expected to be the most
practical of the existing approximate methods for the trangonic flow,
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Appendix
The original linearized transonic potentials corresponding to (2.3) are

¢lo, 1= o S gy KLQE@—EP B Mol (AT)
0 B
'1 i—nt|yl . IO B— 2 A Zq21172
m__?ju F’(E}e“-‘"‘d {!fll{(’b iz% Y } ] dS, Mozl (AZ)*
and
o ﬁ_i o o wcom exp[_a{(m_g)z_z_..{f?.z}uzj
y(x, )= 4ELF (£)g=-0 ot Fr) 7 , M.<1 (A3)
L _1 T , o (!OSh [a,{(m_E)z___,m’%-Z}l/Z]
B erj — @) {(x—&p—mPriyist ' Mozl (a4)

where K, and I, are the modified Bessel functions of the zeroth order, and «, B and m are
connected with one another as follows,

IR SV S Uy Y S
= 55 " am fr=1- Meut= —m (AB)

These potentials can be integrated out on and near the obstacle as follows.

o 1 o, exp[— Kyt /4(e—6))
ag M.—1+0, With the substitution,
Ky . dE _du
fw-8"%" e Zu (AT)
and by the Taylor expansion of F'(z— Ky?/4u®),
. ﬁ_ﬂl,._ o1 (_1)" G ___I{yz Ve e . .
55(:1., y)_ 2\/7'1'-412:"5 2l F ("t,)( 4 ,) (Kyajgx)uz"!;l;ﬁmdu’ 0<w<t (AS)

* The expression {A2) is somewhat different form Maecier’s one, but the latfer is ﬁ.ot correct.
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Integrations in (A8) can be much simplified by the recurrence. relation,

22@r Dy 1-1)! {2(n—Ik)}! exp(— Ky?/4x) nt
Jor= {2('52';_}_1)}] Ll'(—— F (n—k) 220-Bt (1{112/49;)"-“0/25 (-1 IJG} (A9)
where
J,,—r e, w20 and Jo— '*/” +O(iy). | (A10)
Kyrpoe U

The linear term with respect to |y} in J, does not influence that in the fo]!owmg formula
{A11). Thus,

n+([r‘2)

on+41
(2) The expressions (A3) and (A4) tend to

(-

w0 1)=— e 2 E L @2 Lo, o<t am

2
(@, )=~ = | Pe-erl K";_/;('” 2 (A12)
as Me—1:0, With the substitution similar to the previous case,
Kt dé¢ _du
4(@ 5) = W, .’.!J_—_é_ w (AIS)
and by the Taylor expansion of F'(a— Kr?/du),
. — ( 1)"' 1> ( '{‘E\ﬂ ” g*“ -
la, )= 47_?125 o —F {2 ) s u,mdn, O<a<l. (Al4)
The recurence formula is in this case
r? fs
Tni= [ St = 1 — e 1):6}21;& /141),{ %) (e SO S (Al5)
where .
J,= r e’ ' l
Srreye Ut
and (A16)
K2 Kr? Kr* Kri\e K2
il 2 o AV
J ( 4z )— C—log 4o + 4z _!-O[( 4a )log 4z } J
Consequently,
p 2 é 'K-? {it+13 ( ) ) 4
&{x, 7)*—17'('1,) log. g T -47 F (m ) o +0{tt log 1), O<e<l. (A17)

It is obvious that the both expressions (All) and (A17) satisfy the linear houndary condi-
tions on the obstacles.
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Transonic Flow past a Wavy Wall*

Transonic flow past an infinitely long sinusoidal wall has not hitherto
been thoroughly investigated, although some studies of the high subsonic
flow near critical have been made by Kaplan and others by use of
the thin-wing-expansion method and the transonic approximation methed.
In this paper the author studied transonic flows past a sinusoidal wall
including shock waves by use of his new method, and could find the
velocity and pressure distributions on the wall with success. The resuit
gives a reasomable model for understanding the transition of the flow
pattern from subsonic to supersonie.

81. Infroduction

In order to investigate the problem of the existence or non-existence of continuous mixed
flows, it seems to be very convenient to study the transonic flow past a wavy wall, In 1940,
Gortler” found a continuous solution of a high subsonie flow with local supersonic regions past
a kind of wavy wall which is correet up to the third approximation and he conjectured it to
be convergent. For the case of an exactly sinusoidal wall, the solution of Imaiand Oyama®
by the thin-wing-expansion method seems to be divergent above the critical Mach number.
On the other hand, Kaplan® showed on the basis of the transonic approximation that a con-
tinuous, symmetrical wave solution would diverge above the eritical Mach number,  Accord-
ing to him, the critical value of the transonic similarity parameter defined after von Karman
is Gere g — (0.83244/7)72%, Thus the solution of the supercritical flow may be asymmetric and
would cease to be continuous.

The present work is concerned with this problem. The author makes use of his new
method®, which will be summarized in the next section. This method can give the reasonable
features: shock waves appear whenever mixed flows occur, and the solution tends to the same
form a8 that given by the usual linear theory in the sub- and supersonic extremities, The
solution, however, has a weak point in the present problem: shock waves in the real flow
are always accompanied by entropy increase, which would destroy periodicity of the flow,
while the present hypothetical flow is assumed to be isentropic and periodic. But the present
investigation seems to be still significant, because the increase of entropy is comparatively
small and the periodicity remains locally.

§2, Summary of the Method
The basie equation of the two-dimensional transonic flow ean be written as;®

(1 - Afwz)q“.r.r + mz,'y = (I‘ + 1)Mw2(p.urp.w (2-1)

where .4 is the perturbation velocity potential, U. and M. are the free stream velocity
and Mach number respectively, y is the ratio of specific heats, and the x-axis is taken in the
direction of the free stream.

According to Oswatitech and Maeder, the approximate potential ¢ satisfles the linearized
equation :

(1- Afmz)?xx+?’w=f{‘)cr (2.2)

where K is an appropriately chosen constant, The solution of (2.2) ean be found in a simple
way with the given boundary conditions, apart from the selection of the value of K.
Here we put

d=¢+g (2.3)
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and establish the equation governing the nonlinear correction term g. Then, with the aid of
the order estimation of the equation, g, can be calculated approximately in the neighbour-
hood of the boundary and it can be found that g. and ¢, are of the same order of magnitude.
(From this point of view, the linearized theory due to Maeder cannot be of the first order
approximation in itself, because of the tacit assumption, ¢»g.)

Finally g, can be integrated as follows:

#:=—@ut (L= MA/A{G+ 1) M)} £ Y () (2.4)
where
1-M.2 )2 z K
Y= {gr) 2. (e g &
and the double sign corresponds to
¢ (11— Ma®){(r+ 1) Mo} (2.6)

On the proper physical and mathematical grounds, ¢* and K are uniquely determined in the
following manner:

polr=c* y=0; K)=(1—-M2/{r+ )M} @.7)
Pelr=c% y=0; K)=K/{(+1)M} (2.8)

The former is the condition that z=¢* is the sonic point on the boundary, and the latter
means that K should be taken as the value of the acceleration at the sonic point, In freating
usual transonic flows, (2.7) and (2.8) constitute the simultanecus equations for finding ¢* and
K. Next, for purely subsonic or supersonic flows, the value of ¢* should be kept fixed at its
lower or upper critical value just when the sonie point disappears out of the flow, on account
of the continuous transition of the flow field with changing Mach number, And then X
should be determined by (2.8) alene.

