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A Method for the Calculation of Lifting
Potential Flow Problems®

I. Theoretical Basis

Masao EBIHARA**

SUMMARY

A formulation of lifting potential flow problems is worked out in terms of a doublet

distribution over the body surface and the trailing vortex sheet.
In the course of analysis, it is shown that the velocity field due to a surface distribution

of doublets is equivalent to that due to a surface distribution of vortices.

This fact is

utilized to derive a non-singular expression of surface derivatives of potential due to a

doublet distribution.

In view of the significance of the Kutta’s condition in controlling the lifting flow field,
the behaviour of the potential and its derivatives is examined in the neighbourhood of the
trailing-edge of a wing. Conditions on the strength of doublets are thus obtained with
which the flow velocity remains finite at the trailing-edge. These conditions are incorporated
in the final formulation of the lifting potential flow field.

1. INTRODUCTION

Calculation of the exact solutions of the potential
flow field around lifting wing-fuselage configurations
has been one of the primary targets of the aero-
dynamic research. Restricting the discussion to cases
where the incompressible fluid is concerned, the
determination of the flow field is mathematically
expressed as a boundary value problem of a harmonic
function representing the potential of the flow field.

The solution of this boundary value problem being
intractable to analytical treatment, a variety of approx-
imations has been imposed to simplify the problem
thus rendering it amenable to analysis. The histori-
cal development of the lifting wing theory can be seen
as a process of step-by-step removal of these approx-
imations, beginning at Lanchester’s single vortex line
representation (ref. 1, Chap. VIII) and reaching to the
sophistication of Kiichemann, Weber et al.(ref. 2)
On the other hand, numerical approaches to the
problem incited by the work of Multhopp(ref. 3)
have also been continuously improved in accuracy
owing much to the continual advance in computing
facilities. (e. g. refs. 4 & 5) These analytical and
numerical approaches, however, suffer the essential
limitation that they are seeking for the solution of

* Received 1st April, 1971.
** The Second Aerodynamics Division.

the linearized, i.e. approximated, boundary value
problem. ‘

As will be expatiated upon in the main body of
this paper, the original boundary value problem can
be converted into a system of integral equations by
means of superposition of the fundamental solutions
of the Laplace equation. The advent of electronic
digital computers has facilitated the solution of these
integral equations if only within the scope of a
numerical approximation to the exact solution of the
original system. A review of such numerical methods
is found elsewhere.(ref. 6) A typical example of
them is demonstrated in the work of Hess & Smith
(refs. 7 & 8) where the potential flow problem
around non-lifting bodies is treated. In their method
the bodies are represented by distributions of sources
over their surfaces the strength of which is- to be
determined from the boundary conditions. Although
the capability of this procedure is amply demonstrated
by a host of numerical examples, a lethal limitation
about the method is that it is unable to encompass
the cases where a lifting wing is involved as the
source distribution cannot represent a trailing .vortex
sheet which is inherent in such situations.

Let us expound this point a little more fully. A
region of rotational flow fleld exists downstream of
a lifting wing embedded in the surrounding irrota-
tional field in which the streamwise vorticity is pre-
valent. (ref. 1, Chap. III) The trailing vortex sheet
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2 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-240T

is thought to be a mathematical idealization of this
region. Since this region plays a decisive role in
determining the character of the entire flow field,
the trailing vortex sheet is indispensable in the for-
mulation of lifting potential flow problem. The
mathematical implication of the trailing voltex sheet
is as follows. A lifting wing is inevitably accompa-
nied by non-zero circulation around its sections. The
circulation by itself makes the flow field multi-valued
with respect to the velocity potential. The trailing
vortex sheet provides a boundary across which a
jump takes place in the potential to render it single-
valued. In other words, the sheet, added to the
wing, reduces the flow field to a simply-connected
region. It is in this context that the surface distri-
bution of sources cannot replace a trailing vortex
sheet because the potential due to it is continuous
across the surface and hence no jumps take place.

An attempt has been made by Rubbert & Saaris
(ref. 9) to extend the method of Hess & Smith so
as to cope with lifting problems by supplementing
the source distribution with a system of doublets
distributed over the trailing vortex sheet. For the
sake of computational expediency they have to con-
tinue this doublet sheet across the trailing-edge into
the interior of wing so that the doublet strength is
continuous across the trailing-edge. There are no
restrictions otherwise upon the distribution of doublets
inside the wing and one can specify it arbitrarily
so as to facilitate the numerical computation. This
indeterminacy is one of the unsatisfactory features
of this method, if only from the aesthetical point
of view. Another unsatisfactory point is that the
consideration on the Kutta’s condition at the trailing-
edge is insufficient, which bears some relation to the
first point. The third of the undesirable features
is that the shape of the trailing vortex sheet is speci-
fied prior to the calculation, which is in fact to be
determined as a part of the solution.

Theoretical prediction of unsteady flow field around
a lifting wing executing a time-dependent motion is
an example of cases where it is of primary importance
to account for the actual configuration of the trailing
vortex sheet.  Djojodihardjo & Widnall have pro-
posed a scheme(ref. 10)in which the location of the
trailing vortex sheet as well as the strength of
singularities is to be calculated as a part of the so-
lution of the entire problem. In this scheme the
potential is given in terms of doublet distributions
over the solid surfaces as well as over the trailing
vortex sheet.

One difficulty inherent in a surface distribution
of doublets is that the evaluation of the surface
derivatives of the potential becomes much more com-
plicated compared with the case of the source dis-

tribution owing' ‘to the fact that the kernels of
the doublet integrals are by one degree higher in
singularity. ‘than those of the source integrals.
Djojodihardjo and Widnall do not seem to have
succeeded in disposing of this difficulty whence the
applications are confined to simplest cases. In their
scheme again the Kutta’s condition is treated only
insufficiently, which has motivated the present work.

The three methods so far referred to are all aiming
at the exact solution of the potential flow problem.
The method developed by Woodward et al. (ref. 11
& 12) may be deemed to be situated somewhere
between these ‘exact’ methods and the conventional
lifting surface theories. In this method the effects
of isolated fuselage and wing-thickness are first calcu-
lated employing the linearized-theory approach. The
effects of wing camber and incidence, and of inter-
ference between the fuselage and the wing in combi-
nation are then accounted for by distributing ‘constant
pressure singularities’ upon their surfaces. This
‘pressure singularity’ is nothing more than a plane
vortex sheets which has been widely used in the
linearized wing theories. The vortex distribution
assumed in this method is of approximate nature in
the sense that only a component of the vortex vector
is taken into account which gives rise to a pressure
difference across the surface. This approximation
may cause serious errors when the method is applied
to the cases where the wing aspect ratio is small and
hence the spanwise variation of aerodynamic loading
is appreciable. It is possible that to this approxi-
mation is connected a foible which haunts this method
that the downwash control point at which the
boundary condition is applied should be located at
95% of the local panel chord through the centroid
of the panel instead of the plausible mid-chord point
or the centroid itself as is chosen in the case of the
source distribution. There is neither a physical nor
a mathematical reason for the choice of this figure
except that the calculated results have thus been
best fitted in either experimentally or theoretically
obtained ones. Obscurity of this figure is manifested
through the fact that other figures of 75% and 85%
were suggested elsewhere for this business. (ref. 13)

In view of several unsatisfactory features identified
in the existing methods mentioned so far, an attempt
is made in the present work to place the theory for
the calculation of lifting potential flow field on a
more rigorous foundation.

Following the approach taken by Djojodihardjo
& Widnall, the flow field is assumed to be re-
presented by a distribution of doublets over the body
surfaces and the trailing vortex sheet. As was
already remarked in the foregoing, the expressions
of the derivatives of the potential (i. e. the flow
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A Method for the Calculation of Lifting Potential Flow Problems (1) 3

velocity) are such that one cannot evaluate the sur-
face values of the derivatives effectively if he leaves
them as they are. Hence it is attempted in Section
2 to transform the expressions by means of the
integration by parts into forms in which the order
of singularity of the integrands is reduced by one
degree compared with the original ones. It happens
that the transformed expressions indicate a velocity
field induced by a vortex distribution over the same
body surfaces and trailing vortex sheet. Thus a cor-
respondence is established between a surface distribu-
tion of doublets and that of vortices.

Attention is then turned to the Kutta’s condition

at the trailing-edge of a wing because of its

significance as a decisive factor to control the lift
distribution on the wing. In Section 3, therefore,
the behaviour of the potential and its derivatives is
examined in the neighbourhood of the trailing-edge.
Several conditions are derived with respect to the
doublet strength and its derivatives at the trailing-
edge as a consequence of the requirement that the
flow velocity remains finite there.

In the subsequent Section these conditions are in-
corporated in the formulation of the potential flow
problem in terms of a surface distribution of doublets.
By virtue of the correspondence rule between the
doublets and the vortices, the formulation of the
problem is also possible by the use of a vortex distri-
bution over the body surfaces and the trailing vortex
sheet. Realization of this possibility is considered
in Section 5 and the corresponding formulation of
the problem is accomplished thereby completing our
analysis,

SYMBOLS
see (4. 5) and (5. 16a)
see (4. 6) and (5. 16b)

Dy see (2. 16)
Dy, Dp,, Dy; components of Dy

g] components of a metric tensor,

i see (A. 1. 1)

fn } components of the unit normal
vector n

n

n see (3. 8)

n unit normal vector

q flow velocity

7 distance between P (z, y, z) and
Q& 20

S surface on which singularities are
distributed

s arc-length

To point on the trailing-edge

¢ see (3. 7)

U free-stream velocity

surface coordinate

u

v surface coordinate

v velocity induced by a vortex dis-
tribution

x

Y Cartesian coordinates

z

ay, oy, ag unit vector along the a-axis, see
(A. L. 4)

Bi, Ba, Bs unit vector along the B-axis, see
(A. L 4)

a

B tangential unit vector to S

7

ép tailing-edge angle, see (3. 15)

é sign convention, see the paragraph
following (2. 3)

3¢s, S¢p dps=¢su—¢sL etc., see (3. 33)

48 part of S in the neighbourhood of
Ty

d¢s, d¢p part of ¢g or ¢p due to the inte-
gration over 45

3

7 Cartesian coordinates of a point on S

¢

6 angle measured from the x~y plane

A, As, A3 components of 2

A see (2. 17) or, in Section 5, the
vortex vector

An see (5. 9)

# strength of doublets

v coordinate along n

I see (3. 12) or, in Section 4, the
density of fluid

g strength of sources

é potential

@ perturbation potential or see (3. 12)

&1, Pa, Ps components of ¢

¢ vector potential of a vortex dis-
tribution, see (5. 1)

Subscripts

B refers to the body surface

D refers to a doublet distribution

L refers to the lower surface of a wing

s refers to a source distribution

U refers to the upper surface of a wing

W refers to the trailing vortex sheet

a refers to the a-axis

P refers to the -axis

» refers to the v-axis

2. POTENTIALS AND THEIR

DERIVATIVES DUE TO SUR-
FACE DISTRIBUTIONS OF
SINGULARITIES

Qur first objective is to establish a mathematical
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4 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-240T

formulation of the flow field around a lifting body
with trailing vortex sheets in terms of distributions
of singularities over the body surface and the sheets.
Before launching the formulation it is advantageous
to work out the expression of derivatives of potentials
in 2 form convenient for the later manipulation.

2.1 Potential Due to a Surface Distribution

of Sources

First, consider the potential ¢g given by a distri-
bution of sources ¢ over a surface S:

1 o
ss=4 | —dS
where r is the distance between a point P(z, 7, 2)
in the flow field and a point Q(&, 7, {) lying on S:
r=(z-8€)+ (y—7)3*+(z—D)2% (2.2)

The derivatives of ¢s are obtained by differentia-
tion under the integral sign as long as P remains
outside S and provided ¢ and S satisfy certain regu-
larity conditions. Mathematical discussions of this
kind are found elsewhere.(e. g. ref. 14, Chap. IV
or ref. 15) For the moment we assume that o and
S satisfy all the requirements relevant to the sub-
sequent development of formulation.

