UDC 629.735.7.062.2.001.4: 621.452.32

航空宇宙技術研究所報告

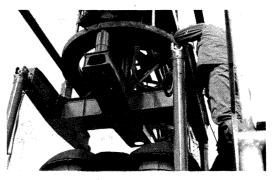
TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY

TR-402

フライングテストベッド姿勢制御拘束実験 ----第4次実験-----

滝澤直人・小川敏雄・田辺義一
渋谷昭義・藤枝郭俊・甲斐忠夫
宮本義人・小野幸一・鳥崎忠雄
後藤芳夫

1975 年 1 月


航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

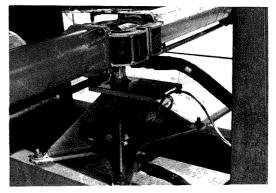

Figure 1 NAL Flying Test Bed 航技研フラィングテストベッド

Figure 2 Air jet nozzle 空気ジェットノズル

(b) Top 頭部

(a) Bottom 基部 Figure 3 Constrained rig 拘束装置

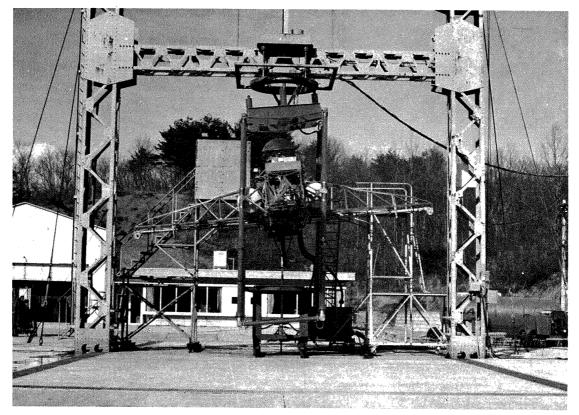


Figure 4 Rolling test ロール試験

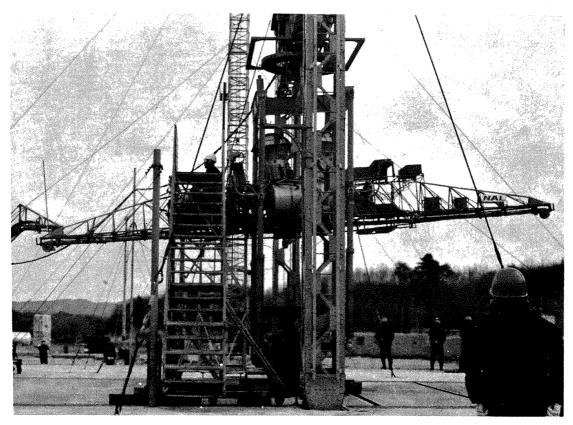


Figure 5 Pitching test ピッチ試験

2	2.	記 1	主		号…		2
			主				
	2.			記号ま	いよび	单位	2
		2	添	字	記	号	2
	2.	3	略	字	詞	号	3
3		F	Ť	В	•••••		4
	3.	1	īΕ	規	状	態	4
	3.	2	姿	勢制後	ヨシス	テム・・・・	4
	3.	3	実	験月	橫	装	8
	3.	4	機	能	試	験	8
4		実	験	設	備…		8
5		計			測…		8
	5.	1	計	画		毅 ·····	8
	5.	2	直	接	計	御	10
	5	3	7	レメー	- タ計	測	0
	5.	4	地	F	計	卿·····	12
6		実	験	運	営…		2
	6.	1	計			画	12
	6.	2	器	材	展	開	1,2
	6.	3	実	験	進	備	12
	6.	4	実	験	要	領	4
	6.	5	運	転 整	備 記	☆ ·····	14
	6.	6	撤			収	14
7.		実	験	内	容…		14
8		実	験	結	果…		14
	8.	1	運	転	17 17	録	
	8.	2	作	動	特	性	16
	8.	3	姿	勢制後	彰実験	結果	17
		4				性	
9		実舅				事項	
	9.	1				動	
	9.	2				テリシス	
	9.	3				すれ	
	9.	4				見と対策	
	9.	5	実	険に関		のトラブル・・・・・	
10		む		す			
			文				
		付金	禄・扌	答乗員	〕 手順	表	51

,

担 当 部 長 武田峻(新型航空機部),松木正勝(原動機部),高木広治(飛行実験部)

担 当 者

- 全般および機体 ②滝沢直人,〇渋谷昭義,田辺義一,小川敏雄,藤枝郭俊,甲斐忠夫,宮本義人, 岡田典秋,西村博史,小川康男(以上新型航空機部),小野幸一(機体第一部), 十河弘,川崎純男,山下浩之,角田則夫,細谷英敏,加藤了,若月賢瑞,茨城砧二, 小口宏蔵,福地昌夫,篠原文夫,斉藤政美,尾池義人,大関貞夫,中沢政美, 味野和誠一,増子禎佑,苅部昭寿(以上富士重工業株式会社),増原恢,池上博 (以上日本電気株式会社),竹内和之(機体第一部)
- エンジン
 ②鳥崎忠雄,吉田晃,岩部柱相,武田克己,関根静雄(以上原動機部)
 笹生芳男,相原健一,市川宗義,中川勝頼,畑山忠利,園田繁(以上石川島播磨重
 工業株式会社)
- 操 縦 ◎後藤芳夫(飛行実験部),鈴木昇(富士重工業株式会社)
- 庶務·警備 角田支所管理課
- 広 報 管理部企画課
- データ解析 滝沢直人,小川敏雄,田辺義一,藤枝郭俊,甲斐忠夫,宮本義人,渋谷昭義, 小野幸一
- 執 筆 者 滝沢直人,小川敏雄

〔注〕◎;主任 ○;副主任

٩

フライングテストベッド姿勢制御拘束実験

一 第4次実験 一

滝沢	直人 ^{**} 小川	敏雄 ^{**} 田辺	義一 ^{**}
渋谷	昭義 ^{**} 藤枝	郭俊 ^{**} 甲斐	忠夫
宮本	義人 _{***} 小野	幸一 ^{***} 鳥崎	忠 雄
後藤			

Semi-constrained Attitude Control Tests of Flying Test Bed for VTOL Aircraft

By Naoto TAKIZAWA, Toshio OGAWA, Yoshikazu TANABE Akiyoshi SHIBUYA, Hirotoshi FUJIEDA, Tadao KAI, Yoshito MIYAMOTO Kojchi ONO, Tadao TORISAKI and Yoshio GOTO

This paper describes the semi-constrained attitude control tests of the Flying Test Bed which has been developed by National Aerospace Laboratory for the purpose of studying the problems associated with hovering as well as vertical takeoff and landing operations of VTOL aircraft.

The FTB without landing gears was installed to a link mechanism which was designed to constrain the three linear movements, but to allow the three angular displacements. The attitude angles were constrained within $\pm 7.5^{\circ}$ in roll, $\pm 7.5^{\circ}$ in pitch and $\pm 20^{\circ}$ in yaw.

Eight preliminary tests and four attitude step response tests were conducted using the remote control, and four preliminary tests and nine attitude control tests (1 degree of freedom) were conducted by the crew. The tasks given to two pilots were to apply slow, step or repeated control to the stick or pedals.

The preliminary tests proved good characteristics of the engines and other sub-systems of the FTB.

The maximum angles and angular velocities which were recorded in the attitude control tests are as follows: 5°, $4.1^{\circ}/S$ in roll and 4°, $3.4^{\circ}/S$ in pitch for the remote control; 5.5° , $6.3^{\circ}/S$ in roll, 4.5° , $3.8^{\circ}/S$ in pitch and 10° , $2.6^{\circ}/S$ in yaw for the pilot control.

The attitude control tests proved that the attitude control system including the automatic stabilization equipment (ASE) provided a good stability and control characteristics which are comparable to current helicopters and that the cancellation of engine gyroscopic moment by the ASE was satisfactory. The left yawing pedal effectiveness was better than that of right pedal because of engine rotation and of constrained reaction. Operating the ASE about the mechanically constrained axis caused to excite the FTB structural vibration.

1. まえがき

VTOL機の垂直離着陸およびホバリング時の飛行 性を研究するためのフライングテストベッド^{10,20}(F TB, Flying Test Bed)は,昭和44年11月,高 度制御拘束実験を実施し,垂直離着陸の上昇,下降, 空中停止に関する制御能力の確認および搭乗員の慣熟 が行なわれた³⁾

垂直離着陸時の高度制御とならんでホバリング時の 姿勢制御は重要な研究課題である。本実験では空気ジ ェットノズル,操縦機構,自動安定装置(ASE, Automatic Stabiligation Equipment),搭乗員等 を含むシステムの制御能力の確認および搭乗員の慣熟

* 昭和49年10月1日受付

** 新型航空機研究グループ

*** 機体为一部

に重点をおき,自由飛行の可否判断資料を得ることを 目的とした。しかしながら,制御に関するパラメータ の選択,実験回数,運転時間,操作入力の単純化,計 側の質と量などに制限があり,判定容易な形でのデー タばかり十分に得ることはむずかしく,その中で可否 判断資料をまとめなければならない所にむずかしさが あった。

姿勢制御は3軸回りを対象とするが、本実験ではつ ぎの理由によりロール、ビッチ、ヨーの1自由度のみ を対象とした。(1)1自由度が基本である。(2)多自由度 までのCase を消化するには期間がかかりすぎる。(3) 多自由度実験は自由度飛行実験直前に実施した方が慣熟 として得策である。

**** 原動機部 *** 飛行実験部

実験は昭和45年3月15日から22日 まで角田支 所において実施し、ほかに器材展開に 27日、撤収に 7日間を要した。機体は限られた範囲でのロール,ピ ッチ,ヨーの自由度を許容される拘束実験装置 "に取 り付けられ、制御システムの能力、機器の信頼性、操 縦技術などがたとえ十分でなくとも、安全に実験でき るようにした。実験は次の4段階に分けて行なった。 (1)約60mの遠隔操作による機体固定運転およびロー ルとピッチの各ステップ応答実験。(2)搭乗によるロー ル実験。(3)搭乗によるビッチ実験。(4)搭乗によるヨー 実験。

本報告ではこれらの実験の方法ならびに結果につい て報告する。この種の実験では姿勢制御特性などに関 する検討もさることながら、結果を得るに致るまでの 経過ならびに計測データそのものが重要と考えて、こ れを忠実に報告するようにつとめた。

本実験では主として1軸回りの運動に対する姿勢制 御能力の確認、ならびに搭乗員の慣熟が行なわれたの で、つぎに2軸、3軸回りの自由度を有する場合の実 験を行なえば、姿勢制御拘束実験は一応終るが、これ らは比較的簡単であるので、継続して直ちに自由飛行 の段階へすすむことが可能と考えられる。

2. 記 号

2.1 主記号および単位 A 〔cm2);面積, Area a 〔Cm〕;アクチュエータ変位, Actuator displacement D 〔deg〕; 方位角, Directional angle E〔V〕; 電圧, Voltage F [kg] ; 推力, Thrust, 力, Force f 〔Hz〕; 振動数, 周波数, Frequency 8〔9〕;重力の加速度, Gravitational acceleration 機体の上下振動加速度, Vertical vibrating acceleration H 〔%〕;相対湿度, Relative humidity I 〔kg m s²〕;慣性モーメント, Moment of inertia ĸ ;ゲイン, Gain lp, mq, nr, [1/s]; ロール, ピッチ, ヨー 減衰項ゲイン, Roll, pitch, yaw damping gain L, M, N, 〔kgm/cm〕;ロール, ピッチ, ヨー単位 操舵当りモーメント, Rolling, pitching, c ;修正値Corrected or normalized yawing moment per unit control displacement.

1.,	ma,	n o	{rad / s ² /	cm∎];¤	- <i>r</i> ,	ピッチ	', ∃−
			操縦感度,	Roll,	pitch,	yaw	control

- l_{ϕ} , m_{θ} [1/s²]; $u = \lambda$, $U_{y} \neq \hat{g}$ 元項ゲイン, Roll, pitch stiffness gain
- Mamax , Memax, Mrmax (kg m); ロール, ピッチ, ヨー最大利用制御モーメント, Roll, pitch, yaw maximum available control moment
- N (rpm);エンジン回転数, Engine speed, 回転 数, revolutions per minute
- P (kg/cm² abs) (kg/cm² G) (## Hg); 圧力, Pressure
- 8 (mil) (%);エンジン振動上下振幅, Vertical amplitude of engine vibration, ストローク, Stroke
- 8 〔1/8〕; ラプラス変換のパラメータ, Parameter of Laplace transformation
- T 〔C〕 (°K〕;温度, Tempersture
- T〔S〕;時定数, Time constant
- t (min)(s);時間, Time
- V 〔m/8〕; 速度, Velocity
- V 〔gal〕; 燃料残量, Residual fuel volume
- W〔kg〕;重量, Weight
- ₩r 〔kg]; 消費燃料重量, Consumed fuel weight
- δ (deg) (cm) (%);操縦装置変位, Control displacement
- θ [deg] [rad]; ビッチ姿勢角, Pitching angle
- θ(deg/s)(rad/s);ピッチ角速度, Pitching angular velocity
- Ø [deg] [rad]; ロール姿勢角, Rolling angle
- Ø [deg/s] [rad/s];ロール角速度, Rolling

angular velocity

ψ (deg) (rad); ヨー姿勢角, Yawing angle ¥ (deg/s) (rad/s); ∃一角速度, Yawing angular

velocity

- ω. (rad/s);固有振動数, Natural frequency
- 2.2 添字記号
- A;空気タービン(発電機), Air turbine (gene - rator)
- s;大気, Atmosphere. ロール, Roll
 - $N_c = N \sqrt{288}/T_a(K)$
 - $P_{c} = P (760 / P_{B} (mm Hg))$

 $T_{c} = T (288 / T_{8} (^{\circ}K)) (^{\circ}K)$ c;コーストダウン, Coast down e;ピッチ, Pitch F;燃料, Fuel f;着火, Fire, フィルタ, Filter g;合計, Total, 全備, Gross I ; 計器板, Instrument panel i;入力, Input, アイドル, Idle M; 計測指示, Indicating, 混合, Mixing n;空気ジェットノズルまたはその入口, Air jet nozzle or its inlet o;燃料カット, Fuel cut off p;ロール減衰項, Roll damping q;ビッチ減衰項, Pitch damping R; リングタンク, Ring tank r; ヨー, Yaw, ヨー波衰項, Yaw damping S;サーボ, Servo, 貯気槽, Air tank s;始動, Start W;風, Wind X;前後軸またはフレーム, Longitudinal axis or framework Y;左右軸またはフレーム, Lateral axis or framework Z;上下軸, Vertical axis δ;操縦装置変位, Control displacement θ;ピッチ復元項, Pitch stiffness, ピッチ姿勢角, Pitching angle Ø;ロール復元項, Roll stiffness, ロール姿勢角, Rolling angle ý;∃一角速度, Yawing angular velocity 2;エンジン入口, Engine inlet 3 ; エンジン圧縮機出口, Engine Compressor outlet 5;ジェットパイプ, Jet pipe ▼;テレメータ計測, Telemetering -; A S Eゲイン切換スイッチの目盛 " (1~5), Graduation of ASE gain change over switch $(1 \sim 5)$ 「; ステップ応答試験, Step response test ~;繰り返し操舵応答試験, Repeat control response test 2.3 略字記号 abs; 絶対, Absolute ASE; 自動安定装置, Automatic stabilization

equipment

BAP; 抽気圧力, Bleed air pressure BAT; 抽気温度, Bleed air temperature BATT; パッテリー, Battery 、C/B;サーキットプレーカ, Circuit breaker CDP; 圧縮機出口圧力, Compressor delivery pressure CON; 運転, Control DC;直流, Direct current E/G, ENG ; $\pm \nu \dot{\nu} \nu$, Engine EGT; 排気温度, Exhaust gas temperature EMS;非常信号, Emergency signal F ; 着火, Fire FTB; フライングテストペッド, Flying Test Bed FDP; 燃料圧力, Fuel delivery pressure G ; ゲージ, Gauge GEN;発動機, Generator HYD;油E, Hydraulic IAT;吸気温度, Inlet air temperature IGN; 点火, Ignition IND; 計測, 指示計, Indicator INST;計器, Instrument J/P;ジェットパイプ, Jet pipe Max;最大, Maximum Min;最小, Minimum OP ;操作, Operation PRESS; 圧力, Pressure RPM;エンジン回転数, Engine speed (rpm) 8/B;待機, Standby SW ; スイッチ, Switch TEMP; 温度, Temperature VIB; 振動, Vibration