8£3. Linearized Transomc Flow Potential
First we require the solution of (2.2) subject to the boundary conditions:

i) ¢y =) =1wfee’r, for y=0 8.0

iy grad ¢—0 , for y—eo (3.2)

where the wavy boundary is expressed as
J@)=rfoe* (fy, w: real constants) (8.3)

Here and hereafter we shall consider only the real parts of the complex expressions;
Now this solution is

¢=—{imfo/ 1) exp (— py +tewn) (3.4)
where

p=(Fot+ K e?)lt exp (—g— tan“-«ﬁ{%) (3.5) %
=1 M.2 (3.6} z
so that l(:
o=—(mfo/| 1) exp [ —Re(p)y+i{ on—Im{p)y —arg(z)+7/2}] 37 u
By differentiation we have ]

.= (wifo/| ) exp [—Re()y+i{wa—Im()y—arg (1)} ] (3.8)
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@..= {00/ ) exp [ —Re(u)y+i{wv—Im(p)y —arg(u)}] (3.9)

In (3.8), we can see a rough feature of the transonic flow. First, in a supercritical flow
in which K#0, the perturbed velocity and so the pressure have a phase lag, arg{u), relative
to the wall, which approaches 7/2 ag f?-»—co so that the solution would agree with that
given by the supersonic linear theory. It is interesting to note that arg(u) becomes x/4 when
M.—1+0. Secondly, as is seen from (3.7)(3.9), the perturbed wave is propagated along the
straight line:

== {ew/Im{s)} -+ const. (8.10)

which tends to the Mach line as §*——co, as should be expected,

&4, Procedure of Refinement

1) Constants ¢* and K
In the present case, (2.7) and (2.8) become

(A— M)/ {{r-F )M} = oo/ | 1) exp [H{we* -arg(1)}] (4.1)
K/{{r+ D)Mo} =i0’fol gl expli{we* —arg(u)}] (4.2)

with the aid of (3.8) and (3.9). If we introduce the transonic similarity parameter after
Spreiter, fo=(M.2—1)/{(+1M22f)]1*% where the wave length is assumed as unity, and
another parameter after Maeder a=K/25%, the equation can be simplified as

7 , 1
" |5mE3/2:m——“;}E2517’ exp['z(%m*_—z- tan-! %)] (4.3)
, 2rt , 1 3
+ 2| 2=%--(1:{:& ;E/EW exp[@(erc*— 5 tan™ kf_: )] (4.4)

where the double sign corresponds to M.=1,
Taking the real parts of the above equations, and eliminating {£.|, we can obtain

 2re*=—(1/2)tan Ya/7) - (4.5)

and hence the solutions for ¢* and a:
) cos dre* = —En/a¥? ' (4.6)
=+ @IS —1 (4.7)

where |£.|=7%? is assumed.

Next we know from (4.6) that Fa%® should be the lower and upper critical values of &
respectively and then ¢¥'s are N and (—1/4) +N where N is an integer. Thus in order to
know « in the case of |€.|=7¥?, we have only to fix ¢* at these values and solve for « by
(4.4) in accordance with the prescription given in §2. As a result, it is assured that a=0
holds irrespective of the values of &. when |§u|=r®%

Consequently we obtain the following explicit expressions of the linearized flow velocity.

.= (7¥%/|31)2fol € 2exp [i{2na— (1/2)tan (2o @V3/EH—1)}] 4.8)
2/8 2/8 . 1 W
| = #ﬁg&mm exp [z {2nwﬁ?tan“1(i\/;m2 —-1>}] (CRY)]
: for |§u|=a?
={z(8f0)/R}e'+ for fo.<-—n%? (4.10)
={=(2f0)/|A| e’ TP for En=al/s (4.11)

2) Sonic Point and Shock Wave Position
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{3} (b

N\

(c3 {d)

\

(e)

Fig. 1. Pictures of various transonic fiows.
(a) subsonic flow,
(b) subsonic supereritical flow.
{c¢) sonic flow.
(d} superscnic but below upper critical flow.
{e) supersonie flow

Shaded portions indicate supersonic regions, wnich are enclosed by sonic lines and shock knes
drawn with solid and saw-toothed lines respectively,

When |§.]<7%% we can find another root ¢** in place of ¢* from (4.8) and {(4.7) as follows :

—Ew=n?3cos{2c** —(1/2)tan Y+ (7" 3/ —1)} (4.12)
z=c¢** is a point located in the decelerated
AC, [2 flow region and it is known from (2.4)(2.6)
£ 1 that there appears some veloeity discontinuity
°§ N 10 2] at ¢**. As was known from the previous
i j jy / paper?, it is considered as the position of the

v W ’

\ shock wave on the wall.
. The manners in which the sonic point and
the shock point on the wall change with £.
, are shown in Fig. 2. Both of them first ap-
\ pear at the summits of the wavy wall at the
0 0 5 025 7 0Eg instant when M. 1'§aches the lower critical
' I ; value; then the sonic points move upstream
; and the shock points downstream with in-
creasing Mach number, until each sonic point
, joins, at the upper critical Maech number, the
- ,"\ . receding shock point which has originated at
Sonilr}%‘ Y S ShQCk peint the preceding summit of the wavy wall: thus
-2 ‘\_/' ~ all the sonic points coincide with the shock
points and hence the subsonic regions dis-
rrire 0.50 = appear. This result may be interpreted as
—02% 0 "”’6.2 5 shown roughly in Fig. 1.

Fig. 2, Movement of soniec point and shock wave 3) Resul,t s of the Procedure of Refinement
position on the wall with varying e and pres- If we write

sure jump at the shoek, == (2f0)/ 18] N(; é.) (4.13)
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the following expressions for @, are obtained with the aid of (2.4) and (2.5);

M2 [ HA A= M) T

e s Y T G e O T L Ve @
= Frerye |em!3<+)l|5|ww<.,>+z|a1|6c->I”S N (1.15)

TR

and
_I=MS A MAF @R A (F
@”“w+nM4‘*/u+nmn g2 i (i Ne (.16)

|2§|] {0 €132 [Ea P N T2 6 |3 EN(2)} (4.17)

for |&.|za?s

where the double signs with and without the parenthesis ( ), correspond respectively to
M.=1 and '

N(@)(Fhlée[*?=0 (4.18)
Here if the reduced pressure coefficient,

o {GrDM2Ye (g
Gty O= Gpyleain

C, : (4.19)

