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Small-Strain Deformations Superposed on Finite Deformations
of Highly Elastic and Incompressible Materials*

Part I Constitutive Equations

By Tatsuzo KoGa**

ABSTRACT

A system of linear constitutive equations for a class of deformations added to a known
state of finite deformation of thin elastic membranes is derived. Attension is restricted to
the class of deformation defined such that lines of curvature of the undeformed membranes

remain as lines of curvature in any state of deformation.

the additional deformation. The constitutive equations derived in the present paper turn

Strains are assumed small in

out to be identical in form to those obtained by Fernandez-Sintes and Nachbar for axisym-
metric deformations and to those obtained by Corneliussen and Shield for a circular cylindrical
membrane.

Gap, a<$

Aaﬁ’ A=«p

a«d, Das
ai, a;

as
cii, Ci

9, G

915, 9V

Gij, GY

NOTATIONS

deteminants of @.s and A8, respec-
tively

covariant and contravariant compo-
nents of the metric tensor associated
with the midsurface of deformed
membrane, «, f=1, 2

covariant and contravariant compo-
nents of the metric tensor associated
with the midsurface of deformed
membrane, a, =1, 2

quantities defined in Egs. (26), a, 8
=1, 2

base vectors tangent to the midsur-
face of undeformed membrane
normal unit vector to the midsurface
cofactors in the determinants of gij
and Gij, respectively, i, j=1, 2, 3
determinants of g:; and G;j, respec-
tively

covariant and contravariant compo-
nents of the metric tensor associated
with the undeformed body, ¢, j=1,
2,3

covariant and contravariant compo-
nents of the metric tensor associated
with the deformed body, 1, j=1, 2, 3
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nap
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ro, Ry

dso, ds

du, dv, dw
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W’ﬂﬂ: Wnr
Ti, Yi

deit

gi
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Qv

*

base vectors associated with the
undeformed and deformed body,
respectively, 1, j=1, 2, 3
wall-thickness of undeformed mem-
brane

strain invariants

coefficients of the constitutive equ-
ations, §, j=1, 2, 3

stress resultant, a, 8=1, 2
quantities defined in Egs. (14)
radius of the undeformed circular
cylindrical membrane

position vectors

position vectors to points on the
midsurface

line elements in the undeformed and
deformed states

components of the secondary-state
displacement

strain enery function

quantities defined in Egs. (42)
rectangular Cartesian coordinates,
=1, 2, 3

small change in principal strains in
the secondary state, i=1, 2, 3
general curvilinear coordinates, f=
1, 2, 3

principal extension ratios, 1=1, 2, 3
contravariant components of stress
tensor, 1, 7=1, 2, 3

guantities defined in Egs. (14)

to indicate phycical components

This document is provided by JAXA.
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4 to indicate quantities of the second-
ary state
P subscript to indicate quantities of

the primary state

1. INTRODUCTION

1.1 Technical Background

Application of pneumatic structures to architec-
ture and engineering has been rapidly expanding.
Many examples of pneumatic structures can be
found in the book edited by F. Otto?. Pneumatic
structures are structural forms stabiljized mainly
by differences in pressure acting upon each face
of thin structural components. The main advan-
tage of pneumatic structures lies in weight-saving.
Using modern synthetic materials in the form of
thin membranes, we can, in principle, construct
a huge dome covering such a wide area that any
conventional ‘structural form, even according to
optimum design, can hardly sustain its own weight.
The American pavilion built for Expo *70 in Osaka,
Japan, was a typical example of a pneumatic
structure covering a huge area of the exhibition
floor. Its roof was made of a textile having an
elliptical shape of 142m in length and 84m in
width. The Fuji group pavilion was another
example of a pneumatic structure built at Expo
’70. The dome was made of cluster of sixteen
pneumatic beams, each of which had a length of
78 m and a diameter of 4m, and was bent into
the form of a horseshoe.