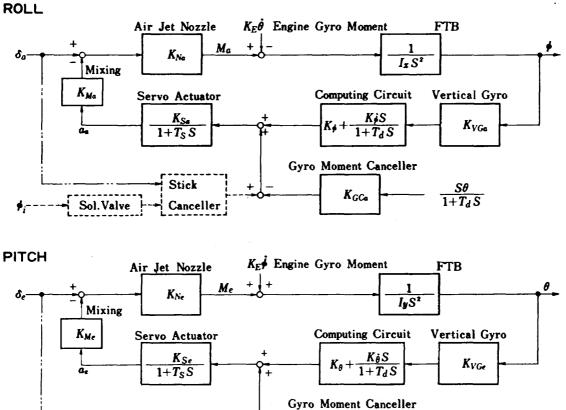
3. FTB

3.1 正規状態

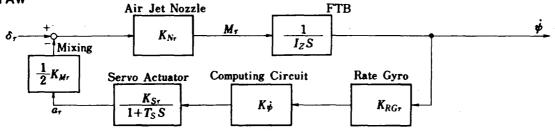
FTBの正規状態における構造および機能は、文献 (2)に計画されたとおりにほぼ実現されているので、こ こではFTBの写真をFigure 1 に、また全般的な要 目をTable 1に示すにとどめる。

	FTB安日
Length	10 <i>m</i>
Span	7 m
Height	3 <i>m</i> .
Gross weight	2,000kg(Normal)
< Here $>$	3.022kg(Movable Part)
Fuel	4 80 kg(JP-4)
Crew	1
Power Plants	J B 1 0 0 F × 2
Total thrust	1,3 2 0 kg×2
Bleed air pressur	e 3.5 <i>kg/cm²</i> sbs(max)
Bleed air flow	3.6kg/s (max)
Flight time	10min (max)
Safety altitude	4m (clear)
Semi constrained	condition (Movable range)
Roll	<u>+</u> 7.5°
Pitch	<u>+</u> 7.5°
Yaw	±10°
Moment of inertia	$(kg m S^2)$ (Figure 8)
Roll	1 1 5 ~ 1 5 2
Pitch	462~476
Yaw	5 3 6 ~ 5 7 3
Cockpit control t	ravel (<i>C</i> #)
Roll	± 7.6
Pitch	<u>+1 0.2</u>
Yaw	<u>+</u> 7.6

Table 1. Summary of FTB FTB要目


3.2 姿勢制御システム

本実験では遠隔操作および搭乗員の操縦によるロー ル,ピッチ,ヨーの運動が重要課題となる。このため の姿勢制御システムはつぎのとおりである。


操縦桿の左右または前後操作によって機体の左右端 または前後端の空気ジェットノズルの開度を差動的に 変えて、モーメントを発生させ、機体にロールまたは ビッチの姿勢変化を与える。この姿勢変化は3個のパ ーチカルジャイロによって検出され、それぞれ8重系 計算回路および2重系油圧サーボをとおしてフィード バックされ、操縦桿位置と姿勢角を対応させる効果と 角速度ダンピングの効果を与え、またジャイロモーメ ントキャンセラによりエンジンのジャイロモーメント を打消す効果を与えている。さらに、スティックキャ ンセラにより舵の効きを増大させる効果を与えている が、これは通常カットしている。遠隔操作による姿勢 制御実験時にはこの回路を利用してスティックキャン セラ中の操縦桿位置発信器を電磁弁で駆動して入力を 与える方法を採った。操縦桿の動きと油圧アクチュエ ータの動きは1対1に混合され、それぞれ単独でも空 気ジェットノズル操作レパーの全行程を操作できる。 ロールとピッチの各系統には非可逆操縦装置が取り付 けられている。

ベダルの左右の差動的踏込みによって機体の前後端 の空気ジェットノズルの首振り角度を差動的に変えて モーメントを発生させ、機体にヨーの姿勢変化を与え る。この姿勢変化は2個のレートジャイロによって検 出され、2重系計算回路および2重系油圧サーボをと おしてフィードバックされ、角速度ダンピングの効果 を与える。ベダルの動きと油圧アクチュエータの動き は2対1に混合され、前者単独の最大変位に対する空 気ジェットノズルの首振り角度を1とすれば、 後者単 独の最大変位に対しては1/2となる。油圧アクチュ エータは並列となっているので1系統故障時には混合 比率は4対1となる。

線形化した姿勢制御系統のブロック図を Figure 6 に機構図を Figure 7 に示す。また重量と慣性モーメ ントの変化を Figure 8 に,空気ジェットノズル性能 を Figure 9 に, ASE ゲインを Figure 10 に示す。 姿勢制御システムについては文献(2),(5)~(8)に詳しい。 空気ジェットノズル(Figure 2) **については文献(9)**, (10) に詳しい。

YAW

 $(Note) \delta_{amax}, \delta_{emax}, \delta_{rmax} = \pm 7.6, \pm 10.2, \pm 7.6 \text{cm.} K_{Na}, K_{Ne}, K_{Nr} = 20.8, 42.4, 23.7 \text{kgm/cm} (N = 12,000 \text{rpm}). \\ I_X, I_Y, I_Z = 130, 467, 552 \text{kgms}^2 (W = 1,900 \text{kg}). K_{VGa}, K_{VGe} = 0.96, 0.97 \text{V/deg.} K_{RGr} = 0.139 \text{V/deg/s.} \\ K_{\phi}, K_{\phi}, K_{\phi} = 0.699, 0.694, 20.6 \text{V/V}. T_d = 0.088. K_{\phi}, K_{\theta} = 0.524, 0.521 \text{V/V}. K_{Sa}, K_{Se}, K_{Sr} \\ = 0.542, 0.547, 0.544 \text{ cm/V}. T_S = 0.05 \text{s.} a_{amax} = a_{rmax} = \pm 3.5 \text{cm.} K_{Ma}, K_{Me}, K_{Mr} \\ = 2.17, 2.92, 2.17 \text{cm/cm.} M_{amax}, M_{emax}, M_{rmax} = \delta_{amax} \cdot K_{Na}, \delta_{emax} \cdot K_{Ne}, \delta_{rmax} \cdot K_{Nr} \\ K_E = 346.8 \text{kgms/rad}. K_{GCa}, K_{GCe} = 0.351, 0.174 \text{V/deg/s}. \\ l_{\rho}(=K_{Na} \cdot K_{VGa} \cdot K_{\phi} \cdot K_{Sa} \cdot K_{Ma} / I_x), m_q, n_r = 7.2, 5.6, 4.2 1/s (\overline{l_p}, \overline{m}_q, \overline{n_r} = 4) \\ l_{\phi}(=K_{Na} \cdot K_{VGa} \cdot K_{\phi} \cdot K_{Sa} \cdot K_{Ma} / I_x), m_{\theta} = 5.4, 4.2 1/s^2 (\overline{l_{\phi}}, \overline{m_{\theta}} = 3) \\ ---- ; \text{Remote step input circuit.} ----- ; Cut off as a rule.}$

Figure 6 Attitude control system block diagram 姿勢制御系統プロック図

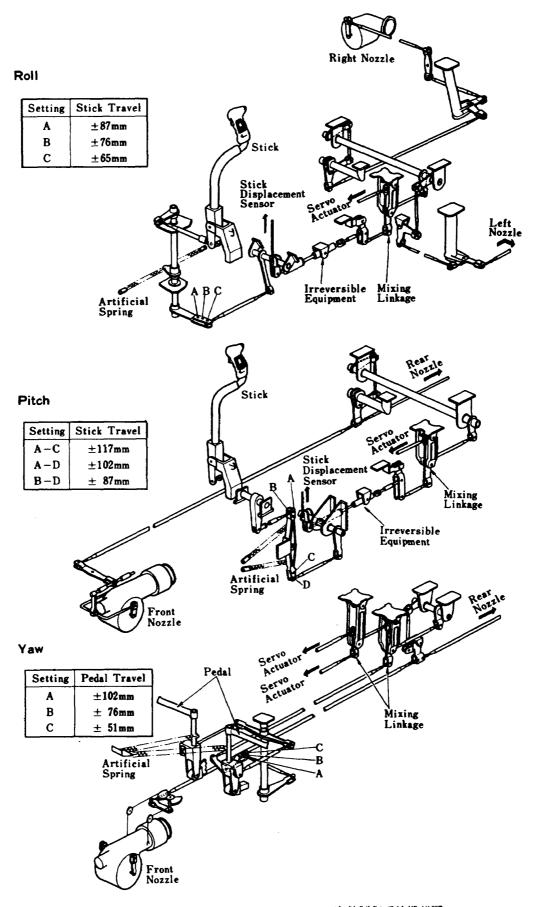
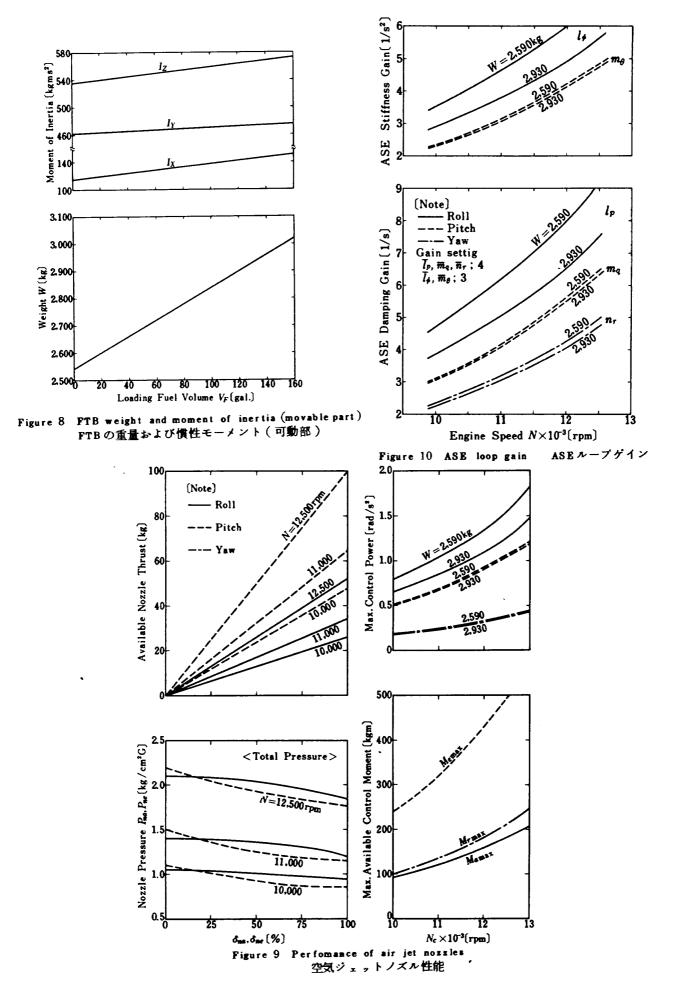



Figure 7 Attitude control system linkage 姿勢制御系統機構図

3.3 実験用機装

8

高度制御拘束実験終了後から本実験開始前までに, FTBに対してつぎのような工事を行なった。

- ロールおよびピッチの角速度を計測するためのレ
 トジャイロ各1個を機体重心付近に追加装備。
- (2) エンジン回転数計測配線に増幅器を追加装備。
- (3) 燃料残量を計測するための配線を機外に引出。
- (4) A M無線機をF M無線機に換装,関連工事。
- (5) 計器板左に機体姿勢固縛用スイッチを取り付け, 関連配線。
- (6) ロールおよびビッチの操縦桿位置発信器の各々に ロータリーソレノイドを取り付け、遠隔操作用配線 を機外に引出。
- (7) 電源電圧を地上で計測できるように配線を変更し, 機外に引出。
- (8) 空気タービンのはじめての本格的使用に備えての 改修,分解,点検,部品交換,調整,試験。)
- (9) 高度制御拘束装置用ブレーキを取り外し,正規の ベダルに換装。
- (10) エンジン関係センサー取り付けおよび配線,エンジンスイッチ警報灯配線,エンジン計測用配線等は 第3次実験と同様。
- (11) テレメータの送信機および副搬送発信器の修理お よび調整。

3.4 機能試験

高度制御拘束実験終了後から,本実験開始前までに, FTBに対して,つきのような系統別機能試験を行っ たが,これらはすでに報告されているので内容を省 略する。

- (1) 操縦系統試験。
- (2) A S E 総合試験⁸⁾
- (3) 空気タービン調整試験¹¹⁾
- (4) テレメータ調整試験¹²⁾
- (5) エンジン単体試験(定格確認)

4. 実験設備

FTBの実験設備については文献(4)に詳しいので, ここでは使用した設備区分名のみを挙げるにとどめる。

地上支援設備では,整備補給設備,補助動力設備, 点検調整設備,一般支援設備のほとんどすべてを使用 した。補助動力設備のうちの地上空気源は,実験当初 は全機作動実験と同様の遠隔操作用の配線および配管 を行ない,搭乗実験ではこれを取り外した。

拘束実験設備では姿勢制御拘束実験設備(Pigure

3, 4)を使用した。

計測設備では,直接計測,テレメータ計測,地上計 測の設備から適宜選んで使用した。計測の内容につい ては「5」に述べる。

地上施設では建屋および拘束実験場を使用した。

実験中における設備の使用状態については、「6.2」に述べる。

5.計測

5.1 計画一般

計測はFTBから地上または計測室まで配線や配管 を施して行なう直接計測,FTBから計測室までのテ レメータ計測,独立した地上計測の3つに大別した。

直接計測は,エンジンの遠隔操作時にのみ計測を行 なうものは主としてFTBの左舷から操作用のものと 一緒に配線を行ない,これらは第2,3次実験の場合 とほとんど同様とした。また全実験を通じて,あるい は搭乗実験時に行なう計測用配線はFTBの昇降時に も障害とならないように,FTBの右舷側方約8mに 高さ約5mの柱を立て(Figure 11),その頭部からF TB右舷まで空中を通した。

テレメータ計測は,送信機が完全に修理されたので, はじめて無線で使用した(第2,3次実験では有線で 使用)。

独立した地上計測は,時間関係,大気関係,風,補 給関係,表面温度,写真撮影とした。

計測記録は、指示計の読取りおよびペンレコーダ5 台によって行なった。また、モニタに重点を置いて指 示計からの読取りを行なわないものもあった。ペンレ コーダや指示計などからの読取値を予め定められた様 式の記録表に書き込むようにしたものはつぎのとおり である。天侯と気候、エンジン運転記録、テレメータ のペン記録を物理量に換算する表、直読記録(Pa, ディジタルN),運転記録(時間),運動記録($\phi\phi$, $\theta\theta$, $\phi\phi$),補給記録。

計測配線等の総括表をTable 2 に示す。

Item	Total Na	Origin	Terminal	Applicaton	Remarks
N	2		$\bigcirc \rightarrow \bigtriangleup$	R, P	
P _P	2			R, P	
P ₃	2		0	R, P	
T ₅	2	\diamond		R	
δ_{L}	2	\diamond		R	
E/G VIB	2			R, P	Monitor
E∕G VIB	8	\diamond		R	
E/G Bearing TEMP	4	\diamond		R	Monitor
E/G Remote CON	14	\diamond		R	
E/G Remote CON	(2)	\diamond		R	
Electric Power	1	×		R, P	With air supply
Air Supply	(1)	×		R, P	Start only
Air Romote CON	8	×		R	
Ps	(1)	×		R, P	
Emergency Light	1	0		Р	
Brake	1	×	0	R, P	
Television	1		0	Р	
Р _в	(1)	\diamond	×	R	
E	1		0	R, P	Pen 1-3
N 🔺	l		0	R, P	Pen 1-4
S 🔒	1		0	R, P	Pen 1-5
W _F	1		0	R, P	Pen 3-8
Roll Input	1	\diamond	0	R	
Pitch Input	1	\diamond	0	R	
ø	1.		0	FS	Pen 3-5
ΰ	i		0	FSY	Pen 2-6
¥	1		0	Y	Pen 3-6
δna, δne	2		0	R, P,	
Dw, Vw	2			R, P,	Pen (aux.)
Тв, Рв, Н	3 *			R, P,	
Surface TEMP	Many *			R	
Pictures	4 *			R, P,	

