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On the Linear Theory of Thin Elastic Shells”

By Susumu ToDA** and Tatsuzo KoGa¥***
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ABSTRACT

The linear theory of thin elastic shells is discussed within the framework of
Kirchhoff-Love's hypothesis. Various approximate expressions of the strain-displace-
ment relations and the constitutive equations are derived simply neglecting the terms
of the order of magnitude of the ratio of the wall-thickness to the least radius of
curvature of the shell in comparison with the other terms within the equations. Identity
and equivalence of these expressions with the existing ones are indicated. Four sets of
the approximate expressions of the constitutive equations are presented, all of which
satisfy the equilibrium equations referring to the balance of moment about the normal
to the middle surface. Three of them turn out to be identical to those of the existing
theories, whereas the remaining one appears to be new. For each of these constitutive
equations, the equilibrium equations are written in terms of the displacement in an
analogous manner of Donnell for a circular cylindrical shell. Comparison of the
resulting eighth order differential equations is made by calculating eigenvalues for
some particular cases of loading. The result shows no appreciable difference among
the solutions.
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2 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-330T

NOTATION

A amplitude of the displacement de-
fined in Eq. (47)

A, A, Lamé coefficients

D,K elastic constants defined in Egs.
(26)

EG Young’s modulus and shear modu-
lus, respectively

h,L,R  thickness, length and radius of the
shell

k quantity defined in Eq. (41)

Ny, Ny, Mo, N"} stress resultants

le Q2

M, M, Mys, My, stress couples

P quantity appears in Eq. (45)

91,92, qa  components of the surface load

Ry, Ry principal radii of curvature of the
shell

Run the least value of R, and R,

#y, Uz, wy components of displacement

x, z longitudinal and normal coordi-
nates, respectively

w,y nondimensional form of w, and =,
respectively

ay, oy line of curvature coordinates in the
midsurface

Ba) Bia normal and tangential components
of angular change in the tangents
to the coordinate lines

1,6, 712 strain components

€19, 3%, 712 strain components in the midsur-
face

£10, x40 changes in curvature

J, 03, Tu}

Tins T2n

t0, 71, T3, 73 quantities defined in Eqs. (17), (19),
(20)

] circumferential coordinate of circu-
lar cylinder

stress components

1. INTRODUCTION

Since A. E. H. Love® developed well-known
Love’s first approximation of the theory of thin
elastic shells, a number of researchmen have
presented various theories, proposed modifica-
tions on Love’s theory, and argued on the
validity of the first approximation. Survey of
the state of art and comparison of various
theories have also been made by many authors.
These include the writings of W. Nash?, P, M.
Naghdi® and W. T. Koiter® The most up-to-
date account on the recent development of the
shell theory can be found in the report of W.
T. Koiter and J. G. Simmonds®. With a few

exceptions, most authors derived their equa-
tions on the basis of the Kirchhoff-Love hypo-
thesis. Wide variety in the resulting equations
is due to difference in rigour and manner of
approximation in the subsequent analysis.

The purpose of the present paper is to pro-
vide yet another look at the linear theory of
thin elastic shells. Derivation of the approxi-
mate strain-displacement relations and the ex-
pressions of the stress resultants and couples,
and correlation of them with the existing ones
are made, avoiding the use of sophisticated
mathematical means, in the hope that they
may provide an additional information to the
practitioners of the shell theory. The work pre-
sented in this paper is made within the frame-
work of Kirchhoff-Love’s hypothesis, which
may be stated such that (a) plane cross sec-
tions normal to the undeformed middle surface
remain normal to the deformed middle surface
and no change in length takes place in the
normal straight line in the cross section, and
that (b) the components of stress mormal to
the middle surface are small and may be neg-
lected in comparison with the other compo-
nents. In addition, smallness of strains, dis-
placements, and of the ratio of the thickness
h to the least radius of curvature R, is as-
sumed throughout the present paper. It is
also assumed that the shell is homogeneous,
isotropic and linearly elastic with the elestic
constants of Young’s modulus E and Poisson’s
ratio v. The line of curvature coordinates
system (ai, ;) is defined in the middle surface.
The third coordinate z is so chosen that it
measures the normal distance from the middle
surface, and that (a;, @, ) forms a triply
orthogonal curvilinear coordinates system (see
Fig.1).

The assumption of smallness of the thick-
ness to the least radius of curvature implies
that

[2/Rm|<1 (1)
Approximation is made neglecting the small
terms of the order of magniture of z/R, in
comparison with the other terms of the order
of magnitude of unity.

In Section 2, the basic equations are listed.
Various approximate expressions of the strain-
displacement relations are derived, and identity
and equivalence of them with the existing ones
are made in Section 3. Approximate expres-
sions of the constitutive equations are pre-
sented in Section 4. There, the assumption is
made that the strains, &9, &9 71,% are of the

This document is provided by JAXA.
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Fig. 1(b) Middle Surface and Notation

same order of magnitude of the change in
curvature and the torsion multiplied by the
thickness, hx% k0, hr. The constitutive
equations are modified by adding small terms
of order of magnitude of errors involved in
the original approximate equations, so that the
equilibrium equation referring to the balance
of moment about the normal to the middle
surface is satisfied identically. In Section 5,
the equilibrium equations are written in terms
of the displacement for a circular eylindrical
shell. Eigenvalues are calculated for some
particular cases of loading. Finally, in Sec-
tion 6, a brief discussion is made on the varia-
tional approach using the strain energy func-
tionals.

2. BASIC EQUATIONS

For the coordinates system shown in Fig. 1,
Hooke’s law reads

a=(0,—va)/E,

rne=t/G
where ¢ and o; (i=1,2) are, respectively, the
normal strains and stresses, 71z and ta are,
respectively, the shear strain and stress, and
G is the shear modulus.