Another advantage of pneumatic structures is
that they can be folded and packaged into a
compact size so that they can easily be delivered
to the desired place, where they are erected into
the desired shape. This makes pneumatic struc-
tures a very efficient form of structure in trans-
portation engineering. The sail is probably the
oldest application of pneumatic structures in the
history of transportation engineering. Pressure
differences give it a shape to produce aerodynamic
forces, which are transmitted to the hull through
the booms and the masts. The inflatable lifeboat
is also a good example of a pneumatic structure.
In an emergency, the lifeboat is erected into the
desired shape by inflation. In this case, the pres-
sure difference provides not only the shape of the
lifeboat but also the load-carrying capacity to the
otherwise collapsible lifeboat. The lifeboat in the
inflated state can, thus, carry the weight of crew
and passengers.

Application of pneumatic structures for surface-
bound vehicles, such as the sail and the lifeboat
on the ship, is not essential and could be replaced
by conventional structures, or by some other

devices. It is, however, essential for airborne
and space-bound vehicles. The infiatable lifeboats
carried on the ship may be replaced by conven-
tional wooden boats, but those carried on air-
planes can hardly be replaced by rigid lifeboats
because of their weight and volume. Pneumatic
structures, or any other form of expandable
structures, become inevitable in space engineering,
because exceptionally high expenditure is required
for launching space vehicles, and also because
the payloads should be packaged into a small
size so that they can be fitted into the launch
vehicles. For these reasons, designers should
make every effort to decrease the structural weight
of space vehicles and to design them so that they
can be folded and expanded. Another important
factor, which justifies the use of light-weight,
thin-walled pneumatic structures in extraterrestrial
regions, is that the loads acting on the structures
outside the gravitational field of Earth are small.
An article of N. J. Hoff® discusses some of the
examples of pneumatic structures applied for
space engineering.

The propellant tank of the Atlas intercontinental
ballistic missile has been made of thin sheet of
easily weldable, stainless steel. The tank has a
circular cylindrical shape of 3m in diameter and
about 18m in length, and its wall-thickness is
0.04~0.1cm. It is so thin that it can not carry
its own weight. It is stabilized and maintained
in its shape of a circular cylindrical shell only by
internal pressure of helium gas.

The gigantic balloon satellite Echo 1 was suc-
cessfully launched into orbit by a three-stage
Thor-Delta rocket. The diameter of the satellite
was 30 m when inflated. It was made of Mylar
plastic panels 0.0l mm thick with aluminum
coating. The satellite was initially folded into a
ball 65cm in diameter and was then ejected into
space and inflated to a spherical shape through
the expansion of the residual air in it. .

Research has been carried out on the possibility
of the use of pneumatic structures as a decele-
rating device for atmospheric re-entry. The ex-
perimental paraglider Paresev was a kind of
hybrid between parachute and sail. It consisted
of a sail-like structure made of Dacron sheet and
bounded by booms in an arrowhead shape. An-
other experimental re-entry vehicle, Ballute, was
a hybrid between balloon and parachute. It was
made of a textile and it contained an opening at
the bottom, through which the air rammed in.
Ballute was tested successfully even at supersonic
speed.

Though there are numerous problems yet to be
solved, pneumatic structures will certainly play
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Smali-Strain Deformations Supecposed on Finite Deformations of Highly Elastic Incompressible Materials 3

the most important role in constructing extrater-
restrial stations, because they seem to be the only
econcmically feasible form of building in extrater-
restrial regions. The problems to be solved in-
clude insulation against cosmic rays and heat and
the requirement to withstand the large pressure
differences.

1.2 Present Research

In the present series of papers, deformations of
. inflated thin membranes of rubbery materials will
be investigated. There is no doubt that mem-
branes made of a single rubbery material are
least likely to be used in practice, particularly in
space application, and that they are most likely
to be used in the form of elaborate composite
materials. It is, however, worthwhile to investi-
gate the idealized membrane structures of non-
composite rubbery material, because of relative
ease in analytical treatment and in experimental
handling.