& | b N
— —10 (d) 4 ) (9
o 7 T\
L]
{c) \
T Y ®) 7 1) N\
| : (j:): 4 ' MINIH -
\\ @0 o I\
b\ 025 0 n7sl  les0 | G5
(@025 Y * mV AR
{c) 0 \0-25 5% — A((eg
e @ @ 9)
a Cl4 (¢
() A (byfle) (b
(‘f)7 5 -4 (L)
n CILNGY
9 l i
(e 1 @ Wave shape
T {f] Fig. 4.  Velocity dlstubutrons on the wall in .
terms of wt£e.
Fig. 3. Pressure distributions on the .wall in (2) e 2.8
terms of Cp. (b} =—2.4
(a) vf':u———28 {c) =33
{(b) =gl (d) =—2.0
(e) =20 (e) =—1.0
(d) =—1.0 {(f) =0
{e) = 0 (g) = 1.0
(£) = 1.0 (h) = 2.0
(g) = 2.0 (i) = g0
(h) = 77 (i = 2.4
(i) = 2.8 (k) = 2.8
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is introduced, we can obtfain, using the approximate relation C,=-2@,,

G2 {(onléol v/ 2y ol KN lal NG 2lal 16015 Nodte] w20
and :
Com 20 £/ [E T NPT 216 7N ) )
1(2xx)
=gl el oD roter (622

for |£.|zn%®

All these resulis are consistent with the transonic similarity law.
(4.22) may be rewritten in the usual form of the pressure coefficient as follows:

_ L @f) (6 (Eu<o) .
Cp= 2“W” {eiﬁa.r-zr/m (o> 0) } +OL@fo)*] (4.23)

This agrees with the result given by the usual linear theory.
Next, in order to see divectly the veloeity distribution in a reduced form that is invariant
under the transonic similarity transformation, we introduce the following qoantity ;

- {(T+1)Moo2}l-’3{ Mo2—1 } . M1
om ol g =. 4.94
wie @t Oy Rl B VT Y A .24)
Then it indicates the local Mach number distribution In such a manner that
#+£.20 when M=l (4.25)

Thus we can see our results for the pressure and local Mach number distributions in terms
of the respective reduced quantities in Figs. 3 and 4. Now, the half of the pressure jump
at the shock is found from {(4,20), that is,

— i
ACJ,/2:2.\/2\/|Em|2{$)1[5W|“2N(c**)+2|a| IENI”"j . N(x)dx (4.26)
which is shown in TFig. 2, for a given shock wave position ¢**,

&5, Discussion and Cenclusion
A comparison with Kaplan’s result for the

lower critical flow is shown in Fig. b. For o orif W

the wall of the waviness ratio 2/,=0.01, the P’Hg_g 2fy=00

critical Mach number is about 0.91 in his case, /’/‘ N

according to Shapiro’s sample caleulation®, =01 BN :

while it is 0.91’.? in our case. Wlt]} respect to —005" \\\0_25 0715
the peak negative pressure there is no great 00 \\ 050 ,
difference. Thus, our approximation method Q\ x /'l/
is more satisfactory in comparison with 0 &--/
Kaplan’s one which reguires more lengthy

caleulation, in order to inquire into the general 0.2

feature of transonic flows, \pe LI P e

Further, we can find a close analogy be- , \ NPT
tween the flows through a one-dimensional Fig. 5. Comparison of pressure distributions on
the wall in the lower critical flow, predicted by

Laval nozzle and past a smuso%dal .wa]l. Kaplan and by the present methed. (The former
Namely, the flow patterns shown in Figs. 8 is based on the figure given in Ref 5.)

and 4 are quite similar to those of the former .. ... Kaplan, Mo, crn=0,91

if the sonic point of the latter is considered Present, Mes,esit=0,917
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Transonie Flow past @ Wavy Wall 15

as corresponding to the threat, although in our ecase the sonic point moves upstraem along
the wall with increasing Mach number. Therefore it is not strange that the curves of i)
and w(z)+£. have sharp angles at the sonic points when the flow is eritical (lower or upper).
It will be interesting to compare this fact with Wood and Clarke’s recent work® on the
transonic flow in caseades, in which they eviluated, with success, the effect of the nonlinear
term of the fundamental equation (2-1) by replacing the term by the corresponding quantity
of the one-dimensional flow.

Thus, it is found that our new approximation method can be applied successfully to the
transonic flow past a sinusoidal wall and hence it may be expected that our method would
be useful for the consideration of the general feature of the transonic flows.

In conclusion, the aunthor wishes to express his sincere gratitude to Professor R. Kawamura
and Mr, T. Shigemi for their kind advice and valuable discussions.
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Theoretical Prediction of the Pressure Distribution
on a Non-lifting, Thin Symmetrical Aecrofoil
at Various Transonic Speeds™

Theoretical pressure distributions on a non-lifting, cireular-are aerofoil
at various transonic speeds are obtained by application of a new method
recently published by the author. The method consists essentially of a
refinement of the linearized transonic flow theory in which the nonlinear
characteristics of the fundamental eguation are taken into account. The
vesults veveal most of the principal phenomena observed in experimental
studies throughout the whole Mach number range.

§1. Introductory Remarks

Recently, a useful method of analysis on the transonic flows around a thin obstacle was
proposed by the author.” Its basic idea consists in the correction of the linearized transonic
flow theory®?® in which the nonlinearity of the flow field is taken inte account. 'In one of
the previous papers,” the logical stucture of the theory and the main features deduced from
it are deseribed together with two examples of caleulation for the sonic flow case (M..=1),

The other paper? ireats the transonic flow past a wavy wall as a simple butb interesting
example of applications of the theory. The result for the lower critical flow is nearly in
agreement with Kaplan’s more exact one. Furthermore, it illustrates various flows including
shock waves plausible for the higher free-stream Mach numbers.

However, there remains another family of the more important case of the transonic flow,
that is, the flow around an isolated aerofoil. In this paper, a symmetrical civeular-are aerofoil
is dealt with as a typical example of such problems; first the behaviours of the sonic and
shoek points on the aerofoil in accordance with the change of the transonic similarity para-
meter are examined in detail, as a necessary process of the present method, and next, various
velocity and pressure distributions on the aerofoil are obtained, Also the pressure drag is
plotted against the fransonic similarity parameter, and ecompared with data published by
other authors, All the quantities are arranged in the reduced form consistent with the
transonie similarity law for the sake of simplicity and convenience of utilization. In the
next section, a summarized description of our method is given.

§2, Summary ef the Methad
The differential equation for the steady, two-dimensional transonic flow is as follows:

(A= MAYPost Py =+ D Me2P, D, (2.1)

where Us® is the perturbation velocity potential; y is the ratic of specific heats: M., and
U.. are the Mach number and the velocity of the free stream respectively; and the x-axis
is taken in the direction of the free stream.

In order to obtain the approximate solution, Oswatitsech? and Maeder® suggest to deal
with the following equation (the linearized transonic flow theory);

(1_1"Iw2)ﬁorx+§oyy:1((r”m (2.2)

in which K is a constant having the meaning of the acceleration at a certain point of the
flow field, as iz known from comparison of (2.1) and (2.2).

