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Natural Vibration and Panel Flutter of Cylindrically
Curved Panels*

By Yuji MATSUZAKI**
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ABSTRACT

Influences of in-plane boundary conditions and panel geometry on natural vibra-
tion and flutter characteristics of cylindrically curved panels, exposed to a supersonic
flow parallel to the generators, are analyzed with the aid of Galerkin’s method within
the framework of Reissner’s shallow shell theory. Almost all results are obtained by
using twelve assumed modes, namely, a combination of the first six streamwise and
the first two symmetrical spanwise modes. Convergence of flutter solutions is checked
by taking the first ten streamwise modes at the most, The numerical results have
revealed that influences of in-plane boundary conditions and panel geometry are much
more complicated than previously reported. Since some results indicate that spanwise
modal coupling due to the in-plane edge restraint yields coincidence of natural fre-
quencies which has a detrimental effect on flutter boundary, omission of the higher
spanwise modes in flutter analysis leads to erroneous results for such cases. Although
the present analysis has limitation on choice of combinations of the in-plane boundary
conditions, a general recommendation for flutter prevention of curved panels whose
aspect ratio is about 1 is that the panels should be able to move freely along the
spanwise direction at straight edges and be tangentially restrained at curved edges.
Comparison between results predicted by the quasi-steady and the steady aerodynamic
theories indicates that the static aerodynamic theory would provide a good prediction
for flutter of such panels.

NOMENCLATURE along straight edges
b =a half of breadth of pro-
a = a half of length of a panel jection of a panel on z-y

* Received January 5, 1973 **  TPirst Airframe Division
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plane (see Fig. 1)
D = bending stiffness
E = Young’s modulus
F = stress function
h = thickness of panel
M = Mach number
1 (p, r) =see Eq. (20)
Joo (P, 7), etc. = see Egs. (21)
Nz, Ny, N, = stress resultants
Po = aerodynamic forces
¢, @ = dynamic pressure
R — radius of curvature
u, v, w = displacements in z, ¥ and 2
directions, respectively
U = velocity of free stream
wpr = see Eq. (10)
x, ¥, z = coordinates
ap, Bp, etc. =see Eq. (13)

B =(Mz2-1)1/2
re = see Eq. (19)
i=a/b

v = Poisson’s ratio
p = density of air
pm = density of panel
w, £ = frequency
(p, ry = a natural mode predomi-
nated by an assumed mode

W,

1. INTRODUCTION

Curved panels are fundamental structural
components of high speed aircraft and rockets.
However, not only flutter of curved panels but
also natural vibration have not fully been
investigated compared with those of flat plates
or circular cylindrical sehlls since a great
number of parameters are involved in the
problem. In particular, little experimental
data are available. In the present paper we
shall restrict ourselves to cylindrical panels
exposed to a supersonic flow parallel to the
generators although flutter of panels with
streamwise curvature is also of great im-
portance. Since a history of analyses of na-
tural vibration has briefly presented in Ref. 1,
an outline of previous works on panel flutter
will be given here.

The first theoretical investigation by Voss2,
who used the Reissner shallow shell theory
and the Ackeret aerodynamic theory, showed
that stiffening due to shell curvature raised
considerably flutter boundary from the level
of flat plates. Hess and Gibson3 made an
experiment of a cylindrical panel axially load-
ed to a stress near the buckling stress, The

compressive stress had a large effect on flutter
boundary, which appeared to attain a minimum
value at the calculated buckling stress. Another
experimental work by Presnell and Mckinney*
indicated that pressure differential was strong-
ly influential to flutter boundary and that
flutter characteristics were highly dependent
on the panel shape caused by the pressure
differential. Bolotin® formulated a nonlinear
problem for a plate of general curvature by
taking info account the geometrical nonlinear-
ity in von Karman’s large deflection theory al-
though no solutions were given. McElmans
presented a formula for flutter boundary of
curved sandwich panels. Another study of
interest was made by Anderson and Hsu’.
The aerodynamic forces were approximated
by a static theory which included a correc-
tion parameter for pressure distribution along
the flow direction, As the parameter varied,
the pressure distribution changed from that
given by the Ackeret theory to that of a
steady, slender body theory. The numerical
results showed that the critical dynamic pres-
sure was less sensitive to the pressure dis-
tribution than previously expected.