Let w1, us, ws be the components of the infini-
tesimal displacement in the middle surface in
the directions of the base vectors tangent to
the «;, a3y and =z, respectively, and let the
strains in the middle surface be designated by
the superscript 0. Then the strain-displace-
ment relations in the middle surface are given
by

9= (1/A;) 01y /0y + (u3/ A1As)3A1/3c3 +ws/Ry

£30=(1/As) s /03 + (u1/ A1 A3) 3 As/0ay +w;s/Rs

713°=(1/A;)0u3/80t1 + (1/Ayz)8u,/00ts
— (uy/A1As)dA1/B0ts— (1] A1 A2)0 A/,
(3)

where A; and A; are the Lamé coefficients

€:=(02—W1)/E} (2)

This document is provided by JAXA.



4 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-330T

associated with the coordinates «; and a3, and
R, and R, are the principal radii of curvature
of the coordinate lines @, and a,, respectively.
The corresponding relations at the distance
z from the middle surface are then given in
the form
1 d 3
T AR o ety
. U+ 2P,
A1As(1+2/Ry) (142/Rs)

]
X W [Ail+=2/R)]+

S Ot 2py)
T13= Ay (142/Ry) By u+zh
1 P
AT /Ry B (TR
_ w428
A14:(14 2/Ry) (1+ 2/Ry)

d
XW[AKI"FZ/R])]

_ ty+ 25,
A1As(1+2/R1) (1+2/R,)

9
X g [As(142/R0)] J
(4)

with a similar relation for &, where g, and B,
are the normal components of the angular
change in the tangent to the coordinate lines
a; and e, respectively, and they are given by
Bi=w1/Ry— (1/ A1) 8w, /0y } (5)
Ba=uy/Ra— (1/Az)0w,/das
The tangential components of the angular
change in the tangent to the coordinate lines
may also be defined. They are denoted by
Bu and B, and are given by

5:12 (I/Al)au‘i’/aal_(ul/AlAk)aAl/aa! } (6)
Bra= (1/As)0uy /0cs— (uz/ A1 A3)0 Ay /0ty

The shear strain 7, and the rotation along
the normal o, are now written in the form
rs’=Bu+fu
oo (i 2 ) 7
The changes in the mnormal curvature, ,°
and x° of the coordinate lines @; and a,
respectively, are also introduced. They are
given by

K]c': (1/A1)aﬁ]/aal+ (ﬁg/AlAg)aAl/adg } ( 8 )
k30=(1/A5)0B3/0as+ (B1/A143)0A,/0a,

The stress resultants and couples may be
defined by

Nl h/2 gy
{lef =I {Tu](1+2/Rz)d‘z (9)
Q —rre\t1n

&

Wy

Ri(1+2/Ry)

-0 [Josmi o

-h/2\T12
with similar expressions for Nj, Ny, Qs, M,
and M. Here, the definition of Q1 and @, in
terms of the normal shear stresses 73, and 7,
have formally been introduced. However, as
will become clear in the following development
of the equilibrium equations, Q1 and Q; can be
eliminated entirely from the equilibrium equa-
tions, and, therefore, no further consideration
will be made on these quantities.
The equilibrium equations are given by

3(N14;) /32y +8(Ny A,y) /0ay+ Nysd Ay /oy

—NgdAy/day+ A1A2(Qi/Ryi+41) =0 (11)
B(MIA,)/3a1+6(M21A1)/aag-}-MuaA]/aa,
—MgaAg/aal—QIAlA,=0 (12)

9(Q1As) /8a; +8(QyA,) /ey
—~A1A3(N1/R;+ Ny/R;) —gnA1A3=0 (13)
Ms1/Re— Mis/ Ry + Ny — Nyy=0 (14)
with two additional equations which are ob-
tained by interchanging the indices 1 and 2
in Egs. (11) and (12). Here, g1, ¢; and gn are
the components of the applied surface load.

3. STRAIN-DISPLACEMENT
RELATIONS

Various approximate expressions of the
strain-displacement relations are derived in the
present section.

First, the terms z/R; (i=1,2) are neglected
simply in comparison with unity in Egs. (4)

without further manipulations. The result
may be written in the form
ei=e%+ 25 (i=1, 2) (15)
119=n1"+27° (16)

where

9=(1/A,)38;/0a, + (1/A3)38, /0y

—(B3/A1A3)0A2/8a1— (B1/A1A3)8A, /00,
' (17)

Eqgs. (15)-(17) are nothing but the strain-
displacement relations of Reissner’s version of
Love’s first approximation.

Instead of neglecting the terms z/R; directly
in Egs. (4), differentiation is first performed
and then the equations are put into the form

61=(&1%4-25,") /(14 2/Ry) }
712= (712" + 211+ 2302) /[ (14 2/R1) (1+2/Ry))
(18)
with a similar relation for ¢&. Here 7; and 4
are given by
t1=t+ (1/Rgs+1/R1)11s%/2 }
t3=(1/R3+1/Ry)t/2+ (1/R3—1/R;)115°/4

(19)

This document is provided by JAXA.



On the Linear Theory of Thin Elastic Shells 5

with
=74+ (1/Rs—1/R;)w, (20)

If the terms z/R; are neglected in comparison
with unity, and if the term =23, is neglected
simply because it is a higher order term in z,
Eqgs. (18) become

ei=¢"+zx;0
ra=ns"+zn

The above equations are the first approxima-
tion of the strain-displacement relations pro-
posed by V. V. Novozhilov (Eqs. 4.23 in Ref.
6), K. Mizoguchi” and by K. Washizu®.