When P approaches a point Qy (o, 70, Lo) on S
along the normal to S at Q,, they become unintegrable
in the usual sense and recourse must be made to
the notion of the Cauchy’s principal value for the
proper evaluation.

The results are:

() earor oo

2.1

iz 4r r3
(2.3a)
(%S‘)%:_%"(Q") o+ %fsal;—’?“—ds
. (2.3b)
(2.30)

where (Z, m, n) is the direction cosines of the normal
to S at Qp, and =41 when Q, is approached from
the side of S toward which the normal is directed

and d=—1 otherwise, and where the sign f indi-

cates that the integral should be evaluated in the
sense of the Cauchy’s principal value. Mathema-
tically, two conditions are sufficient to ensure the
legitimacy of equations (2.3), 1. e.,

(1) the density ¢ is Holder continuous at Q,, i. e.

three positive constants K, @ and ¢ exist such that

{0(Q) —o(Qo) | <K(QQ0)*
for any point Q on S which satisfies
Q<
where QQ, denotes the distance from Q, to Q, and
(2) the surface S has continuous curvature in the

neighbourhood of Q.

It is expected that in most physical situations likely
to be encountered in aerodynamical applications these
conditions are invariably satisfied.

Defining the differential operators 9/9n and @/ds as

] ] F] a3

(T o=t 75 g, @9
and i ' )

d a ] a
( W)Q:(“ﬁz M +TT;)P=.Q; (2.5)

where (a, B, 7) is a unit vector lying in the plane
tangent to S at Qp, we obtain

(B o= po@ ar g forgr ()35
(2.6)

and

(5o §o ().

Although only the formula (2.6) is written out
explicitly in the literature(e. g. ref. 15) the expres-
sions (2.3), and hence (2.7), are easily obstained
by following the procedure similar to the one adopted -
there.

@7

2.2 Potential Due to a Surface Distribution
of Doublets
Next the potential of a surface distribution of
doublets is discussed: it is given by

1 a 1
$p(z, v, 2) =~4—x-'s e (T)ds (2.8)
where
d 0 d 0
IR A S

(I, m, n) being the same as in the case of és.

As is easily seen,the kernel of ¢p, 9(1/7) /0y, is
by one order more singular on S than the kernel
1/r of ¢s.

Because of this fact the evaluation of surface
derivatives, i.e. the values which the derivatives
would assume as the point P(z, v, z) approaches a
point Qp on S, becomes much more difficult with ¢p
than with ¢g, and to the auther’s knowledge there
have been no detailed account in the literature on
the explicit form of the surface derivatives of ép.

However, assuming that the strength p of doublets
is adequately regular on S(for instance the conditions
are sufficient that g is differentiable and that the
derivatives are Holder-continuous), the derivatives of
$p on S can be obtained in the following way.

Since
) (1 3 (1) o
o¢ r)h ox \ r o
we have

a /1 ) 9 a 1
& (7)?(‘3; ey T e )(T )
(2.9b)

Then for a point P outside S,
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1 d d d 1
=F{a—yss"(’"*ae——l—a;) (‘—) ds

d a a
Sl () s}
(2.102)
In passing from the second line to the third in the

above equation use has been made of the fact that
02 o3 0% 1
(e + 2 ()=
Similarly,
(a”)—l{ai( mear ) ()48
3y /p 4r | 8z 37) GC
d 1
oty ) (5 )]
and

(2.10b)
o\ 1 [ @ 9 3 > )
( 9z )f i {ax Ss“(l e ( 45
b7} a
oy Ss#(“ o )( >dS}
(2.10¢)
These expressions of the derivatives of ¢p are

written down concisely using the notations of vector
analysis as

grad ¢p=rot ¢ (2.11)

Where d: (¢'11 ¢33 ¢5) is given by

i (x, v, 2) =—;Tssy(naa—’)— m—i—)(—i—)d&
(2.12a)
bt A (s
(2.12b)
and
sz, ¥, 2) =—— 41}‘ S (m 3 —1 ai; )( >dS
(2.12¢)

We now attempt to transform the right-hand sides
of (2.12) so that the kernels of the integrals emerge
with singularities of order of 1/7 on S instead of 1/73.

Let us define an orthogonal curvilinear coordinate
system {(a, ) confined within the surface S. To

f

Sketch 1

this system is added the third coordinate », which
is the distance along the normal to S, to form a
three-dimensional coordinate system (a, 8, v).

Let ds. and dss be the element arc-lengths along
the a- and B-axes respectively. Further, let (a;, a3,
a3) and (B, B3, Bs) be the expressions in the Cartesian
system (z, ¥, 2) of the unit vectors in the directions
of the a-axis and the B-axis respectively. The differ-
ential operators appearing under the integral signs
of equations (2.12) are shown to be inner operators
on the surface S and are expressed as

0 9 7
nﬂ——ﬂlﬂ'a—c—-——ala—sp——ﬂl—a?, (2.133)
0 a 7 ]
ZBC R = 25, —Bs e (2.13b)
and d 0 0 d
T -1 3 =ay 55 —Bs e (2.13¢c)

A detailed account of how these and subsequent
results are obtained is given in Appendix I.
Since the surface element dS is given by
dS=d5¢ dSﬁ,
the right-hand sides of (2.12) thus become amenable
to the integration by parts resulting in

¢1=—41”—{S A gs— f %de}, (2.14a)

fr=— {S Zas—§ —dv} (2.14b)
and _1 N .

%_47{88743— { aST‘Z‘:} (2.14c)

where the symbol f indicates the line integral along

the boundary 3S of S in the sense that the side of
S from which the v-axis is directed away is seen on
the left-hand side as the boundary is travelled.
It goes without saying that the line integrals in
(2.14) do not emerge at all when S is a closed surface.
The function 4;, 4; and 4; are given by

P P
h=p af o a: ’

(2.15a)
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6 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-240T

a 2
=5, 3:1 —a, 3.::; (2.15b)

and
o on_ (2.15¢)

23:53 as, % as,a

To put the expressions (2.15) into a concise form
we introduce a vector Dy, which is the gradient of
p within S, defined in the (a, 8, v)-system as

[ o op )
Dp-( 55 T3 0)- (2.16)

Now consider a vector 2 given by
2=vX Dy (2.17)

where v is the unit vector along the v-axis which
is expressed as (0, 0, 1) in the (a, B, v)-system.

Then it is easily shown that 4,, 4; and 23 of (2.15)
are the three components of the vector 2 viewed in
Cartesian (x, y, 2)-system:

(41, 23, 43) = (¥ X Dpt) -y-3 system (2.18)

As is seen from the definition of &, it is tangent
to S, and is orthogonal to the gradient Dy.

The expressions (2.14) are the desired ones. Ac-
cording to them ¢ is given in terms of integrals of
which the kernels are of order of 1/r as a point on
S is approached, and is in this respect similar to
the potential due to a surface distribution of sources.
Therefore a process similar to the one taken in
deriving the surface derivatives (2.3) from the poten-
tial ¢g (2.1) can be employed to obtain surface
derivatives of ¢p using the relations (2.11) and (2.14).

The final results then are as follows:

Let (Due, Dpy, Dut) denote Dy viewed in the (z,
Y, Z)-system:

a d
Dm=alT“—+ﬁ, a# (2.19a)
D"l’)_ai a +ﬁ1 as (z'lgb)
and
Dpe=ag—E— a T (2.190)

Using Dg in the sense of (Dpe, Dy,, Dpr) and
understanding » to be (I, m, n), we have

(22), = om 1§ oo
wad( )], a5t (a f 5

xd:;—% { %dc]qo . (2.200)

(B2), =5 Dm@ -2+ § [("lDﬂ—Dﬂw)
w D), v [ f

0 ¢
X~ f -r-de}% (2.20b)

and

(282), om0 514 § -

where

w(2)-(555, 52 555

and 6==+1 or §=—1 according as the point Qp on
S is approached along the positive or negative side
of the v-axis.

Corresponding to the expressions (2.6) and (2.7)
for the case of ¢g, we have the following expressions
of the normal and tangential derivatives of ¢p:

( 3¢ p )Q°:<l 9$p m 9$p in 9$p )Qo

an ox oy 0z
=LVi+meVs+mVs, (2.222)
34D _ ddp odp a¢D
(.__asa )Qo__(al ar +a 3 a +a 3 9z )QO
1/9
=_(_f‘-) S4ey Vit a,VatagVy
2 05« Qo
(2.22b)
and
b (. %p ép 9p
(%2) (s %2 1822 0%

1/30
=_2—(~35_;:.)Qo +pVi+8:.Vi+B8:Vs
(2.22¢)
where (Zy, mg, np) stands for (I, m, n) at Q and

Vlz—%—{f {{Du—Dusw) -grad (—}‘—)ds

+-:? ——f—d}y-—% f—"r‘—dc}eo, (2.23a)
V’:Tl{{ f (mDp—Dyy) - grad(%)dS
+_a__ de—g fl‘_de}qo, (2.23b)
Vim {f (nDp—Ducw) - grad< )as
i fratfra,. om

The relatxons (2.22) and (2.23) indicate that in
contrast to the case for the source distribution, the
normal derivative of the doublet distribution 8¢5/0n is
continuous across S while the tangential derivatives
04 p/ds« and d¢p/dsy suffer jumps of dp/9s« and du/
9sp respectively in passing through the surface.

The principal results in this section are the equa-
tions (2.11) and (2.14).

The equation (2.11) implies that the velocity field
can be given in terms of a vector potential ¢ instead
of in terms of a scalar potential ¢p. On the other
hand we know that a velocity field induced by a
vorticity distribution is conveniently described in
terms of a vector potential A three components of
which are given as integrals related to that vorticity
(e. g. ref. 16, Sec. 148). Our expression of ¢5,(2.14),
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A Method for the Calculation of Lifting Potential Flow Problems (I) 7

is equivalent to 4 if 2 in (2.14) is interpreted as
the vorticity itself occupying the place of the surface
S while g appearing in the line integrals interpreted
as the strength of the vorticity concentrated on a
line which takes the position of the boundary of S.
Thus the equations (2.11) and (2.14) indicate that
a flow field due to a doublet distribution over a
surface is equivalent to that due to a vorticity dis-
tribution over the same surface, provided equation

(2.15) is satisfied between them.

- Though the term ‘vorticity’ concerns with an
attribute of fluid in motion rather than implies what
gives rise to a particular motion in fluid as the terms
‘source’ and ‘doublet’ do, the term ‘vortex’ is per-
verted in this paper to refer to the singularity demon-
strated in equation (2.14). A ‘vortex’ distribution
over a solid surface is a fiction in the sense that it
is capable of sustaining a pressure difference and
adheres to the surface without being convected with
the fluid. (ref. 1, p. 296)

Unlike source and doublet, vortex is a vector just as
the vorticity is, of which strength is either 2(4,, 2, 2;3)
or (u-dt/ds, p-dn/ds, p-df/ds) according as the
vortex is distributed on a surface or along a line.
More will be discussed about the vortex distribution
in Section 5. The equivalence between a doublet
distribution and corresponding vortex distribution is,
although in a rather cursory manner, already suggest-
ed elsewhere. (ref. 16, Secs. 150 & 151)

Although the finding of this equivalence law is
in a sense a by-product obtained in an effort to
achieve a convenient expression of surface derivatives
of the potential due to a doublet distribution, this
finding will be exploited fully to facilitate the formu-
lation of problems in the later stage of numerical
computation.

3. BEHAVIOUR OF POTENTIALS
DUE TO SINGULARITY DISTRI-
BUTIONS AT THE TRAILING-
EDGE OF A WING

A variety of techniques has been employed in the
existing literature of potential flow calculations in
order to meet the Kutta’s condition at the trailing-
edge of a wing. None of them, however, are
deemed satisfactory because even the finiteness of
flow velocity has not been guaranteed when a point
on the trailing-edge is approached. Therefore a
more detailed study of the condition is desired and
this is accomplished to an extent by examining the
behaviour of potentials and their derivatives due to
singularity distributions such as sources and doublets
in the neighbourhood of the trailing-edge of a wing.