Along the line of Bolotin’s presentation,
Dowell8.® has given a nonlinear formulation*
for panels with general curvature subjected
to a set of the in-plane boundary conditions
S,3 and S;3 (See Egs. (9) in the text) in an
average sense and presented extensive nume-
rical results. As far as panels with only span-
wise curvature are concerned, a significant
finding is that in-plane edge restraint has a
great influence on flutter boundary. Contrary
to Voss’ conclusion that the spanwise curva-
ture has a stabilizing effect, the critical dy-
namic pressure is found to decrease monoto-
nically as the curvature increases. Confirming

* As well known, flutter boundary for panels
with only spanwise curvature can be deter-
mined without nonlinear terms being taken in
an analysis. Strictly speaking in a linear case
of such panels in Ref. 8, the modes with odd
number of half-waves between edges satisfy
the in-plane boundary condition of zero nor-
mal displacement on an average, but the
modes with even number of half-waves iden-
tically satisfy the in-plane boundary condi-
tion S,2 or S, 2 in an exact sense. This in-
consistency of the in-plane edge restraint may
mislead to coincidence of frequencies of the
first two streamwise modes which is reported
in Ref, 9,
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that Voss’ result is true for the set of the
conditions S,2 and S;2, Dowell has pointed
out in Ref. 10 as follows: for in-plane bound-
ary condition of zero normal displacement
the stiffening due to spanwise curvature is
selective and the frequency of the streamwise
fundamental mode is raised to a greater degree
than that of the second. Hence, the frequency
(squared) difference is decreased and flutter
is more likely. Recently Salvionil! has per-
formed nonlinear flutter analysis of buckled
and unbuckled cylindrical panels subjected to
axial compressive loads with the aid of gra-
phic presentation.

As for natural vibration of cylindrical
panels the present author! has recently shown
by using the two-mode Galerkin procedure
that in-plane boundary conditions have a great
effect on natural vibration characteristics. In
the present paper, therefore, effect of the in-
plane boundary conditions as well as that of
panel geometry on flutter characteristics will
be studied by using the two-dimensional quasi-
steady aerodynamic theory within the frame-
work of Reissner’s shallow shell theory. The
natural vibration characteristics in the higher
mode approximation, which are calculated by
setting the dynamic pressure equal to zero in
the flutter analysis, will be also presented.
The same approach as in Ref. 1 shall be taken
in which a homogeneous solution of stress
function is expressed in terms of trigono-
metric and hyperbolic functions so that several
sets of the in-plane boundary conditions can
be exactly satisfied. As a consequence of
employing the quasi-steady aerodynamic
forces, a coupled type of flutter is only one
possible instability and occurs due to coales-
cence or closeness of frequencies of the aero-
elastically associated modes as the dynamic
pressure increases. Hence, it is quite instruc-
tive to investigate the natural frequency
characteristics in order to get a better under-
standing of complicated features of flutter.

Although several numbers of calculations
for spanwisely antisymmetrical modes have
been carried out, we will here focus on results
for the spanwisely symmetrical modes. Al-
most all results are obtained by using twelve
assumed modes, namely, a combination of the
first six streamwise and the first two symme-
trical spanwise modes. Convergence of flutter
solutions solved with the aid of the Galerkin
method is checked by employing the first ten
streamwise modes at the most. Comparison is
made between flutter characteristics deter-

mined by using the quasi-steady and the static
aerodynamic theories,

There are no experimental data known to
the author which provide a proper comparison
with results of the present study. In addi-
tion, a large amount of computation time is
required in order to cast a spotlight thorough-
ly on several problems unresolved even with-
in the framework of the present analysis.
Hence, instead of presenting a general flutter
boundary for design, we will give some fun-
damental results on specific panel configura-
tions and flow state selected for an experi-
ment which would be made by using the Su-
personic Wind Tunnel at National Aerospace
Laboratory. Radius of curvature is selected
as a parameter, All of the results presented
here will be for zero in-plane loading and
zero pressure differential.