If the right hand members of Egs. (18) are
expanded into the Taylor series and the terms
higher order than the second in z are neglected
in the resulting series expressions, Egs. (18)
reduce to

(i=1, 2) } 1)

.0 0 (=
ETS —};zx. (i=1, 2) } (22)
r1a=riz’+27s

where
t3=7— (1/Rs+1/Ry) 1s%/2 (23)

Eqgs. (22) are identical to the strain-displace-
ment relations presented by V.V. Novozhilov
(Egs. 4.25 in Ref. 6), except for #;, which
should read (x;"—¢;%/R;) in Novozhilov’s equa-
tions.

An examination of Egs. (19) reveals that 7,
is the quantity of order of magnitude r, divided
by Rm, and that the term 2%z, is negligible in
comparison with the term zr; in the last equa-
tion of Eqs. (18). It can also be recognized
that the last term on the right hand side of
the expression of z; is of order of magnitude
rns® divided by R, and that it may be negligi-
ble compared to the term 71.° in the last Egs.
(18). In this manner terms of order of magni-

tude z/Rn are neglected in comparison with
unity in Eqgs. (18). The result is

(i=1, 2) }

Ec—:i”-*;zxi“ (24)
ra=nas +z2r

Egs. (24) are identical to the strain-displace-
ment relations proposed by J. L. Sanders, Jr.”
and by W. T. Koiter".

The strain-displacement relations are listed
as a summary in Table-1. It is noted that the
expressions of & and & are the same for all
four sets of the strain-displacement relations
derived above, whereas those of 713 are
slightly different from each other. One of the
notable differences in the expressions of 7,
is that the term with e, is missing in Love’s
first approximation. Omission of the term with
w, attributes to the well-known inconsistency
of Love’s first approximation that it does not
satisfy the requirement of vanishing strains
for rigid body rotation. It can easily be
proved that the remaining three sets of the
strain-displacement relations satisfy this re-
quirement. The expressions of 7;3 of the last
three sets of the strain-displacement relations
are different from each other in the sence
that the terms of order of magnitude r;,°
divided by Rn» are added to, or subtracted, or
omitted from the form of 7,3 which is in com-
mon with all of these expressions. As has
been shown by Koiter in Ref. 4, these are con-
sidered to be of the same order of magnitude
of errors underlying the foundation of the first
approximation theory of thin elastic shells.
Consequently, it may be stated that the last
three sets of the strain-displacement relations
are equivalent to each other within the frame-

Table-1 Strain-displacement relations

Normal Strain| Shear Strain

Torsion

1

v

Love | ei=e0+ 250 ‘ ra=r’+z7° 0= (A3/A1)8(Ba/ As) /0cy + (A1/ A3)0(B1/ Ar) /0y
Reissner i i

Novozhilov® | | L

Mizoguchi eg=¢6%+ zx;° m=nd+zn | n=t+1/Ry+1/R)na®/2

Washizu l

Novozhilov® ru=ntzrs

ty=t— (1/R3+1/Ry)112%/2

Koiter
Sanders

ei=&0+zx;® rs=ru+zt

1
|
&, =0+ zx;0 i
i
|
;
|

’

=194 (1/Rs—1/R;)@,

Note: Novozhilov?=Eqgs. 4.23 of Ref. 6

Novozhilov®¥ =Eqs. 4.25 of Ref. 6, if «° are replaced by (x°—&°/R;)

This document is provided by JAXA.



6 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-330T

work of the first approximation.

4. STRESS RESULTANTS
AND COUPLES

If the terms z/R; are neglected in compari-
son with unity in the definition of the stress
resultants and couples, Egs. (9) and (10), and
if use is made of Reissner’s version of Love’s
first approximation of the strain-displacement
relations, Eqs. (15) and (16), integration in
Egs. (9) and (10) can easily be carried out.
It yields the following expression of the stress
resultants and couples which is commonly
known as those of Reissner’s version of Love’s
first approximation ([10]):

Love-Reissner:

Ni=K{(&,°+ves0)
M1=D (k" +v53°)

25
Nip=Ny=Ghys® (25)
M13=M21=(Gh3/12)r°
with similar equations for N, and M,. Heres

K and D are given by
K=Eh/(1—1?), D=Eh3/12(1—1?) (26)
A natural extension of the above may be to
make use of the exact relations of the strains
and displacements, Eqgs. (18), in the definition
of the stress resultants and couples, Egs. (9)
and (10). The integrands in Eqs. (9) and (10)
are then expanded into the Taylor series about
z=0. Subsequently, the integration is carried
out term by term to yield
Ni=K{e,°+ve+ (h*/12) (1/R3—1/Ry) )
X (£°~&1°/Ry) [L+O(h*/Rn?)]}
My=D{x,°+ve°+ (1/R;—1/R1)¢,°
—(3h*/20R,) (1/Rs—1/Ry)
X (£°—&%/Ry) [1+O(A*/Rp?)]}
Ny3=Gh{n®+ (h*/24) 1/R;—1/Ry)
X [t+ (12"/2) (1/Ry—3/R1)]
X [L+O (A Rn?)]1}
M= (Gh3/12){t+ (r12°/2)(1/R;—1/Ry)
—(3h3/40R,) (1/Ry—1/Ry)
X [t4 (r2%/2) (1/Ry—3/Ry)]
X {1+O0(h*/Rn?)1}
with similar results for N3, M;, N, and M,,.
Order of magnitude comparison is made on
the basis of the assumption that the middle
surface strains g9 ¢° and 7;2° are of the same
order of magnitude of A% Ar® and ke, First,
the terms of order of magnitude (h/R;)% are
neglected and the resulting approximate ex-
pressions are referred to as the third order
approximation. In a similar manner, the
second order and the first order approximations