Table 2. Summary of wiring and piping 配線配管総括表

(Note) (); Piping, *; NO Wiring or piping

☐; FTB starboard, ◇; FTB Port, ×; Field ○; Instrument room, △; Operating room R; Remote control test, P; Piloted test F, S,; See note in table 3

つぎの計測は文献(3)に同じである。 (1) エンジン回転数 N (2) 燃料圧力 Pr (8) エンジン圧縮機出口圧力 P₃ (4) 排気温度 T₅ (5) エンジン振動振幅 8 (6) スロットル角度 ð」 (ð」) (7) 地上空気源貯気槽圧力 Ps (8) リングタンク抽気圧力 Pr (9) テレビジョン つぎの計測は本実験で新たに追加したものである。 (10) 発電機回転数 NA 発電機軸に取り付けられたファン(4枚)に豆電球 (機上電源使用)で光をあて,フォトセルアンプを経 由して,ディジタル計測し,同時にF-A変換器を通 して、 ペンレコーダ で記録するようにした。指示範 囲は0~10000 rpm であり、ペンレコーダでの読み 取り精度は50rpm である。発電機と空気タービンは 歯車を介して連結され、回転数比は11:52である。 (11) 空気タービン絞り弁駆動連結棒変位 SA 絞り弁駆動連結棒に回転式ポテンショメータを取り 付けて、変位をペンレコーダに記録した。これは空気 タービン始動時の過渡現象を調べるためのものである。 (12) 機上電源電圧 E 計器板の電圧計から分岐して、ペンレコーダに記録 した。これも空気タービン始動時の過渡現象を調べる ためのものである。 (13) 燃料残量 Vr 座席後部の燃料残量計調整用抵抗器から分岐してべ ンレコーダに記録した。指示範囲は 0~160 gal であ り,読取精度は 0.8 gal である。 (14) ロール角速度 Ø 機体中央部に取り付けたレートジャイロから配線を 行ない、計測室のペンレコーダに接続した。指示範囲 は±5°/8, 読取精度は0.05°/8 である。 (15) ピッチ角速度 🕴 同前 (16) ヨー角度 ¥ **拘束実験装置の下部ヒンジ上部のリンクの回転変位** をポテンショメータで取り出し、計測室のペンレコー ダに接続した。指示範囲は±10°,読取精度は0.1° である。

(17) ロールノズル開度 δ 🗈 🛚

FTB左端の空気ジェットノズルに取り付けたポテ ンショメータから直接ペンレコーダに記録し、テレメ ータによる値の較正に使用した。使用は8月19日午 前のみである。

(18) ピッチノズル開度 Ône

FTB後端の空気ジェットノズルに取り付けたポテ ンショメータを使用したほかは (17) に同じ。

5.3 テレメータ計測

テレメータ計測については文献(2), (12)に詳しい。 本実験におけるテレメータ計測の総括表をTable 8 に 示す。

つぎの計測は,文献(8)に同じであり,特記の外全実験に適用した。

(1) エンジン回転数 N ただし設定範囲を狭くした。 (2) 吸気温度 T₂ ただし低1エンジンのみ計測 (8) エンジン圧縮機出口圧力 P₃ ただし設定範囲を狭くした。 (4) 燃料圧力 Pr (5) 抽気圧力 Pr, Pns, Pne (6) 機体振動 fx, fr, fi ただしりを追加 (7) 排気温度 ただし設定範囲を読み易いように変更 (8) 抽気温度 Tr, Tna, Tne (9) 操縦桿変位 δa, δe ただしδ。は当初から搭乗操作によるビッチ制御実 験まで、Saは遠隔操作によるロールとピッチの2自由 度実験から終りまで適用した。 (10) 空気ジェットノズル変位 ôna, ône ただしそれぞれるaおよびSeに対応する適用とした。 つぎの計測は、本実験で新たに追加したものである。 (11) 姿勢角 Ø, Ø ただしそれぞれ δ および δ e に対応する適用とした。 設定範囲は±10°とした。 (12) ヨー角速度 🖌 搭乗操作によるヨー制御実験にのみ適用した。設定 範囲は±5%とした。 (18) アクチュエータ変位 **, **, **

それぞれφ, θ, ψ に対応する適用とした。設定範 囲は±35 mm とした。

(14) ヨーペダル変位 δr

• に対応する適用とした。設定範囲は±76 ■とし

5.2 直接計測

フライングテストペッド姿勢制御拘束実験

	Сь	anne	1 <i>M</i> a	9	8 smpling <i>M</i> a			Recording <i>M</i> a			Range
Item	Ŧ	8	Y	Sensor	F	8	Y	F	8	Y	wanke
$\overline{N-1}$	1	1	1	Pulse pickup				2-1	2-1	2 - 1	9000~18000 rpm
N — 2	2	2	2	"				3-1	8-1	3-1	"
EMS	2	2	2	Relay				3 ~ 1	8-1	3-1	
$T_2 - 1$	14	14	14	Resistance	1-1	1-1	1-1	1-6	1-6	1-6	-1 0~7 0°C
$P_{3} - 1$	14	14	14	Strain gauge	1-2	1-2	1-2	1-6	1-6	1-6	0.5~2.5kg/cilG
$P_{3} - 2$	14	14	14		1-3	1-3	1-3	1-6	1-6	1-6	"
$P_{F} - 1$	14	14	14	*	1-4	1-4	1-4	1-6	1-6	1-6	0~20kg/cmlG
$P_{p}-2$	14	14	14	N	1-5	1-5	1-5	1-6	1-6	1-6	
Pg	11	11	11	N				1-2	1-2	1-2	0.5~2.5kg/cilG
Pne	12	12	12					2-2	2-2	2-2	"
Pna	1 3	13	13					8-2	8-2	8-2	"
9 1	6							2-7			±19
9 1	8							2-3			"
ST.	10			"				2-4			"
T ₅ -1	15	15	15	Thermo couple	2-1	2-1	2-1	1-7	1-7	1-7	4 0 0~8 0 0°C
T ₅ -2	15	15	15	,	2-2	2-2	2-2	1-7	1-7	1-7	"
Т _в	15	15	15	"	2-3	2-3	2-3	1-7	1-7	1-7	100~200°C
Tne	15	15	15		2-4	2-4	2-4	1-7	1-7	1-7	n
Тпа	15	15	15	"	2-5	2-5	2-5	1-7	1-7		
φ	3	3		ASE				8-6	8-6		±10°
θ	4	4	4	n				2-6	2-6	2-6	"
¥			3	"						8-5	±1%
81	5	5		11				3-7	3-7		<u>+35</u> ##
a.		6	6	"		ł			2-7	2-7	"
æ r			5	"						3-7	"
δa	7	7		n				8-3	8-3		
Öe		8	8	n					2-3	2-3	
δr			7	Potentio						3-3	
δna	9	9		n				3-4	8-4		
δne		10	10	"					2-4	2-4	
δnr			9							8-4	

Table 3. Summary of telemetering テレメータ計測総括表

(Note) F; Run $1 \sim 13$ (FTB fixed and roll free)

8; Run 14~41 (Rolling and/or Pitching ≈ Swing)

Y; Run 41~43 (Yawing)

.

た。

12

(15) ヨー空気ジェットノズル変位 Ônr

5.4 地上計測

地上計測は, 文献(3)と全く同様である。計測項目は つぎのとおりである。

- (1) 表面温度
- (2) 運転時間
- (3) 大気 Ta, Pa, H
- (4) 風向 Dw, 風速 Vw
- (5) 燃料消費重量 ₩₽
- (6) 撮影, 録音

6. 実験運営

6.1 計 画

本実験は、前回の高度制御拘束実験と同様の大規模 **な野外実験であるので、実験の運営には特別な配慮が** 必要となる。

実験に関して作成した計画書等の資料は高度制御拘 東実験と同様9種類であるが,内容については当然異 なる部分が多く、これらについては適宜述べる。

艤装,器材,計測についてはそれぞれ「3」「4」 「5」で述べた。人員計画は高度制御拘束実験に準じ て行なった。今回はFTBの移動を行なわなかったの で輸送計画は簡単となった。

実験計画に当たって行なった主な技術検討事項は、 既述のものを除き、つぎのとおりである。 拘束実験装 置によるロール、ビッチ、ヨーの各々を独立に固定す る方法、搭乗員に対してロール、ピッチ、ヨーの角度 を表示する方法,搭乗員の非常脱出の方法,操縦系統 のガタの影響, FTBの姿勢制御特性の再検討,姿勢 変化に対する限界状態のシミュレーション、系統別機 能に関する問題点の再検討、データ整理法と監視法な どである。

現地における実験に関する事項について,以下順を 追って述べる。

6.2 器材展開

拘束実験場(約30m×約45m)のほぼ中央の架 構内の構築の下の姿勢制御用拘束リンク内に脚を取り 外したFTBを取り付け,横梁からのプレーキ板でリ ンクを抑えて固定した。このブレーキは姿勢制御実験 時には引上げてリンクに自由度を与える。ロール、ま たはピッチの自由度は拘束リンクの下部ヒンジ4つの 内の2つ(右舷前方と左舷後方,または残る2つ)を

ビッチまたはロール専用のものと交換することにより 拘束され、4つを同時に交換すればロール、ビッチと ★に対応する適用とした。設定範囲は±25°とした。 も自由度が拘束される。ヨーの自由度は拘束リンクの 左右をロープで架構に引張ることにより固定され、ロ ールとピッチの自由度は拘束されない。

> エンジン始動に必要な地上電源,空気源,FTB遠 隔操作配線配管,標識板,消火器,燃料補給装置,計 測用配線,地上空気源からFTBまでのホース配置, 風向風速計,消火ホースなどの配置等は高度制御実験 の場合とほぼ同様である。

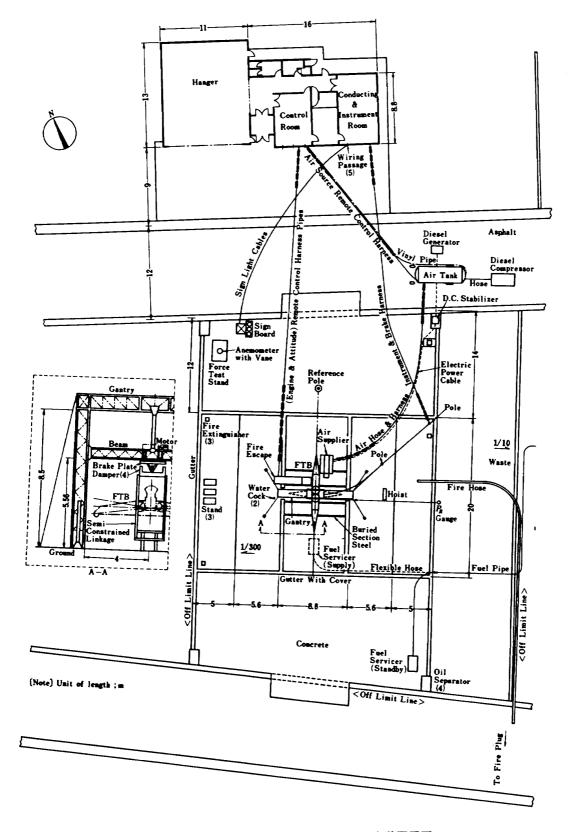
> 脱出台はヨー以外の実験時には、FTB左舷に置き、 FTBとの間に隙間をあけてロール運動可能な状態と して、台は前回実験同様遠隔操作関連の配線管ならび にFTBへの昇降にも利用出来るようにした。 ヨー制 御実験時には左舷の脱出台を撤去し、搭乗員脱出用の 移動可能な小型リフトを用意した。

> ロールおよびピッチの姿勢角は、FTB前方約10 mの位置の高さ約8mの目標柱と, FTB先端の十字 形目印との傾き、または上下の相対位置によって搭乗 員が識別できるようにした。ヨーの方位角はFTB前 方約10mの位置の地面に目印を置きFTB先端との 相対位置で識別できるようにした。角度はいずれも5° と10°を識別の基準とした。

器材展開の状況をFigure 11 に, また配線配管の 総括表をTable 2に示す。

6.3 実験準備

器材展開後、実験直前には、実験状態の変更、修理、 調整,計測準備,補給,地上整備,点検などの作業が ある。


実験状態の変更としては、遠隔操作関連装置の取り 外しとFTBの復旧,ロールやピッチの自由度を固定 するための拘束リンク固縛または復旧、空気ジェット ノズル開口面積変更金具の着脱,ASEサーキットプ レーカのオン・オフとゲイン切換スイッチの変更およ び運動検出器配線の着脱、などである。

FTBに対する修理は,特記すべきものはなかった。 地上設備については,発動発電機,直流安定化電源, 計測用データレコーダ, VT R, 標識灯, 受電設備, 空調設備、などが主な修理対象となった。

FTBの調整は操縦系統,ABE,機上計測装置, 計器指示系統を主として対象とした。

計測準備,補給,地上整備,点検は文献(3)とほぼ同 様である。

This document is provided by JAXA.

Pigure 11 Plan view of experimental layout 実験配置図

6.4 実験要領

実験準備完了後,実験打合わせを行なって実験には いる。実験要員は,機体,エンジン,搭乗員の3クル ープより構成される。このりち実験指揮者と大部分の 計測員は室内に,その他の要員は屋外に配置された。

室内要員への連絡指示,屋外要員の個人装備,実験 実施法,実験中の禁止事項,計測記録法,遠隔操作に よるエンジン始動および停止手順は文献(3)と同様であ る。

遠隔操作によるロール, またはピッチのステップ応 答実験におけるプレーキのオン・オフおよび入力のオ ン・オフの操作は計測室で行なった。

搭乗実験時の搭乗員の操作は高度制御実験の場合と 同様,すべて手順表によって行なわれるように定めた が,エンジン始動前または実験中のブレーキ操作は通 常計測室で行なった。手順表のうち,エンジンドライ モータリング,エンジン燃料放出モータリング,エン ジン単独始動,同停止, M1, M2エンジン始動,同 停止,緊急状態一覧,緊急時エンジン正常停止,緊急 時エンジン非常停止などは,多少の手順変更の差を除 いてほぼ文献(3)と同様である。始動前操縦席内点検手 順表,フライトリクエストM1~8を付録にまとめて 示す。

実験終了後は高度制御実験同様 FTBの点検を行ない、また実験結果の速報を全員に知らせて実験内容の 問知を計り、さらに遅滞なくつぎの実験ならびに作業 予定を指示するようにした。

6.5 運転整備記録

運転整備記録の必要な理由および記録の内容は文献 (8)と同様である。

6.6 撤 収

撤収の手順等はすべて文献(8)と同様である。

7. 実験内容

実験内容は0から25までのCase kによって表示さ れ、Case 0はモータリングとして適宜実施し、Case 1 ~4 は遠隔操作による機体固定状態での運転、Case 5 ~8 は遠隔操作による姿勢角 4°相当のステップ入力 応答実験(ロールとピッチの1または2自由度実験)、 Case 9~11, 16, 21 は搭乗員の操作による機体固 定状態での運転、Case 12~15, 17~20, 22~25 はそれぞれ搭乗員の操作によるロール、ピッチ、ヨー の1軸回りの姿勢制御実験である。実験は原則的には 各 Case 1回であるが、必要に応じて中止、追加、混合 を行なった。実験は順序に従って Run 私を付した。各 実験Case の内容をTable 4 に示す。

遠隔操作による機体固定状態での運転実験は,全機 作動確認のための実験である。エンジン単独運転実験 時には空気ジェットノズル開口面積を正規の½とした。

遠隔操作によるステップ入力応答実験は、A8Eを 含む姿勢制御系統の特性確認ならびに拘束リンクの作 動確認のための実験である。機体の応答やトリムの外 に振動状態に注意を払った。