3.1 Behaviour of gg
‘We investigate ¢g, the potential due to a source

distribution first, because the knowledge acquired with
this case is directly applicable to the case of ¢p, the
potential due to a doublet distribution.

Let us fix a Cartesian coordinate system {(z, ¥, 2)
as follows: the origin is placed at a point 7T on
the trailing-edge. The y-axis is taken in the direc-
tion of the tangent to the trailing-edge at 7y and
the z-axis lies in the plane which is determined by
the y-axis and the tangent to the streamline emanat-
ing from T,. The z-axis is fixed so that the system
is right-handed.

Let ¢g be divided into three parts:

1 g
$s(z, v, 2) =_41r—g,g_r—ds

1 g
=5 V505 S
LS 2as
Ar Jas-as, T
ds

1
+?"<T°)S,s, -

where 4S is a sufficiently small neighbourhood of
Ty on S and 48, is part of the plane folded along
the y-axis (see Sketch 2 (b)) with the angles 6y
for the upper sheet and 8, for the lower one, 0y
and @z being the tangent angles at Ty of the upper
and the lower branches of the section of the wing
intercepted by the z-z plane(Sketch 2 (c)).

The first integral of the right-hand side of (3.1)
obviously does not contribute to any singularities in
¢s and in its derivatives which are likely to occur
when the point P (z, y, 2) tends to T.

As for the second integral, which is the abbrevi-
ation of

(3.1)

S ids—a(To)S as
T 48, T

it i1s shown that this integral nor gives rise to any
singularities in them provided ¢ and 45 satisfy certain
conditions. A detailed account of this assertion is
given in Appendix II.

Thus the singular behaviour of ¢g and its deriva-
tives will be known by examining the behaviour of
the third integral as P approaches 7.

We designate the contribution of the third integral
to ¢g by affixing 4 to it:

3.2)

1 ds
dps=——0 (TO)Sdso —. (3.3)
Likewise we define
s _ 8 . 1 . ds
4 9r ~ oz 4gs= 4x o(T) dx S;so r (3.4

Let a point Q (&, 5, {) on 4S5, be given in terms
of a serface coordinate system (u, v) as
§=u cosl
n=v } (3.5)
{=u sinf
where
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- 23

z
|
E
0 6.
*)
E\
(¢)
Sketch 2

8_{0[] for O<u<ec,
18z for —c<u<o.
u is the coordinate along the section E; Ty E; of
4S, cut by a plane normal to the y-axis and v is
the coordinate along a line parallel to the y-axis.
Let, further, ¢ and n be given by
t=x cos@+zsinb

3.6)

(3.7
and

n=x sinf—z cos b, (3.8)

and let the subscripts y and z stand for the values
relevant to the upper and the lower sheets respec-
tively. For instance
tg=xco80y+z sinfg.
To allow for a possible discontinuity in the density
¢ across the trailing-edge, we discriminate op and
or defined as

ag=}]"m} o(P): for Pe the upper sheet of 4S
—=io0

and

gL= zlrmi' g(P): for Pe the lower sheet of 4S.
—i9

Now we have
= (z—£)2+ (y—71)*+ (2—5)?

=(u—1t)*+n*+ (v—y)? (3.9)
and
|f®& & & oy o
ds*l(au’au' au)x(av’%’%‘)]d“"”
=dudv

Then the integration is performed yielding the
following :
dsS

drdgs=0(To) SAS r
[ 8 dv

_OUSoduS_' v (u—1t)34+n+ (v—y)?

S‘ dv
s Y (u—0)4nt+ (v—yp)*
Vie—ty) +np*+ —1)*+s—y
v c—ty) +np+ (s+u)2—s—y
Vig+ngi+ (s—y)4+s—y
Vg fngi+ s+y)i—s—y
vV c=tg) Fno'+ 5—y) +c—ty

+ (s—w)log Vigi+ngd+ (s—y)i—ty
v {c—tg) +ng*+ (s+y)+c—ty

0
+0LS du

-C

=00{(C—tu)10g

+tylog

+Gtlog— 7 (s+9)*—ty
_ (s—v) (c—ty)

__"U[Tan ! ngv (c—tg) +ny*+ (s—v)*

+Tan-1 =i

ny tg¥ g+ (s—y)?
(s+9) (c—ty)

g (c—tg)3+ny?+ (s+v)3
s+w)ty ]}

oV tg*+npi+ (s+9)?

V{c—t) 3 +n 3+ G—v)+s—vy
+6L{(C+tL)log"/(c-tL)’+71L’+(3+2/)"_5"'V
Vigtnld+ (s—y)its—y
Vigtni+ (s+y)*—s—vy
V=t FnF =) i—c—1

Vi nd+ (s—y)i—1L
Vie—tr) +n’+ (s+y)i—c—tg

+Tan-1

+Tan~-1

—trlog

— (s—u)log

— Gl T )iz
B (s—y) (c+tr)

(s—wtr
niV e i a4 (s—y)?

—Tan-1
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(s+y) (c+2r)

npV (c+tr)i+n 2+ 5+v)?2
(S'J("y)tz,

niVidtngi+ (s+v)3 :”, (3.10)

4xd< s )=U(TO)SASO =2 4s

+Tan-1

—Tan-?

ox 3
— {00800[10 Vc—t) +ny+(s—y)3—s+y
2 L ®Vie—w)y +nit -9 +s—v
—log Vigitngi+ s—y)i—s+y
Vigitngi+ (s—y)i+s—vy
vV i{e=tg) ng*+ s+y)i—s—y
vV (c—ty) i Fngi+ (s+v) i +s+y
Vigi+ng+ (s+y)i—s—y ]
Vi +ng*+ (s+y)i+s+y
(s—y) (c—ty)
nov (c—tg)3+nyd+ (s—v)3
(s—y)ty
nyVtgi+ngi+ (s—y)?
(s+y) (c—ty)
ng (c—ty) +ngi+ s+v)?
(s+¥)ty :”
ng v ty¥+ngd+ (s+y)?
cosfz Vid+n3+ —y)i—s+y
+0L{ 2 [log Vi ngi+ (s—y)3+s—y
o Y et D) T nitt (s+y) sty
Vi{ctt)3+nd+ s+v)i+s—y
Vid+n3i+ (s+y)*—s—y
Vi tnd+ s+y) sty
_log Vet tnl+ s+y)?—s—y ]
Victe) tnli+ (s+y) sty
-1 (s—¥) (c+21)
nLY (c+tr)+nd+ (s—v)?
—wiL
ALV tn i+ (s—y)3
(s+v) (c+121)
nLy (ceL) +ni3+ (s+v)?
s+v)iL
niNt 3+ n3+ (s+y)? ]} (3.11a)

+log

—log

—sin 8y I:Tan-1

+Tan-1

+Tan-1

+Tan-1

+log

—sin ﬁL[Tan

—Tan-1

+Tan-1

._Tan-l

dds \__ 7—vy
i, 22

v (c—ty)3+ny’+ (s+y) P +c—ty
vV (c—ty)+ngd+ (s—y) 3 +c—ty
o ~/to=+na=+(s+y)=—tu}

B Vigitngi+ G—v)—ty

=gy {log

vV (c+e) +nd+ (s+y)’—c—1y
Victtp) i+ s—y)3—c—ty
Viidn 4 (s+y)i—2y

RV e G+y)i—tL } (3.11b)

and 4(9¢5/3z) being obtained by substituting 67 —=/2

and 6;,—=x/2 for §y and 6 respectively in the right-
hand side of 4(d¢s/9x) given above.

Now suppose that P(z, y, 2) tends to 7Ty along

a path which does not touch the y-axis at T5. Let

—a,,{]og

the symbol R(A) denote the singular part of a
quantity A resulting from this process.
Puiting IT=p COSQ
y=0 } (3.12)
z=p sing
and letting p tend to zero in the right-hand sides
of (3.10) and (3.11), we obtain the following results:

R(¢s) =0,
R( 5 ) :_41’7 (91 cos8,—ay cosfy)log o,

ox
(3.13a)
dy
and
) 1 . .
R( ;zs >=_41—(”L sin @ —oy sin 0y)log p*.
(3.13¢c)

These results are independent of what path is taken
actually provided the path does not touch the y-axis
at Tg. They show that the velocity becomes loga-
rithmically infinite as P approaches the trailing-edge
unless the following condition is satisfied :

(oy cosby—oyg 00s81)2 + (oysin 8y —o1sin01)3=0.

(3.14)

Using the trailing-edge angle 7 defined as

dp=r— (0 —01), (3.15)
this condition reduces to
opd+or3+ 200y cos dy=0. (3.16)

Restricting ourselves to physically plausible cases
where

0S6T<F"
we see that this condition implies that
ogp+or=0 if dr=0 3.17)
and
6y=01=0 otherwise. (3.18)

That is, the source strength must vanish at the
trailing-edge in order that the velocity remains finite
there as dictated by the Kutta’s condition unless the
trailing-edge is cusped, in wich case the sum of the
source strengths on both sides of the wing surface
at the edge should vanish.

The condition (3. 16) renders the flow velocity
not only finite but also continuous at the trailing-
edge. If a source distribution exists which satisfiies
the boudary condition of vanishing normal velocity
on the body surface, then it is inferred that the
condition (3.18) at T, implies the vanishing of the
velocity component normal to the trailing-edge at
T, since otherwise the velocity would become dis-
continuous.

3. 2 Behaviour of ¢p

Now we proceed to the case of ¢p, the potential
due to a doublet distribution,

¢p is used to describe a flow field around a lifting
wing. Inherent in such a flow field is the existence
of the trailing vortex sheet which emanates from
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the trailing-edge of the wing riding, as it were, on
a stream surface. ¢p then includes terms due to a
doublet distribution over the trailing vortex sheet.

Incidentally, it is possible to try to represent a
lifting potential flow field by a combination of a
source distribution on the wing surface and a doub-
let distribution over the trailing vortex sheet. In
fact, as will be shown later, this flow model does
not work well unless one extends the doublet sheet
across the trailing-edge into the interior of the wing
just as was done by Rubbert & Saaris, whose ap-
proach we discarded however for several reasons.
(cf. Introduction.)

As has been done with ¢g, ¢p is split as follows:

s e

1 d 1
—_ESS—AS#—GV—(T)JS
1 0 1
+ 4r SAS—AS.,# ov (—r—)dS

1 a 1
o LSO E—(T)ds (3.19)

where 4S is a neighbourhood on S of a point T on
the trailing-edge which includes a part of the trail-
ing vortex sheet as depicted in Sketch 3(a).

As before the integral on 4S is replaced by that
on 48, the difference, the second integral in the
right-hand side of (3.19), between them giving rise
to no singularities in ¢p and in its derivatives as P
(z, v, z)approaches Ty. A4S consists of three parts:
A4Sy lying on the upper surface of the wing, 4Sr
on the lower surface and 4Sw on the trailing vortex
sheet. Correspondingly 45, consists of 4S,y, 4SoL
and 4Syw as is illustrated in Sketch 3(b).

Let us define py, pp and pw as

ﬂu=P1iH11' g(P) for PedSy,
=10

pr= lim p(P) for PedSp
P-‘To

and
pw= lim p(P) for Pe 4Sy.
P—Ty

Since the direction ¥ of the normal is given as
(Sin 6, 0» —0050),
were 0 is as defined in Sketch 2(c),

we have
d /1 n
‘aJ(?)—F‘ (3.20)
Then
4m¢D=S i(i)ds
48y Ov \ r

[ 3 0 & b 8
= {pys duS dv+pLS duS dv+ pws dus d'v}
0 -8 ~c -3 0 -3

n

X0t =g

- (=) (c—ty)
Z"”[T“‘“ oV e—tg) trgit Gop)?