7)

can be defined by neglecting terms of order
of magnitude (h/Rn)? and h/R,, respectively.
The third, second and first order approxima-
tions are, thus, considered to involve errors
of order of magnitude (h/Rp)3, (h/Rn)? and
h/Rn, respectively. The result is listed in the
following:

Third order approximation:
Ny=K{e1%4ves® +(h2/12)(1/Ra—1/Ry)(x:°—&,°/ Ry)}

(28.a)
M1=D{x1"-|-wc,°+ (I/R:—]./Rl)
X [&1°— (3h3/20Ry)x,%] } (28.b)
Niz=Gh{r1s°+ (h*/24) (1/Rs—1/Ry)
X [+ (n2%/2) (1/Rs—3/Ry)1} (28.¢)
Mi3=(Gh3/12) {z+ (1/Rs—1/Ry)
X [r12"/2—(3h?*/40R,)]} (28.d)

Second order approximation:
Ni=K{e,"+ves®+ (h*/12) (1/Ry—1/Ry) k%)

{(29.a)

My =D{x,°+v&;°+ (1/R3—1/Ry) ;% (29.b)

Nu=Gh{n+ (h*/24) (1/R3—1/Ry)7}  (29.¢)

My=(Gh3/12){t+ (1/R3—1/R))na®/2} (29.d)
First order approximation: (Love)

Ni=K(&1°+ves) (30.2)

M,=D (%" +vx3°) (30.b)

Nig=Nu=Ghp1° (30.¢)

M= (Gh3¥/12)t (30.d)

with similar result for N;, M;, Ns; and M.

Love's original version of the first approxi-
mation is identical to the first order approxi-
mation, except for the appearance of t; in
place of z in Eq. (30.d). Equivalence of r and
73 has, however, been discussed in the preced-
ing section. The first order approximation
may, therefore, be considered equivalent to
Love’s first approximation, and thus Love’s
name is indicated in the parenthesis.

It has been pointed out by many authors
that the stress resultants and couples of Reiss-
ner’s version of Love's first approximation,
Egs. (25), do not satisfy the sixth equilibrium
equation, Eq. (14). In connection with this,
N, Nai, M and My, as given in Egs. (28)-(30)
are substituted in Eq. (14). It turns out that
none of these approximations listed above
satisfy Eq. (14) identically. Therefore, modi-
fication is made on Eqgs. (29)-(30) by employ-
ing the higher order approximations for those
quantities which are essential to meet the re-
quirement of satisfying Eq. (14) identically.
Modification in this manner may be justified
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by the similar argument made in the preceding
section on the equivalence of 7;, 73 and 7 such
that terms of order of magnitude of errors
involved in the approximation may be added
to the approximate equations. It should be
emphasized, however, that the modification
doesn’t necessarily imply refinement of the
original approximate equations, that is to say
that the modified equations involve errors of
the same order of magnitude of the unmodified
ones.

Modification is first made on the second
order approximation by replacing Eq. (29.¢)
with the corresponding equation of the third
order approximation, Eq. (28.c). The modified
approximation is referred to as the modified
second order (I). Further modification on the
second order approximation is made by replac-
ing Eq. (29.a) with Eq. (28.2) in addition to
the replacement of Eq. (29.c) with Eq. (28.c).
The modified approximation thus obtained is
referred to as the modified second order (II).
In a similar manner, the modified first order
(I) and (IT) are established by replacing Eq.
(30.c) with Eq. (29.c), and Egs. (30.a,c) with
Egs. (29.a,c), respectively. The modified ap-
proximations are listed in the following:

Modified second order (I): (Naghdi-1957)
Ny=K{e04+ved+ (h3/12) (1/R:—1/R1) %}

(31.a)

M,=D{x®+vx®+ (1/R2a—1/Ry) &% (31.b)
Nys=Gh{r*+ (h3/24) (1/Rs—1/Ry)

X [t+ (112°/2) (1/Rs—3/Ry)1} (31.¢)

M= (Gh3/12) {t+ (1/Ry—1/R)ns"/2}  (31.d)

Modified second order (II): (Fliigge-Lur’e-
Byrne)

Ni=K{e,* +2e+ (h*/12)

X(1/Ra—1/R) (e0—e8/R)}  (32.8)
My=D{e0+u0+ (1/Ra—1/Ry)et  (32.b)
Niu=Gh{rs"+ (h*/24) (1/R:—1/Ry)

X [t4 (1/Rs—3/R1) r1a°/2}} (32.¢)
Mye= (Gh3/12) {r+ (1/Rs—1/R)1s%/2}  (32.d)
Modified first order (I): (Koiter)

Ny=K (&, +veg®) (33.a)
M,=D(x,0+vk30) (33.b)
Nu=Gh{rs®+ (h*/24)(1/Rs—1/Ry)7}  (33.¢)
M;3=(Gh3/12)z (33.d)

Modified first order (I1I):
N1=K{61°—f—1'530+ (h’/lZ) (I/Rz—-l/Rl) ﬂlo}
(34.a)

MI:—D(KID'*‘VE;(’) (34. i))
Ni=Gh{r"+ (h3/24) (1/Rs—1/Ry)7}  (34.¢)
Mys=(Gh3/12)t (34.4)

with similar results for N;, M;, Ny and M.

It can easily be proved that all four sets
of the stress resultants and couples listed here
satisfy the sixth equilibrium equation, Eq.
(14), identically.