Now it has been derived in the previous paper?’ that a more exact solution of (2.1) based
upon reasonable assumptions could be obtained provided the solution of the linearized equation

% Journal of the Physical Society of Japan, Vol. 16, No, 3, P. 546~558, March, 1961,
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(2.2), ¢(a; K), were found. The procedure of refimement can be written as follows:

B (= ML/ LA DME) L T @9
where
Y= [ o] oM R e R e s ) @
and the double sign corresponds to
oS MG+ DM @5

respectively. In the above equation, the unknown constants ¢* and K should be determined
according to the fellowing preseriptions;

1—-ME={+ 1) M2e(e*; K) (2.6)
K= +1) Ml pe{c*; K) 2.7

The hoth constitute the simultaneous algebraic equations for ¢* and K in case of usual
transonic flow. The former represents that a=e¢* is the sonic point on the surface of the
aerofoil. If (2.6) has more than one root for ¢¥, z=¢* must be the sonic point in the acce-
lerated region of the flow. The latter equation, on the other hand, serves in determining
K(>0) as equal to the acceleration of the flow at the sonic point on the aerofoil. In case of
purely sub- or supersonic flow, (2.6) has no root; but also In this case ¢* should take the
solution from transonic to sub- or supersonic, and then K is determined by (2.7) for this
value of ¢,

Tinally, we shall now enumerate some characteristic features of our approach:”

1) The constant K is uniquely determined and there is no such ambiguity asg is seen in
the linearvized transonic flow theory,

92) The occurrence of shock is predicted as the discontinuities in the pressure and velocity
on the surface.*

3) The procedure of approximation is very simple, because it does not require any assum-
ption or knowledge about the entive flow field and the whele shape of the sonie and shoek
lines: nevertheless the results obtained by the method are reliable, in so far as our estima-
tion ig valid on the order of magnitude of various quantities in the neighbourhood of the
ohstacle.

&3, The Linearized Transonic Flow

According to Maeder’s theory, the formal solutions of (2.2) representing the linearized
transonic flow past a thin, symmetrical aerofoil are written as follows;

K a—EP Y Yed, Mos1 3.1

1 alr
ey 1)=—| FO

Iu(|ﬂr|\/('1, ER—miyt)dE, M.zl (3.2)

oo == | FOT

where a, 8 and m are related to each other as
f=1—MlE=—m?, a=K/2f; {3.3)

F(x) is the evoss-sectional area of the aerofoil, whose chord length can be assumed unity
without loss of generality, the origin of the co-ordinate being at the leading edge; and K,
and I, are the modified Bessel functions of the zeroth order.

* Though it is not aﬂumed from the standpoint of the e'cact treatment of the problem (Lm and
Rublnov®) that a normal shock wave stays on the curved surface, it may be admitted for an approximate
treatment,
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1) Subsonic case (M.<1)
On the aerofoil, we can have the limit:

1 o (r—£)
tim ¢z, #)=— S PSRl o€ )dé (3.4)
Y- 2 0 B

T

since the integral is uniformly covergent when ¥ tends to zero. Thus, its derivative is

: — 1 ! A a_ o{xr=-§) ‘o =
tm gﬂx—ﬁjof' (€) g ten P Kulals—E )} (3.5)
g=1 1
- ots {Ff(e)e«rr-am(a-;.rc~5|)L:o—jfﬂ(&)ewvxaazm—ende} . 3.6)

If F(£) is expressed by a polynomial (which means a sharp-edged aerofoil), we can express
F7(&) with a power series:
F/@)= X" (3.7)

and the integral in (3.6) can be reduced to the following forms:
Jnm_[f"e“ COKy(a|x—€EDdE,  n=0,1,--, (3.8)

The integration can conveniently be earried out by taking account of Schléfii’s integrals of
of Poisson’s type for the modified Bessel functions® and their derivatives:

~u Y “_F(_I/Z)ir —atfgt__1\w-1/2
2K 2y=2K_(2)= ST t1/2) 16 (#2—1)yp- 12 3.9
kd,, ht’ —__.711(1/2) Sm =22 Iy 1s2
ds [z K . [(2)]= T 41/2) 1te -1 dt. (3.10)
First, we shall deal with Jy:
Jo:SB“‘I’E’ Ku(crl:v—El)dézSw(tz—1)““2dt§e“"""f)“"x‘f“dé (3.11)
1

gt - UED

— __l_ect(.r-s) {___ (Wew—alrfat(t‘z_l)fsmdtiSwte—al.r—ﬂ!(tz__1)—3/2dt}
o J1 1

= ﬁ%e“”"f’ {alfb'"-ElKl(ﬂfIﬂ:—flﬁ-&@’gjfﬁam—él Kl(““z'*‘ﬂ)] (3.12)

in which the double sign corresponds to x=£, respectively. Thus we get
, Jo= — et Ja—E| Ky{w| o — &)+ (o —E) Kola| 2 — &)} (3.13)

by use of the velation d/dz(zK (2))=—2Ky(2). In a general case of J, 8 similar procedure
leads to the result which includes the modified Bessel functions of the higher order with the
aid of (3.9) and (3.10).

Tor a circular-arc aerofoll which is certainly the simplest case, we can obtain the follow-
ing integrated expression of (3.1), taking account of F(&)=4t{§--£% (F(§)=—8t) and (3.18);

%_ﬂ[ent:-;‘i {(%—m) Kla|w—&])— |a—&| Kilal rc—fl)} :l

§=1
- 7!"9 —

or
e
-

[e {(—én—m)Kg[a(lmw)]—(l—ﬂﬁ)ffl[a(l—ﬂ’)]}
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_ges {(%»_ a:)Kg(crm)— rcKl(mt:)} :! (3.15)
In the limit, a—co and @0 (M.=1—0), (8.15) becomes
| - Zt ~-1/2 /2

(,olz—f\—/r-_‘—j(‘(’b 2y ) (316)

as was already proved by another way in the previous work.”
Differentiation of (3.15) gives

%:ﬁ[emﬂn [(—wfl»-a:—-l) Kol all—)]~ —aKi[al—)]
7:'-']9 2 2
- {(i 1\ Kolar)— K )}] 3.17
e TR olar)——-akilaw)y | (3.17)
In Maeder’s theory K should be determined as follows;
K= (;—+1)Mw2¢“.(:u: L K). (3.18)

After rearranging this equation, we get

e e N ginh S L & A T L ol :
3 (&) ( 9 ) (smh 5 g cosh o )Ko( o )+ 5 sinh 5 Kl( o ) (3.19)

We know from this equation that «/2 has a non-vanishing solution only when (z/2)(—§.%%)
<1, that is, —(@/7)?*<&.,<0. In addition to that, the equation has a trivial solution a=0
for all negative values of £.. Thus the point £o==—{2/7)* makes a branch point. on the
diagram of £ versus a, or £. versus ¥, as is seen in Fig, 1. Within the range between
— (/78 <€ <0, we must of course adopt the finite solution since the significant charac-
teristics of the transonic flow are given only by the non-vanishing solution of a/2 or K in the
other range, however, the solution =0 is useful, which provides Prandtl-Glauert’s approxi-
mation in itself. Maeder’s theory is interesting in that it leads to an existence of a symmetric
solution (@=0) which results in no pressure drag even at the supereritical state (§.> —d/7)>%,
which is derived from (3.15)).