E et ]

(c)

Sketch 3

This document is provided by JAXA.
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(s—v)ty
nu tyi+ngi+ s—y)?
(s+y) (c—ty)
nuy (c—tg)*+ng+ (s+v)?
(s+¥)tw }
nuV ty¥+ny®+ (s+y)3
- (s—y) (c+t1)
M L{Ta“ QETVavaw L ey ey
(s—y)tg
LVt a3+ (5—y)?
(s+y){c+tL)
L (c+er)3+nii+ (s+)°
(s+y)tL }
neV i+ (s+v)°
sy ()
_pW{Tan 1 POV e e e

(s-w=zx

2V 2+ (s—y)3+ 22
(s+v) (b—x)

2/ (b—x)3+ (s+v)i+22
(s+v)z :

T T | 2D

Here it should be noted that the normal to 45,5
is taken in the direction of the negative z-axis. In
other words, the axis of doublets on this sheet is
positive downward.

It is seen from(3. 21)that ¢p(z, v, 2) remains finite
as the point P(z,y, z)tends to T,. The limit value
of ¢p in this process, however, depends on the path
along which P approaches Ty. For instance, in case
where the path is such that it lies in the £—z plane
and the tangent to it at 7 makes an angle ¢ with
the z-axis, the limit value is given by

lim 4¢p
P-Ty

+Tan-?

+Tan-1

+Tan-1

+Tan-1

—Tan-1

+Tan-1

+Tan-1

+Tan-1

=—21;- {po (x—by +¢) +p1(6—9) —pw (F—p)}
(3.22)
provided that
0<Oy—p<2r, —x<b;—p<z and 0<p<2x,

In fact the right-hand side of (3.22) does not
exhibit an explicit dependence on ¢ because of the
relation

pw=pL—py
which is a consequence of the Kutta’s condition as
will be shown in the subsequent discussion of
4(9¢p/0z), etc.

However the first term py(x—8y+¢), and the
second term puz(6.—¢), in the right-hand side of
(3.22) should be replaced respectively by py(—=x—
6uy+¢) when ¢ is such that

—2x<0p—p<0,
and by ur(2x+6;—¢) when

—3a<ll0;—p< —n,
which indicates that the limit value actually depends
on the approaching path.

Next we turn to the evaluation of 4(8¢p/0x), etc.

The curvature of S is in general not continucus
along the traiiling-edge. The strength ¢ of doub-
lets together with its derivatives either may not be
continuous across the edge. These peculiarities
preclude inadvertent application of equation (2.14)
in obtaining 4(d¢p/dx), etc.

The expression (2.14) as it is fails to be valid
along the trailing-edge, and the interchange of the
differentiation and the integration, as is required in
view of equation (2.11), may also cease to be valid
in a limiting process of approaching the edge.

However these difficulties are obviated by apply-
ing a cut to S along the trailing-edge thus render-
ing it a union of three open surfaces with the trail-
ing-edge as a part of their boundaries, on each of
which the curvature is continuous and the strength
¢ is regular.

48, is then made up of three separate sheets as
depicted in Sketch 3(c) on each of which the direc-
tion of line integrals are defined as shown in the
Sketch according to the convention stated in con-
nection with equation (2.14).

Now we have

B -2
—gz—(s B s f-——dv)}, (3. 23a)
(3 ) {a (fas- f Lrar)

( 23 2 as—4 «dc)} (3.23b)

and
o342 ) e { ([ s f L)
@
———(S—dr S—f—de)} (3.23¢)
where the surface integration ranges over 4.5, while
the line integration goes along 84S,, the periphery

of each of 4Syy, 4Sor and 4S,w.
Let us first consider the line integrals. The integ-

rals § (p/r)dt and f (u/r)di remains regular as

the point P approaches T because the path of inte-
gration is at finite distances from T7%.
The remaining one is

pydv
5 S Vigdtngi+ (v—y)?
S" rydv

v (c—ty) +ngi+ (v—y)*
S prdv
-s Y (c+t) +ni+ (v—y)3?
- urdv
¢ Viitnd+ (v—y)?
: twdy
-1 VI (y—7)¥+2?
s twdy
s Y{z—b)3+(y—p)i+22 "

(3.24)

This document is provided by JAXA.



12 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-240T

The second, third and sixth integrals in the right-
hand side of (3.24) are regular for the same reason

as for f(,u/r)de and f(p/r)dc.
Then the other terms are evaluated resulting in
f%dry: (pv—L+pw)

I [ VIF =)+ +s—y :]
8 Vit (s+y)i+22—s—y
+ (terms regular at x23422=0). (3.25)

Hence the integral f (p/r)dy gives rise to a singu-
larity of the type of (23+2%)-Y2 in 4(grad ¢p).

In deriving this result it is assumed that the
strength p takes constant values. If g satisfies the
Lipschitz condition:

lu(x) —p(a) [<K|z—a]

along the trailing-edge then allowing for the variation
of p as a function of v (or ) does not affect the

above result.
Because :

{for instance,

d (s u(v)dv
ox S-: Vit (v—y)3+2
a (s u(y)dv
“?S_, Vit (v—y)T+22
y |z (v—y)|dv
e e
:K[ 1] I N—
VZifz? VI (s—y)i+2?

x|
VAT ) (8.26)
which verifies the assertion.
Next the contribution from the surface integrals

is considered. As is inferred from the calculation

of dgrad gg, an integral S(a/r)dS gives rise to the

singularities of @ cos@-logp? and asinf-logp? in
(6/61)S(a/r)dS and (a/az)g(a/r)dS respectively
where p*=x%+42? and 6 is the angle which the
intersection of S and the z—z plane makes with the

z-axis towards 7.
Hence the term, for instance,

9 S jl_d,g__a__s '1_3‘13
9z Jaso T 0x Jis, T
is singular by
{{(—41ysinBy+2;7sinbr)
— (—2sy cos 0y + 23, cos 01, —23w) }Hog p?
at To.
Here we have defined, as before, the following:
Zkvzgin;' Zk for PGASU l
=40

Ar=1lim 4 for PedSy \p_123
P—'Tﬂ 3~y .
Ayw=lim 2 for PedSyp
P-T,

Collecting all the singular terms we finally obtain
the following result:

R (—?;L) = —“ZIT{ (PU—#L-HJW)‘—;T

+ (—Aay sinou+z,LsineL)logp},

(3.27a)
9 1 . ;
) i
'—('—ZSU cOoS ﬂg-{'—z;[, COoS 0L—23W)}]0g o
(3. 27b)

and

R( ag;: )= ——21—;~{ (to—pr+pw) *f;—

+(—awcosag+zchosaL—zzw)logp}.

(3.27¢)
Now the Kutta’s condition is called into play.
First, the singularities of order of 1/p should vanish:
ro—prtpw=0 (3.28)
which is a kind of conservation law of the doublet
strength at the trailing-edge. This condition has
already been aquired by Djojodihardjo & Widnall
(ref. 10) as a consequence of the continuity in the
potential jump across the trailing-edge.
Next, the singularities of order of logp are to be
suppressed :
— A3y sin g + A3 sin =0,
(=4 sinfy+ALsinby)
—(—23p cosOy+23p cos 0 —2;w) =0 (3.29b)

(3.29a)

and
— 23y cos 0y + 231, cos 01— 23w =0. (3.29¢)
In view of equation (2.18),
A(y, 43, 43) is given by
Ay=Duy, cos ¥, (3. 30a)
Ay=— (Dpe cos 0+ Dy sin 6) (3. 30b)
and
23=Dpy, siné (3. 30c)

where 0=0y for A4Sy, 6§=0; for 4S,; and 6==x
for 4Spw. (Note that the normal to 4Sew is in the
direction of the negative z-axis.)
By substituting (3.30) into (3.29b) we see that
the singularity in 84p/0y vanishes automatically.
Equations (3.29a) and (3.29c) imply that
Ayy=ksinfy,
2; L:k sin 0(;
and
13wzk sin (ey—ﬁL)
=ksin 51-'
where 07 is the trailing-edge angle(eq. (3.15)) and
k is an arbitrary constant.
Let alone %, 43y depends on 6 while 2;; on 6.
This is rather a strange situation and we are tempted
to put £=0 resulting in

Ly =231 =23 =0 3.31)
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except for the case of a cusped trailing-edge, for
which instead we have

A3y +23.=0

Zaw =0 }

Summing up, the Kutta’s condition demands that

for a doublet distribution representing a wing surface
and accompanying trailing vortex sheet, the strength
¢ must satisfy the following conditions at the trailing-
edge:

(3.32)

po—pL+pw=0,

RgW = 0
and
either 2y =231,=0
for a wedge-type trailing-edge,
or 237 +231.=0

for a cusped trailing-edge.

Looking in terms of vortex distribution, 2; is the
component of vortex vector 4 in the direction tangent
to the trailing-edge. The condition 2,=0 at the
trailing-edge is convincing since 23 is one of the
agents through which the pressure difference is gen-
erated across the surface.

3. 3 Potential jumps at the trailing-edge

So far the behaviour of potentials and their deri-
vatives are examined when the point P(x,y, 2)
tends to 7, from the inside of the flow field.

Now what will happen if T is approached along
the wing surface ?

As for the Kutta’s condition, the situation is not
altered in view of equation (2.20) provided Dy
remains finite at 7. The question is of interest,
however, since the circulation around the wing section
through Ty is equivalent to the jump in potential
which may arise when T is approached along the
upper and the lower surfaces.

Let us first consider the case of ¢g.

We wish to evaluate d¢s defined as

Sds=dsu—PsL (3.33)
where ¢y is the limit of ¢s(z,9,2) as P(x,y,2)
tends to Ty lying on the upper surface of the wing
while ¢gz is that of ¢s as P is kept within the
lower surface.

Suppose that ¢s is partitioned as given in ex-
pression (3.1). In the first integral there we can
put simply P=T, because 7, locates outside the
range of integration. In Appendix II it is shown
that the second integral is continuous at 7.  The
third one is written as
g ¢ & dv
SAsn T dS_S caduS-s\/(u—t)"-+-n"+('u—y)2

v (u—ty) +ng*+ (s—y) +s—y
v (u—tp) ¥ +agi+ (s+v)?— (s+v)

vV {u—tr)? +n 2+ (s—y) +s—y
vV (u—tr+n3+(s+v)*— (s+v)

=aUS:du log

0
+0LS dulog
-c

where either

ty=uy, ny=0,

} (3.35a)
tr=uycos 48,
for P(xz, vy, 2) lying on the upper surface:

x=uycosby, y=wv, z=ugsinfy, u;>0,
or

nz=—1uysin 46,

ty=ugcos 49, =uqsin 46,
v=th =t } (3.35b)
tr=u, n=0

for P(z,y,z) located on the lower surface:

x=ugcosfy, y=wvy =z=uysinfr, uy3<0

with
AH:HU—O L»
By letting P tend to Ty, i.e. by letting #,—0 we
observe that the third integral assumes the same
value in ¢gy and @gr.
Hence we conclude that
345=0. (3.36)

That is, in a flow field represented by a source
distribution over a wing surface, the circulation
around any wing section is identically zero. There-
fore a source distribution is incapable of represent-
ing a flow field around a wing with non-zero circu-
lation.

Now let us suppose that the source distribution
on the wing surface is supplemented by a doublet
distribution over the trailing vortex sheet so that it
becomes capable of representing a lifting potential
flow field.

As a matter of fact this flow model is disproved
by the following two observations.

First, let us evaluate the potential jump J¢ as
before, which may arise when a point 7, on the
trailing-edge is approached along the upper and the
lower wing surfaces. According to (3.36), the
contribution of the source distribution to ¢ is null.
The contribution from the doublet distribution is
obtained by taking the difference of the right-hand
side of (3.22) for p=0y and for p=r+0;.

Thus we have
06(To) = —pw or
2z
where 87 is the trailing-edge angle, see(3.15). (Note
that in the present flow model, py=pz=0 since the
doublet distribution is confined on the trailing
vortex sheet.)
On the other hand, the potential jump across the

trailing vortex sheet evaluated at a point Qg on the

sheet is

3¢ (Qo) = —p(Qo)
(cf. eqation (3.37) to follow and the passage preced-
ing it.)