It turns out that the first three of these
approximations are identical to those derived
by the authors whose names are indicated in
the parenthesis: The modified second order
approximation (I) is identical to the stress
resultants and couples derived by P. M.
Naghdi™ in 1957. W. Fliigge?, A. 1. Lur'e’™,
and R. Byrne" independently derived the
stress resultants and couples which are iden-
tical to Egs. (32). The stress resultants and
couples of the modified first order (I) are
identical to those proposed by W. T. Koiter®.
The modified first order approximation (II),
Eqs. (34), appears to be new. Similarity in
the manner of modification indicates that the
modified first order (II) may be interpreted as
the first order version of Fiigge-Lur’e-Byrne’s
theory.

Possibility of making other modifications
may be considered; for example, by employ-
ing the higher order approximations for M;
instead of, or together with those for Nj; and
N,. Examination of the equilibrium equations
and of the definition of the stress resultants
and couples reveals, however, that the stress
resultant and couples appear in the same order
in the equilibrium equations and that the
leading terms in the expression of N, and
N,; are the strains multiplied by %, where-
as those of M; and M, are the change in
curvature and the torsion multiplied by A3
This indicates that, if refinement is made on
N3, which is essential for the requirement of
satisfying the sixth equilibrium equation, re-
finement on N; is meaningful, whereas that
on M, is somewhat meaningless. This also
implies that Fliigge-Lur’e-Byrne’ and the modi-
fied first order (II) approximations may be
considered as belonging to the classes of ap-
proximation of the third and the second order,
respectively.

Although it is not the purpose of the present
paper to discuss on many other existing theo-
ries proposed by various authors, a brief men-
tion should be made on the theory of Sanders®
and on that of Novozhilov®. These theories
are similar to each other in the sence that they
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Table-2 Constitutive Equations

Ni/K

Ni/Gh

M,/D

M/ (Gh3/12)

Fligge-Lur’e-
Byrne

&0+ ve,0

+ (h?*/12) (1/R3—1/Ry) #,°
— (R*/12) (1/Ry—1/Ry)
X&%/ Ry

712

+ (h?/24) (1/Ry—1/Ry)t
+ (h*/24) (1/R3—1/Ry)
X (1/Re—3/R1)1s%/2

10+ vrg0
+(1/R3~1/Ry)
X &0

T
+ (1/R3—1/Ry)
Xr12%/2

Naghdi (1957)

€1 +ve0

+ (B/12) (1/Rs—1/R1) r)°

114°
+(h?/24) (1/Ry—1/Ry)t
+ (h*/24) (1/R3—1/Ry)

X (1/R3—3/R1)11s%/2

5%+ vey®
+(1/R:—1/Ry)
X &9

T
+(1/Rs—1/Ry)
X7113%/2

712° ?

1st. order (II) | &%+ wveg® £10 4 vy r
+(B2/12) (1/Ra—1/R)r1® | + (B3/24) (1/Ra—1/Ry) |

Koiter £10+vey0 712° 510+ veg0 T
-+ (h?/24) (1/R3—1/Ry)t

Love-Reissner | ¢4 ey 712° £10 4+ vrg® 70

Sanders €19+ vel 712 FAERYX T

Novozhilov | e39+vegl 12° 510+ vrg® 7
+ (h¥/12R3) 7y

Note: The shear strain and the torsion of the Sanders theory should be related to the
average stress resultant and couples, Nyy=(Ny+Ny)/2 and Myy= (My+ M) /2

introduce new functions in such a manner that
Eq. (14) be satisfied identically. Sanders in-
troduced the average stress resultants and
couples and the corresponding average dis-
placements, and he formulated the theory with
the aid of the principle of virtual work. Novo-
zhilov introduced arbitrary stress functions so
that the equilibrium equations are satisfied
identically.

The constitutive equations are listed in
Table-2, in which the shear strain and the tor-
sion in Sanders’ theory should be related to
the average stress resultants and couples,

Nia=(N13s+Ny) /2 and M= (Mys+My)/2.

5. EQUILIBRIUM EQUATIONS FOR
CIRCULAR CYLINDRICAL
SHELLS

A circular eylindrical shell of uniform thick-
ness h, radius R and length L is considered.
The coordinates system (x,6) is defined in
the middle surface of the shell, such that x
measures the length in the axial direction and
¢ is the circumferential coordinate mesured in
radians (see Fig. 2), and that «;, and a; are
identified with 8 ard x, respectively. It follows

then that 1/R;=0, 1/R;=1/R, As;=1 and A;
=R. The equations derived in the preceding
sections are specialized for the circular eylind-
rical shell, and, for each of the approximate
expressions of the stress resultants and couples,
the equilibrium equations are expressed in
terms of the displacement in a form analogous
to the Donnell equations. The result is listed
in nondimensional form in the following:
Naghdi (1957):
PA(pP 1) b+ 4k4” 4 2(1—v)
X (‘LU”:: _w11’ll+w1--) _’_zwm..:o
Fligge-Lur’e-Byrne:
PP+ 1) 4w+ 4k 4 2(1—v)
x (u//;; —7.0'”'”-{- ,LUH.-) =0
Koiter-Sanders:
AP+ 1) w444
+2(u/1;;_wlf///+wr..) =0
Modified first order (II):
P2 +1) 2w+ 4k
+ (2—!-') (u//;; _wr//ir+u//..) =0
Novozhilov—Mizoguchi:
V"(V’+1)’w+4k‘w””+2('a/’::—u/’””+w’"‘)
+2(1—3)w"* =0 (39)

(35)

(36)

(37)