搭乗員の操作による機体固定状態での運転実験は、 飛行前点検運転ともいうべき実験である。

搭乗員の操作による姿勢制御実験は,FTBのロー ル,ピッチ,ヨーの姿勢制御特性の確認と姿勢や方向 の操縦に対する搭乗員の慣熟を目的とした実験である。

実験は1自由度で行ない,ロールまたはビッチの実 験の場合はレートジャイロ(ヨー運動検出器)の配額 を外して、ASEゲイン切換スイッチ目盛は,ロール またはビッチの何れか一方の減衰項が4,復元項が8, 他方が0となるように設定した。ヨーの実験の場合は バーチカルジャイロ(ロールとビッチの運動検出器) の配線を外して、ASEゲイン切換スイッチ目盛を減 衰項4とした。

運転は,エンジン試運転技師1名(遠隔操作時のみ) FTB整備士1名,FTBパイロット2名によって行 なった。

8. 実験結果

実験は遠隔操作による機体固定状態での運転8回, 遠隔操作による姿勢角4°相当のステップ入力に対す るロールおよびピッチの応答に関する姿勢制御実験4 回,搭乗員の操作による機体固定状態での運転9回, 搭乗員の操作によるロール,ピッチ,ヨーの1軸回り の姿勢制御実験8回,を行なった。

これらの実験により、FTBの機能,搭乗操作特性, 姿勢制御特性などが自由飛行に耐えるものであること を確認した。得られた結果をつぎに述べる。実験中の 写真を Figure 4,5に示す。特記のほか,計測値は Table 7~14にまとめた。

8.1 運転記録

実験の経過を知るために必要と思われる事項につい ては、できる限り詳細に記録に留めるようにした。こ れをまとめて運転記録としてTable 5 に示す。運転記 録は、開始日時、実験の順序(Bun AG)と Case,天 侯、大気状態、運転者、貯気槽圧力、エンジン始動経

Case <i>N</i> a	Operation	Degree of Freedom	Tatal Air Jet Nozzle Area	ASE	Throttle Engage	A ir Turbine	E,∕GSpeed (rpm)	Flight Request	Operator
0	Motoring	1				1			······································
1	Remote	Fix	1/2	OFF	OFF	OFF	13000 *		E/G Qperator
2	"	"	"	"	"	, ,,	13000**		<i>«perator</i>
8	"	"	Normal	"	"	"	12500		"
4	,	"	"	(ON)	"	ON	12500		Mechanic
5	"	Roll	"	ON	"	"		<i>No.</i> 1	Pilot - 1
6	"	Pitch	n	H	"	"		<i>N</i> o. 2	"
(7)	"	Roll & Pitch	"	"	"	"		Na 1	Pilot - 2
$\{\frac{7}{8}\}$	"	"	"	"	"	"		<i>N</i> o. 2	"
9	Crew	Fix	1/2	OFF	"	"	12500*		Mechanic
10	"	"	"	"	H	"	12500**		"
11	"	"	Normal	(ON)	ON	"	12500		"
12	n	Roll	"	ON	"	"		<i>N</i> a 3	Pilot - 1
13	"	"	"	"	"	, ,,		<i>N</i> a. 4	"
14	n	"	"	7	n	"		No. 3	Pilot - 2
<1 5>	"	"	"	"	"	"		No. 4	"
16	"	Fix	"	(ON)	"	"	11000		Mechanic
17	"	Pitch	"	ON	"	"		Na 5	Pilot - 1
18	"	"	,	n	"	"		<i>N</i> a 6	"
19	"	"	,	"	"	n		<i>N</i> a 5	Pilot - 2
20	"	"	,	n	"	"		<i>No.</i> 6	"
<2 1>		Fix	"	(ON)	"	"	11000		Mechanic
22		Yaw	,	ON	"	"		Na 7	Pilot - 1
<2 8>	N	n	,	"	"	"		<i>N</i> a 8	"
24	N	"	N	"	"	"		Na 7	Pilot - 2
<2 5>	,	"	"	n	"	"		<i>No.</i> 8	,

Table 4. Experimental cases 実験ケース

(Note) { }; mixed operation, <>; no operation, A8E(ON); sensor off, gain 0 ASE ON; sensor off, gain 0 except proper axis, *; Kal E/G, **; Ka2 E/G

•

過時間,実験内容,エンジン停止経過時間,燃料消費 重量,備考の順に書いてある。

実験開始時刻は*低1 エンジンへの送気開始時刻と一* 致する。

Case はTable 4 のとおりであるがん?と8は1 Case として実施した。

実験中の大気圧 Pa = 750.4~769.8 ## H9,大気温 度 Ta = 0~6℃,湿度 H = 80~59%(90,98% は計測の誤りと考えられる),風速 Vw= 0.5~5m/8 風向 Dw = 135~360°であった。

貯気槽圧力 Ps = 6.2~7.8 kg/cdG でエンジン始動を 行なった。

エンジン始動経過時間は,送気開始,着火,アイド ル到達の時刻をん1,ん2エンジン別に記録した。

実験内容は,作動実験,ロール,ビッチ,ヨーの姿 勢制御実験の別を記録した。

エンジン停止経過時間は, アイドル到達, 燃料停止, の時刻およびん1, ん2エンジン別のコーストダウン の時間を記録した。

燃料消費重量₩FはFTBの燃量計の読み(VF)から 算出した。

本実験におけるエンジンの総運転時間は低1;3h 20min(33回), K2;2h54min(32回), モ ータリングはK1が7回, K2が8回であった。燃料 (JP4, MIL-J-5624E)の総消費量は約5,900 kgであり,また潤滑油(MIL-L-7808D)の総消 費量は約10l(標準消費量20cc/min であるので, これは約8h20min 分に相当)であった。

搭乗操作による最初の姿勢制御実験 Rum 27 の前に 脱出訓練を行なった。本実験では途中で中止した実験 が5回におよんだ。

姿勢制御実験の記録は「8.8」に述べる。

8.2 作動特性

FTBの機能上重要と考えられる作動特性について つぎに順を追って述べる。これらの実測値はTable 7, 9に挙げてある。

(1) エンジン定常作動特性

エンジン定常運転中のエンジン性能および関連特性 についてFigure 12 のような結果を得た。この図は, エンジン燃料管制器レバー変位,または回転数を基準 に整理し,必要と思われる量には修正値(「22」) を用いて一般性を付与した。エンジン燃料管制器レバ 一変位 dr に対するエンジン回転数 Ncの変化は,前 回実験の場合³³と同様±300 rpm 程度のばらつきを 示した。

エンジン回転数のテレメータ計測値は、ディジタル 回転計による計測値に対して、アイドル以上で約-1 ~+3%の間にばらつきを示し、前回より一致性が向 上している。本報告では特記のほか、テレメータ計測 値をエンジン回転数の基準として採用した。

燃料圧力 Pr のエンジン回転数N に対する特性は前回と同様, アイドル以上で約±10%程度のばらつきを示した。

エンジン圧縮機入口温度T₂は、 K2エンジン(前) についてのみ計測した。大気温度Ta との差T₂ - Ta を排気再循環(Recirculation)の指標としてエン ジン回転数 Nc に対してプロットした。図中、上の2 点(Run 10, 6 中の点) で一時的な温度上昇が認め られ、排気再循環の徴候があったと考えられるが、そ のほかでは、温度変化は±5℃以内にあった。

エンジン運転によって生じる縦フレーム,横フレーム,計器板の上下振動加速度 タx,タr,タi(それぞれ root mean square)は,いずれもエンジン回転数に 拘らず,ばらつきが大きいが,エンジン回転数ととも に僅かに増加する傾向を示し,最大値はそれぞれ 0.09 g,0.11g(特異点 0.2g),0.065g(特異点 0.86g) である。前回実験に比較して傾向が異なり,また 最大値は 1/11~1/7 と著しく低くなっている。こ れはFTBに対する拘束状態が,ダミー脚とレールか⁻⁻⁻ ら拘束リンクに変わったので,支点数が減少(5→2) し,拘束の固さが緩和されたためと考えられる。なか, 特異点は振動過大と判断されて中止した Bun 7の値で ある。

エンジン圧縮機外側およびタービン外側における振動振幅は制限値(3 mil)以内にあった(Table 7)。 (2) エンジン着火特性

エンジン始動時における着火特性は、始動空気によるエンジンの回転数とその時間に対する増加率ならび にスロットルによる燃料圧力の定められた値とそれに 達するまでの増加率の相対関係によって微妙に変化す るといわれる。通常の着火操作ではエンジン回転数の 定められた範囲(ここではN = 2,000~2,200 rpm) でスロットルを進めるので、熱料圧力の時間に対する 変化が重要となる。

燃料圧力の時間に対する変化と着火時刻の関係を
Figure 13 に示す。着火時刻の計測には±18 程度
の誤差があるものと思われる。図からつぎのことが判
る。着火時の Pr の値と勾配の相関は特に認められな

いが、28 で Po が約5 kg/m²G に達するようなスロ ットルの進め方(Bum 87~48)が望ましいようであ る。着火時刻は低1エンジンでは2~118, 低2エン ジンでは1.5~58の範囲にばらつき,後者の方が着 火特性良好なることを示し,前者が着火までに時間を 要する場合は、屢々着火前に多量の燃料の噴霧および 着火時に長い火焰が排気口外に視認される。以上総合 してエンジンの着火特性の良否は、スロットルの進め . 方だけによるものではなく、エンジンの加速状況およ びエンジンならびに関連系統の固有の特性も大きく関 与するものと考えられる。

(3) 抽気および排気特性

抽気特性および空気ジェットノズル特性は姿勢制御 特性と密接な関係を有するが、後者については前回実 験³において入念な検討を行ない、今回の実験でもほ ぼ同様と考えられるので検討を省略し、特性をFigure 9にまとめた。抽気および関連するエンジン圧縮機圧 力とエンジン排気湿度の特性についても前回実験まで に度々実験を行なっているが、特性確認のため、結果 をFigure 14 に示す。

エンジン圧縮機出口圧力P₃は,前回同様の特性を示し,エンジン単体試験の値にほぼ一致しているが,約5%低めの幅にばらつきを示している。

エンジン排気温度Tsは,エンジン単体試験の値に対 して+7~-12 多の間にばらつきを示し,前回より もエンジン単体試験の値に近付いて高くなり,かつ良 いまとまりを示している。

抽気圧力は、前回と同様の特性を示し、8者ともP3 よりも低く、また、後ノズル入口圧力Pneは、リング タンク圧力Pnと左ノズル入口圧力Pne よりも低めの 値を示した。

抽気温度も前回と同様の特性を示し、3者ともエン ジン単体試験の値よりも低めであり、エンジン回転数 の高いほどその差は大きい。

(4) 空気タービン作動特性

空気タービンは今回の実験から本格的使用を開始した。空気タービンでは定常回転特性と始動特性が開心 事であり、¹⁾ これらの特性を Figure 15 に示す。空 気タービン回転数は発電機回転数の 52/11 倍である (「5.2」)。

発電機回転数 Na は, アイドル以上でエンジン回転 数とともに僅かに増加する傾向を示し, また回転のば らつきの幅も少さくなる。

NA はまた, リングタンク圧力 Pa に対して, ほぼ

直線的に僅かに増加する傾向を示している。

空気タービン始動時の制御ロッドの変動およびこれ にもとづく Na の変動は小さく,容易に必要な Na の 値に設定され,必要な一定電圧 E を発生している。

(5) 操縦桿作動特性

操縦桿変位 δa または δe の全行程の操作に対して, それぞれの空気ジェットノズル閉度 δna または ŏne は X Y プロッタによって, 交叉するヒステリシス曲線 を画くが,エンジン回転数N=0, アイドル,12000 rpm の場合についての曲線を Figure 16 に示す。 ロール系統 δa ~ δna のヒステリシス幅は, N=0 の場合で最大約 1.5 % であり, N=アイドル,12000

rpm の場合にはほとんどヒステリシスは認められない。

ビッチ系統δe~ŏne のヒステリシス幅はるa または δna の中立位置付近が最も大きく、N=O, アイドル では約4.5%、N=12000 rpm では約6%であり、ロ ール系統と逆の傾向を示した。

これらのヒステリシス幅は前回実験³⁾の場合よりも ロール系統は著しく小さくなっているが, ピッチ系統 では, あまり差がない。

8.3 姿勢制御実験結果

姿勢制御実験のうち,遠隔操作によるロール,ピッ チの1自由度および2自由度実験における入力は 「3.2」で述べた方法によりロールまたはピッチの姿 勢角4°相当のステップで与えた。また搭乗員の操縦に よるロール,ピッチ,ヨーの1自由度実験における搭 乗員の主要課題は,3段階のエンジン回転数に対する, 緩徐操舵,ステップ操舵,小舵繰返し操舵であった。 搭乗員は1名であり,2名が交代で担当した。運転記 録をTable 5に,実験記録をTable 8,10~14 に示す。

(1) 主要実験記録

遠隔操作実験

	ロール	ピッチ
平均可動重量 〔kg〕	2835	2830
平均慣性能率〔kg m8 ²〕	1 3 7	470
最大姿勢角 〔deg〕	5	4
最大角速度〔 deg∕8 〕	4.1	3.4
アクチュエータ作動率〔%〕		
最大	35	32
連成(2自由度)	25	25
ゲイン設定ロータリSW		
减衰項	4	4
復元項	3	3

搭乗携	作実験
-----	-----

	$\square - N$	ピッチ	3-
平均可動重量〔49〕	2765	2815	2817
平均慣性能率〔kq m8 ⁴ 〕	1 8 2	469	557
最大姿勢角 〔deg〕	5.5	4.5	ΙO
最大角速度 〔deg/8〕	6.8	8.8	2.6
最大操縦装置			
操作量〔%〕	70	50	50
最大アクチュエータ			
作 動量〔% 〕	70	60	100
ゲイン設定ロータリ 8w			
滅衰項	4	4	4
復元項	8	8	

(2) 代表的入力に対する記録

(1) 遠隔操作によるロールステップ(Figure 17, Bun 16) 操縦桿位置発信器に = +4°(左上) 相当のステップ入力を与えて、A8Bの回路をとおし てアクチュエータ変位を生じさせ、左ノズルの開 度を増して右ノズルの開度を減じ、そのモーメン トによりロール角速度ゆ、ロール姿勢角めを発生させ る。アクチュエータおよびノズルの動きは、入力印加 てパルス状に動作し、所定の角変位の後中立位置に戻 り、スティフネスとダンピングの効果を与えている。 角速度は急速に最大値に達した後、ややゆっくり0に 戻る。姿勢角は過減衰の状態で一定値に達する。入力 を = 4°から0°に戻した場合も同様である。エンジ ン回転数が大きくなって、最大制御モーメントが増し ても、上記の関係は維持されるが、小さな振動が、ア クチュエータ変位、ノズル開度、角速度に重量する。

(前)遠隔操作によるビッチステップ(Figure 18, Bun 17) 操縦桿位置発信器に = +4°(頭上) 相 当のステップ入力を与えた場合も,())の場合とほぼ同 様の傾向を示すが,ノズル開度の動きは())の場合より も鈍くなって居り(Figure 10), またエンジン回転 数を増したときの重畳振動周期がロールの場合の約2 倍となっている。

(ii) 遠隔操作によるロール・ビッチ2自由度実験 (Figure 19, Bun 18) ロール・ピッチ2自由度の 状態で,ロール操縦桿位置発信器にφ=+4°(左上) 相当のステップ入力を与えた場合のロールアクチュエ ータ変位,ロール角速度等の応答は(i)の場合と同様で あるが,連成効果によりピッチアクチュエータ変位に 約-10%,ピッチ角速度に約0.5%8の変化が見られ, それぞれロールに対して約-3,約%6 となっている。 戻しの場合も同様である。ビッチ操縦桿位置発信器に θ=+4°(頭上)相当の入力を与えた場合,ロールア クチュエータ変位に約+20%,ロール角速度に約-0.7% の変化が見られ,それぞれビッチに対して約+4/7, 約-8/10 となっている。エンジン回転数を増したと きの重量振動周期はすべて(1)の場合にほぼ等しくなっ ている。

(V)搭乗操作によるロール緩徐操舵およびステップ 応答実験(Figure 20, Bun 28, 27) ロール操縦桿 中立位置から約5行程まで約88の緩徐操舵により, 角速度約2.5%, 角変位約5%を生じた。パルス状 操舵の場合には大きなパルス状のノズル変位と角速度 変化を生ずるが, 角変位は小さい。ステップ状操舵に よる応答は(1)の場合とほぼ同様であるが, 入力波形が くずれているのでアクチュエータ変位とノズル変位の 変化の特徴は識別し難い。