2. PROBLEM FORMULATION

The coordinate system, the flow direction
and panel geometry defined as

bi__ 2
Z(z, y) =55t (1)
are illustrated in Fig. 1. The Reissner type
equations of equilibrium and compatibility in
the linear theory?? are

Fig. 1 Coordinates and shell geometry.
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FF 22  &F 32
Dadw—h— 5 o —h g %,
PF 3Z ow |
t2hy oy smay TP TPe=0 2)
*Z Fw 9Z Fw PZ Pw
44F _E[26z6y dzoy oyt oat  oa ayz]

(3)

where D, E and F are bending stiffness,
Young’s modulus and stress function defined
as

®F _N. @F Ny @F __Noy
6y* h ' dx* h’ oxdy  h

The aerodynamic forces p, are approximated
by the two-dimensional quasi-steady theory:

_2q[ow  M-2 1 ow
vy Gt I=1 U ) ©)
where
1
=5 pU (6)
B=(M*-1)12 (7)

For a panel with simply supported edges the
boundary conditions to be satisfied by w are

w

w=—w-=0 atz=—-aanda (8.1)
2
w= %:0 at y=—b and b. (8.2)

The following sets of the in-plane boundary
conditions which are the same at the opposite
sides of edges are considered:

Sz1: u=v=0

or S:2: N:=v=0
9.1

or Sz3: u=N_z1/=0 ( )
or Sz4: N:=N ;=0 atz=-aanda,

Syl: v=u=0
or Sy2: Ny=u=0 9.2)
or Sy3: v=Ngzy=0
or Syd: Ny=Nzy,=0 aty=-bandbd.

For a spanwisely symmetrical case the de-
flection is assumed so as to satisfy Egs. (8)
as follows:

¥ X . m= nx
—|-mZ}=2 n§1 Wmn SIN H"‘ cos —%—y

m: even n: odd

(10)

Substitution of Egs. (10) and (1) into Eq. (3)
vields a solution of stress function as

F=Fp+Fu (11)

where F, and F, are particular and homo-
geneous solutions, respectively and

2a\* I 23
ZZ wzn( ) ——(lg+22nz)zcos—x cos 2b
2a\* m? mn
—§§me ( >¥‘—‘(m2+22n2)’ 37 [L0}3] 2by
(12)
E
Fn= B [Z €oS x(az cosh y+.8; y sinh — 2ay)
+}_'_,‘ cos 2by(rn cosh $+5n x smhzb x)
Z} sin —m(amcosh 2ay+ﬁm—2zy smhzay)
Z} cos =X 25 y(;r,, sinh 2% 25 m+6,.26 x coshﬁ- )]
(13)
a
2:7 (14)

Egs. (1), (5), (10) and (11) are substituted
into the left-hand side of Eq. (2) and the
Galerkin procedure is used to obtain the fol-
lowing algebraic equations:

(D, 7) +iy el — Q)W pr+-Joo (0, 7)
+2Q2wmrm[ 1 sin +p

m=2 m--p 2
m: even . m_.p
S n]:O (15.1)
(p=1,8,5,...; =1, 8, 5,...)

[I(qg,7) +‘i7’69—-02] Wer+Jeo(q, 1)
—2Q ¥ Wir l[—l—sinl‘—qn _ 1 smli’z] =0
=1 l—q

2 l4+q 2
I: odd (15.2)
(q=2; 4, 69"-; r=1, 38, 5"-')
where
Win=Win eXp (tot) (16)
29 (2a)?
Q=7 Dxs (17)

o-o/ll) Ga)]
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M2—2/2apQ\1/2
o =) 1)

12(1—»? 4 4
1,7 = (2 2 (B B

(20)

Joo(p, 7) = — 22d=) (E)‘ pr

abhiR? P24 22r2
pr

n pr
X [—2— sin T{ap cosh 57

P pr  2p?cosh (pr/22)
+6o( B s B -0 )

. rr
— % sin %T- {Tr cosh Trl

o)

n' si T

(21.1)

24(1—»2) ﬁ)* aqr
abh?R? ( q2 422
qz

X [? sin — 5 {a'q cosh %;i
_2¢? cosh (grf22)
q*+A2r? ) }
+?” cos %—{r’r sinh %‘x
2¢2sinh (9‘rr2/2)>} ]
Q4+ 222

Jeo(q, 7)=—

, ar
+8 (22 sinh >— N

(T2 cosh ™
+4 r<—é~l cosh > A+
(21.2)

Unkown quantities a,’s, 8,’s etc. are deter-
mined corresponding to the combination of the
in-plane boundary conditions (9.1) and (9.2)
as shown in Ref, 1.