(38)
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MIDSURFACE

Fig. 2 Geometry and Coordinates of Circular Cylindrical Shell

Love-Reissner:
y‘(p’+l)’w+4k‘w’”’+(5+3v)w”"/2
+2[m]’l:: _w'l’l’_ (I—V)u/""'] =0 (40)
where w is the outward-normal displacement
wy divided by R, the dot and the prime as
superscript indicate differentiation with respect
to 6 and the nondimensional coordinate y defined
by x divided by R, respectively, and
4R =12(1—3) (R/h)? . (41)
rr)=0)"+0) (42)
The equation obtained by Novozhilov’s
theory is also presented in the above for the
sake of comparison. It should be noted here
that the equation identical to Egq. (39) has
already been derived by Mizoguchi”®, who has
independently developed a linear theory of thin
elastic shells which turned out to be identical,
in essence, to that formulated by Novozhilov.
The Sanders theory yields the equation which
is identical to that obtained with the aid of
the constitutive equations of Koiter. Sanders’
name is thus indicated together with Koiter’s.
Eq. (36) designated by Fliigge-Lur’e-Byrne is
the one which has been derived by J. Kemp-
ner™. A close resembrance in form should be
noticed among the equations of Fliigge-Lur’e-
Byrne, Koiter-Sanders and of the modified first
order (II), and among those of Naghdi and
Novozhilov—Mizoguchi.
A similar equation can also be derived with
. the aid of the equations defining exactly the

stress resultants and couples. The stress re-
sultants and couples as given in Egs. (9) and
(10) are substituted into the equilibrium equa-
tions. As is possible for the circular cylin-
drical shell of uniform thickness, the order
of differentiation and integration is inter-
changed. The integrands are then expanded
into the Taylor series. Subsequent integration
term by term and rather involved mathemat-
jcal manipulations yield an eighth order dif-
ferential equation in w. It turns out, after
neglecting terms of order of magnitude (2/Rm)?
in comparison with unity, to be identical to
that of Fiigge-Lur’e-Byrne.

Approximate equations which take much
simpler form than Egs. (35)-(40) have been
proposed by L.S.D. Morley® and by L.H.
Donnell’®. They are given in the form

Morley:

pi(p?+1)2w+ kb =0 (43)

Donnell:

phw+ Ak =0 (44)

N. J. Hoff*® investigated the accuracy of the
Donnell equation. Hoff utilized the result of
earlier studies made by himself and his colla-
borators™=® that solutions to many equilibium
problems can be obtained with the aid of eigen-
functions trigonometric either along the longi-
tude or along the circumference. He thus as-
sumed w in the form

w=ePVcosnfl (n=0,1,2,.-) (45)
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when the shell is free of surface loading and
loads are applied at edges of constant z, and
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w=ePlcosny (n=mzaR/L; m=0,1,2.-.) (46)

when the shell is free of surafce loading and
loads are applied at edges of constant g, and

in the form

w=2A cos sy cos nf (s=mzR/L; m,n=0,1,2,...)

(47)

when the shell is subjejeted to a radial pres-
sure which can be expressed in the Fourier
series of the same form as Eq. (47). Compari-
son was then made of the numerical values of
2 and A obtained and the Donnell equation
and for the Fiigge-Lur’e-Byrne equation.
Comparison of the solutions to Egs. (35)-
(40) is made following an identical procedure

Table-3 Roots when w=e?? cos nf

k n Theories P P2 23 Da
Naghdi 5.0833+4.9132; 0
F-1-B 5.0843+4.9143; 0
5 1 K-S 5.0990+4.8990; 0
1st. (ID) 5.0017+-4.90661 0
N-M 5.00874-4.8986: 0
L-R 5.0983+4.8983 0.0118
Naghdi 5.9588+-4.2665: 0.9318+0.6872;
F-L-B 5.9660+4.2763; 0.9300+0. 68657
5 3 K-S 5.9789+4.2583: 0.9280+0. 6893 ¢
1st. (ID) 5.9724+4.2673: 0.9290+-0. 68791
N-M 5.9723+4.2494: 0.9296+0. 6899
L-R 5.9999+4.2603: 0.8605+0.76761
Naghdi 12.4639+2.9564: 7.5308+1.9028;
F-L-B 12.5166+3.0368: 7.4812+1.92647
5 10 K-S 12.5264+2.9987: 7.47514-1.9484:
1st. (ID) 12.5215+-3.0178: 7.4781+1.9374
N-M 12,4788 +2,9244: 7.5199+1.9279:
L-R 14.3949+-4. 3668 5.2728+3.9935;
Naghdi 10.0423+9. 9573 0
F-L-B 10.0424+9. 9574 0
10 1 K-S 10.0499+9. 9499+ 0
1st. (II) 10.0461+9. 95367 0
N-M 10.0498+-9. 9498 0
L-R 10.0498+9. 9498 0.0030
Naghdi 10.45704-9.5749: 0.4400+0. 4057
F-L-B 10.4581+9.5760: 0.4399+0. 4057+
10 3 K-S 10. 46534-9. 5682 0.4396+0. 4060
Ist.*(II) 10.4617+9.57214 0.4398+-0. 40587
N-M 10.4643+9.5671: 0.4397+-0.4060:
L-R 10. 4665+-9. 5686 0.4299+.0.4161¢
Naghdi 15.2732+-7.3959: 5.2682+-2.5739
F-L-B 15.2808+7. 4080 5.2633+2,57441
10 10 K-S 15.2864+4-7.3965:¢ 5.2614+2.5783:
1st. (ID 15.28364-7. 4022+ 5.2623+2.5763
N-M 15.2795+7. 8855 5.2658+2, 5779
L-R 15.7358+-7.4767: 4.5223+3.4881¢
Naghdi b51.0173+49.0219: 1.0139+0.9745:
F-L-B b51.0174+-49.0220; 1.0139+0,9745:
50 10 K-S 51.01891-49. 0205 1.0139+0.9745:
1st. (AD) 51.01814-49.0212; 1.01394-0.9745:
N-M b51.0188+49.0204; 1.01394-0.9745:
L-R 51.0192+-49. 0203 1.0040+0.9847:
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to Hoff’s. The result is shown in Table-3, 4
and 5. In Table-5, Ana, ArrB, Aks, A11, ANy
and Argr indicate the amplitudes of the dis-
placement function in the form of Eq. (47) for
the cases of Naghdi, Fliigge-Lur’e-Byrne,
Koiter-Sanders, the modified first order (II),
Novozhilov—Mizoguchi and Love-Reissner, re-

spectively. The solutions to the Donnell and
Morley equations are not listed in the tables,
because they are available in the earlier pub-
lications (see Refs. 16 and 18, and the book of
H. Kraus™). The tables show no appreciable
difference among these solutions.