M搭乗操作によるロール繰返し操舵応答実験 (Figure 21, Bun 28) ロール操縦桿による振幅約5 行程,周波数約1/2.6 H₂の繰返し操舵に対して,ア クチュエータ変位は約0.28の遅れで振幅約5行程, ロール角度は約0.68の遅れで振幅約±8.5°のほぼ 対応する波形を示したが,ロール角速度の波形にはく ずれが見られる。ノズル変位の変化の特徴は識別し難い。これらの対応はエンジン回転数が増しても変わらない。

(VI)搭乗操作によるビッチ緩徐操舵およびステップ 応答実験(Figure 22, Bun 38)ビッチ操縦桿中立位 置から約%行程まで1~88の縦徐操舵により,角速 度約8%8,角変位約5°を生じた。(VV)に比較して, ほぼ同様の対応を示しているが,操縦桿変位,アクチ ュエータ変位,ノズル開度,角速度にかなり顕著な重 畳振動が認められる点が異なる。ステップ状操舵によ る応答は(II)の場合とほぼ同様であり,(VV)に見られた波 形のくずれはあまりないが,エンジン回転数を増すと 緩徐操舵の場合と同様の重畳振動が認められた。

(Vil) 搭乗操作によるビッチ繰返し操舵応答実験 (Figure 28, Run 37) ビッチ操縦桿による振幅約 ¼行程, 周波数約为 Hz の繰返し操舵に対して, アク チュエータ変位は約 0.1 8 の遅れで,振幅約 0.8/2 行程, ビッチ角度は約 0.6 8 の遅れで振幅約 2.5° の ほぼ対応する波形を示したがビッチ角速度の波形はく ずれ, ノズル変位の特徴は識別し難い。エンジン回転 数が増してもこの対応はほぼ同様であるが, アクチュ エータ変位, ノズル変位, 角速度の波形にくずれが認 められる。 (Viii) 搭乗操作によるヨー緩徐操舵およびステップ応 答実験(Figure 24, Run 42) ペダルの土沙行程を 約 0.6 8 で操舵してから約 7.5 8 保持する操作に対し て,角速度約 2.5 $^{\circ}$ /8,角変位土約 10° を生じた。 ペダルのステップ状操舵による応答は (V)(Vi)と異なり, アクチュエータ変位が大きく,またペダル変位とヨー 角速度が対応する。ヨー角速度は約 2.5 $^{\circ}$ /8,ヨー角 度は土約 10° の範囲で実験した。

(X) 搭乗操作によるヨー繰返し操舵応答実験(Fi -gure 25, Run 42) ペダルによる繰返し操舵応答 実験は、ロール、ビッチに比較して入力波形のくずれ が顕著であるので計測諸量間の関係を摑み難い。振幅 は、ペダル約±½行程、アクチュエータ飽和、ヨー角 速度約±2.5 および4%、ヨー角度±約5°であり、 周波数は約0.1 Hz であった。

(8) パイロット所見

(1)ロール実験(Bun 27, 28) 計器指示は正常で あった。操縦桿の操作に対するロール応答は,緩徐操 舵,ステップ操舵,繰り返し操舵とも,一般に良好と 認められた。操舵時にピッチおよびヨーへの連成を感 じることがあり,またステップ操舵時に約1Hzの振動 が感じられたがすぐに減衰した。操縦桿反力は大きく感 じた(ステップ操舵時)。

(肌)ピッチ実験(Run 88, 87) 操縦桿の遊びを感 じ、このためオーバーコントロールになり易い傾向が あった。ロールよりも操縦性は悪いと感じられた。ペ ンレコーダの記録(Figure 22, 28)では,操縦桿変 位を含む諸量に振動が認められているが、意識的に周 期的な操舵はしていない。操舵時のロールへの連成は あまり感じられなかった。操縦桿反力の大きさはあま り気にならなかったが、反力が一様でなく変化する感 じが気になった。操縦桿の無線機用ブレストークスイ ッチが固く,離しても戻らなかった。(Bun 40, 41) エンジン振動で身体が前後に揺られるのが気になり, 特にエンジン回転数12500 rpm 付近では急激に著 しくなった。周期的な操舵をしている心算はないが, このような動揺が感じられた。機体の安定性は良好と 認められた。操縦桿の反力は一様でなく、 8 段階ぐら い変化するように感じられた。

前ヨー実験(Run 42) 右ペダルを約2㎝路み
 込んで置かないと中立が保持できなかった。また右路みの効きは鈍く、左路みの効きは良いと感じた。これ
 らの傾向はエンジン回転の影響と考えられ、特にN =
 12500 rpmで大きい感じであった。 (Run 48)

右踏み込みは矢張り必要であった。ペダルの効き はエンジン回転数により変化するように感じられた。 ペダルの効きは概ね良好と認められた。

以上総合して操縦安定性はHU-IBへリコプタと 同程度ないし、それ以上と認められた。

8.4 操舵応答特性

(1) 遠隔操作によるロールステップ応答

操縦桿位置発信器にφ=+4°(左上)相当のステ ップ入力を与えた場合のロールとビッチに関する諸量 の変化を Figure 26に示す(2自由度の場合を含む)。 ロールアクチュエータの平衡状態からの変化の最大 値 Δammax は25~85%の間にあり、また、カップ リングによるビッチアクチュエータの変化の最大値Δ ammax は10~15%の間にあった。

ロールのノズル開度の変化の最大値 Δδ = = = = = は25 ~87% の間にあり、また、ビッチのノズル開度の変 化の最大値 Δδ = = = = = は5~10% の間にあった。

ロール角の時定数T,は 0.6~1.68の間にあった。 ロール角速度の変化の最大値 △ φ ==== はエンジン回 転数とともに増大し、理論値から約20% 下回る範囲 (2.5~4°/8)にばらつきを示して居り、またカップ リングによるビッチ角速度の変化の最大値 △ φ ==== は、 △ φ ==== の約80%であった。

ビッチ角のカップリングによる変化の最大値 △ θ •••• はエンジン回転数と共に僅かに増大するが 0.5°以下 にあった。

(2) 遠隔操作によるピッチステップ応答

操縦桿位置発信器に $\theta = +4^{\circ}$ (頭上)相当のステ ,プ入力を与えた場合のビッチとロールに関する諸量 の変化を Figure 27に示す(2自由度の場合を含む)。

ビッチアクチュエータの平衡状態からの変化の最大 値 Δaamax は25~82%の間にあり、ロールの場合 とほぼ同様であった。またカップリングによるロール アクチュエータの変化の最大値 Δaamax は15~20 %の間にあり(1)の Δaamax よりもやや大きい。

ビッチのノズル開度の変化の最大値 $\Delta \delta_{annex}$ は 88~68 多 の間にありロールの場合より大きい。ま たロールのノズル開度の変化の最大値 $\Delta \delta_{annex}$ は 18~24 多の間にあり、矢張り(1)の $\Delta \delta_{annex}$ より 大きい。

ビッチ角の時定数 To は 0.6~1.28 の間にあった。 ビッチ角速度の変化の最大値 Δ θ ==== はエンジン回 転数とともに増大し,理論値に対して約+15~-25 5の範囲(2.8~8.8℃8)にはらつきを示して居り,

またカップリングによるロール角速度の変化の最大値 △ φ max は△θ max の約30%で(1)の場合と同様の対 応を示した。

ロール角のカップリングによる変化の最大値へゆ max も (1)の場合と同様 0.5°以下であった。

(3) 搭乗操作によるロールステップ応答

ロール操縦桿入力 Sai=33~705 のステップ操 舵を行なった場合の、ロールとピッチに関する諸量の 変化をFigure 28 に示す(ロール自由度のみの場合)。 行なった場合のヨーに関する諸量の変化をFigure 30

ロールアクチュエータの平衡状態からの変化の最大 値 △aamaa は40~70分間でδaiとともに増大する が,ばらつきも多い。またカップリングによるピッチ アクチュエータの変化の最大値 △a.max は 3~7.5 % の間にあり、 Δ a emax / Δ a emax は(1)の場合より小さい がこれは入力時定数Taiの影響と考えられる。

ロールのノズル開度の変化の最大値 3 は δ ... とともに変化し12.5~50%の間にあり、またビッ チのノズル開度の変化の最大値 △Basman は 6~17.5 多の間にあり Δaemax と対応しているがδaiとの相関 は認め難い。

入力時定数Taiは0.2~0.58 あったにも拘らず, ロール角の時定数T。は 0.8~1.68 と (1)の場合とほ ぼ同様であった。

ロール角の変化の最大値△φ max は 4.3~5.5°の間 にあった。操縦桿入力dai 約50%以上では△φ max は直線的に増大するが、それ以下では△φ max は 4.8 ~4.5°とほぼ一定であった。

ロール角速度の変化の最大値 △ ø max は δai ととも に増大し、2.5~6.3%の間にあった。

(4) 搭乗操作によるピッチステップ応答

ビッチ操縦桿入力 $\delta e_i = 18 \sim 505$ のステップ操 舵を行なった場合のピッチとロールに関する諸量の変 化をFigure 29 に示す(ピッチ自由度のみの場合)。

ビッチアクチュエータの変化の最大値 △aemaz は δei とともに増大し25~60%の間にあった。また カップリングによるロールアクチュエータの変化の最 大値 △aamax も dei とともに増大し7.5~15%の間 にあったがロールの場合と同様、 △aamax/△aamax は (2)の場合より小さい。

ビッチのノズル開度の変化の最大値 Aleeman は 20~80%の間にあり、ロールのノズル開度の変化の 最大値 △Bannez . は de i とともに増大し7.5~18% にあった。

入力時定数Teiは 0.2 ~ 0.6 8 , ピッチ角の時定数

T, は 0.8~1.6 8 であり(2)の場合よりわずかに大き 50

ビッチ角の変化の最大値△0 maxは dei とともに増 大し 2.5~4.5°の間にあった。

ビッチ角速度の変化の最大値△θ max も dei ととも に増大し、1.8~8.8°/8の間にあった。

(5) 搭乗操作によるヨーステップ応答

ヨーペダル入力 ðri = 26~50%のステップ操舵を に示す。

ヨーアクチュエータの平衡状態からの変化の最大値 △arman は75~105分の間でðri とともに増大する がばらつきも大きい。

ヨーのノズル角度の変化の最大値 △ðarmax は15 ~30%の間でほぼðriとともに増大傾向を示した。

ヨーペダルの入力時定数は約18と大きい。ヨー角 速度の時定数T;は 0.8~1.4 であった。

ヨー角の最大値 ¥ max は約10°であった(Table 14) ヨー角速度の変化の最大値は 1.7~2.4%8の間でわ ずかにδriとともに増大しているが、δri>40°では △♥ ==== はほぼ一定値となるようである。

(6) 搭乗操作による周波数応答

ロールおよびピッチの操縦桿の繰り返し操舵を行な った場合の周波数応答をFigure 81 に示す。系を2 次形とした場合の特性を図中に実線で表わし、周波数 に対するゲインと位相の変化の傾向を示して参考とし た。

以上総合してロール, ピッチ, ヨーのA8Eの効果 は良好であり、無風時に±1°以内で姿勢保持が可能 であると認めることができ、またエンジン回転のジャ イロモーメント効果によるロール,ピッチ間のカップ リングはASEKより消去できることが確認された。

9、実験に関する特記事項

FTBの姿勢制御特性および実験の実施化影響を与 えたいくつかの事項を取り上げてその概要を述べる。

9.1 機体の振動

FT B は剛性の高い拘束リンク機構に取り付けられ てロール、ピッチ、ヨーの運動を行ない、実験のケー スによって、このうちの1ないし8自由度を固定した。 いずれの場合も良次の振動を拾い易い系となっている。 また▲ 8 B作動の有無も振動特性に影響を与える。さ られエンジン回転数も当然関与する。

実験中に発生した機体の振動状況と拘束条件(自由

度の固定), ASE作動状況, エンジン回転数との関 係をTable 6に示す。

3 自由度固定の場合、A S E ゲインを規定どおりに 設定すると振幅と振動数が大きく、エンジン回転数N =11000 rpm では実験を中止せざるを得ない程であ った(Run7)。A S E オフの場合はN=12500 rpm でも振動は微少であった(Run6)。 またA S E ゲイ ン 0 の場合(Run 10)もA S E オフの場合とほぼ同様 であった。

ロールの自由度のみを与え、ASEゲインをロール を正規,その他を0とした場合の速隔操作実験(Run 12~16)のロール振動は、Nが11000 rpm以下で は振動数約5 Hzの徴少振動、Nが11000 rpm以上 になると振幅約0.2°,約0.5%で振動数役1.5 Hzの 振動を発生した。ビッチ系の振動は微少であった。搭 乗操作の場合 (Run 27,28) には振幅大,振動数 小となった。

ビッチの自由度のみを与え、A 8 E ゲインをビッチ を正規,その他を0とした場合の遠隔操作実験(Run 17)のビッチ振動は、N が11000 rpm以上では, 振幅 0.1~0.2°, 0.5~0.8 % 8 で振動数 0.5~0.6 Hz の振動を発生した。ロール振動は振幅約 0.2°,約1 % で振動数約1 Hz であった。搭乗操作の場合(Run 8 8, 8 8)には振幅はほば同等であるが振動数が 大きくなる傾向が認められた。

ロールとピッチの自由度を与え、ASEゲインをロ ールとピッチを正規、ヨーを0とした場合の遠隔操作 実験(Bun 17)には、ロール振動はロールの自由度の みを与えた場合、ピッチ振動はピッチの自由度のみを 与えた場合の振動にそれぞれほぼ対応した。

以上総合してつぎのようにまとめることができる。

(1) 拘束した自由度に対応する▲8 Bを作動させる と振動が大きい。(2)一般にロールの振動はビッチより 大きい。(8)エンジン回転数の低い所(N≤11000 rpm)と高い所では振動特性が異なる。(4)速隔操作実 験と搭乗操作実験では振動特性が異なる(特にピッチ) が,それは8.8(8)(前)から推測されるように,搭乗員が 機体振動とともに揺れて無意識に操縦桿を動かすこと による振動の増幅が加わるためと考えられる。 (Figure 22, 28)

9.2 **ASE**OEAFJシス

A8 B制御系にヒステリシス要素を含むと自励振動 を生ずることが知られて居り、特にピッチ系において その傾向が強いとされていた³⁰。 このため機会あるご とにこのヒステリシス幅を減少すべく勢力した。

本実験の結果では油圧のサーボアクチュエータの変 位に対する空気ジェットノズル開度の追縦性はロール, ビッチ系とも良好であり,懸念された自励振動の発生 は見られなかった。これはヒステリシス幅減少努力の 成果とも言えるが,エンジン振動が油圧アクチュエー タに4~6Hzの重畳振動を加えたことによるディザ効 果もかなり大きかったものと考えられる。

9.3 ASE + J J T 1

ロールとピッチについて、実験開始前の機体固定状 態で、ASEトリム(姿勢角¢、θ=0°としてASE 中立点調整)をとったが、つぎの状態においてトリム ずれ(姿勢角の0°からのずれ)を生じた。(1)機体固 定状態でエンジンアイドル状態としたとき、(2)エンジ ンアイドル状態で機体に自由度を与えたとき、(3)エン ジン回転数を増して実験中のとき、(4)エンジンアイド ル状態で再び機体を固定したとき。

上記(1),(2),(3),(4)に対するトリムずれの状況を遠 隔操作実験結果のうち代表的な値をつぎに示す。

Run	系	(1)	(2)	(3)	(4)
16	ロール	— 0. 2 °	1.8 °	2°	0.5°
17	ピッチ	- 0.2	0.1	0.4	0.4
18	ロール	0	0	2.3	1
18	ピッチ	- 0.2	- 0.8	0.5	1.8
(1)10-	リーナトナ	· · · · · · · · · · · · · · · · · · ·	アキヨーナ	2101	#46

(1)についてはエンジン運転に起因するものと考えら れるが、いずれにせよ値は小さい。

(2),(3)に対しては風の変動(最大風速約8 m/8)に よる影響が大きいと思われた。特にロールは影響を受けやすいと考えられたので、ノズル開度を約1 m 右閉, 左閉の方へ中立点を移してみた(Ø≠−0.6°相当)が (Bun 1 2, 1 8, 16),効果は認められなかったので Bun 18 以降は復旧した。