Letting Q, tend to 7, we obtain

04 (To) =—pw
which goes against the foregoing result.

This discontinuity in the potential jump is serious
because d4(7T,) is equal to the circulation around the
wing section through 7,. The contradiction has
arisen because of the assumption that the doublet

This document is provided by JAXA.



14 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-240T

distribution begins at the trailing-edge. It can be
dissolved by extending the doublet sheet across the
trailing-edge into the interior of the wing, as was
done by Rubbert & Saaris. They say(ref. 9) that
they did this because of computational expediency
but it is seen that this extension has a vital concern
to the consistency of their model.

As the second evidence to disprove the flow model
under consideration, we apply the Kutta’s condition to
it. The singular parts in the velocity at the trailing-
edge are given by the sum of the right-hand sides of
(3.13) and (3.27). As a consequence of enforcing
the Kutta’s condition we have

ew=0
which implies that the circulation around any wing
section is zero. This in turn indicates that the
present model can handle only the symmetrical non-
lifting case and hence the addition of the doublet
sheet is utterly futile.

Obviously this situation can be salvaged by ex-
tending the doublet sheet into the interior of the
wing, since then the requirement is only the con-
nuity of the strength of doublets across the trailing-
edge.

Next the case of ¢p is examined.
In paralled to ¢g we define d¢p as
6¢p=¢pr—9pL-
Comparing equation (2.9b) with the definition (2. 4)
we see that ¢p(x, v, 2) takes a form corresponding
to the right-hand side of equation (2.6) as P(x,y,
z) approaches a point Qp(&¢, 70, %) on S:

1 1 8 /1
¢D($D! 7o, CO) ='§#(Qo) '6+4—” fs‘u—a—v.(_;)ds_

(3.37)

We may put 6=1 with the understanding that
the normal is directed into the flow field from which
P approached Q.

Then the first term in (3.37) contributes to é¢p
by

1
5 o —p1)

In evaluating the contribution from the second
term in (3.37) we again split this integral into three
as was done in equation (3.19). In parallel to the
case of ¢g, the first and the second integrals there
are continuous at 7y thus having no effects upon
8¢p. The third one, the integral over 4S,, should
be evaluated in the sense of Cauchy’s principal
value. The result, however, is identical with equa-
tion (3.21) provided that

(1) ty, ny, tz and nyz, there are to be given
either as equations (3.35a) in evaluating ¢pyp, i.e.
when P(x,y,2) is lying on the upper surface:

(7, ¥, 2) = (vpcos 0y, vo, 4psinby), >0,
or as equations ;(3.35b) in evaluating épr, i. e.

when P(z,y,2) is on the lower surface:

(:C, Y, 2) = (uo COSaL, Vo, Ug SinoL) ’ u0<01
an

(2) in evaluating ¢py the term proportional to
zy in (3.21) is eliminated because 7y =0 for P lying
on the upper surface, and in evaluating ¢pr the
term proportional to yz is to be deleted since 77=0
for P lying on the lower surface.

Then the contributions of the third integral to
épy and $p; are obtained from the expression
within the curly bracket in equation (3.22) by putt-
ing ¢=0p—0 and ¢=nr+60r+40 respectively. Here
the symbols —0 and +0 denote that ¢ tends to 0y
or n#+0r always taking smaller or greater values
respectively than the limits.

Thus this integral contributes to 3¢p the follow-
ing:

A1z 02—00) + 1w (0 —=)]
~ 1y (6L—0y) +pwbLl}

o (o —pua+ ) B~ 01) ).
Adding the contribution from the first term in
(3.37), we obtain
1 6y—6y
dgo=(+— %) Gug— ) o (3.38)
which, by virtue of equation (3.28), reduces to
0¢p=—pw=pr—pL. (3.39)
That is, the Kutta’s condition ensures that the
jump in ¢p which emerges when the trailing-edge
is approached via two distinct paths, one being on
the upper and the other on the lower surfaces of
the wing, is continuously transferred to the jump in
ép across the trailing vortex sheet. In other words,
the circulation around a wing section passing through
a point Ty on the trailing-edge is given either by
ug—pr at Ty or by —pw there, a fact which {facili-
tates the calculation of the sectional lift forces acting
on the wing. Incidentally, the relation (3.38) indi-
cates that we cannot dispense with the trailing vortex
sheet unless we restrict ourselves to the calculation
of non-lifting potential flow fields.
Because :

assume that the trailing vortex sheet is absent. Then
#w=0 and we have the condition

sy —pr=0
instead of (3.28) at the trailing-edge. As is seen

from (3.38) this makes d¢p vanish identically and
hence no circulation around any wing section.

3. 4 Singularities due to the line integrals
along the boundary

We have seen, by way of equation (3.25), that

the line integrals in equation (2.14) give rise to

singularities of order of 1/p in graddp as one ap-

proaches a point on the path of integration, where

p is the distance from this point. The line integrals ..
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being along the boundaries 4S5 it follows that the
strength g of doublets should vanish along 3.5 if the
velocity of fluid is to remain finite there. When
dealing with potential flow problems around lifting
wing-fuselage configurations, the boundaries 95 are
likely to consist of the following:

(1) the trailing-edge.

This is the boundary artificially introduced
by applying a cut to render the formulae (2.11)
and (2.14) applicable to the neighbourhood of
the edge.

(2) Lines on the surface of the body along
which discontinuity in curvature exists: possible
examples of such lines are the wing-fuselage
and -wing junctures. Cuts must be applied to
these lines, too, for the same reason as with
the trailing-edge.

(3) The spanwise ends of the trailing vortex sheet.

It is evident that the velocity of fluid is finite
along the side edges of the trailing vortex sheet.
Therefore p=0 along the side edges, and the third
member of 3§ listed above has no contributions to
the line integrals in (2.14).

For the first member the Kutta’s condition entails
the continuity of the strength g, equation (3.28),
to render the line integrals along the edges null.

For the lines of discontinuity on the body surface
we do not know exactly what is happening there.
If, at least, the continuity of g across those lines is
established, the line integrals along them vanish and
there would be no singularities of order of 1/p.
In the practical situation, the fairings are invariably
applied to such discontinuities, let alone the masking
effects of the boundary layers. Hence we have some
justifications in neglecting the contributions to the
line integrals from sources of this sort.

All in all we can enunciate the following in con-
clusion: the line integrals in equation (2.14) are
identically null when potential flow problems around
lifting wing-fuselage configurations are considered.

4. DERIVATION OF THE BASIC
EQUATIONS OF POTENTIAL
FLOW FIELD IN TERMS OF
A DOUBLET DISTRIBUTION

Suppose that the flow field around a lifting wing
is described in terms of a doublet distribution over
the wing surface Sp and the trailing vortex sheet
Sw. That is, suppose that the perturbation potential
¢ of the flow field is written as

1 i}
S s ( )dS
where S=Sp+Sw.

Let gradp denote the derivatives of ¢:

ez, 9, 2)= (4.1)

d dp  dp
g‘ad“’=( az’ oy’ oz )
When the point P (z, y, 2) approaches a point
Qo (€0, 70, o) on S, gradg tend to the limit given
by equation (2.20).
In a summarized form it can be written as

(grad p) gv=—5-Dp:(Qn) -3

+———-§ (vDu—Dpy) - grad( )dS
(4.3)

4.2)

where grad(1/r) is given by (2.21).

It is noted that the line integrals contained in
equation (2. 20) are suppressed here according to the
conclusion given at the end of the last Section.

For the sake of brevity we write the right-hand
side of (4.3) as

(grad¢) go=A4-6+B (4.4)
where
A=-—;—-D,u (4.5)
and
B= f (wDu—Dpy) - grad( )dS (4.6)

Let U be the free-stream velocity.
The velocity g at any point in the flow field is
given as a sum of U and grade.
Let go denote the value of g at Qp:
go=U-+A-3+B. 4.7
The component of g normal to S is then given as
gn=go-n=(Uu+B) -n (4.8)
since
A-n=0 4.9
in view of the definition of Dy (equation (2.16))
where n stands for the normal to S.
Hence the boundary condition on the wing surface
Sg is readily established :
(Us+B)-n=F (4.10)
where F is a function prescribed on Sp, taken to be
null for a solid surface in steady flow.

Next let us examine conditions to be satisfied on
the trailing vortex sheet Sw.

‘We discriminate between the front and the reverse
sides of Sy by writing Py or Pr according as a
point P is supposed to be lying on the front or the
reverse side.

Since 6=+1 at Quy and d=—1 at Q,z in equa-
tion (4.3), a jump takes place in ¢ as one shifts
between Qo and Qor.

Hence Qoy and Qyz cannot be positioned on a
single streamline. It follows that a streamline can-
not cross the trailing vortex sheet. That is, the
trailing vortex sheet is a surface of discontinuity
which separates two stream surfaces an infinitesimal
distance apart from each other.

Let goy and gqor, be defined as
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qov=Un+A+B (4.11a)
and
gor=U~—A+B. (4.11b)
Then the above statement is expressed as
qov -n=qor.-n=0
which, by virtue of (4.9), reduces to
(Uw+tB) -n=0 (4.12)

on the trailing vortex sheet.
Equation (4.12) implies that U.+B is lying on
the sheet. Incidentally we have, from (4.11),

1
7(qw+qoL) =gm=Ux+B (4.13)

which means that the velocity component U.+B
on the trailing vortex sheet is given by an arith-
metical mean of the velocities on the front side and
the reverse side.

Since the trailing vortex sheet is a hypothetical
surface embedded within the fluid, a dynamical con-
dition accrues that there is no pressure difference
across the sheet.

By virtue of the Bernoulli’s equation, the pressure
difference 4p across the sheet is given by

dp= -g—“ (qor*—qor®)
which, in view of equations (4.11), reduces to
4
—P’Lz—ZA- (Uw+B)=—Dy- (Us+B)

Hence the dynamical condition on the trailing vor-
tex sheet amounts to the following condition:

Dy (Ux+B) =0, (4.14)

That is, the two components (1/2)Dp and U~+B
of go are orthogonal with each other, both being
confined within Sw. It follows that the strength p
of doublets is constant along such a curve C on Sy
that at every point on it the tangent is in the direc-
tion of Usx+B, 1.e. in the direction of the mean
velocity gom.

Let us consider the circulation I' around a loop
which crosses Sy at a point Qg and never does so
at any other points on S=Sg+Swy. I isequivalent
to the difference in potential at points Qo and Qyr,
which in turn is equivalent to the strength of doub-
lets at Qy:

I'=¢(Qoy) —¢(Qor) =—(Qo). (4.15)

The latter relation in the above is easily established
by observing that the second term in the right-hand
side of equation (3.37) is continuous across Q.

From the preceding arguments, then, we see that
the circulation I'" is kept constant as (Jy moves along
any curve C which is tangent to Us+B at every
point on it. This implies that the curve C is in fact
the path of the vorticity which is shed downstream
from a point T on the trailing-edge. In other words,
the path of shed vorticity is determined by tracing
a curve which starts at 7" and is always tangent to
the direction of the mean velocity gom.

In short, the trailing vortex sheet is generated by
a family of curves which is constructed by tracing
the direction of the mean velocity gom starting from
each point on the trailing-edge. On each curve thus
formed, the strength u of doublets is constant, and
there is another family of curves orthogonal to the
former which consists of curves that lie on the sheet
and are always in the direction of the gradient Dp.

Now the basic equations of the flow field are put
together:

(Us+B) -n=0 (4.16)
on the solid part of the surface S,
(Us+B)-n=0 (4.17a)
and
(Us+B)-A=0 (4.17b)
for the trailing vortex sheet, and
po—prL+pw=0 (4.18)
and
A =0.
Further,
either

A3y =243:.=0 for a wedge-type edge
or } (4.19)
g +23.=0 for a cusped edge

at the trailing-edge of the wing,
where n is the normal to the surface, 4 is given by
(4.5) and B by (4.6).