Table-4 Roots when w=eP? cos ny

E n Theories P P2 D3 Pu
Naghdi 0.0510+0.0490: 0.0025+1.0000:
F-L-B 0.0510+0.0490: 0.0025+1.0000:
5 0.01 K-S 0.0511+0. 0489+ 0.0025+1.0000:
. 1st. (II) 0.051040.04891 0.0025+1.0000:
N-M 0.051130.0489: 0.0025+1. 0000+
L-R 0.0509+0.0491¢ 0.0039+1.0000¢
Naghdi 2.5477+0.9712: 1.0438+2.3742:
F-L-B 2.5470+0.9695: 1.0456+2.37501
5 1.00 K-S 2.5481+0.9648: 1.0428 +2. 37681
. ist. (D) 2.5475+0.96711 1.0441+2.3759:
N-M 2.5488+0.96641 1.0412+2.3762:
L-R 2.5449+0.97414 1.0508+-2.37321
Naghdi 12.4450+2.0181¢ 7.6930+3.3148:
F-L-B 12.3954+1.9458: 7.7456-+3.2946:
5 10. 00 K-S 12.3967+1.9146: T7.7474+3.3219:
: 1st. (ID) 12.3959+1.9301: 7.7466+3.3081+
N-M 12.4419+1.9822: 7.6995+3.3398:
L-R 12.3894+1.9589: 7.7589+3.29571
Naghdi 0.1014+-0.0985: 0.0100+-1.0002:
F-L-B 0.1014+0.0985: 0.01004-1.0002:
10 0.01 K-S 0.1015+0.0985: 0.01001+1.0002:
: ist. (IT) 0.1014+0.09857 0.0100+1.0002:
N-M 0.1015+0.0985: 0.0100+1.00027
L-R 0.1013+0.0986¢ 0.0104+1.0002:
Naghdi 3.5372+1.4100: 1.4610+3.4144:
F-L-B 3.5371+1.4097: 1.4613+3.4146:
10 1.00 K-S 3.5376+1.4083: 1.4602+3.4152:
. 1st. (II) 3.5373+1.4090: 1.46081+3.4149:
N-M 3.5377+1.4085: 1.4599+3.4151¢
L-R 3.5364+1.4114: 1.4631+3.41397
Naghdi 14.5458+-3.4322¢ 7.044617.10104
F-L-B 14.5389+3.4210¢ 7.0534+7.1011:
10 10. 00 K-S 14.5396+3.4130: 7.0534+7.1064:
. 1st. (II) 14.5392+8.4170: 7.05634+7.1037+
N-M 14.5458+3.4233: 7.0454+7.10631
L-R 14,5366 +3.42581 7.0596+7.10031
Naghdi 26.2696+9.51601 10.9565+22.81621
F-L-B 26.2695+9.5158: 10.9566+22.81631
50 10. 00 K-S 26.2696+9.5154: 10.9563 +22. 8165
: 1st. (ID 26.2696+9.51567 10.9565+22.8164
N-M 26.2697+9.5155: 10.9562+22. 8164
L-R 26.2693+9.5163: 10.9571+22.8161:
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Table 5 Coefficients for w=A cos sy cos n6

k n s ANa/Arie | Ags/Aris | A1r/Arip | Anwm/Arip | Arr/Apis
5 1 0 —_ _— B e —_—
5 2 0 1. 0000 1. 0000 1.0000 1.0000 1.0600
5 3 0 1. 0006 1. 0006 1.0006 1.0006 1. 0006
5 1 0.5 1.0008 1.0000 1.0000 1.0007 0.9957
5 2 0.5 1.0015 1.0053 1.0027 1. 0066 0.9854
5 3 0.5 1.0000 1.0021 1. 0000 1.0021 0.9965
5 1 1.0 1. 0006 0.9994 0.9994 1. 0000 0.9981
5 2 1.0 1.0028 1.0023 1.0012 1.0048 0.9913
5 3 1.0 1.0017 1.0041 1.0021 1.0057 0.9914
5 10 1.0 1.0000 1.0000 1. 0000 1. 0000 1.6000

10 1 0 —_— _— e _— _—

10 2 0 1. 06000 1.0000 1. 0000 1. 0000 1.0000

10 3 0 1. 0006 1.0006 1. 0006 1.0006 1. 0006

10 1 0.5 1. 0000 1. 0000 1. 0000 1. 0000 0.9997

10 2 0.5 1.0001 1. 0007 1. 0003 1.0009 0.9981

10 3 0.5 1. 0000 1.0010 1.0010 1.0019 0.9981

10 1 1.0 1. 0000 1.0000 1. 0000 1.0000 0.9999

10 2 1.0 1.0003 1.0002 1. 0002 1.0005 0.9995

10 3 1.0 1.0005 1.0010 1. 0005 1.0014 0.9981

10 10 1.0 1. 0000 1.0001 1.0001 ’ 1.0001 1.0000

6. CONCLUSION AND DISCUSSION

Various approximate expressions of the
strain-displacement relations and constitutive
equations have been derived after a rather in-
tuitive discussion on the order of magnitude of
the errors involved. Identity and equivalence
of these expressions with the existing ones has
been indicated. One of the approximate ex-
pressions of the constitutive equations, the
first order approximation (II), appears to be
new. The basic equations with four different
sets of the constitutive equations were special-
ized for a circular cylindrical shell and the
equilibrium equations were written in terms of
the displacement in an analogous manner of
Donnell’s equation. Comparison of the nume-
rical values of the eigenvalues indicates that
there is no appreciable difference among the
solutions to these equations for those par-
ticular cases of loading considered.