2) Supersonic case (M.=1)
After the treatment similar to the previous case, we have

T ax-£) '
tim o, = | B0 Tl o206 | .20)
R T LT T LA (3.21)
_=— —21'?; [FI(O}e"m:.rIu(\ (1’] ftl)-|—.\‘:Fﬂ(s)e-!ni(.r—f)fo[ ! a,i (ﬂ:"—E}]dé } (3.22)

In this case I, appears in place of K; and we are now in a position to calculate

Jn':SE“e‘l“l"“f‘Io[lwl(ﬂ:—i‘)]df- (3.28)
The integral exsressions for the I-functions'® ave as follows:
-m i _-7_1 S — ! =et(] — g2y 4
D= = g e T )¢ =t (3.24)
_(_l__ -m —— . _17 — ! 1 _f2ym-1s2 3 25
4z 2 @)= zmr(er1/2)1*(1/2)S_fe (A —gymeirde (3.25)
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where m is an integer. (This notation (m) is used only heve, so that any confusion with
the parameter m implying +/M.."—1 does not occur.)

First,
1
Jo'= Se-iw-%[;ai(x—s}]de:}j 1- tZ}WdtS Sl ~lalce- f“ds (3.26)
T J-1
_i 1 e 1/234101(_«‘1:?5)(1“;
= ﬂL(l O g ©
p— _.1_3 laf(r-£> {Sl e"lnl(.r*é)f(l_tz)ﬁa,-zdt_51 te—{aiu_g)t{l_tz)wa/zdt}
7|l -1 -1
1 —|ajli -2 d
e i ‘]ul(» O NIl =)+ g slal@=8 Ll lale—81] @20

= —e O OL [ o[ (¢ — )1+ —E) Ll | | (2 —£) ]} (3.28)

by use of the relation, d/dz[2]1(2)}=21y(z). Also integration of J,’s will be performed in a
similar manner to the previous case.
TFor a circular-arc aerofeil we get from (8.22) and (3.28)

e (o )ity al(lal o) (3.29)

el

In the limit, [a|—co and m—0 (M.=14-0), the above equation coincides with (3.16)
Differentiation of (3.29) gives

Sorx:%e"{al.r {( |l +1)Iu(|d] )—']""““l”Il(’ﬂ-’IfU)}- (3.30)

The corresponding equation to (3.19) for the supersonic case in Maeder’s theory is

6{)}3/2%36—[0]/2{('“l +1)IO(|Q|) |ﬂ’| I‘(Igl)} (3.31) -

From this we know that |2|/2 has only a non-vanishing solution in this case.

§4. Sonic and Shock Points on the Acrofoil

The simultaneous equations (2.6) and (2.7) are rewritten in a much simplified form by in-
troducing a new function,

flo; ay=2(vV [MI—1[/elz; K) (4.1)

in which the double sign corresponds to M.=1, as follows:
|| 2=Fflc*; o), (4.2)
20| & |2 =f{e*; a). (4.3)

Here ¢* and « are unknown, &, being a parmeter. In the present example, (3.17), (3.29)
and (8.30) give immediately f(z; o) and f.(x; a).

On the other hand, the position of the shock wave on the aerofoil should be determined
by the other root ¢** of the same equation (4.2) for a definite & and &., according to the
prescription given in the previous work,?

Actual caleulation of the above equations, however, is not easy because they include trans-
cendental functions, In our case of a circular-are aerofoil, several steps of the successive
caleulation were necessary with the use of Newton’s method.*

In solving (4.2) and (4.3) in the present case, it is useful to know beforehand by investigat-
ing analytically the asymptctlc behaviours of the equations that for «=0, ¢*=1/2 and Eoo

* The author had recourse to an electric computer of relay type at Yuhn Denki Saiki Co Lid..
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=—(4/7)%% for £.=0, a=Fco and e*=1/4;
-15 —— - and for ¢*=0, a=—2 and £.=2%%, At the
SO”'CPO'M-';{\S..}IUCR poirt same time we have a knowlege by dealing
o L with the equation of ¢** that for «=0 and
~1.0 *o a Eo= —(d/n)23, ¢**=1/2; and for £e=0 and
4
—05—~

)

o dicated in Table I as well as in Fig. 1.

4 In Fig. 1, the present result is compared
with the theoretical ones by Maeder (linearized
transonic flow theory) and by Spreiter (integral
3 equation method)®, and many experimental
0 Hlozs 0:50 075 10cc™ data.”™® The sonic and shock points appear
at first both on the midchord of a circular-are
aerofoil at the critical speed of the free stream,

Y @ S a=-vo, ¢**=1, The ecalculated results are in-
]
L

05 the former going ahead and the latier reced-
5 ing back monotenously with increasing Mach
/‘ number, In this respect, Maeder’s theory in-
1.0 / dicates a peculiar behaviour of the sonic point
/ % in the neighbourhood of the branch point,
i/ e Eo=-—(2/7)** The present result concerning
4"5/ 2) " the behaviour of the sonic point iz in good
£ Y%xad up. critical accord with experiments throughout the whole
o transonic range of £., though Spreiter’s one
2.0 is better for the smaller range of & near
Fig. 1. Behaviours of the sonic and shock pointson the critical speed. TFurthermore the present
a cireular-are aerofoil, method predicts the upper eritical value of &
Theory - Spreiter® very close to the exact one (=1.74, which can
— —  Maeder be found from the oblique-shock relation),
——  Present whereas Spreiter’s result by the local lineari-
FExperiment, Kawamura and Karashima® zation method gives the value 2.08.'®
® i=0.106 (O ¢=0.0808 Now with respect to the position of the
@ 1=0.0644 © $=0.088 shock wave on the aerofoil, it may be pointed
Michel ot al” out that the present theory predicts it much
4 £=0.06 A =010 closer to the experimental data than Spreiter’s
o 1=0.08 A =012 . .
Bryson® 'filthoug.;h the experimental data show certain
indefiniteness such that the shock wave
Table I. Solutions of (4.2) and (4.3).
o* o ()7t e . o i la] L oA
0.500 0.000 | 1.2782(=4/m)| 0500 | 0.250 e L 0.0000
0.476 0.203 1.2468 0.575 :; 0.225 11.300 0.1089
0.450 0.418 1.1838 0,645 I (.200 6.480 0.3076
0.425 0.660 1.0908 0,711 | 0.175 4,807 0.5266
0.400 0.950 0.9697 0.772 0.150 3.900 0.7461
0.375 1.317 0.8227 0,825 0,126 3.325 (.9630
0.350 1.836 0,6500 0.872 0,100 2.912 1.1713
0.325 2,652 0.4694 0.910 0,075 2.6G05 1.3874
(.300 4,260 0.2648 0.941 l 0.050 2,360 1.5047
0.275 9,150 0.,0970 0.967 E 0.025 2.165 1.7986
0.2626 19.100 0.0349 0.980 'é
0.250 oo 0.0000 1.000  6.000 2.0 2.0000
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changes its position considerably depending on the thickness ratio of the aerofoil and the
Reynolds number of the flow*: the shock wave predicted by Spreiter seem to recede too

rapidly with increasing .. .