For the case of natural vibration, namely,
@ =0, Egs. (15.1) and (15.2) are not coupl-
ed. The former represent the modal equations
with respect to the streamwisely symmetri-
cal modes and the latter the antisymmetrical
modes. However, the symmetrical or the an-
tisymmetrical assumed modes are generally
coupled in the modal equations as shown in
Ref. 1. Hence, each symmetrical or antisym-
metrical natural mode is a general combina-
tion of the symmetrical or the antisymmetri-
cal assumed modes, respectively. Since the
ay’s, the B)’s, the o'/’s and the g';)’s (or the
v,’s, the 8/’s, the y'’s and the §'.’s) vanish
for the case of the inplane boundary condition
S,2 (or S,2), the assumed modes are un-
coupled and each assumed mode represents a
natural mode for the combination of the
conditions S,2 and S,2.

For the natural vibration of streamwisely
symmetrical modes, the possible combinations

of the in-plane boundary conditions in the
present analysis are as follows:

Szl: Sv2
S:2: Sy1, 842, Sy3, Syd
S:c3: Sy2
Sz4: S,2

For the antisymmetrical natural vibration the
following five combinations can be chosen as

S:cz: Syl, Syz, Sy3, Sy4
Sz4: Sy2

As for the case of flutter, namely, @ x 0
Egs. (15.1) and (15.2) are coupled due to the
aerodynamic terms and can be solved under
the same five combinations of the conditions as
for the antisymmetrical natural vibration.

When the determinant of the coefficients
with respect to the modal amplitudes in
Eqgs. (15) is set equal to zero, a characteristic
equation in £ is obtained. In the flutter
analysis panels are defined as unstable when
the characteristic equation has at least one
root with negative imaginary part.

3. NUMERICAL RESULTS
AND DISCUSSIONS

Numerical calculations are carried out by
employing the first two spanwise terms, name-
ly N =38, in Eq. (10) since the spanwise mod-
al coupling due to in-plane edge conditions
has been demonstrated by the author! to have
a significant influence on vibration charac-
teristics.

3.1 Natural vibration characteristics
Although every assumed mode represents a
natural mode when panels are subjected to
the set of the in-plane boundary conditions
S,2 and S 2, a natural mode is generally ex-
pressed in terms of a combination of as-
sumed modes, Hence, let us introduce the
notation (p,r) which indicates a natural mode
predominated by an assumed mode of p and r
half-waves in z and y directions, respectively.
Since, as shown in Ref. 1, in-plane boundary
conditions at straight edges are generally
more influential to the natural vibration char-
acteristics than those at curved edges, we will
begin to examine the effect of the former.
Natural frequencies of the first four stream-
wise modes are plotted vs. R/kh by solid lines
in Figs. 2a, 2b, 83a and 8b although results
of the first ten modes have been obtained. In
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—— NATURAL FREQ.
30 ——— FLUTTER FREQ.
oFLUTTER FREQ.
(STATIC THEORY)
(4,1)
20+
10
0103 1 1 1 1 N S |
R/h
Fig. 2a- Natural and flutter frequencies for
A =2 with the conditions S,2 and
Syl (2a/h = 300).
40 Was
W13
Lo
NATURAL FREQ.
A —~-——— FLUTTER FREQ.
\\ 0 FLUTTER FREQ.
\ (STATIC THEORY)

40

—— p=u=0

Ng=u=0
aty==%b

STATIC
THEORY

o]

30

FLUTTER
STABLE

20—"/%
9
EN
%
10 7 Wm/ﬂ? 77
I~ o]
’
0 - i 1 | | SN SR DU S |
10 10*
R/Ak

Fig. 2¢ Flutter boundary for A =2 with the
combination of S,2.

Figs. 2a and 2b we present results for panels
of A =2 and 2a/h = 300 subjected to the con-
ditions S,1 and S, 2, respectively, with the
combination of the condition S,2 at z = *a.
Indeed, the figures provide a typical compari-
son between the effects of conditions of zero
normal displacement and zero normal stress
on natural frequency. Since restraint of zero
displacement stiffens panels, the frequency of
panels with the restraint is increased from
the frequency level of panels without the res-
traint. The lower the mode, the greater the
rate of increaes in frequency. It should be
noted that the increasing rate of the stream-
wisely lower and spanwisely fundamental
modes, namely the (1,1) and the (2,1) modes,
becomes significantly high with increasing cur-
vature. According to numerical results, quali-
tative features of frequency spectrum of
panels for the condition S ;3 or S 4 are quite
similar to those for the condition S,1 or S,2,
respectively. The quantitative comparison of
the lower modes are given in Ref. 1.