Rubbery materials, being highly elastic and
incompressible, readily exhibit large deformations.
In analysis, therefore, the theory of finite defor-
mations has to be used.

The general theory of finite deformations of
elastic bodies has been considered by many
authors (see for example the book of A. E. Green
and W. Zerna®). The equations involved in the
general theory are so highly nonlinear that their
exact solutions have been obtained only for a
limited number of practical problems dealing with
elastic bodies of the most simple geometric shapes
before and after deformation. Summary of these
solutions is given in Ref. 3 and in the book of
A. E. Green and J. E. Adkins®. The general
theory has been specialized for thin elastic mem-
branes and several problems of finites deformations
of membranes have been solved by R. S. Rivlin®
and by J. E. Adkins and R. S. Rivlin®. Although
the equations are considerably simplified in the
membrane theory, their nonlinearity still rejects
straightforward solution for most of the practical
problems.

To overcome the difficulties, A. E. Green, R. S.
Rivlin and R. T. Shield” developed a general
theory of small deformations superposed on a
known finite deformation. A.H. Corneliussen and
R. T. Shield® reformulated the general theory
developed in Ref. 7 to specialize it for the treat-
ment of thin elastic membranes. In the theories
developed in Ref. 7 and reformulated for thin
membranes in Ref. 8, it is assumed that the final
state of stress and displacement is a result of
superposition of perturbed state of stress and
small displacement caused by the application of
additional load on the known state of stress and

finite displacement. They could, thus, obtain the
linear stress-displacement relations, namely, the
relations between the additional stresses and the
additional small displacements.

J. Fernandez-Sintes and W. Nachbar?® modified
the theory developed in Ref. 8 by taking pertur-
bation of the principal extension ratios to apply
it for the rotationally symmetric problems of
inflated thin membranes. The principal extension
ratio is defined as the ratio of the length of a
line element ds, which lies along the principal
axis of the deformed body, to the length of the
corresponding line element dso before deformation.
Perturbation of the principal extension ratios,
thus implies perturbation of the principal strains.
The theory of Fernandez-Sintes and Nachbar,
therefore, holds for the case where the strains of
the additional deformations are small regardless
of the magnitude of the additional displacements,
whereas Corneliussen and Shield’s is valid only
when the additional displacements are small.
Since the axisymmetric deformation is realized
only when the initial shape of the membrane is
also axisymmetric, application of Fernadez-Sintes
and Nachbar’s theory is limited to the axisym-
metric deformation of the initially axisymmetric
membranes. The theory of Corneliussen and
Shield holds for arbitrary pattern of small dis-
placement of the additional deformation. One
must, however, specify the initial shape of the
membrane in order to obtain the explicit formulae
of the stress-displacement relations.

In the present paper, the linear constituve
equations, namely, the linear relations between
the additional stress resultants and the additional
strains, are obtained in the similar manner of
Fernandez-Sintes and Nachbar by taking pertur-
bation of the principal extension ratios. The
deformation considered in the present paper is
not, however, restricted to the axisymmetric one
but to a class of deformation defined such that
the lines of cnrvature of the initial, undeformed
membrane remain as lines of curvature in any
state of deformation. The class of deformation
thus defined includes the axisymmetric defor-
mation as a special case. Furthermore, the theory
developed in the present paper doesn’t require
any specification of the initial shape of the mem-
brane.

In order to make comparison of the present
result with that of Corneliussen and Shield, deri-
vation is first made on tensor components. It
turns out that the both results are identical in
form, if the linear strain-displacement relations
for circular cylindrical shells hold for the addi-
tional small displacement. The constitutive equ-
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4 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-236T

ations are then written in terms of physical com-
ponents. They turn out to be identical in form
with those obtained by Fernandez-Sintes and
Nachbar for axisymmetric deformations.

2. BASIC EQUATIONS

Let us consider a continuous three-dimentional
body in the three-dimensional Euclidean space.
The body is assumed elastic, homogeneous and,
in its undeformed state, isotopic.