(4)については,エンジン停止後の姿勢角およびプレ ーキによる機体固定時の姿勢角(水平)の再現性など が不明であるので,はっきりした原因は判らない。

9.4 パイロット所見と対策

パイロット所見については、8.8(8)に述べた。この 中で指摘された姿勢制御に関する不都合な点はつぎの とおりである。(1)ロール操舵時にビッチおよびヨーへ の連成を感じた。(2)ロール操縦桿反力が大きい。(8)ビ ッチ操縦桿の遊びが大きい。(4)ビッチ操縦桿反力が一 様でない。(5)エンジン振動で身体が前後に揺られる。 (6)ヨーペダル左路みより左路みの効きが悪い。(7)ペダ ル踏込みに対する機体の応答が遅い。 (1)については機体が拘束されて運動しないことが通 常の飛行と異なり、また拘束反力も関与しているため と考えた。

(2)については操縦系統中の非可逆機構の調整を行な うことにした。

(8)についてはエンジン運転状態でも操縦系統のガタ を小さくすることにした。

(4)については(3)と関連あるものと考えた。

(5)についてはPIO(Pilot induced oscillation)れを要約するとつぎのとおりである。
 を抑えることが肝要と考えた。
 (1) 門型架構内にリンク機構を組立

(6)についてはエンジンの回転方向と拘束反力が関与 すると考えた。

以上総合して(2),(5)以外は機体の拘束を解いて自由 度を増した状態での実験と比較する必要のあることが 判ったが,総じて姿勢制御特性は良好と考えることが できた。

9.5 実験に際してのトラブル

本実験では過去2回の実験に比較して,発生したト ラブルが相当多かった。原因としては器材の劣化,ス ケジュールの過密,実験なれによるもの,などが挙げ られる。長期間に何回もの実験を行なう実験シリーズ では、このような時期のあることが屢々伝えられてい るが、本実験においても例外ではなかった。幸い今回 のトラブルは自由飛行実験の前の拘束実験中に一斉に 発生した感があったので,最も慎重を期さなければな らないつぎの自由飛行実験に対して,万全の措置を講 ずるためのよい教訓を得たとも言える。

実験に際して遭遇した主なトラブルはつぎのとおり である。(1) Data recorder rewind リレー故障。 (2)防熱台上張りが実験中にはがれ実験中止。(3)機体拘 束固定状態, A S E オンで実験中, ビッチ振動過大で 実験中止。(4)消火用ホースがダンプカーにひかれて破 損。(5)強風により標識灯転倒,破損。(6)強風により立 札転倒し、地上空気源タンク圧力ゲージ用ビニール配 管損傷。(7)地上電源始動系統故障。(8)計測室用変電所 200Vヒューズ自然破損。(9)拘束プレーキ調整不良。 (10) 計測室空気調和装置制御盤リレー故障。(11) 格納 庫シャッター故障。(12)FM無線機音量不足。(13)操 縦装置監視ま置(テレビ)故障。(14)ヨー拘束装置機 能不良。(15) ロールノズル中立点移動。(16) 直流安定 化電源故障,実験中止。(17)2つのエンジン回転計の 読みのずれ 500 rpm (Ma 1 > Ma 2)。(18)地上空気源 の供給接続装置がFTBから離脱不良,実験中止。 (19) 16.2 エンジン始動着火せず,実験中止。(20) 操縦

桿にあるブレストークスイッチが固い。(21)拘束リン ク上部王形金具中央裕接部にクラック発生。(22)ベン レコーダのペン不良。

以上のように本実験では実験中止のケースが5回も あったが、いわゆる事故に属するものではなかった。

10. むすび

以上FTBの姿勢制御拘束実験について述べた。こ れを要約するとつぎのとおりである。

(1) 門型架構内にリンク機構を組立てて、脚を取り 外した機体をこの中に宙吊りにして重心位置と回転中 心を合わせた。リンクの上部にはダンパを取り付け、 上下に移動できる平板でこれを抑えてプレーキとした。 機体の可動範囲をそれぞれロール±7.5°,ビッチ±7.5° ョー±20°に制限した。

(2) 実験は遠隔操作による機体固定状態での運転8 回,ロールとピッチの姿勢角4°相当のステップ応答 実験4回,搭乗員の操作による機体固定状態での運転 9回,ロール,ピッチ,ヨーの1軸回りの姿勢制御実 験8回を実施した。

(3) 遠隔および搭乗操作による全機作動実験により, エンジンおよび関連系統の作動特性ならびに機体特性 は全般に良好であることが確認された。

(4) 姿勢制御実験における最大姿勢角および最大角 速度は、遠隔操作の場合には、ロール;5°,4.1%, ビッチ;4°,3.4% を記録し、搭乗操作の場合には、 ロール;5.5°,6.3%,ビッチ;4.5°,3.8%,ヨー ;10°,2.6% を記録した。遠隔操作はロールまたは ビッチのステップ、搭乗操作は3舵の緩、ステップ、 繰り返し操舵を2名で交互に行なった。

(5) 操舵に対する姿勢の応答はヘリコブタと同程度 と認められたが、ヨーベダルではエンジン回転の影響 により、左踏みの効きが右踏みより良い傾向が現われ た。

(6) ASEの効果は良好で,無風時に±1°以内で 姿勢保持が可能であると判定された。エンジン回転に よるジャイロモーメント効果のASEによる消去効果 は概ね十分と判定された。

(7) 機体を拘束してASEを作動させて運転すると 機体振動を生じ、特にビッチで著しかった。またビッ チ系にPilot induced oscillation が認められた 本実験に際して、富士重工業㈱、石川島播磨重工業 ㈱、日本電気線の御協力に負う所が大きく、ここに習 甚なる謝意を表する。また地元角田市の方々には大き な御支援を頂き,併せて厚く御礼申し上げる。実験に は角田支所の全面的協力を頂いた。図および原稿の整 理は新型航空機第2グループの岡田典秋技官,鈴木圭 子嬢によった。

支 献

- 1) 滝沢直人; フライングテストペッド(FTB) に ついて,日本機械学会誌,71巻598号(1968/11)
- 2)新型航空機部;フライングテストペッドの計画-本体のシステムデザイン,航技研報告・TR-154 (1968/5)
- 3) 滝沢直人,宮本義人,甲斐忠夫,田辺義一,渋谷 昭義,小川敏雄,藤枝郭俊,小野幸一,島崎忠雄, 後藤芳夫;フライングテストペッド高度制御拘束実 験一第3次実験,航技研報告TR-358(1974/3)
- 4) 滝沢直人,渋谷昭義,小川敏雄,藤枝郭俊,甲斐 忠夫,宮本義人,田辺義一,竹内和之,小野幸一; フライングテストベッド用付帯設備の計画,航技研 報告TR-306(1972/11)
- 5) 武田峻, 堀川勇壮, 小川敏雄, 森幹彦; 航技研フ ライングテストペッドの姿勢制御の検討, 航技研報 *告TR-120(1966/11)
- 6)藤枝郭俊,牧野健,川崎純男;フライングテスト
 ペッド操縦系統試験,航技研資料TM-227
 (1972/7)
- 7)小川敏雄,甲斐忠夫,十河弘,増原恢;フライン グテストペッド自動安定装置性能試験(1)-製作時性 能試験,航技研資料TM-217(1972/7)
- 8)小川敏雄,甲斐忠夫,十河弘,増原恢;フライン グテストベッド自動安定装置性能試験(1)-実験前性 能試験,航技研資料TM-218(1972/7)
- 9) 滝沢直人,西村博史,藤枝郭俊,田辺義一,渋谷 昭義;姿勢制御用空気ジェットノズルの研究,航技 研報告TR-123(1966/12)
- 10)田辺義一,小暮泰之,川崎純男;フライングテス トペッド空気系統試験,航技研資料TM-213 (1972/2)
- 11) 宮本義人,川崎純男,中村公昭,東海林秀幸;フ ライングテストペッド空気タービン試験,航技研資 料TM-233(1972/11)
- 12) 小野幸一,十河弘,池上博;フライングテストペ ッドテレメータ性能試験,航技研資料TM-220 (1972/5)
- 13) 滝沢直人,田辺義一,渋谷昭義,小川敏雄,藤枝

郭俊,甲斐忠夫,西村博史,小野幸一,後藤芳夫;フ ライングテストベッド機体総合実験-エンジンを除く 本体の機能,航技研報告TR-276(1972/2)

27							1 19/1 / 1	5771 TH							
									Т	able 5	Opera	nt io	nal i	recor	ds
Date (1970)	Start Time	Rus	Case	Westher	P. [mmHg]	F. (2)	н (я)	₽ 4	D _w (deg)	Operator	Refinger No.1) _{1.} No.1	tr Mal	ti ND.1
Mar,15	11:00	1	0	Clear	769.8	4.5	59	1.6	330	Hatakeyama	7.3	-	0		_
	11:15	2	0		۰,	,	,	1.5	,	,	-	7.3	-	_	
	11:20	3	1		76 9 .5	5.0	48	,	180		7.3		0	1 2	48″
	14:26	4	1		767.1		,	3.0	135	,	7.2	-	0	14	40
	14:55	5	2		767.0	4.8	49	4.0		,	-	7.2	-	-	-
	15:39	6	3	,	767.1	4.2	53	3.0	160	,	7.2	7.2	0	13	
	16:10	7	4		766 <i>.</i> 8	•	47		135	Oike	7.2	7.2	0	19	
17	14:16	8	0	Clear	750.4	3.2	47	3.0	315	Oike	7.2		0	-	-
	14:20	9	0	,		,	42		,	,	-	7.2	-	-	-
	14:26	10	4	,	,	3.1	,	•	300	,	7.2	7.2	0	22	49
	15:03	11	4	,	750.5	3.0	,	4.0	270	,	7.2	7.2	0	19	45
	16:25	12	5	,	,	2.0	53	5.0	360	Goto	7.2	7.2	0	20	47
	17:21	13	5		7 5 1.5	0.0	47	,	•	,	7.2	6.3	0	19	49
18	10:11	14	0	Clear	7 5 7.6	3.8	49	5.0	270	Goto	6.2	-	0	-	-
	10:15	15	0	,		3.9	,	3.0	310	,	-	6.3		-	-
	10:26	16	5	,	7 5 7.3	4.0	53	,	300	,	6.2	6.2	0	11	
	11:46	17	6	,	7 5 7.0		47	1.0	360	Suzuki	6.5	6.5	0	15	
	14:18	18	7,8	,	7 5 7.3	3.5	,	•	,	,	6.3	6.3	0	17	
19	14:15	19	0	Clear	7 5 9.4	5.0	47	1.0	360	Oike		-	U	-	
	14:23	20	0	,	•	4.5	48	4.0	300	,	-		-	-	-
	14:57	21	9	,	7 5 9.3	4.2	47	1.0	•	,			0	18	-
20	10:00	22	0	Clear	763.0	3.6	90	2.0	270	Oike		-	0	-	-
	10:10	23	0	,		4.0	"	"	•	,	-	1	-	-	-
	10:30	24	9	,	7 6 2.9	4.5	"	1.5	•	,			0	19	1'14"
	10:47	25	10	,	7 6 2.7	5.0	53	1.2	•	,	-		-	-	-
	11:50	26	11	,	7 6 2.6	"	33	1	300	,			0	21	1 21
	14:59			,	7 6 2.5			1.5	250	Goto		1	0		
	16:14		1	'	7 6 2.8			1.0	•	•			1	15	
	17:08		1		763.5			"		Susuki				15	
21		30			766.6			1	300	Oike		-	0	-	-
	10:55				766.5			"			-		-	-	-
	11:03	32			766.4				330				0		1 08
	12:05			,	766.2	1		"	360	Goto			0	19	
	14:30	1		Cloudy	7659	1		1					0	21	
	15:21		1	•	765.8		I	3.0	270	Oike	-		-	-	-
	15:52	1		Clear		"	93		300			1	0		1 10
	16:38	1	1		765.7					Goto		1	0	15	
22	10:20	38	0	Clear	765.4	5.5	40	1.0	270	Suzuki		-	0	-	-
	1					1	F					4			

(Note) Na1, Na2; E/GNa, -; No Operation, Blank; No data, FTB nose direction;

,

,

,

37 1.5 300

.

.

.

,

Goto

Suzuki

10:25 39

11:36 41

16:44 43

10:37 40 19

15:47 42 22

0

20

24

,

.

.

Cloudy

.

.

,

764.9

761.9

5.6

.

5.7 39 /

762.8 5.2 30 0.5 360

3.5 39

0 18 1 00

0 12

0 13

0 1 2

フライングテストペッド姿勢制御拘束実験

運転記録

t.	記録					t		w,	Remarks
NL2	NL2	ti ND 2	Operation	tí	t.	NO.1	N0.2	(kg)	
-					30	1′56″	-		Nal Dry Motoring
0*					30	_	2′02́	-	No.2 /
-	-		-	—	1′20″	2 0 8	-	h	Call off; ground heat protector
-	—	—	Check	4′41″	6 00	2 0 9		214	stripped off
0	1 3	3 3*	,	3 37	500	-	1 4 5	μ	
48	59	1′16*	•	4 4 4	6 00	2 1 2	1 4 0	186	
1′02″	1′18″	1 4 5	-		4 59	2 1 9	1 5 2	135	Call off; FTB vibration enlarged
-	-	-	-		26	2 0 9	-	-	N0.1 Dry Motoring
0	-	-	_	-	30	-	2 1 3	I.	No.2 "
1 03	1 22	1 4 4	Check	3 59	-	225	2 0 5	1287	
55	1 11	1 40	,	4 15				ļ	
1 09	129	200	•	7 40		2 3 3		239	
53	1 12	1 38	Roll	6 2 7			1 51	258	
-	-		_	-	30	2 06	-	-	NO.1 Dry Motoring
0	-	-		-	30	-	2 17	-	NQ.2 "
45	56	1 2 5	Roll		6 00		1 53	189	
50	1 0 9	1 35	Pitch	8 4 5		2 4 6	1 46	348	
57	1 17		Roll & Pitch		10 35	2 23	1 4 4	349	
-	-	-	_	-	1 0 5	2 4 7	-	-	NQ1 Dry Motoring
0			-	-	43		2 3 4	-	No.2 #
-	-	-	_		3 01	2 1 9	-		Call off; D.C. stabilizer out
-	-	-	-		42	1 46	-	-	N0.1 Dry Motoring
0	-	-	-	-	33	-	2 0 9	, –	No.2 "
-	-	-	Check	5 20		2 0 9	-	232	
0	19	1 20	*	5 2 2		-	1 50 1 46	334	
1 4 2	2 10	2 4 5		8 50	11 30			336	
1 10	1 39	2 30	Roll		11 13 10 33			327	After escape training
	1 14 1 30		•			2 08		184	Call off;Start air hoses were
	1 30		-	-	0 30	1 58	1 00	104	No.1 Dry Motoring
- 0	-	-			31	1 30	2 13		No.2 "
	- 149	- 3 20	 Check	5 30		2 15		172	
1 33		3 20 2 00		3 30	10 30			h	
1 10	1 40	2 00	Pitch		2 27			327	Call off ;No.2 E/G fault start
0	17	1 04	Check		2 32	<u> </u>	2 08		exhibition test No.2 E/G idle; igniting test
_	2 0 3	2 4 5	<i>v</i>	5 00		2 10			
	1 25		Pitch			2 1 5			
	_			_	4 5		i	_	N0.1 Dry Motoring
0	_		-	-	38	_	2 08		No.2 /
_	1 29	2 10	Pitch		10 20	2 17		308	
1	1 1 5		,		8 28	2 1 4		278	
1 00			Yaw		9 57			324	
				1	1 · · · ·	<u>ا م</u>	i .	1	

 50° (about north east)