It is interesting to note that the nature of our curve which is nearly horizontal and flat

at w=0.6—0.75 suggests unstableness of the position of the shock wave just after the lower

critical value of £. is surpassed., Namely if the main flow suffers non-uniformity expressed

by 4AM., the shock wave will be unstable and
finctuate from its orviginal position by the
amount
wy_ OEFF 2M. -4

At = s B Dy e ()
The thinner the aerofoil is, the more unstable
is the position for the same grade of the as-
simed non-uniformity of the free stream.

85, DPressure and Velocity Distributions

By use of the reduced velocity u and f{w, o),
{2.8), (2.4) and (2.5) are simplified, as follows:;

Co |

-098

i

ro

Mm

Fig., 2. Theoretical pressure distribution on a eir-
cular-are aerofoil in terms of Cp, for various fe.

Fig. 8. ‘Theoretical velocity distribution on a cir-
cular-are aerofoil in terms of #+ £, for various &,

C* In ;iuoting the exper.i.mént. of Refr. 7,“ the unpublished details of experimental data could berutilized.

thanks to kindness of the authors of Ref. 7.
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MWE 1 173
W= {%@r (5.
. S )
(@)= b+ (/|| WA )2V [Eul s a)+4a:-~/l€ocl5 He; a)ds 5.3)
o
the double sign corresponding to
Eo2—a/ & flz; )0, for M.<1
and (5.4)
Et—a1EL] flw; )20, for Mo>1 |
Asg « Is uniquely related to £, (5.2) is the
expression consistent with the transonie simi-
Ep larity law.

e , E_o=-0535
4
Tig. 4. Pressure distribution on a cireular-are

aerofoil in the supercritical flow (o= —0.526).

Spreitert?
— — Maeder'? (¢
—— Present
Prandtl-Glauert
Experiment, Liepmann'®
O Re=8.7Tx10
A Re=1,75%10°

Theory

—0.526)

By uge of this expression, we obtain the
two formulae for reduced physical quantities

Cp
_4_‘
L
%
A
»
v
Y X
0_0
Lo /02 9
X
v
2_

Fig. 5. Pressure distribution on a eireular-are
aerofoil in the lower eritical flow.

Theory —— Present ((=—1.1745)
Experiment, Michel et al®
O Mwo=0.770, t=0,12 ($u=—1,3226)
X Me=0.885, £=0.08 {$o=—1.156T)
& Mo=0.870, £=0.06 ({.=—1.0653)
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as follows;
for pressure cogfficient C,;

Co={ M (y-+-1) 1173 2/3C,= — 2y (5.5)
=25, T2V p(w; €w) (5.6) ,
for loca! Mach mumber M; | Jf
wtEat= {7+ DEME ¥ DM~ (1— M2} N
=M =D/ + DM} 2= 2 M—1)/{(r+ 1)} 273 (5.8)

and we have only to remark that
%+£-Z0 corresponds to =1, (5.8)

The both results caleulated for various values of &. are shown in Figs. 2 and 3. The

= C
Cp P
4 -4
s -7
0 0 _
X
X
2 2
7
4 4}~
\
—
Fig. 6. Pressure distribution on a cireular-are Fig. 7. Pressure distribution on a eireular-are
aerfoil in the supercritical flow. aerofoil in the superonie, but below upper eritical
Theory -—— Present (#e=—0.2110) flow.
Experiment, Michel ot al® Theory —— Present (¢..2=0.8226)
A Me=0.965, t=0.10 (fe=—0,2422) Experiment, Michel et al®
V Me=0.970, ¢=0.06 (fo=—10.2240) v Me=1.125, #=0.06 (§:=0.8264)
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variations of them with £. seem to be reasonable as a whole. In the sub- and supersenic
extremities, they are in accord with the results obtained by the conventional linear theories.
At the lower critical value of &., the curve of the velocity distribution makes an angular
shift at the sonic point and it is interesting to compare with the well-known eritical state
of pears on the aerofoil, and arrives at the trailing edge at £.=0.

TFig. 4 is presented for comparison with other theories!'™'® They are compared with
Liepmann’s experiment'® which was performed for a cireular-arc aerofoil of ¢=0.12 in the
supercritical flow of M.=0,895 (5.=—0.526), First it is seen that Maeder’s result!? is
better in this régime of transonic flow (¢f. Fig, 9), probably due to the viscous effect which
destroys the formation of a shock wave near the aevofoil. Next, Spreiter’s result'® over-
estimates the negative pressure on the aerofoil, particularly in the rear portion. This is in
close relation to his prediction of rapid receding of the position of shock wave (described in
the previous section). Thus, our prediction could be considered rather suecessful as a con-
clugion from the inviseid, nonlinear theory.

Figs. b, 6 and 7 arve provided in addition in order to compare our results with Michel’s
experiments (ONERA).® They offer thiee typical examples of flows; that is, the lower
critical, supercritical, and supersonic flows.

86. Shock Wave at the Trailing Edge

We have learned that the normal shock arrives at the trailing edge when £.=0. Then,
what happens on the velocity discontinuity when £. beeomes positive? Certainly the velocity
discontinuity will then lose the meaning of a normal shock and take the feature of an oblique
shock, which we shall prove mathematically within the present theory as follows.

After the trailing edge, we should have

1M @ .
Yo g UF’(c)a—Ee"‘“““'f’IoL || (2—£))dE 6.1)

1 - .
= {F'(O)eﬂ“i*fo( | %) — F'(1)e =0 [T | | (a:—m_
1
+S F "(E)e"““‘”'*’lu[ialm~5)]d5} (6.2)

:§£f3"1“”{(29}—1)fo( i)+ 201 (| el )}
—e M0 Oy D[ | {x—1)] 20— D[ |af(z—1)13] (6.3)

with the aid of (3.28). In the limit when a approaches the trailing edge upstream, this
becomes

2t
ﬁp.r(l"*"o):E[euiﬂl{ID(|“l)+211(§“5)}"—1] <0, 6.4)
From (3.29), on the other hand, the limit when a approaches there downstream is obtained as
2t
Sam(l—O):E[G"“E{Iu(Ml)+2L(If¥l)}1>0- (6.5)

Now from (6.4) and {6.5), the following relation can be derived;

Y(1-0)z ¥Y(11+0) (6.6)
(Here it is noted that the last terlln of the right-hand side of (2.4j has the same value in
both limits, since go(li())—gc(c*):j (,o_tdm.)

The equality holds only when M..=1 and at the extremity, M.—oo. These results may he
considered to elucidate qualitatively the above-mentioned fact, the resonable hehaviour of the
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supersonic flow at the trailing edge,

Moreover, it can be shown that when £. i3 equal to 0.833 (which is smaller than the upper
critical value), the oblique shock changes suddenly to that belonging to the weak family.
The proof is as follows.