A typical point of the body before deformation
can be described by a rectangular Cartesion co-
ordinate system (x1, xs, x3) fixed in the space.
It may also be specified by a general curvilinear
coordinate system (61, 6%, #%) fixed in the body,
so that

xi=2:(61, 63, 6) (1)

Throughout the present paper, the convention
that Latin indices take the integer values 1, 2
and 3 and that the repeated indices indicate
summation will be used, unless otherwise speci-
fied.

If the position vector to a typical point is
denoted by r, the covariant base vector g; as-
sociated with the coordinate ¢ in the undeformed
body is

ar

gi="g (2)

The covariant components of the metric tensor
associated with the deformed body is defined by

gii=gi"g; (3)
Then, the line element dsy of the undeformed
body is given by
(dso)*=dxrdxx=g:jd6doI (4)

The contravariant components of the metric
tensor are given by

gti=ciilg (%)
where ¢t/ is the cofactor of gij in the determinant
g.

Let the coordinates of a typical point of the
body after deformation be (w1, i, ¥s) in the
rectangular Cartesian coordinate system fixed in
the space. Since the curvilinear coordinates (41,
63, 6%) are fixed in the body and moves with it as
it is deformed, the point can also be described
by (6!, 6, 6%) so that

ye=yx(0!, 63, 6%) (6)

‘The position vector to a typical point of the
deformed body is denoted by R. The covariant
base vector G associated with the coordinate ¢
is now

Gi=—g“£— )
The line element ds of the deformed body is
given by
(ds)Y=dyrdyr=Gi;d6ido’ (8)
where Gij is the covariant component of the
metric tensor defined by

Gij=Gi-Gj (9)

The contravariant components of the metric
tensor are given by

GU=Ci|G (10)
where C¥ is the cofactor of Gij in the determi-
nant G.

When an elastic body is homogeneous and
isotropic, a strain energy function W exists, which
depends on three strain invariants ;, I3 and Is.
so that

W=w(L, L, L) (11)
where the strain invariants are given in the form
L=¢4G;;
L=Gigqsly (12)
L=Glg

The contravariant components of the stress
tensor are given in the form

TH=Qgii+ W D PGii (13)
where
o2 W )
RS AT A
_2 W
T VI 3L > (14)
2 oW
P= vIy 3l
Dii= Ilgij_girgjscr‘

A membrane theory is formulated by simplifying
the general theory for three-dimensional elastic
bodies on the basis of the assumption that the
transverse tress resultants and couples are small
in comparison with the stress resultants acting
in the tangent plane to the deformed midsurface
of the membrane. Let the general curvilinear
coordinates ! and 62 be defined in the midsurface
and the # coordinate be chosen such that it
measures the normal distance from the tangent
plane of the midsurface of the membrane. Then
the covariant base vector @, which is tangent to
the midsurface of the undeformed membrane is
defined by

_ aro
~ 80
where ry is the position vector to a typical point

on the midsurface. Here, and in what follows,
Greek indices take integer values 1 and 2.

a; (15)
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A unit vector as is defined such that it is normal
to the tangent plane containing a: and a3, namely,

a Xas
g= 16

|ay x as| (16)
The position vector r to an arbitrary point in

the membrane is written in the form
r=ro+6%a;s (17)

The covariant components of the metric tensor
gi; are now calculated. The result is

Gap=aap+O(6) }

Ga3=0, gss=1
where a.p is the covariant components of the
surface metric tensor associated with the mid-
surface of the undeformed membrane, and the
second term in the right-hand members of the
first equation indicates the term of order of magni-
tude 6%. The contravariant components of the
surface metric tensor are given by

a<t=ce8fa (19)
where a is the determinant of the elements of
aqp and c+? is the cofactor in a.