In the above system of equations the unknown
quantities are the strength p of doublets over S=
Sg+Sw and the location of the trailing vortex sheet
Sw. There is at present no way of knowing whether
the system is in general solvable for these unknowns.

At least, however, it can be said that the system
seems to be mathematically consistent and worth
taking as a mathematical model of potential flow
fields around lifting wings or wing-fuselage combi-
nations.

5. FORMULATION IN TERMS OF. .
A VORTEX DISTRIBUTION

In Sections 2 and 3 it was shown that the veloc-
ity field induced by a surface distribution of doub-
lets could be interpreted as that due to a surface
distribution of vortices.  Based on this fact an
attempt is made in this Section to formulate the
basic equations in terms of a vortex distribution.

Suppose that the body and the trailing vortex
sheet are replaced by a distribution of vortex (4,

23, 23) over their surfaces Sp and Sw.
Let ¢ be defined as
1 A
¢(x, v, %) =FSST das
where S=Sg+Sw and
r*=(x—§)+ (y—7)*+ (z—0)?%,
Q(,1,0) being a point on S.
The velocity v induced by this vortex distribution
is then given by

5.1

p=rot ¢. (5.2)
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5. 1 Compatibility Conditions

Since by definition p2$=0 in the domain outside
S we have

rot v=rot(rot ¢)
—grad (div ¢) —p'$
=grad(div ¢).
Hence the condition
grad (div ¢) =0 (5.4)
must hold in order that the induced velocity field is
irrotational,

To investigate this condition we employ the or-
thogonal curvilinear coordinate system (, 8, v) already
introduced in Section 2. Then we see that
1 S AE—2) +4 -9 +HE—2) ¢

s 73

=_-1_S (zl 1+zg aa +1s i)( )dS

__13(1,,3 P
= F o 3ﬁ+Hau)

X (7)F-Gdad,8 (5.5)

where 2., 25 and 4, are the components of 4 in the
directions of the a-, §- and v-axes respectively given by

(5.3)

div ¢=

t=ty Sogg Te g b (5.62)
ﬁ_ ]
1’ 21 +13 G +23 G ’ (5'6b)
and
=g g S (5.6¢)
v 1777 H 2 77y H 3 H‘ -

Here £, etc., F, G and H are defined as before.
{see Appendix I)

In view of equation (2.17) the vectex vector 4
should lie within the surface S. In other words
the component 2, is to vanish identically:

2,=0. 6.7

Then integration by parts reduces the right-hand

side of equation (5.5) to

~1 s (IT e a?e)( )F-Gaads

41x {S 1[ (AG) + 55 (lpF)]dadﬁ
- f = dS} .8)
where
Y ‘;‘S’ —z,—‘fli—" (5.9)

is the component of 4 normal to the boudary 4S.
Hence the condition (5 4) requires that

a (2,.G)+ (R;F) =0 (5.10)

on S, and
A,=0 (5.11)
along 38,

Let us term the conditions (5.10) and (5.11) the

e
N

line of
Iscontiimity

(b)
Sketch 4

compatibility conditions for a surface distribution of
vortex 4. As ‘was discussed towards the end of
Section 3, the boundary 8S is likely to consist of
(1) the cut along the trailing-edge, (2) the cuts
along the lines of discontinuity on S, and (3) the
spanwise ends of the trailing vortex sheet. Apply-
ing the condition (5.11) to these constituents of aS
we have

2au+AaL+2aw=0 (5.12a)
along the trailing-edge,
s+ 2n_=0 (5.12b)
along the lines of discontinuity, and
2,=0 (5.12¢)

along the side ends of the trailing vortex sheet.
The sense of 2,7 etc. is as depicted in Sketch 4.

5. 2 Boundary Conditions

The procedure similar to that taken in deriving
(2.20) leads to the following expression of the
value of v at a point Qo(£o, 70, Co) on S.(cf. equa-
tion (4.3))

(@) =5 @xmayd—5= § Axgrad(1)as
(5.13)
where grad (1/7) is as given by (2.21), m is the
normal to .S and & is as was defined in connection
with equation (2.3). Taking v as the perturbation
velocity of the flow field, we obtain the following
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boundary conditions after the manner in which equa-
tion (4.16) and (4.17) were derived:

(Us+B) -n=0 (5.14)
on the solid surface, and

(Us+B)-A=0 (5.152)
together with _

(Ux+B)-»=0 (5.15b)
on the trailing vortex sheet,
where

Z:%(zx:.) (5.16a)
and

B=——1 f ax d(i)ds (5.16b)
T 4z Jg grad\ ) '

The physical significance of equation (5.15) is in
the same tenor as was traced in the discussion given
in the paragraph subsequent to equation (4.14).
Reiterating it, & on the trailing vortex sheet comes
to its own as the wvorticity vector shed from the
trailing-edge. The conservation law (5.10) ensures
that along a curve tangent to 4 the potential differ-
ence, and hence the circulation, is held constant
thus reproducing the well-known Kelvin’s theorem.
Truly, the equation (5.10) implies that there exists
a scalar function ¢ defined on S such that

__ O _ Oy
2,G=— B and AF= P
i. e.,
. Op _Op
Za——‘a—s; and Zﬂ—- 3s. (5. 17)

which, together with the condition (5.7), is exactly
the relation«already given as equation (2.17).

Thus the process in which a vortex distribution
is deduced from a doublet distribution is shown to
be reversible, suggesting a procedure by which a
potential of the flow field due to a vortex distribu-
tion can be calculated. Incidentally, another one,
(5.11), of the compatibility conditions reduces to

p=const. along 4S8 (5.18)
in view of equations (5.9) and (5.17). The con-
ditions then lead to

Ly —pr+ pw=const.
along the trailing-edge,

My —p_=const.
along the lines of discontinuity and
p=const.
along the spanwise ends of the trailing vortex sheet.

That these constants should be zero was already

argued towards the end of Section 3.

5. 3 Kutta’s Condition

Let us now examine the Kutta’s condition in
terms of 4. Comparing equations (3.23) and (3.27)
we see from (5.1) and (5.2) that the Kutta’s condi-
tion entails the condition (3.29).

The relation (3.30) is not availabe in the present
case. Instead the condition (5.7) ensures the con-

dition (3.29b) because

Ay sin 8y —2sy cos by =A,y,

lu; sin 01,—-231; COos HL':'ZDL
and

l;w:‘Z,w.

The remaining two of (3.29) lead to, as before,
the following:
Ay =231 =23w=0

for the wedge-type trailing-edge, and

Ay + 3. =23w =0
for the cusped trailing-edge.

5. 4 Basic equations
We are now in a position to enunciate the basic
equations stated in terms of the vortex vector 2.
They are:
Condition I & II (compatibility conditions)

I. 4=2-a=0 on S,
and

9 b
II. E;aaG) +'5—ﬁ-(2‘317) =0 on S.
Condition III (boundary conditions)

(Us+B) +n=0
on the solid part Sg of S, and
(Uw+B) +n=0,
and
(Ua+B)-4=0
on the trailing vortex sheet.
Condition IV (Kutta’s condition)
Aag+AnL+2,w=0,
and
g =24 =2w=0
along the trailing-edge (for the wedge-type
case), where 2, is the componet of 4 normal to
the trailing-edge while 2; is that tangential to
the trailing-edge.

Condition I states that 2 is described by its two
components 4, ahd 43 which are to satisty Condi-
tion II and III. The latter part of Condition I
implies that the location of the trailing vortex sheet
is unknown a priori. Condition IV serves as the
boundary conditions to 2.

A merit in the formulation by a vortex distribu-
tion is that it has a counterpart in the conventional
lifiting-surface theories, viz. the °‘vortex lattice’
method. (e. g. refs. 17 & 18) This method can
be considered as a simplified version of our present
formulation and hence its accuracy may be con-
veniently checked against our formulation and cal-
culated results thereof.

6. CONCLUDING REMARKS

A {formulation of lifting potential flow field has
been attempted by representing the flow field in
terms of a surface distribution of doublets.

Analysis of the potential due to a doublet distribu-
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tion has revealed the following:

(1) The velocity field generated by a surface
distribution of doublets is equivalent to that
induced by a vortex distribution over the same
surface and along its boundary.

(2) The derivatives of the potential due to a
surface distribution of doublets cannot be evalu-
ated at a point on the surface without resorting
to the rather awkward concept of the ‘fnite
part of a singular integral’. The alternative
vortex expression salvages this situation by
rendering the surface derivatives obtainable
through the concept of Cauchy’s principal value,
thus making the evaluation much more feasible.

(3) The strength of doublets should vanish at
the boundary of the surface over which they
are distributed if the flow velocity is to remain
finite along the boundary.

(4) The behaviour of the potential has been
examined in the neighbourhood of the trailing-
edge of a lifting wing yielding the conditions
on the strength of doublets at the edge with
which the velocity is rendered finite there.

Thus the formulation of the lifting potential flow

problems has been accomplished in terms both of a
doublet distribution and of a vortex distribution
using non-singular expressions of the surface deriva-
tives of potential and embodying the conditions at
the trailing-edge as a representative of the Kutta’s
condition.

Needless to say, the formulation proposed en-
compasses the two-dimensional situation as a parti-
cular case of the three-dimensional flow field. The
approach taken here has a precedent(ref. 19) for
the two-dimensional case which is powerful and
versatile. Even so, our formulation, applied to the
two-dimensional case, may retain some significance
in view of the detailed exploration of the Kutta’s
condition and of the clarification of the physical
implication of a doublet distribution as a methema-

cal model.

The present formulation can be applied to the
calculation of incompressible unsteady flow field with
little modification owing to the fact that the govern-
ing differential equation for this case is the same as
for the steady flow while the unsteadiness manifests
itself only through the boundary conditions. The
extention to compressible flow cases is, however, not
so straightforward for the unsteady flow as for the
steady flow.

The present formulation has been carried out
under the assumption that the flow is inviscid and
incompressible.  Let alone the effects of viscosisty,
accurate prediction of compressibility effects for three-

dimensional flow is stil beyond our capability. It
is well known that the Prandtl-Glauert transforma-
tion, which accounts for the first-order compres-
sibility effects, becomes increasingly inaccurate as the
critical Mach number is approached. Accordingly
measures need to be taken to bridge the gap if one
wish to make a good prediction of the flow field in
the critical Mach number range. For the two-
dimensional flow past aerofoils the second-order effects
can be calculated using, for instance, the method
due to Van Dyke.(ref. 20) This method has led
to the compressibility correction factor proposed by
Wilby (ref. 21) for the surface velocity on aero-
foils. Labrujere, Loeve & Slooff make use of this
correction factor to give an alternative expression of
the surface velocity on aerofoils in subcritical flow.
By applying this two-dimensional formula locally in
the direction of the perturbation velocity, they have
contrived a higher-order compressibility correction
scheme (refs. 22 & 23) for the three-dimensional
flow over wings, the direction of the perturbation
velocity being approximated by that on the wing in
incompressible flow related to the one under con-
sideration via the Prandtl-Glauert transformation.
Justification for this scheme is not at all apparent
and its accuracy cannot readily be assessed. There-
fore it is hoped to develop a more reasonable and
efficient method to account for the three-dimensional
higher-order compressibility effects.

The ultimate appraisal of the present formulation
is to be made by collating the calculated results
with experimental ones. The process of the assess-
ment is two-fold: the first concerns the accuracy of
the particular numerical procedure adopted to effect
the calculation based on the formulation, and the
other is whether the formulation is appropriate as a
mathematical model of the physics. In view of
these and others it is definitely desirable to carry
out the numerical computation for several represent-
ative cases.