Fig. 2b Natural and flutter frequencies for

A =2 with the conditions S,2 and
Sy2 (2a/h = 300).
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40 40
—— NATURAL FREQ. 0
MaA— . S—— v:u.—
——— FLUTTER FREQ.
) Q Ny=u=0
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Fig. 8a Natural and flutter frequencies for Fig. 8¢ TFlutter boundary for A =1 with the
A =1 with the conditions S,2 and combination of S 2.
S,1 (2a/h = 300).

In Figs. 3 we compare results for panels of
A =1 and 2a/h = 800 subjected to the set of
10 the conditions S,2 and S,1 with those for the
conditions S,2 and S,2. Since frequency curves
of the spanwisely lower and the spanwisely
- o higher modes intersect in the curvature range
© LUTTER FREQ. presented, frequency spectra in Figs. 8a and
(STATIC THEORY) 3b become much more complicated than those
in Figs. 2a and 2b. In particular, Fig. 3a
presents a typical illustration that each na-
tural mode is a combination of w,, and w,,
(p=1,2,..), for example p = 1, with the low-
er natural frequency mode being predominate-
ly w,, for large R/h and w,; for small R/h.
On the contrary, the higher frequency mode is
predominately w,, for large R/h and w,, for
small B/k. It may be concluded from com-
parison between the corresponding frequency
spectra that influences of in-plane boundary
conditions and curvature are basically the
same for panels of A =1 as for those of

A=2,

NATURAL FREQ.
0 ———— FLUTTER FREQ.

30

20

10

0 Fig. 3b Natural and flutter frequencies for
10 ! I —— A=1 with the conditions S ;2 and
R ' S,2 (2a/h = 300),
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Fig. 4a Natural frequency for A =1 with
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Fig. 4b Flutter boundary for A =1 with the

¢ombination of SyZ.
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Figure 4a demonstrates the effects of the
in-plane boundary conditions at x = *a on
natural frequencies of spanwisely fundamen-
tal modes for panels of A = 1. The frequency
of panels constrained by the condition S,1, S,2,
S,3 or S,4 with the combination of the con-
dition S,2 is indicated by chain, solid, faint or
broken lines, respectively. Natural frequency
of streamwisely antisymmetrical modes of
panels subjected to the condition S,1 or S,8
cannot be calculated by the present analysis
as shown in § 2. What differ from the results
presented in Figs. 8a and 3b are that the
tangential in-plane conditions are more influ-
ential than the normal conditions and that the
tangential restraint gives more restrictions to
the panels rather than the normal one. It
depends on the aspect ratio whether the tan-
gential or the normal restraint is more effec-
tive. The in-plane edge conditions at curved
edges become less influential with increasing
aspec ratio.

3.2 Flutter characteristics
Results are presented for shells mounted in
a blowdown type wind tunnel in which a flow
may be assumed to be isentropic. The as-
sumption of such a flow gives3
*—1
p= Mzrzge*To (l+ : 2 Mz) (22)
where y*, R* and T, represent the specific
heat ratio (= 1.4), the gas constant (= 2.868
%108 mm?2/secz °K) and the temparature of
gas in a resovior, respectively. Shell proper-
ties and flow conditions used in the calcula-
tions are as follows:

a=150mm , h=1mm 2=1 and 2, v=0.25,
pm=0.813x10"%kg sec?mm?,
E=128x10kg/mm?, M=2, T(=300°K
(23)

The radius of curvature is selected as a para-
meter.

In Figs. 2¢ and 8¢, we compare flutter
boundaries of panels subjected to the in-plane
boundary conditions S,1 and S, 2 at y = *b,
which are illustrated by chain and solid lines,
respectively. The corresponding flutter fre-
quencies are plotted by broken lines in Figs.
2a, 2b, 8a and 3b. As can be seen in Fig. 2c,
curvature has not a destabilizing effect for
panels of A\ =2, It should be noted that the
flutter boundary of panels with the normal
restraint at straight edges is significantly
lower than that of panels without the restraint
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over the range of curvature studied. In the
present analysis no attempt for determination
of flutter mode is made. However, Fig. 2a sug-
gests that the panels restrained become un-
stable due to predominant coupling of the first
two streamwise modes with a single spanwise
half wave. On the other hand, it may follow
from Fig. 2b that the flutter mode of the unres-
trained panels predominantly consists of the
first two streamwise modes for large R/h and
the 8rd and the 4th for small R/h.