If terms of order of magnitude 6% are neglected,
the following relations are obtained:

(18)

Gap=Gap, ga3=0, gss=1
gat=aab, ga3=0, g¢g¥=1 (20) -
g=a

Since the coordinate #% has been so chosen that
it measures the normal distance from the mid-
surface in the undeformed state, and that it is
not fixed in the body, the normal distance from
the midsurface in the deformed state may be
described by 1368 provided that 13 is the principal
extension ratio in the direction of 3. The position
vector R to a typical point in the deformed mem-
brane may now be written in the form

R=R,-+ 2s6%as (21)

where R, is the position vector to an arbitrary
point on the midsurface of the deformed mem-
brane.

Proceeding as before, one obtains the following
relations:

Gas=Aap, Ga3=0, Gu=2s!
Get=Act, G23=0, G¥=1/a3? } (22)
G=1isA

where A, and Aa«# are, respectively, the covariant
and contravariant components of the surface
tensor associated with the midsurface of the de-
formed membrane, and A is the determinant of
the elements of A.s. The superscript upon 23
indicates power.

The components of the stress resuitant are now
obtained in the form

ned=hods(Pazd +¥Das + PAat) (23)
where Ao is the thickness of the undeformed
membrane.

The transverse stresses are zero due to the
approximation made in formulating the membrane
theory. It can be shown with the aid of Eqgs. (20)
and (22) that 7«3=0 are identically satisfied,
whereas 738=0 leads to the following equation:

O+ YD+ Pj2gt=0 (24)
Quantity P can now be eliminated from Eq. (23)

with the aid of Eq. (24). The result may be
written in the form

nad=hols(ast®+ Das¥) (25)

where
a_aﬁ=adﬁ—ls’Auﬁ } (26)
Dep=Dab+ A3 A28D33
The coordinates 6! and # have thus far been
left arbitrary except they are material coordinates
defined on the midsurface of the membrane.
They are now specified such that they coincide
with the lines of curvature of the undeformed
membrane. It is, then, a well-known result of
differential geometry of surface in the three-
dimensional Euclidean space that the components
ayg and q!? are zero, namely,

ain=al’=0 (27)

The line element dsp in the midsurface of the
undeformed membrane is given by

(dsoP=(d6') +(d6?): (28)
The components of the metric tensor are now
obtained in the form

an=an=all=a¥=1,

ay=ald=0
e | o

Attention is restricted in the present analysis
to a class of deformations defined such that the
@' and & coordinates coincide with the lines of
curvature of the membrane in any state of de-
formation. Then, again from the result of
differential geometry, the following relations hold
for the metric tensor associated with the mid-
surface of the deformed membrane:

Ap=A1=0 (30)

These imply that the 6! and #® coordinates
coincide with the principal axes of the deformed
membrane, and that the intrinsic properties are
completely determined by introducing the principal
extension ratios A; and A3 associated with #1 and
&3, respectively. The line element ds of the mid-
surface of the deformed membrane is then given
by

(dsyP=(21d0V )2+ (23d 65) (31)

Hence the components of the surface metric
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6 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-236T

tensor associated with the deformed midsurface
are obtained

An=28, Agg=1248, A11=01 (32)
An=1/2:3, A2=1/2q, A=0 )
where the superscripts upon 2; and 1: indicate

power.
It is further assumed that the membrane is
made of an incompressible material. The as-
- sumption of incompressibility of the material is
equivalent to imposing the following condition:

L=1 (33)

which may also be written in terms of the
principal extension ratios

A12343=1 (34)

The strain invariants [; and [; are now written,
with the aid of Egs. (12) and (34), in the form

L=2134 2534 1/(2125)
L=1/212+1/283 4 (2125)? |
More detailed derivation of the equations for-

mulated in the present section can be found in
Ref. 3 and 8.