It has often been stated that the eigenvalues
can be obtained in an explicit form only to
the Donnell and Morley equations, and that
those to other equations are obtained only
through numerical computations (see, for
example, Ref. 21 and a brief note of 8. H. Iyer

and S. H. Simmonds®). It can be shown, how-
ever, that the eigenvalues as a closed form
solution can be obtained for the boundary value
problems governed by any of Egs. (35)-(40).
This can be accomplished by adding to or sub-
tracting from the characteristic equations
appropriate terms of the order of magnitude
of errors involved in the basic equations, so
that the roots of the characteristic equations
are found with the aid of the available explicit
formulas of the algebraic equations. This
method has been suggested by Mizoguchi who
obtained the eigenvalues for the equation (39)
designated by Novozhilov—Mizoguchi.

If the displacement function w is assumed
in the form of Eq. (46), for example, the char-
acteristic equation resulting from Eq. (36),
designated by Fliigge-Lur’e-Byrne, may be
written in the form

PPH2(1—2n2) p8+ [(6+H)nt—2(4—v)n2+1]pt

—2n(2n*—3n14 2—1) P2+ n4 (nA —2vn3 4 4k4) =0
(48)
where

HA=4(1—)2/[AR*+4(1—v)d— (2—v)?]  (49)

which is of the order of magnitude of errors
involved in the basic equations, and thus the
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addition of which in the manner of Eq. (48) is
permissible. It can easily be proved that the
solutions to Eq. (48) satisfy the following
fourth order algebraic equation and its con-
jugate:
P+ (A —2nt—indH)p?
+n3[n?—24v+i2(1—v)/H] =0 (50)

where i=v—1.

The solution of Eq. (50) can be found as in
a closed form. In a similar manner, by adding
small terms similar to H?, the closed form
solutions are obtained to the characteristic
equations resulting from the other differential
equations. The foregoing arguements and the
obscurity underlying the process of approxi-
mation appear to reduce the importance of
Morley’s equation. It should be noted here,
however, that C. P. Mangelsdorf® has recently
shown that the equation identical to Morley’s
can be derived, by way of the variational
method, from the modified Koiter’s energy
functional which had been suggested by W. T.
Koiter?.

Throughout the preceding discussions, ap-
proximation has been made simply comparing
the order of magnitude of terms within the
equations. This, however, overlooks the pos-
sibility that there may be yet other terms
which are of the same order of magnitude as
the terms used for comparison, and that these
larger terms could produce a sum which was
of the same order of magnitude as the term to
be considered negligible.

In general, the only rational basis for the
order of magnitude comparison would be the
sum of all the terms in the equation. If the
sum of all the terms of the expression is posi-
tive and if it is possible to divide the terms
into groups, the sum of which are, by them-
selves, positive, each group of the terms could
provide a proper basis for comparison.

The functional defining the strain energy of
deformation is positive and the terms in the
functional expression can be divided into
groups which are also positive for v>1. The
Koiter energy functional for the circular
cylindrical shell, for example, can be written
in the form

Px= (K/Z)S[ [ +v(v" + )] 4 (1—12) (v +70)?

+ (1—v) (v +1u)3/24 (h*/12R?)

X {[w’ +v (' —v)]12+ (1) (w—v7)?

+2(1—v) (" —3v /44w /4)%})ds  (51)
where the integration is over the middle sur-
face within the boundary, and » ane v are the
nondimensional form of the displacements in

the axial and circumferential directions, u=
and w,, defined by u=u-/R and v=us/R, respec-
tively. Each term in the integrand of Eq. (b1)
and the sum of any combination of them can
be used as the basis for comparison. Mangels-
dolf thus reasoned the addition of small terms
to Px to present a modified Koiter energy
functional Pg’

PKI:PK+Pm

where P indicates the group of small terms
added for modification and is given by

Pr=(K/2) | 08/12R0) (—20—3)at (=)

+ (v +w)+2(v +w)w”
+2(v+w) (w—v)—(3/8) (1—) (w+v)3
+(1—=v) (w+7) (w'"+u /A—3V /4}ds

(52)

Variation of Px’ with respect to =, v, and w
yields the Euler equations which subsequently
reduce to the equation identical to Morley’s,
Eq. (43).

In a similar manner, by way of the varia-
tional method, the equations identical to
Fliigge-Lur’e-Byrne’s, Eq. (36), and Naghdi’s,
Eq. (35), can be derived. In these cases, P
should take the form

Pn=(K/2) S (R/12RY) [— 20w + (v +w)?

+2(v +w) (w =)
+(3/8) (1—v) (' + V) ds (53)

for Fliigge-Lur’e-Byrne’s equation, and
Po=(K/2) S(h’/lZR’)[— 2wl + 20+ W) —v°)
+(3/8) (1—v) (+ 1)1 ds (54)

for Naghdi’s equation.

All the terms in Eq. (58) and (54), except
for the term #’w”, are included in Eq. (52) and
the negligibility of them in comparison with
the terms of P has already been proved by
Mangelsdorf. Following the same reasoning
offered by Mangelsdorf for the negligibility of
the term #(w"—v), we can show that the
term «w” is also negligible.
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