For panels of A = 1, Fig. 3c also illustrates
that flutter boundary of panels without the
restraint increases with increasing curvature.
Although the flutter boundary has a similar
form to that of A =2, Fig. 8b implies that
the predominant streamwise modes in aero-
elastic coupling are the first two ones in a
lower range of curvature, the 2nd and the 3rd
in a moderate range and the 3rd and the 4th
in a higher range. The transitions of the
predominant modes take place gradually near
the points k and L. On the other hand, Figs.
2b and 2c¢ indicate that the predominant modes
of panels of A = 2 change instantaneously at
the point where the flutter boundaries ab and
cd Cross. o

As for the spanwisely restrained panels of
A =1, the most striking feature is that the
flutter boundary has peaks and abrupt drop-
offs to zero.* In Fig. 3a we can easily find
explanations for the unexpected flutter bound-
ary. Firstly, the flutter frequency curve efg
suggests that the assumed modes w,; and w,,
are predominant in the flutter modes. Since
near the point f predominancy of the w,,
mode passes from the lower natural frequency
mode into the higher frequency mode,
the flutter boundary is not monotonous and
may be expected to have a peak at the point
f. Secondly, it is noted that over the por-
tions, between intersecting points A and ¢, of
two natural frequency curves the share of the
w,, or the w,;, mode in each natural mode
is not small. Hence, frequency coincidence of
such natural modes may be expected to have
a detrimental influence on flutter boundary.
Since the spanwise modal coupling due to in-
plane edge restraint yields these frequency

* When frequencies of natural modes coin-
cide which play important roles in an aero-
elastic coupling, employment of the assump-
tion of an isentropic flow leads to prediction
of zero critical dynamic pressure even if
aerodynamic damping exists. See Appendix.

coincidences, omission of the spanwisely high-
er modes may lead to erroneous results for
such panels. In fact, numerical results of the
analysis without the higher modes indicate
that the flutter boundary is of similar form to
that for the condition S,1 in Fig. 2¢c. Contrary
to the results of the spanwisely two-mode ap-
proximation curvature has not a destabilizing
effect at all. Lastly, as curvature is increased
further, the first two streamwise modes are
predominantly coupled to flutter again. As
for panels subjected to the set of the condi-
tions S,2 and S 3, numerical results indicate
that flutter boundary which corresponds to
the portion 4§ in Fig. 3c has a steep ascent and
no peaks although there is little difference
between the natural frequency spectra for
the conditions S;1 and S;3 with the combina-
tion of the condition S, 2. Both critical dyna-
mic pressure at R/h = 1000 shall be compar-
ed in Fig. 6.

Since, as shown in §§ 3.1, natural frequency
for A =1 is more sensitive to the tangential
conditions at curved edges than to the normal
conditions, in Fig. 4b we shall present flutter
boundary for the panels subjected to the in-
plane boundary conditions S,2 and S 4 with
the combination of the condition S 2 at y =
*b. We note that the flutter boundary is so
much dependent on the tangential conditions
at curved edges and that the tangential con-
straint has a stabilizing effect.

It can be concluded from the results dis-
cussed above that the flutter characteristics
are strongly affected by the in-plane boundary
conditions and the panel geometry. The re-
sults have revealed that the effect of the in-
plane boundary conditions are much more
complicated than reported by Dowell.

In order to examine convergence of flutter
solutions solved with the aid of Galerkin’s
method, Figs. 5 and 6 illustrate flutter bound-
ary vs. streamwise modes for panels of R/h
= 1000 and oo i.e., flat plates. For the curved
panels an open or a solid symbol indicates
that flutter is predicted as predominant coupl-
ing of the first two streamwise assumed
modes or the 3rd and the 4th, respectively.
As far as the first two modes are predomi-
nantly coupled, the critical dynamic pressure
which is predicted by using the first six or
eight assumed modes is within about five per-
cent of the converged value., However, the
higher approximation is required to get a
satisfactory prediction of flutter caused by
coupling of the higher streamwise modes,
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Fig. 5 Flutter boundary for A =2 and R/h
= 1000 with the combination of S 2.