3. LINEAR CONSTITUTIVE
EQUATIONS

It is now assumed that the final state of de-
formation is a result of superposition of a known
state of deformation, namely, a state of defor-
mation whose equilibrium configuration can be
determined either numerically or analytically
without much simplifying assumptions, and the
state of deformation produced by the addition of
external loads to the known state of deformation.
In the present section the constitutive equations,
namely, the relations between the stress and the
strain, for the unknown state of deformation due
to the additional external loads are derived by
introducing certain essential assumptions to make
the resulting formulae feasible for the solution
of the unknown state of deformation.

First, a known state of finite deformation is
considered, which is referred to as the primary
state of deformation. The quantities pertaining
to the primary state are designated by the sub-
script p. The intrinsic properties of the primary
state of deformation is, thus, completely de-
termined by A1, and A3p. The equilibrium of the
primary state is then slightly perturbed by ap-
plying the additional external load. The state of
the perturbed deformation is referred to as the
secondary state. The quantities pertaining to the
secondary state are designated with the symbol
4. The final state of deformation is, again,
characterized by the principal extension ratios 11
and 13, which now take the form

(35)

Ai=lip+di
As=2sp+4d2s )

The change in the extension ratios, 42; and
423, is assumed so small that the gquantities
depending on 2; and A3 can be approximated as
a result of superposition of these depending
linearly on 421 and 413 upon those completely
characterized by 21y and A3p. This assumption
is equivalent to retaining only the first order
terms in 42; and 44s in the Taylor expansion of
the functions depending on 1; and 5. Accordingly,
the stress reseltants now assume the form

naf=nyd+Adn=8 (37)
where 4naf is the part of ne# pertaining to the
secondary state and linearly depending on 42; and
and 4is.

The principal strain components of the second-
ary state dell, 4e% and 4¢% may be defined by

deti=42;]2;p (i not summed) (38)

It can then be shown with the aid of Eq. (34)
that the following relation holds:

4e3=— (41t + 4e23) (39)
The Taylor expansion of the right-hand members
of Eq. (25) about the primary state and retension
of only the first order terms in 42; and 423 in
the expansion yield the following linear relations
between the stress resultants and the principal
strain components of the secondary state:
Ant=Kplidell 4 K13 4¢3 }
Ans=KMdell + K 33488
where the coefficients Kpll, Kp!?, Kpfl and Ky
are completely determined if the primary state is
known. A lengthy algebraic manipulation yields
the following expression of these coefficients:

Kyl =2ho(R1pdap)-[2213 (1 — A—425~0)8
X (Wo+2283W, 13+ 24 W,33)
—(1=521 424 )(W,1+ 22 W,3)]p

Kp18=2ho(A1pd3p) 1 {229%(1 — 21*2579)

X (1 =222 ) W1+ (A2 + ) W13
F+ 023 W,0] — (1 -3 445 ) W,
+283(1+ 242 W sl p

Ko =2ho(1pasp)- (2203(1 — 2325~
X(A—=22 42 D[ W, 11+ 213+ 2D W, 1
+ 722 Wogs] — (1 -3 3 ) W1

(36)

(40)

{41-a)

(41-b)

4230+ 21323 W sl p (41-c)
Kp¥=2ho(Q1pA3p)1[2253(1 — 212 254)}
X (W,11+228W, 13+ 214 W,g3)
—(1—=5125)(W,1 + 23 W,s)lp  (41-d)
where

iW

Wiap= 81,315
W (42)

W,a =L
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Small-Strain Deformations Superposed on Finite Deformations of Highly Elastic Incompressible Materials 7

It can easily be proved that the linear equations
(40), together with Eqs. (42), are identical to the
linear constitutive equations obtained by Corne-
liussen and Shield for circular cylindrical mem-
branes, if the displacements are assumed so small
that the linear strain-displacement relations for
a circular cylindrical shell of radius Ry hold,
namely, if the following relations hold:

Adell= 9(4v) .|.A—"'i
oo Ry
(43)
PRIC.LO)
o068

where the #1 and # coordinates are chosen such
that they measure the length along the circum-
ference and longitude, respectively,-and du, 4dv,
and dw are the components of the displacement
in the secondary state in the direction of ai, s,
and as, respectively.