According to the rule (2.5), the sign to be attached to +/¥(1+0) should change from
minus to plug when

Pu{l4+-0)=(1— M%)/ (r + 1) M2 ], (6.7)
This condition is expressed by use of {6.4) as
2le "I |a}+20(|a )} —1]= &2 (6.8)

Since {er| is already uniquely related to £. as deseribed in §4., we can solve (6.8) and obtain
|| =8.85 and £.3/2=0,76 (£3=0.833), Then we have

Y(1+0)=2K/{(r + M) {g(14-0) —¢(e*)} > 0. (6.9)

For example, velocity distributions for two cases are shown in Fig, 8; each corresponds to
€., a little smaller (a), and larger (b) than this value, respectively.

b 300 e 306
ol oL 224
i
s N i
1 ] }
S Z G N N T
._’I - —'] I~ :
2 -2 v
~2.36
(8) £,5= (0746)23 (o) E,.= (09633
= 0.823 = 0975

Fig. 8. Ilustration of conversion of the shock-wave family at the trailing edge of a cireular-are
aerofoil. {£.=0.883 is the point of conversion)

This result is gualitatively correct. Because, first, when the supersonic flow is deflected
by a very small angle at the trailing edge, it can either drop to subsonic through a strong
shock wave, or remain supersonic through a weak shock wave, as is known from the con-
sideration by the shock polar; next there is a normal shock at the trailing edge in the case
of M..=1 in the present theory and, on the other hand, naturally we have a weak shock
for higher Mach numbers where the flow about there is purely supersonic; and therefore it
is quite unavoidable that a sudden, discontinuous change of the family of shock oceurs at
gome value of M. larger than one with increasing Mach number, As is proved already ((6.6)),
the weak shock tends to the Mach wave in the supersonic linear theory.

&7. Pressure Drag
The reduced drag coefficient C; is evaluated as follows:

LS L

o 478 ¥ 1575 OF’ (#)Co(w)de (1.1)
1 —
= [ ampe e eaas., (1.2)

In case of a civeular-are aerofoil,
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1
C= 504(1—%)6,@; £z, (7.3)
Tor the case of M.<1, the range of integration is conveniently reduced to (0.05—0.95),
because the flow has singularities of the same type at the leading and trailing edges, and
the maximum error of C; due to this approximation will be within about 0.1,

The caleulated results are shown in Fig, 9 with other data. It is noted, however, that in
our result a slightly negative drag which amounts te —2.0 at most is obtained within a
very small range of &.. just above the lower critical value, It is probably due to the con-
centrated effect of the theoretical error in the neighbourhood of the leading and trailing
edges;” but it may be considered practically insignificant.

Comparing with the experimental data in the figure, Maedor’s theory seems to give a
good result at least for £. near zero, in the subsonic side but it fails for other ranges of
£, One of his results that there exists a supereritical, symmetrie, shock-free solution for
£.. smaller than —(2/7)%/® contradicts the experimental fact. On the other hand, Spreiter’s
integral equation method®'® results in the unnatural, too rapid increase of drag for £. just

above the lower critical value, though it predicts that critical value itself rather well. This

Cy
8oy \

P AN
1 i '5;(__—_-)( . * X \\
i ‘ L ;‘o«?::xéx\
/ / 7 © o\ \‘\,\x‘
|' /' ;JJ ™~ \.:\""‘\A_
: o . T <z
7y RS
|' KA ’ —_— . @
" / I,“{bo 2 -
L ”?‘Z g’ L
V’(
o/
0—1"-6—’?@83 P :' 0 t 1 1
-2 [-21 -(2h)2R3 1 2% é.
—{@)ys

Fig. 9. Reduced pressure drag coefficient Cy of a circular-arc aerofoil versus fe.
Spreiter (Integral Eq.)®

Spreiter (Local Linearization)® ¥

............... Maedey'?? -

xo--3 Present

~— —— Linear Theory

— - —— Diamond Aerofoil

Experiment, Michel et al®

Theory —-oo-

O t=0.66 (e}

O $=0.08 o

A 1=0.10 A Ext?apolated Drag

v $=0,12 7 _

(These data have heen cited from Speriter’s worki®.)
Maeder'®

O 1=0,1 (slotted wall)
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is considered a reflection of the rapid receding of the shock wave and the overestimation of

the veloeity distribution in his result as were stated before. The local linearization method

gives good results locally for the proper ranges of £..5'® But it seems that the phenomenon

of sonic freezing is not so remarkable in the subsonic side as expected, in this theory from

the experimental point of view. Thus among all these results, the present theory seems to

be the most satisfactory as a whole, considering the general trend of experiments. .
For reference, the famous drag-curve for a diamond aerofoil is added, which was given

theoretically by Trilling, Guderley and Yoshihara, and Vincenti and Wagoner. The both

bear a much qualitative resemblance but that the lower critical value of £. for a diamond

aerofoil vanishes whereas that for the present aerofoil is equal to —(4/n)2/2,

8. Concluding Remarks

As an example of application of the author's method in the previous paper, various
transonic flows around a circular-are aerofoil were calculated with success. This method ean
be directly applied to any thin aerofoil as far as its profile is expressed by a polynomial, If
a high speed computer is available, applicability will further be enlarged.

These results are significant in verifying the following facts: First, transenic flows around
a thin aerofoil can be treated by systematical analysis throughout the whole range of Mach
number so that a plausible transition of the flows with M., be given in the first-order appro-
ximation, and secondly the quadratic nature of the nonlinear equation gives rise to the shock
wave in the flow field inevitably in some case. This is also consistent with the general view
that it is probably impossible to have a smooth supersonic zone enclosed within a subsonic
field,

Finally the author wishes to express his hearty thanks to members of the National
Aerongutical Laboratory for their valuable discussions.
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Nomenelatures

x, ¥, # =Cartesian coordinates; as subsecripts, derivatives with respeet to coordinates.
U.., M.=Velocity and Mach number, respectively, of the free stream parallel te the x-axis.
vy  =Ratio of specific heats. '
; @ =DPerturbation velocity potential devided by U...
o ¢ =Linearized potential due to Oswatitsch and Maeder,
' K =Constant due to linearization of the transonic flow equation.
g =Nonlinear correction term to ¢, '
v =Parameter of small disturbance in the transonic flow.
t  =Thickness ratio.
¢* =Location of the sonic point on the body.
¢** =Location of the shock point on the body.
Y =Diseriminant of the root for g..
I =Distribution of the cross-sectional area of the body whose length is assumed unity.

s =Shape function of the body in the meridian plane.
a =K/23 or —K/2m?
B =—mi=1-M.?

Ky, Iy =Modified Bessel functions of the zeroth order.

fo, 0 =Amplitude and angular frequency, respectively, of a sinusoidal wall.
N =|81/Cfo).¢x
Cp, =—2¢.=pressure coefficient
- — Lo+ 1) M”18
C, =—2u= —2T
o =(M2-1)/[{y+1)M2t P/ 3 =transonic similarity parameter,
Cs =drag coefficient.

_ [(y-1-1) M.2]178
Cd Sl — tm’ T

¢-—=reduced pressure coeflicient.

=reduced drag coeflicient.

This document is provided by JAXA.




This document is provided by JAXA.