Consequently, it may be anticipated in Fig. 2¢
and 3c that the portion of the flutter boundary
predicted as predominant coupling of higher
streamwise modes will be shifted upwards by
the higher approximation. Generally speak-
ing, curved panels with the normal constraint
at straight edges need fewer streamwise as-
sumed modes for convergence of solutions
than the panels without the constraint. Figs.
5 and 6 also prove that the in-plane boundary
conditions have a great influence on the flutter
characteristics.

So far we have discussed numerical results,
for specific panels and flow, calculated by using
the quasi-steady aerodynamic theory. Lastly,
we will assume no aerodynamic damping, i.e.,
¥, = 0 in Egs. (15) in order to study effect of
aerodynamic damping. Let us return to Figs.
2 and 3. Open circles represent the flutter fre-
quency and the critial dynamic pressure pre-
dicted by the static aerodynamic theory. It
should be noted that the flutter characteristics
determined by using the static theory agree
well with those by the quasi-steady theory
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Fig. 6 Flutter boundary for A=1 and R/h
= 1000 with the combination of S,2.

except for panels of A =2 with the normal
restraint at y = b for small R/h. ‘As far
as they are expected to agree, the results
presented here by using the quasi-steady the-
ory may be applicable to more general panel
configurations and flow condition, since the
static aerodynamic theory needs fewer parame-
ters in the analysis.

4. CONCLUSIONS

Influences of panel geometry and:in-plane
boundary conditions on natural vibration and
flutter characteristics of cylindrically curved
panels have been analyzed with the aid of
Galerkin’s method within the framework of
Reissner’s shallow shell theory.

Numerical results indicate that both char-
acteristics are greatly affected by in-plane
boundary conditions and panel geometry and
that the influences are much more complicat-
ed than reported in Ref. 9. Since some results
demonstrate that spanwise modal coupling
due to in-plane boundary restraint yields the
frequency coincidence of aeroelastically. asso-
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ciated modes which has a detrimental effect
on flutter boundary, it is quite essential to
include the higher spanwise assumed modes
in flutter analysis of such panels.

Although the present analysis has limita-
tion on choice of combinations of in-plane
boundary conditions, a general recommenda-
tion for flutter prevention of curved panels
whose aspect ratio is about 1 is that the panels
should be able to move freely along the span-
wise direction at straight edges and be tan-
gentially restrained at curved edges. The
static aerodynamic theory would provide a
good prediction for flutter of such panels.

APPENDIX

Flutter speed on the occasion of panel
frequency coalescence

It is well-known that a zero flutter speed
may be predicted by using the static aerody-
namic theory when two of the natural panel
frequencies coalesce and it is a common sense
that the zero critical dynamic pressure could
be eliminated by inclusion of aerodynamic
damping or employment of the two-dimension-
al quasi-steady theory or the piston theory.
This is, however, not true for the flutter ana-
lysis in which an isentropic flow is assumed.

For simplicity we will consider a two-mode
analysis here. According to Routh’s criterion
for stability, appropriate final formula on the
flutter boundary is

(3Q) ~2ra(hutla) — (lu=Ta)i=0 (A1)

where

In=I(1,1)4+J0(1,1)
In=1(2,1)+Je0(2, 1)
1). When density of air is assumed constant,
Eq. (19) indicates that aerodynamic damping
Y. is in proportion to a square root of dimen-
sionless dynamic pressure @, i.e.
Te= v CJ_Q (A-2)
Substitution of Eq. (A-2) into Eq. (A-1) yields
the critical dynamic pressure

Q=(‘1§6>2{61(Iu+121)

ettt +(5) (-1 (A-)

If the two natural frequencies are assumed to
coalesce, ie. I,;, = 1,,, we obtain

2
Q=2(1§6) c1(Iy+1) %0

This is the well-known result.

2). When a flow is assumed isentropic, sub-
stitution of Eq. (22) into Eq. (19) indicates
that y, is proportionate to Q itself, i.e.

Te= ‘/C_zQ (A-4)
Equation (A-4) is substituted into Eq. (A-1)
to obtain
11— 14

\/(%"Sy—zcz (In+Ia)

16\2
for (g) —2¢y(Inn+1x)>0
Equation (A-5) implies that the natural fre-
quency coalescence leads to zero flutter speed
in spite of inclusion of aerodynamic damping.
It is also noted that we can get no flutter
speed if

Q:

(A-5)

16\?2
(§) —2¢y(In+12) <0
and that the panel does not become unstable at
any dynamic pressure.
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