Figure 12 Engine and vibration data エンジンおよび振動データ

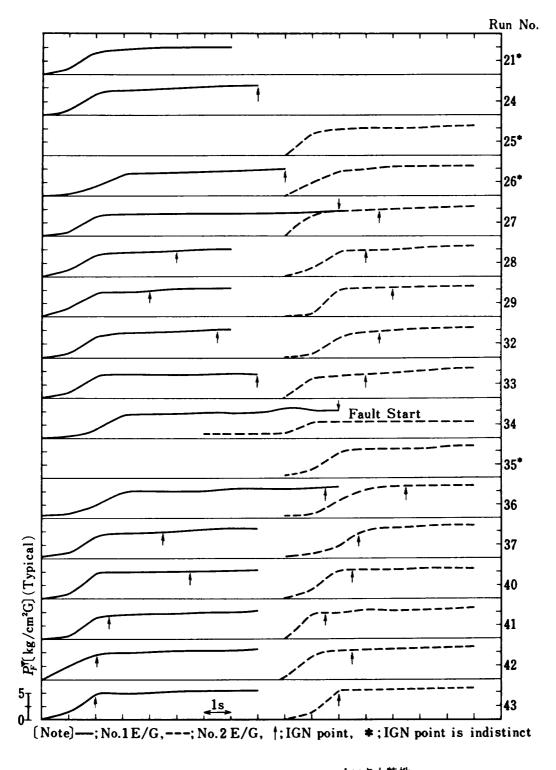


Figure 13 Engine igniting data エンジン点火特性

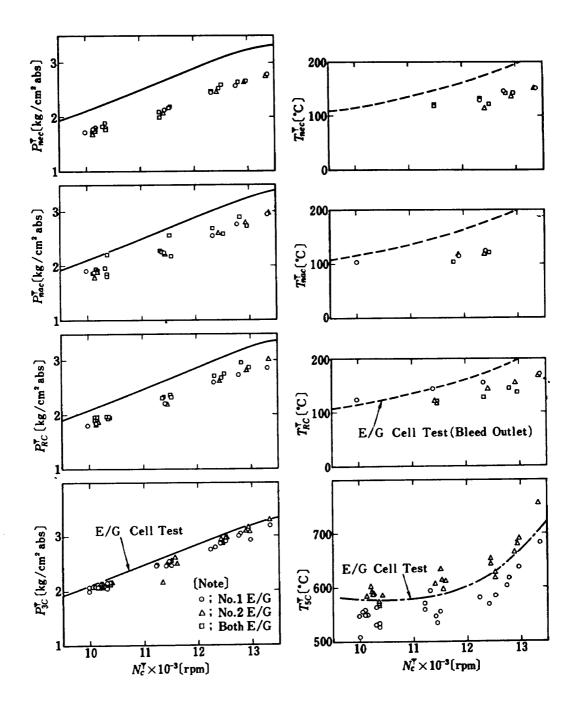
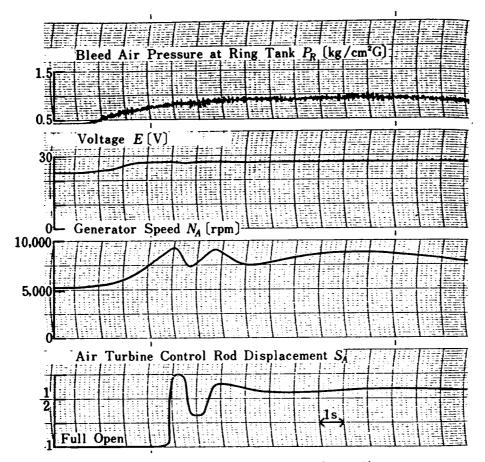
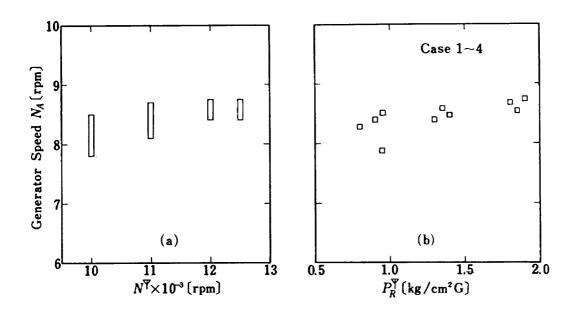
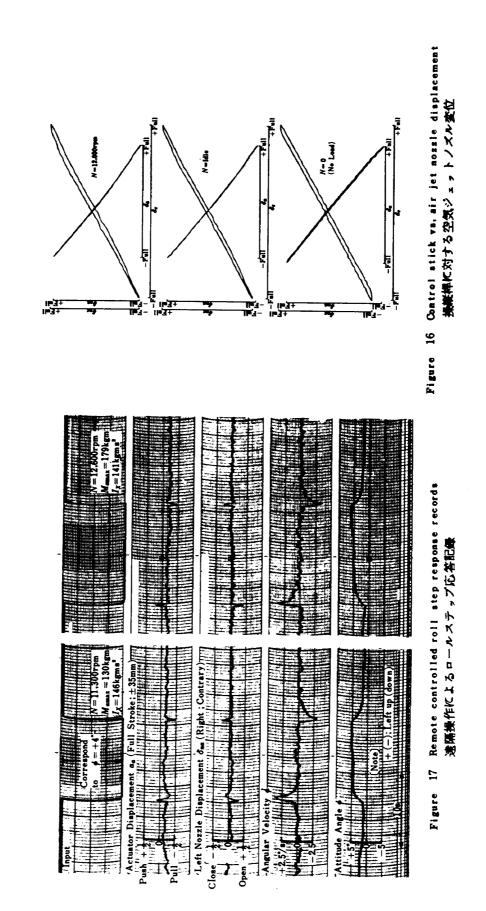
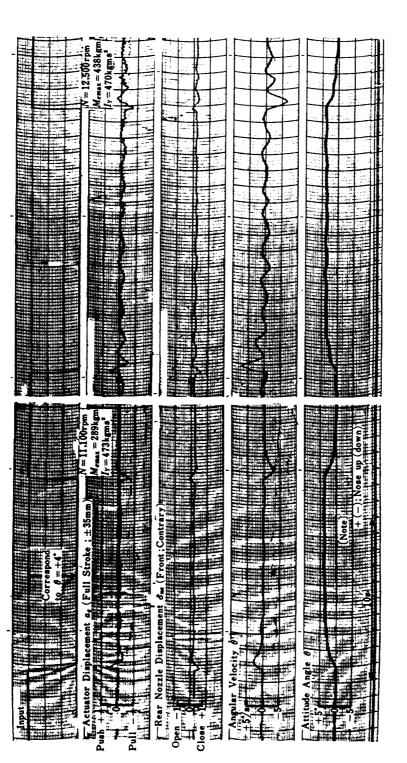
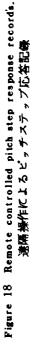
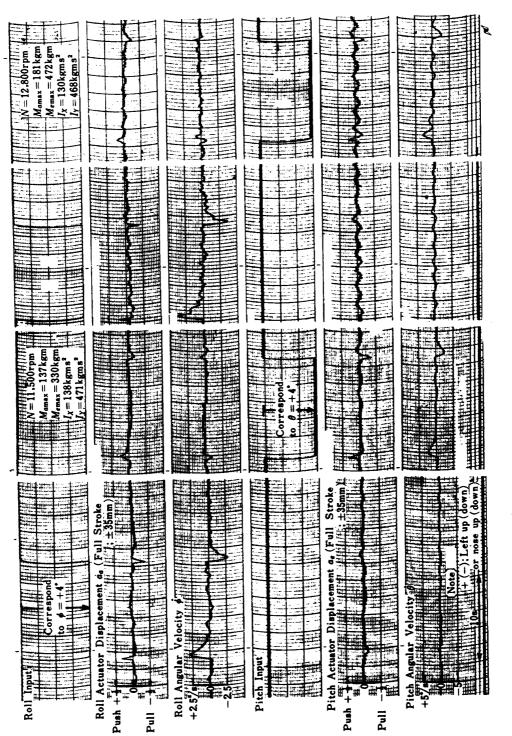
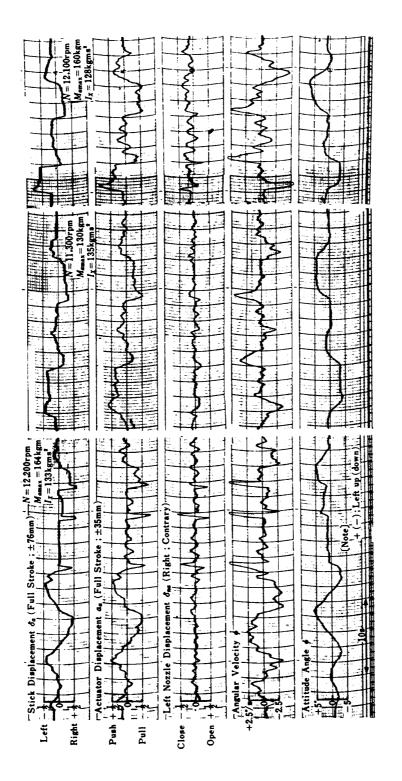



Figure 14 Bleed air and exhaust gas data 抽気および排気特性

(c) Air turbine starting record (Run 10)


Figure 15 Air turbine data 空気タービン特性

.

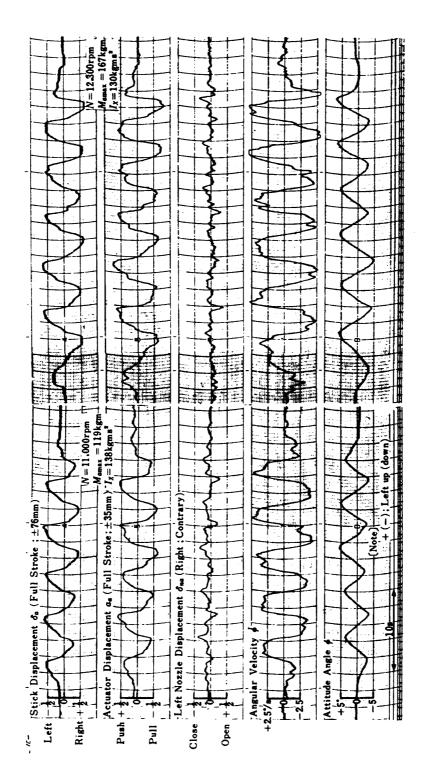
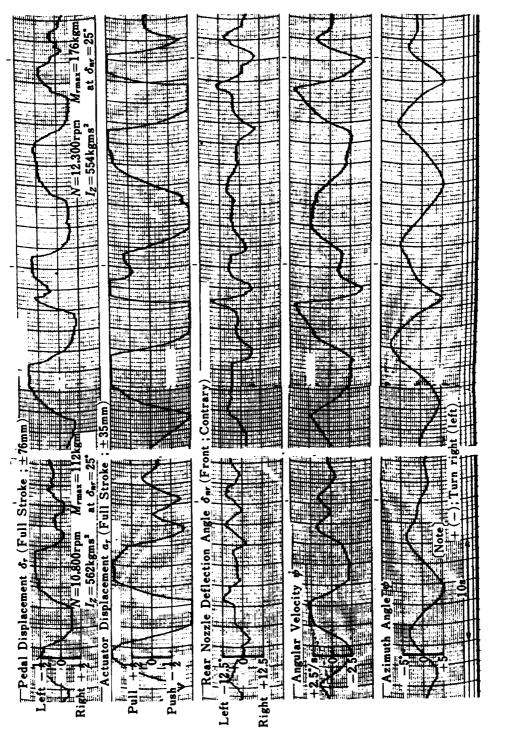


Figure 21 Piloted roll repeat control response records 搭乗員によるロール練返し操舵応答記録

35


	and a start where the start where the start we start and manufacture that the start was a start where the start In the start was a start we start where the start was a start with the start with the start was a start was a st Start was a start was a start we start with the start was a start with the start with the start was a start was	

•

Figure 23 Piloted pitch repeat control response records 搭乗員によるピッチ繰返し操舵応答記録

	A AN	

Figure 24 Piloted yaw slow control and step response records 搭乗員によるヨー級徐操舵とステップ応答記録

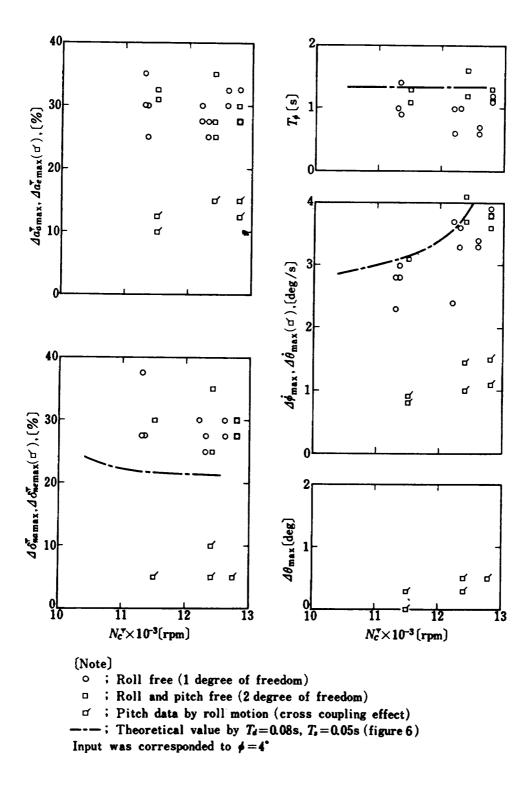


Figure 26 Remote controlled roll response data 遠隔操作によるロール応答特性

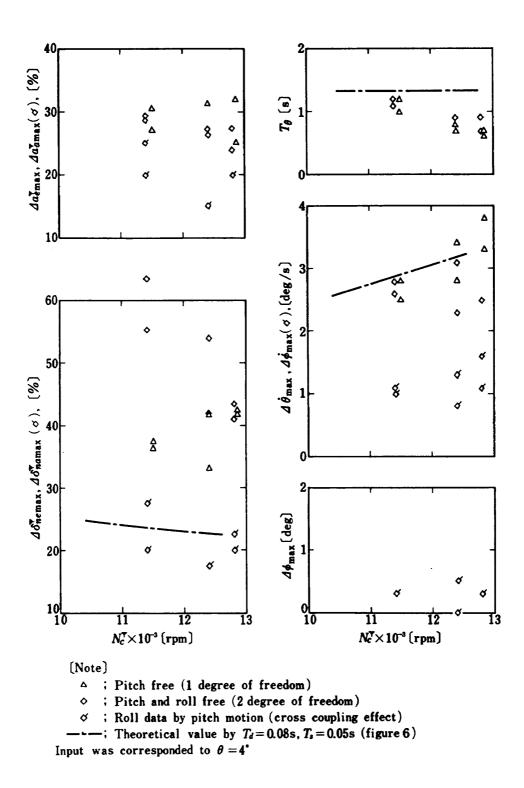


Figure 27 Remote controlled pitch response date 遠隔操作によるピッチ応答特性

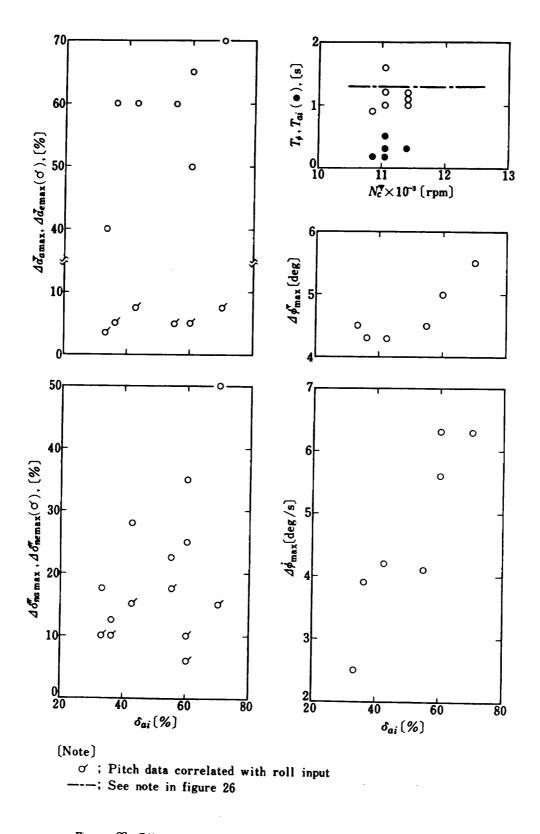


Figure 28 Piloted roll step response data (1 degree of freedom) 搭乗員によるロールステップ応答特性(1自由度)