86 °LT1S
G810 "9 "§8¢ "ML

‘SMOJf DIUOSUBI} JO S0an)wof jerousd aqsnerd Luvw
[BOADI UBY A108Y} Juesedd 9y} Jeyl N0 Suingy 1 ‘YNsel e SY
SIRQUWING YOBJ WESIIS 991J SROLIBA UM (1070198 9Ie-IB[Nodld
T uo pue Jres Laes B I5ed SMOP YL 1N0qR (uwALS BIv POYOW
oyl Jo uoipeurnixoadde yo sejdwiexe om], -pedo[@aep ST UONEWIX
-01dde 30 POYIdW SQRUOSESI PUE J0EXd 20U B UTLOIJRISY] DUBR
‘Ploy sof pezlreeul] sy3 Bwyueweduior J0J WIS} WOIRII0D OU]
Jo uononporjul Aq pe3eBIiseAul ST YoSjIIBMS) Ylm SureurSiio
AI097] MO[ JIUOSUERI] PHZIIRSUI] 8] JO PRNOLT [BOLJBUSYIBUL )
“sI]  "aela Jo julod AAU B WOIL POIPNIS ST ATOSY] AMOY JTUCS
-Uel} Jo £I09Y1 |VUBGINISIP [[2wis 9q) ‘posds oosuel; ye Jurlyg
53Ipoq pur sPuUla UYL Jeeu moy 93 0] yoeoxdde o3 xepao uf

L6—4I TVN 1L
BABNOSOL 0%M] T

66 d 2961 “Amnp
—AJO], UOLIIRIIQ)) TBOUITUON—
(I) sofy oruosuzly, 3o AI00YJ, 00UBQINISK] [[FWS SY} U0 SSIPMIG
AHOLVIOIVT TVOILAVNOIHY TVNOILVN

L6-9L TVN

86°LTS :

S8 °TIT0 "9 "geg "II
L6-4L TVN "X
femey oSOl oBvm] "I

SM0Y OUOsUBA} JO sedanjed) [eieued oqisne[d Lfuew
[B2a21 ued Aoeyl Judsexd eyl 7BYR 3Ne SUIN} 3 ‘)nSeX B SY
SISQWNU OB WEALIS 9VI] SNOWEA YIM [I0J0I9E IB-IB[DRAD
e wo pue [[Ba Lses e gsed smop oY) JnoqE [ueald 2dv poylewl
Yyl Jo uorpewixordde yo sejdwexe om], -pado[eadp ST UOHEBWILK
-oxdde Jo POYIoW d[(BUCSEII pUT JOBXS 2I0W ® WOIIAISY] PUB
‘PIPY MOY PRZITEOU] Y} Funuowa(duiod JoF WLID} UOMORLION 2Y3
70 uompnpoljul £q peqelyseAul ST UIN)eMsSO s Supeurdio
£ICOY} MO[} JTUOSUBI] POZIIVSUI] 2U) JO PUNOLT [BO1IRPTUAUILW U7
ASILY  CA9TA Jo julod MOU B WOIY POIPNIS SI AI0SY] MO DIU0S
-UeI] Jo AX09U] SOUBQINISIP JeWS oY) ‘peods JlUOSURIY jB SUIAY
S9Ipoq pue SBULA WY 182U A0 eyl o] ydeoldde o3 Jepio uJ

63 "d 396T ‘Amp

—A&J08Y ], UOTIISII0]) IBSUI[UON—
(I) o[ Odwmosuel] jo 4AI08], SOUBQINISKJ [[BWS 97} U0 SRIpNIS

AFOLVEOIVT TVOILAVNOYAY TVNOLLVN
L6-4L TVN

Th{s document is provided by JAXA.

6 LIS ¢
§% "TT0 "9 "g8¢ "IL
L6~dL TVN "I

BABHOSOH OBA] * I
,

B T L R L e T I T T T T TP

SMOY OIUOSURIY JO seanizaf [eieusd arqsneld Auewt
[E24A8I uBd AX09Ul jussexd oyy JBYl 9RO SUIN] 31 4[NSed € SV
‘SIBqUInU UOBJ WEIIS 09Iy SNOLIEA [IIA FI0J0I9E DIB-IB[RIID
2 uo pug [jBa Lama ® 3sed smoy 9y} Jnoge fusALll eae poyleur
a3 jo uvoppewxordde yo sejdwiexe om], -pado[aadp SI UOIIBWIK
-oadde jo POUIOW 2[GERUCSEAI PUB JOEXS I0W € WOIRILY] PUE
‘ploy Ao pozLrzeul] oyl Jurpuowe(dwiod I0y LI} UOKILII0D 3]
Jo mouanpoIgul Aq peIedIseaul St UISIEMS() ya Jureurduo
£I09U) MO[J DIUOSUBI} POZIIBIUI] 1] JO PUNOLT [2oIIEWIRYIBUL oY)
QAL C49TA Jo quliod OU B WOIJ PIIPNIS ST AI0DY] MO[ DIU0S
~UBI} JO AZ09U} 90URQARISID [[RWS dY3 ‘peads oluosurIl Je Jurip
831poq pue SFULM. UYL 123U MO oYj 03 yorvoidde o1 I9pdo uy

6z 'd 2961 “Amp

—£I037 ], UOYIILIOD ISUIUON—
(I) #o[J SmmosueI], 7O AI0RUJ, SOUBGINISK] [(£WUS oY3 UO S°Ipng

A90LVI0EVT TVIILAVNOIAY TVNOILVN
L6841 TVN

L @

86 °L18 ¢
S8 °TT0 "9 "8g¢ 'IL

L6-4L TYN "I

BMEBNOSO] OBM] * 1

'SMOY DIUOSUBIY IO SPAnGEe) [BIPUDE a[qisne[d ALusw
[eeasx ugo Lioey} juaserd oyl eyl 100 SUING 31 G[OSSI B ST
SIBQUINY YORJY WESIJS SOI] SNOLIEA UIIM [I0JOISE IIB-IR[NDILD
2 U0 pue [[wa Lavs ' 48ed SMOQ SUJ JNOQEB (USAIS oIv poyIow
oyg jo uvonewxerdde yo sojdwexs om], -podo[ordp S UOIJRIIX
-oadde yo pOYIPW D[QRUOSEII PUB J0BXY 2I0W ® WOIIOISU] DUR
‘PIoY MO PRZLIEOUL 2U3 SUBULWI[AWOD J0Y WID) UOISIIOd BY)
Jo uopanpoxzul Aq PorelrseAul SI USSHEMS) Ylam Sureurdno
£X091) O] SIUOSURY) POZLIBRUI 97 JO DURCLS [RIUJBWIOUIBUL 317
‘ASIN "Me1A JOo juled MmOU B WOIF PIIPNIS ST L1093 MOJ JTU0S
-UrI] JOo £I02U] 9oUBQINISIP [[BWs oYyl ‘poeds omuosuery ' Sully
SeIp0q pu SSUlA U] I22U mOf 9Y3 03 yseoxdde o) lapio uy

g d 7961 ‘AIng

~- X0, UOLIISIIOY) JROUITUON
(I) MO ITUOSTRLY, JO £I09Y], 2OUBQINISK] [[BWS SY} U0 SAI1pnIg

AYOLVIOIVT TVOLLAVNOTIV TVNOILVN
L6-4L TVN

T I A R e e A S N TS SuP TP AUPRIC R NS R A R Y



N

e A A i A A e I R O . T T T T T,

This document is provided by JAXA







ERRATA

Errata in Hosokawa : Studies on the Smal} Disturbance Theory of Transonic Flow (1>
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