Only the covariant components of stress tensors
have so far been dealt with. The corresponding
physical components of stress resultant, which
are designated by *, are readily obtained by the
formulas

ndﬂ*zﬂa“»\/ ﬁz: (a not summed) (44)

or,
nl¥= 2311 pitR=Qginit (45)

The stress-strain relations (40) are now written
in terms of the physical components
Antt¥= K 1% el 4 K 1% 488 (46)

And*= K 31% 41l 4 K 39% 4

where
Kpll* = (K114 2np11) 21
Kpis% =213 K pl8
Kpit*= 23,8 K pi!
Ko35% = 2ap3 (K p¥3+ 2149)
A simple algebraic manipulation yields
KpW*=2ho(1pA3p) 1 {(213+321732579)
X (Woi+ 22 W,0)+2(218— 21~82572)!
X(Wn+242 W13+ 224 W,a3)}p  (48-a)
Kpl3*=2ho(21pl3p) (B 3253 — 1) W1
(A3 4+ % 273) 253 W e
+2(22— 23 (A2 — 22 [ W,
+ QA3+ W1a+ 218238 W]} p  (48-b)
Kpt* =2k (A1pasp)t (BU-325—3— 133 Wi
+(A3+ a2 A3 W
F2(22— 2225 (A3 — 213253 [ Won
+QA24 ) W+ 18232 Wissl}p  (48:-c)
Kp33%=2h(A1pA3p) 2 {(2s8432173257%)
X (W48 W,9)+2(2s8+ A1 2472)8
X (Won+228 W+ 21 W)}y  (48-d)

It can easily be shown that the expression of

(47)

Kgpe#* given in Egs. (48) are identical in form to
those obtained by Fernandez-Sintes and Nachbar
for axisymmetric deformations.

It should be noted that the equalities
Kplt*= K 33%, Kpla*= K i1

do not hold in general, and that the initially
isotropic membrane behaves nonisotropic in the
secondary state of deformation.

4. CONCLUSION

A system of linear constitutive equations was
derived in an explicit form based on the as-
sumptions that the strains of the secondary state
deformation are small and that the deformations
are such that the lines of curvature of the initial,
undeformed membrane remain lines of curvature
in any state of deformation. It turned out to be

“identical in form with the results obtained by

Fernandez-Sintes and Nachbar for axisymmetric
deformations and by Corneliussen and Shield for
small additional displacements of a circular
cylindrical membrane. It should be emphasized
that the result of the present analysis is valid
for membranes of any initial configuration
provided that the deformations are restricted
to the class defined above. Since no assumption
regarding the magnitude of the displacement in
the secondary state has been made in the entire
process of derivation of tne constitutive equations,
they are valid even for finite deformations of the
secondary state provided that the strans are small.
Therefore, the strain-displacement relations are
not necessarily linear, although the stress-strain
relations are linear, which is a consequence of
the assumption of small-strains. This distin-
guishes the present theory and Fernandez-Sintes
and Nachbar’s theory from that formulated by
Corneliussen and Shield in which the secondary .
state displacement is assumed small and, con-
sequently, the strain-displacement relations are
always linear.

Deformations of many practically important
structures are included in the class of deformations
discussed in the present paper. Take an inflated
circular cylindrical membrane for example. As
the axisymmetric deformation of it due to axisym-
metric line load, which has been investigated by
Fernandez-Sintes and Nachbar and by N. J. Hoff
and Nachbarl®, belongs to the class, so does the
uniform deformation due to uniformly appled line
load along a longitude. Thus, the important
engineering problem of reinforcement of the
inflated circular tube by orthogonal netting may
be handled. Furthermore, a bending deformation
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of it also belongs to the present class, if the
inflated circular cylindrical membrane can be

assumed to behave like a solid beam so that the

Bernoulli-Navier hypothosis for bending of beams

holds.

Bending of an inflated circular cylindrical

membrane will be investigated in the forthcoming
report.
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