One of the most interesting cases from the practi-
cal point of view will be the flow field around a
lifting wing-fuselage combination. The wing and
the trailing vortex sheet should be represented either
by a doublet system or by a vortex system. As for
the fuselage, one may replace it by doublets or vor-
tices, too. However, it seems to be more feasible
to represent it instead by a surface distribution of
sources as has been done by Hess & Smith (ref. 7
& 8) because, for one thing, the source is a scalar
whereas the vortex is a vector (the doublet is a
scalar but we have to deal with its gradient, which
is a vector), and for another, the coefficient matrix
of the resulting linear simultaneous algebraic equa-
tions is in general more well-behaved with the
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source system than the doublet or vortex system.
A few numerical applications of the present formu-
lation are now being undertaken and the results
thereof will be reported later.
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APPENDIX 1

Integrations on a Curved Surface §

At the beginning of Section 2 of the main body
of this paper an orthogonal curvilinear coordinate
system (e, B, v) was introduced where the a- and
B-axes were confined within the surface S and the
v-axis was taken along the normal to S.

Let (&, », {) be the Cartesian coordinates of a
point P and (a, 8, v) be the expression of P in the

a~f-y system.

Further, let F;, G and H be the

components of the metric tensor of the a~f-v system:

F=vVEIfni+{* l
G=vEiitni+isg
H= ’\/Ev2+’7v2+Cyz I

(A.1.1)
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where the subscripts in the above and through this
Appendix indicate the differentiation with respect to
those variables, viz.
3
en——%-, etc.

Then we have

3 5.: EB ‘Ev

a: P we ™ 7 I
@y By vy | = ;‘; 'g, ;7;, , (A.L2)
a; B 3 \ ;:, C(;, 2,
and hence
%=;i+ & aa:e*gﬂ 5
aa =5 aaa+,7ca= 3;+}7}= ai (A 1.3)

a Cu a Cﬁ a Cv a
X e TG g TH

Let (aly Qs, aS)’ (ﬁla ﬁ!ﬂ ﬁs) and (l’ m, ") be the
unit vectors along the a-, 8- and v-axes respectively:

1
(ah as, as) ="F‘ (eu, Nay Ca)

(A. 1. 4)

(Bus B3 B =5 Ep, 7, C9)

1
71) =7v_1‘ (ev’ /7 (v)

Let, further, ds., dsg and ds, be the arc-length
elements along the respective axes:

{€, m,

dsa=Fda
dsp=Gdp } (A.1.5)
ds,= Hdy
Using (A.1.3), (A.1.4) and (A.I.5) we obtain
7} d a 7)
mTC— —n—ﬁ = ﬁra: — a,a
"%—l—aac—=ﬁ"£: —a,a—ip (A.1.6)
d ad d a
Z-E EierT =ﬁsa—sa——agm

because by definition
(ls m, ﬂ) X (0.’1, Qas, aS) = (B‘l’ .52’ ﬁa)

(81, B3, Ba) X (l, m, n) = (a1, as, a3).
The surface element dS is given by
dS=|(Ea, D, Ca)da X (§p, np, {8)dB|
=F.Gdadp.
Now put

and

and

Let us consider x;.

Writing the integral in terms of the a-§ coordi-
nates and then invoking the integration by parts
71 is transformed as follows:

o 3 ()
=Ssp(Fa1-éﬁ——Gﬁl—a— ) (—1) da dp

Ss'LI(E 39 ™ )( )dadﬁ

SS . (sp bt a; )da dp

—§ Ldatipdp)

=fr by

H
— f aS—r—(al ds.+p1dsg).

i

)ds

The symbol f

in the direction such that the area of integration S
is always lying to the left-hand side as -one travels
along the boundary 3S.

Since the unit vector (ay, 1, ) is in the direction
of the {-axis, and since the vector (ds., dsg, 0) is
the representation in the a—8- system of the element
arc-length ds along 8S we see that

aydse+prdsp= (a1, p1, D) - (dse, dsp, 0)
=df
where df is the é~component of ds.

Thus, together with the similar results of y3 and

x3, we have obtained the following:

indicates that the line integral is

(1, X3, Zs)=S Las—4 Ly

sTr asr
where
oy du
A= (ﬁr 35, —ala‘ﬁ—.
ou ou oy
Brosr P %3 5ss dsg’ 193 as 3 5sp dsp )
and

ds=(d¢, dy, dC).

APPENDIX 1I

Simplification of Wing Geometry in the
Neighbourhood of the Trailing-edge

In this appendix we attempt to offer a mathema-
tical base on which the replacement of integrals
over 4S by those over 485, is justified.

We devide the content into three: (1) a method
of constructing an orthogonal curvilinear coordinate
systemn on S in the neighbourhood of a point T on
the trailing-edge, (2) a proof that the integrals over
4S5 can be raplaced by those over 45, with respect
to the singularities in ¢g(P), ¢p(P), grad ¢g and
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grad ¢p which may arise as P tends to 7o, and
(3) a proof that the differences between the integrals
over 4S and those over A4S, remain continuous as
T, is approached.

In any part of the following discussions, the
argument is not claimed to be immaculate from
the mathematical point of view. The intention is
to present just a sketch of a possible line of thought.

(1) An orthogonal curvilinear coordinate
system on the wing surface § and its ex-
pression in the neighbourhood 45 of a
point T, on the trailing-edge

Let Q(§,7,{) be a point on S.

Suppose that S is described in terms of a surface

coordinate system (s,f) as

E=£(s,t), np=n(s,t) and {={(s, ).
Our first objective is to find functions # and v:
u=u(s,t), v=v(st)
such that
Qu-0v=0
identically on S,
where
N S
Q"_( u’ ou’ au)
and
0 _( i3 i & )
\w’ w’ w/)
Since
Qu=Qs'Su+Qt'tu
and
Qv=Q:'Sv+Qt'tv
we have

Qu- Qo= (05 Q) susv+ (Qs- Q1) (Sutv+Svtu)
+(Qe- Qo) tuto
which is rewritten as
J3Qu- Qv=(Qs- Q1) (tsve+14v5)
—(Qs- Q) ugve— (Qr- Qi) 504

J=uvy—uyvs,
Hence Qy-Qy=0 leads to
(Qs- Q1) (usve+ugus) = (Qs- Qo) ugve
+(Q¢ Q) uvs.  (A.1L 1)
The condition Qu-Qv=0 does not by itself deter-
mine the function u(s,#) and v(s,#). For instance
we may arbitrarily fix either # or v and solve the
equation (A.IL. 1) for the other.
Let v be given by

where

v(s,t)=t. (A.1L.2)
% is then the solution of
(Qs- Q) us= (Qs- Qo) e (A.1L.3)

Let a function f(s,#) be such that the equation
f(s,t)=C for arbitrary constant C is the solution
of

ds_ Qv Q0)
dt (QsQs)

Then u is given by

(A. 1L 4)

u=F(f(s,1))
with arbitrary function: F.

Now suppose that the point Q is in the neigh-
bourhood 45 of a point 7y on the trailing-edge
which is assumed to be straight in the proximity of
To.

Consider a plane N passing through Q and nor-
mal to the trailing-edge. Let C be the intersection

(A.11.5)

of the wing surface S with N and let s be the dis-
tance along C between Q and T, where T is the
point at which N meets the trailing-edge. Let,
further, ¢ be the distance between 7" and Ty, and
r be the distance between Q and T.

T 3

Taking T, as the origin of coordinates, we have
E=r(s,t)cosb(s, 1)
n=t
{=r(s,t)sinb (s, t)

which leads to
Q- Qi=rsri+ 10,6,
Qs Q=12+ (r0y)2.
Assume that the surface S is such that in 4S &;
and {, are Hilder-continuous while §; and {; vanish
like s8, B>0 along the trailing-edge, i. e. along the
line s=0.
Let 4S be such that within it s and ¢ are of same
order of magnitude. Then & and { are expanded
as

(A.1L.6)

§=(¢s) 1o s+ (§e) ro- t+0(st*a)
C=(Cs) 1o s+ (£e) ro-t+0(sta)
leading to an estimation
§=scosfp+0(s*")
{=ssin0+0(s1*%)
with a positive constant @, where the symbol 0(s%)
represents a term which vanishes at most like s« as

(A.11.7)
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s tends to zero.

In (A.II.7) cosfy and sind, are used in place of
(&) 70 and ({;) 7o respectively since s is an arc-length
along the lines £=const., i. e. =const. and hence

(ds)?=(d§)*+ (dn)*+ (d0)*=[ (&) *+ (§) ] (ds)?,
which means (§;)ro=cosfy and ({;)ro=sinfy in
view of (A.IL.6) where 6,=6(0,0).

Combining (A.I1.6) and (A.II.7) we obtain the
following estimation:

d . _
re=—-V P+ =14+0(s%)

0= (§7:—&sm) /r=0(s")
Now put

} . (A.11.8)

u=r+-=¢.

Since u is a solution of (A.]II.3),¢ should satisfy

the following:
& — (Qs- Q1) €= (rfs) If:(r”t)—rz (rfs)] .
(Qs- Q:) i+ (7'0:) 3

By the definition the left-hand side of the above
equation is equal to de/dt along a curve f(s,t)=C
given by (A.IL. 4).

Hence
E=S (r8s) [ (rf) — 70 (105) ] dt
rs.0=0 T+ (r9;)2 ’
Since

r(rfy—rls) =5 —68s
by (A.1IL.6) and
§le—6:L=0(sP)
in 45 as has been postulated, we have

o~ SO (sa*#)de~O0(st+a+#)

because t~0(s) in 45.
Thus we are led to an estimation that
u=r+4+0(s1*"+8)

=s+0(s'*"), (A.11.9)
since
r=s+4+0(s1*?)
in view of (A.IL.8), and that
E=ucosGy+0(u*e)
=0 (A.1I1.10)

C=usinGy+0{ul*)
by virtue of (A.1I.7) and (A.IL.2).

As a final step, expressions of the distance 7 be-
tween P(x,y,2z) and Q(&,75,{) are considered for
the later reference:

= (2= (—7)*+ (O

Putting

x=D-cosp and z=D-sin¢
and using (A.IL. 10), 79 is written as
7i=[Dcosp—ucosfy+0(ul*e)]2+ (y—v)?
+{Dsin p—usin fy+0(ulta)]2
=703+ 2[A (D cos p—ucos by)
+B(Dsinp—usinfy) ] -0(ulte)
where A and B are constants and

(A.11.11)

(A.11.12)

ro*=u?—2uDcos(p—8,) + D+ (y—v)?.
(A.11.13)
Since
[usin(¢—00)1*< [usin(p—bo)]?
+ [D—ucos(p—00) 12+ (y—v)3=r¢?
(A.11.14)
and
|A (D coso—ucos by) +B(D sin o —usin ;) |
g‘\/ZL}'EE 7o
the follwing estimation follows from (A.11.12):
r=ro[14+0(u=)] (A.I1. 15)
provided
sin(p—8,) #0. (A.11.16)
Taking 4S sufficiently small, we can make the
factor 1+0(u) always positive in 485.
Then the following inequality holds in 45 under
the condition (A.II.16) with a positive constant «:

kro<r, (A.IL.17)

(2) Singularities in grad ¢p(P), etc. at a

point 7, on the trailing-edge
Let R(A) denote the singular terms arising in
quantity A(z,v,2) when the point P(z,y,2) ap-
proaches Ty.
In this section we intend to show the following:

R[Sds 2z dS]:R[a(TO) SASO% dS] , (A.IL18)

Harsd({, 5-a5) | =R tema({,, 05) ]

(A.11.19)
2 2Jos)rluof,, 2 ()as)
(A.11. 20)

and

ol (5]
- a1

——rot{,u(To) 5 “SQ% ds}] (A.11. 21)

where in the last expression we have used the
relation :

grad{ Sas#%(—:‘_)dS}:mt{ Sas %dS

— f Has }
34S T
in which 948 denotes the boundary of 485,

Let A4S be described as
O<u<e, —e<v<e
in terms of the coordinates (w,v) defined in the
previous section. Likewise let 45, be given by

o<<a<e, —e<o<e
where (#,7) is such that a point Qy(£,7,{) on 45,
is expressed as
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E=mcosb,
=97
Z=ﬂ sin 00
where 6, is as defined in the paragraph following
(AIL D).
In this section we assume that P(z, v, 2} is located
outside 45 and 4S5;.
Without loss of generality we may put
y=0.
Let (z,2z) be given by (A.IL11).
From the above assumption we have

p#0,.
Put

u=psino and v=pcoso, O0<e<= .
Then
ro¥=u+v2+D*—2uD cos(¢—0p)
=p3+ D?*—2pD sin o cos (p— o)
=[p—Dsino cos(p—bp)]*
+D?[1—sin® @ cos?(p—0)].

It can easily be shown that as long as ¢+6,, there
exist two positive constants Cp and sin¢g such that
Col(p—D cos¢)3+ (D sin¢h) 3] <r¢?

and hence, by virtue of (A.IL.17),
Cil(p—D cos¢)?+ (D sing)?] <7*
where 0<Ci=Cy#2,

We first consider an integral given as
A{u, v) 2(0,0)
] K, 20
48 ™ a5 48, 1™ as
=1,+2(0, 0) 15

where

fef 269100 4
48 7
and
L= —lﬂ—dS—S Las.
48 7 48, T
Assume that the density 2 (», v) is Hblder-
continuous on 4S with index B:

(1, v) —2 (20, vo) | <KV (u—1ig) 3+ (v—v0)2 >

p>0.
Then
II]IgS‘duS‘ o KVt f
0  aid
K o8
SC—z’So pdpS “Y(o—Dcosgy+(Dsing)* ™

The last inequality is obvious since the integrand
is positive and the area of integration is larger in
(p, ) than in (u, v).

Putting
p—Dcos¢

Dsin¢g
the last integral can be written as

1/2 s pﬂ
So "’d"s 4o =D g)ii Dong)i”

D2+g-n 11 . s
:”WS“[COS(Z—SI’)]I B(cos x) "~ 3+Pdy

tan y=

where
—Tan-1{ — 8¢ )= _x
1 %o=Tan ( sin¢ ¢ 2’
an
of YV 2e— chsgb)
— 1
x=Tan ( Dsing

Since —n/2< 0, 11<%/2, the integral on the right-
hand side is positive. (i. e. does not vanish for all D.)
We see from the above result that |7;| is likely to
diverge as D—0 when 2+48<n.

Therefore we restrict ourselves to cases where
n<2+8.

Since

(6—Dcos¢)?+ (Dsing)?
=(psin¢g)?+ (D—pcos¢)?> (osing)?

we see that
SJ?: piteédp
o v (p—Dcos¢)*+ (Dsing)r"
1
(sm¢)” S andp
1 1 — n
=—emg T (V Ze)repn,
Hence
[ 1] <C-et+p-n

regardless the value of D as long as ¢+6, and
n<2+8, which implies

o[f, s as] =R [], 5]

under the same assumptions.
Let us next proceed to the examination of I,.
In view of the preceding result, we consider only
the cases n=1 and n=2.
For n=1 the two integrals composing I, are them-
selves finite whence no singularities in I, as D—0.
Because :
dS x
[ SAS r \/ C]

Vi PdP
S v (p—Ddos¢)*+ (Dsing)?
(A.11.22)
and the integrand of the right-hand side are uni-
formly continuous in the region of integration as
D—0.
For n=2: we have, in general,

§udS
488 T
Sdus 0749 1
V@ + 03+ D*—2a D cos(p—0q)
1
=Sod“§-.dv Vit v+ D" —2uDcos(p—0p)

That is, the integration over 48, is expressed in
terms of the variables («, v) as is the integration
over the corresponding 4.

Put
K=t _ —1—,
T3 7o

where r and ry are given by (A.I1.12) and (A 11,
13), respectively, by putting %=0.
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r* can be expressed as
=rgd+D-0(ul+e) +0(12+a)
whence by virtue of (A.IL.17)
A.D.ul+a+B.u3+ﬂ
1K< k[ (u—Dc)2+ (Ds)2+12]2
provided ¢+8,, where A and B are positive constants,
and

c=cos(p—0y) and s=|sin(p—0b,)|>0.
I; is then estimated as

A (¢ D.ulta
_iI’KTSod“S ey Dc)* + (Ds) + 0]
B (s ulta

+Tsodus [(u Dc)2+ (Ds)2+v2]2
Since

s? (w4 v?) < (u—Dc)3+ (Ds) 3+
the secoud integral is bounded as

S:duSc u2+¢
0 - [(t—Dc)2+(Ds)?+v1)?
JT
<£ir_ 2 pa-ldp<C5a.
s Jo

For cases where > 1, the first integral is reduced to
the second one except for the factor D. For a=1
the integration is performed in terms of elementary
functions showing that it vanishes like D as D tends
to zero,

For a<1 we have

. % et e

Dea e 3 cos!—*8
<a Soo [cos(8—dp) 11+ {m

+5 (cost) -a]da

Drte

where
o,,='ran-1(—fs-), 0,=Tan-1(

¢0=Tan‘1<%) and &= IZS

Hence in this case the first integral vanishes like
Dae as D—0,

Thus in any event we have

l+q

" u
s {DSoduS [(u—DC)’+(D5)’+v’]’} 0
and hence

¢e—Dc )

S

II]i< CS‘
which, together with the result about I;, leads to

’f,, 25 as|=r[f,, ~>as]
: (A.11.23)

for both n=1 and n=2 provided the point P(xz,y,
2) is outside of 4S and 2 is Hélder-continuous on
48S.

The assertions (A.IL.18), (A.IL.19), and (A.IL
20) are reduced to cases where the kernels in the
integrands are at most of type of 1/72 and hence a
sweeping proof of those assertions is provided by

(A.1L.23) under the assumption that ¢ and pu are
Hélder-continuous on 48.
As for (A.I1.21) we must show

o, 2aloofurs ., L)

in addition to (A.IL 23) to assure its validity.

The singularities in these line integrals as the
point T is approached arise solely from .the parts
of the trailing-edge contained in 945 and 94S; re-
spectively. Since the trailing-edge is assumed to be
straight, these two parts of the trailing-edge coincide
with each other by virtue of the manner in which
4S8, is constructed from 4S. Moreover, the density
¢ is constant and equal to x(7),) along this part of
the integration path because of the condition estab-
lished in Section 5 of the main text.(formula(5. 18))
Hence the portions of the above two line integrals
responsible for the singularity are identical with
each other thus confirming our assertion.

(3) Continuity Properties of ¢5 and ¢p at a
point 7, on the trailing-edge
What to be shown in this section is that the in-
tegrals:

1
IS(P)=SJS%dS—a(TO)S‘SO7dS

and
Io®) ={ uy(F)as-uTof, a(F)as.

when the point P lies on 4S5, are not responsible
for the possible discontinuities in ¢g and ¢p re-
spectively which may arise as P approaches a point
T, on the trailing-edge. To prove this assertion it
is sufficient to show that |Ig(P)| and |Ip(P)| are
uniformly bounded in 45 and tend to zero as 485,
and correspondingly 4S,, shrinks to 7.
Let (§p,7p,8p) be the coordinates of a point p
lying on, say, 4Sy. As a consequence of (A.Il. 10)
we have
§—§p=(u—up)costo+0(pp'**)
N—Np=U—"p
{—Cp=(u—uyp)sin§y+0(pplte)

for Q(£,7,8) belonging to 4Sy and hence
= {p—8) 3+ (7p—7) 2+ ({p—0)?

=pp*[1+0(0p") ]
for the integration over 4Sy where
pp*= (u—up)*+ (v—up)*.
Let us consicer I; first.

In fact the integral Sas (0/r)dS itself is shown

to be uniformly bounded provided the density ¢ is
so, because: put
J=S ds ___S as +S das

448 T 48y T 45 T
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By adopting a polar coordinate system (g, @p)
with p as its origin, the first integral in J is seen
to be bounded as follows:

ds 2x
o<, 2= <fopdop— 2
sy YR L H0(e,m]

X
<OSo5 dpp<C-e
where C is a positive constant.
As for the second integral in J, the point p is
outside of 457 and the boundedness of J by an order

of magnitude of ¢ is already shown in the preceding
section. (cf. (A. 1II. 22))

Next the integral Ip is considered.

Put
" Ip(P)=Jy @) +JL(p) +Iw (P)
where
Ju(P)=‘SJ$‘Uy3§;(%)dSerS‘ w-a?;(%)ds,
I\, b (7 )asm 5 (7)es
e N 3 (1) 3 /1
I 0=, 13 ()5 m] ()25
Since

K2 ( 1 >= LEp—8) +m(1p—1) +n(Lp—0)
ov rs

and

m=0(ppe)
n=cos 0,+0(pp*)
for Q(&, 5, {) on 4Sy, we have
3 (1\_  O(ep*™)
"a»‘( ) T et VIH0(ppyt T
for Q on A4Sy where A is a function of Py and @y
which is uniformly bounded in 4S7.
Since all the terms expressed by the symbol 0(pp*)
are absent on 4S;, we have
for 4Syy.

a9 /1
oy (?) =0
Hence

I=—sin0,+0(pp*) }

Appa.—ﬂ

o (21 <C" oyt dpp< Cee

provided g is bounded on 48g.
Next we evaluate |J.(p)| for pe 45y.
On 451 we have
§=ucosfr40(ul+®)
- }
{=usinf;+4+0@1**)

and
l: —si.n@z;}-O(u‘)‘
m=0(u=) }
n=cos 740 (u)
Put
$p=DCOSSO
7p=0 }
{p=Dsing
Then
7= (p—8 M (15— 1)+ Cp—0)?
=td+41v3+D'—2uDcos(p—01)
+D-0(p"+*) +0(p***)
and
N=1(¢p—8) +m(np—7) +n(Cp—0)
=D[sin(p—0z) +0(p=)1+0(p***)
where

p=p+v
The corresponding expressions 7y and No for the
point (o, 70, &o) on 4Sez corresponding to (§, 4, {)
are derived from the above by suppressing all the
terms represented by the symbols 0(p<), etc
Thus

rod=1+v*+D?—2uD cos(p—0r)
and
Ny=Dsin(p—0z).

Now
(@) =SASL'(F”“L’ -g;.-(%-) das

tr1fl o, 5 ()85 0, (7))

Assume that g is Holder-continuous on 4S5y with
index B. Since p is located outside 45z, i.e. pefy,
we have the following estimation:

| Disin(p—6z) +0(p=)] +0(e"**) |

SASL(p—FL)%(%)dS]<CI 'duS‘ ‘dvv’mﬁ

Vi +vi+ DI—2uD cos(p—02) + D-0(p1 ) +0 ()"
PA[D[sin(p—0z)| + Ap*+°]

\/’l
<G\ ™ “uder vy

cos¢)?+ (D sing)2®

which, by a similar procedure to that taken in the preceding section (cf. the estimation of I,), leads to

@
Ny ez
Finally

$us, 5 (225, (Pl ]

(%) ,151 <Cee, (A.11.24)
Di{sin +0(p*)} +0(p**°)
Vi3 v+ D24 («p-—ﬂz,) +D-0(p* %) + 0(p%) *
B D sin(p—¥6r) ]
Va3 A+ D'—2uDcos(p—01)°
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s ¢ K
:Sodus_.dvvu’+v’+D’—2uDoos(¢—ﬂL)’

where
K=[140(p=)] [D{sin(p—8z) +0(p=)} +0(p'*«)] —Dsin(p—0y).

Hence we obtain an estimation:
VAt + D~ —2uD cos(p—01)

R T O e

in the analogous manner to the preceding one. sultmg in the boundedness of Jw(p) by C-e=, thus
Combining (A. II. 24) and (A. II. 25) we see  confirming our assertion for the case where p lies
that Jz(p) is uniformly bounded by an order of on 45y. The result, however, is obviously unal-

&a, tered if p is located on 4S; or, for Ip, on ASw,
A similar estimation is effected with Jw(p) re- which completes the proof.

<c1S dug' D-prtp < Cee (A.IL25)
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