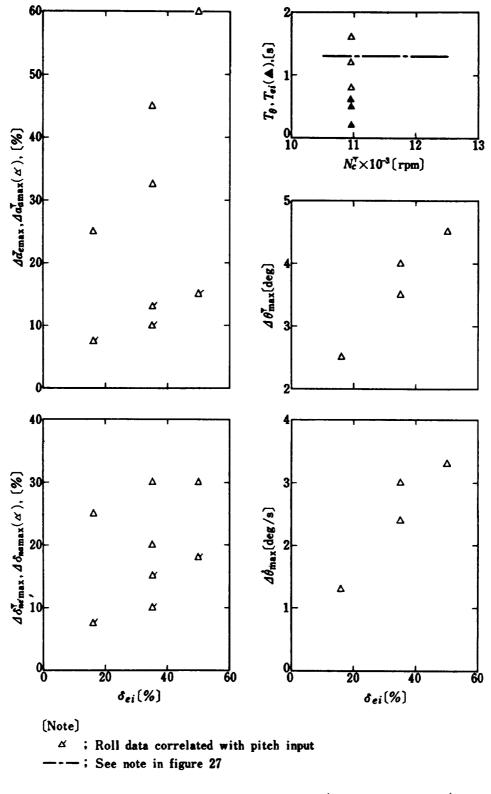


Figure 29 Piloted pitch step response data (1 degree of freedom) 搭乗員によるピッチステップ応答券性(1自由度)

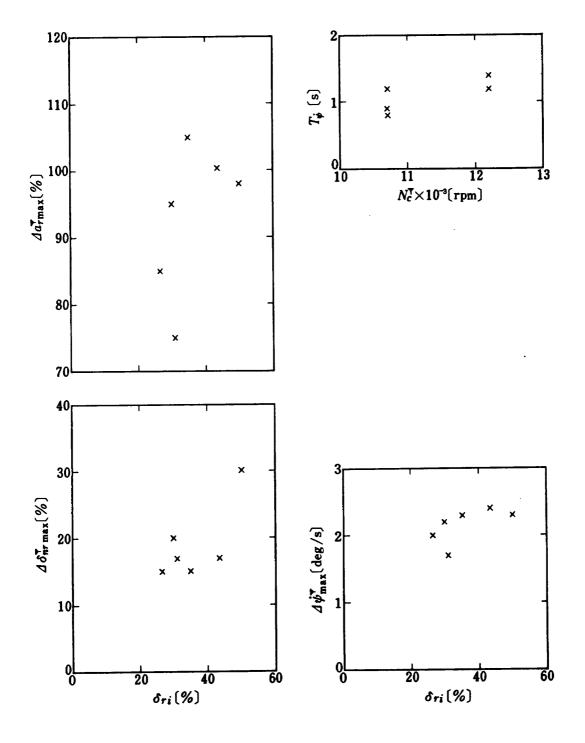


Figure 30 Piloted yaw step response data (1 degree of freedom) 搭乗員によるヨーステップ応答特性(1 自由度)

This document is provided by JAXA.

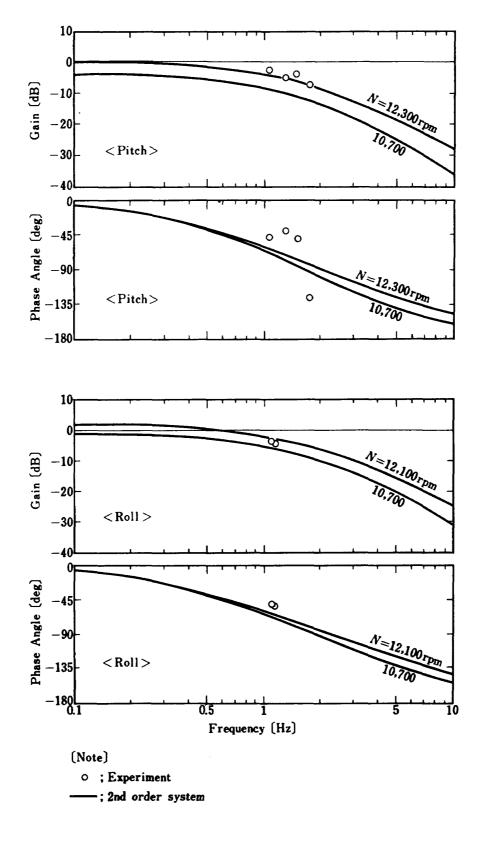


Figure 31 Frequency response of piloted control 搭乗操作の周波教応答

フライングテストペッド姿勢制御拘束実験

Table 6 FTB vibration and constrained condition 機体振動と拘束条件

Rum	Oalee	Degree of Freedom	AS E	N (rpm)	ø [deg]) [deg/8]	f	• ** \$ [deg/6]	e (deg)	€ [deg∕s]		θ masx (deg∕s	
6	3	Fix	Roll off	idle		0 ~0.1	5.5			Small			
			Pitch off	11000		0 ~0.2	•			•			
			Yaw off	12000		0 ~0.3				•			
			i	12500		0 ~0.2	•			•	1		
7	4	Fix	Rollon	idle		0 ~0.1	5~5.5						
			Pitch on	11000	0.1	0.2~2	5~6		0.2	2.1~ 2.8	3.8		Call off
			Yaw on J	idle		0.1~1	4~6		,	1.4~ 2.1	•		
10	4	Fix	[Roll 0*]	idle	Small	0 ~0.1	4~5		Small	Small			
			Pitch 0	11000	,	0 ~0.2	•			,			
			Yaw 0	12000	,				,				
				12500		,	4~5.5		,	,			
12	5	Roll	(Roll on)	ملامنا	Small	0 ~0.1	5	1	Smal I	Small			
14		NULL	Pitch 0	iure 1	0~9	0~4			0.2 ~0.7	0~1.5			Brake off
			Yaw 0	12500		0~0.4	5		~ 0.7 Small	Small			Diano di
	-	D											
13	5	Roll	•	11000		0 ~0.1]		Small #	Small	0.7-1		Proba off
				10000	0~2.5	1	1 ~1.3	2.5 3.3		0.3	0.7-1 08-1		Brake off
				12000 12500		1	1 - 1.3	3.3 3	0.2 •	0.6 #	, ,		
											-		
16	5	Roll	,	11000		0 ~0.1	5		Small	Small			
					0.2	0.6	0.6~1	3.5	0.1	0.3	0.8~1		Brake off
				12000	•	,	1 ~1.3			0.6			
				12500	'	0.3	0.8~1	36	Small	0.4			
17	6	Pitch	Roll 0		Small	0.1~0.5	1.4		0.2	0.3	05~0.6	2.8	
			Pitch on	12000	,	0.3	1.1~1.7		0.1	0.5	•	3.2	
			Yaw 0 J	12500	•	0.5	1.3~1.6		0.2	0.8	•	3.4	
				idle					0.3	0.5	03~0.5		
18	7,8	Roll & Pitch	(Roll on)	11000	0.4	0.6	0.8	3.1	0.2	0.6	0.4~0.5	2.5	
			Pitch on	12000	0.2	1	1	4	0.3	0.9	0.6	3	
			Yaw 0	12500					0.2	0.6	0.5	2.8	
27	12	Roll	[Roll on]	idle	0.2	0.8	0.6~1						
_ •			Pitch 0	11000				3.8	0.5	2~2.5	0.6		ø ₁=4°
:			Yaw 0					4.2					∳,=4.5°
				12000			i i	6.3					∳,=5°
28	13	Roll	,	12000				4.7					6 =4°
60	13	A UII	-	12000				4.1 5		-			$\phi_{i} = 4^{\circ}$ $\phi_{i} = 4.5^{\circ}$ $\phi_{i} = 5^{\circ}$ $\phi_{i} = 4^{\circ}$ $\phi_{i} = 5^{\circ}$
9 0	, ,	D: 4-5	(D.11.0.)		e	~ 4	17			,	05-1		A 49
33	17		Roll 0	11000		0.4	1.7		0.2	1	0.5~1	Z.Z	0 ₁ =4°
			Pitch on				17		0.3	2.8	0.8	38	0 ₁ =4,5°
			Yaw 0	12000	•	0.9	1.7					ວວ	
37	18	Pitch	,	11000	Smal I	0.3	1.7		0.3	0.6	0.5		

[Note] ~; Half of peak to peak , *; ASE gain 0 , **; At step (correspond to $\neq=4^{\circ}$ or $\neq=4^{\circ}$) input

Run Run B	Chase	N			ð 1 (d	(deg)		P. [hav	∕cæð∂)			P., F.	[102∕011 ² 0)		₽- c#	4. 1	Å ª d	►	Tr C)
	A L.ON	N0.1	ND.2 F	NO.2	1.01	NO.2 N	1 41.04	N T.ON	NO.2 4	NO.2 1	ND.1	NO.1	NO.2 Y	NO.2		ř.	∕cm² ()		I.ON
	1 9800	9885		1	idle	 	7.5	7.4		1	1.05	1.0 2	I	1	8.0	6.0		1.7	0.5
	11200	1110	1	1	72		8.5	8.8		1	1.45	1.4.1	I	1	1.2	1.3		1.1	1.0
	12100		1	1	85	 	1	~		1	1.8	1.83	1	!	1.6	1.7			1.0
	12550	1250	1	1	95	- <u>-</u> -		4.1	1	1	2.05	1.97	1	ł	I.7 2	1.85	1.77		1.0
	13100	13005		1	107			7.6		1	2.2	2.14	1	1	1.85	2.0	1.95	1.77	1.0
	9950		I	1	idle	' <u> </u>		7.4	1	1	1.05	1.06	1	1	0.8 5	3 6.0	0.87	0.7 5	2.0
		}	9950	9741		idle			8.5	7.7			1.05	9.9.8	0.8	0.85	0.7 7	0.6 5	6
	1		11220	109	1	76		1	9.5	9.6	I	1	1.50.	1.4 1	1.2	1.25	1.2	1.05	6
			1 2 2 0 0	1 200	1	06				1 2.7	1	1	1.95	1.83	1.6 2	1.6	1.6	1.45	æ
		1	1 27 00	124	1	97		 	9	1 5.1	I	1	2.15	2.0 0	1.8	1.8	1.8	1.65	æ
			13100	130	۱	106				18.3	I		230	2.2 2	2.0	2.0	1.95	1.75	æ
	1	1	10000	- 67	1	idle		1	8.5	7.7	I	I	1.1 0	8 6.0	0.8 5	60	0.85	0.7 2	~
	0000	0000	1 0000	0877	a l b i	a l Pi	и г	77	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.4	1.0.5	1.0 2	1.05	1.06	0.9 5	1.0	0.9 2	0.7	4
		-	11300	201		75	2 0	00	9.5	1.6				1.4 1	1.3	1.4	1.25	1.1	~
	000011	1 2062	1 2 2 0 0	011			1151		2.5	1 2.3		1.86	1.8 5	1.83	1.7	1.8	1.7	1.4 5	9
	1 2500	1 2 5 3 4	1 2650	195	5) (- (5.5	14.7		20	2.1	1.97	1.95	2.0	1.9	1.65	4
	0086	9940	10050	86	idle	a)		7.7	ø	8.4	1.0	8 6.0	1.1	0.98	0.9 5	1.0	0.8 5	0.7	12
	1 0850	9927	00001	9808	idle	idle	α		5 2		1.0 5	8 6 0	1.05	8 6.0	6.0	60	0.85	0.7	<u>م</u>
				-	20	75	, o	80.08		9.6	1.4 5	1.4 1		1.4 4	13	1.4	1.25	1.0	80
	0066		10050	86	idle	idle	. ∞	7.7	œ	8.4	1.0 5	8 6.0	1.05	8 6.0	6.0		0.8.5	0.7	9
	10100	10028	11100	9907			α	7.7	S	8.4	1.1	1.06	1.1	1.06	6.0	60	6.0	0.7 5	e
			11350	110			, o	8.8	0	9.8	1.4	1.3 4	1.45	1.4 1	1.25	1.3	1.1 2	1.1	ი
	19950	1 2 1 2 0		121		<u> </u>	, c l	12 1	3.5	13	1.85	1.86	1.9	1.86	1.67	1.8	1.5 2	1.5 2	20
	12700	0 12507	12700	126			3.5		5	1 3.4	1.85	1.7 √3e	2.0	1.99	1.8	1.9	1.67	1.6 2	16
	10150	0 10059	10150	66			80	7.7	8.5	8.4	1.1	1.02	1.1	1.0 2	6.0	0.95	0.7	0.7	9
	10150	10150 10016 10150	10150	9887	el hi	elbi	00	7.7	8.5	80.	11	1.06	1.0 5	1.06	6.0	0.95	8.0	0.7 5	4
		11200 11102 11320	11320	1104	202	75	9.5		10	8.6	1.5	1.37	_	1.4 1	1.27		1.15	1.15	ر
	1915(12150 12059 12250	1 2 2 5 0	1 202	: %		2	-		12.3	1.8			1.83	1.6 2		1.5	1.47	S
	10121	****			2														

(Lim	7-3	I	1	I	ł	1	1	0	0.0	1.0	1.1	1.2	1.0	0.7	0	80	0,8	1.0	1.3	0.7	 0.7	6.0		0.7	0.9	1.4					0.9		
8	7-12	1		I	1	1	1	1	3	1.0	1.2	1.4	1.3	0.7	•	9.0	0.8	1.1	1.4	0.7	 0.7	6.0		0.6	0.8	1.2	1.3			0.7	0.8	1.2	
NO.2	g	1		1	1	1	1		c C	0.4	6.0	0.8	0.8	0.5		_		1.1	0.8		 0.0				0.5		0.8			0.8	0.4		
	30-12	1	1		1	1	I		20	0.5	0.6	08	1.1	0.5			0.5				 0.8				0.5						0.8		
[11m	į				2.1		1.2			1	1	1	1	1				1.8	2.0		 1.7	1.4				2.0			_	_	1.6		4
8	7-12				1.1	0.9				1	1	I	1					6.0	1.1		 0.8			0.8			0.8				60 1		
I ON	2 0 8			1.7	1.9		0.5		ł		1	ł		1				2.0	1.9	90	 0.8				_	2.0					2.4	-	
 	1-0	1.0		1:0		1.1	0.5		1	1	1	1	1	1				1.3	_	9.0 8	 60			6.0	1.4	1.6	1.2) 1.3		6 17	~
(81♥		0.1 9		0.24	0.2 5		0.2 2			0.2 5	0.3 2	0.24	0.28	0.20			0.3 3	030	0.3 4	0.2 3	 0.2	1.6 0	1.2 (0.4 (0.3	0.4	0.3
inued 87 V	ີ່			0.4 2	0.49		0.3 0		6.2.0	0.41	030		0.35	0.29			0.47		0.43	0.50		1.4 0		0.4 0	0.56	0.56	0.6 3	0.51		0.8.0		1.08	0.80
Continued 6x ♥ 8r ♥		0.2 1		0.2 3																				0.3 0						0.5 6	0.59	0.6 5	0.5 5
1	.	136		2	2	-	110				92								114	100	144	128		144			-	0		86			56
NA N	(internet internet in	1	I	1	I	1	ł		ł	ł	I	I	I	I		I	ł	I	I	ł		8475	06	40	4	8700	~	9		49		S	8280
Table	~			115	130	135					100	120	130				104	115	125			105				105	125						
₽	. <u>9</u> .		1			155				107	130		152					112				107					120						
	NO.2	1	I	1	1	I	I				520		620			~	0	2	535	490	 470	495			-	520	~			2	500	2	
[ລ]	ND.2	1	Ι	I	ł	I	I		ŝ	2	610	4	720			e		2	630	ŝ	2	580	S		5	590	ŝ	ŝ		4	9	580	ß
L E	ND.1			6	-	5	505		1	t	ł	I	ļ	I			4	œ	610	520	0	530	2	2				-		6	530	00	
	NO.1 V	2	520	9	80	650	2		I	1	1	I	1	1		2	4	S	570	2	3	530	2		2	550	0	0		49	50	535	53
[at.	NO.2 V	1	1	ł	1	1	1	1	95	22	12200	7.0	10	00			30	20	12650	05	0	11300	05	11100	35	22	270	015		15	3.2	12250	202
U L	AT.ON	80	2	10	255	13100	95		ł	1	1	1	1	ł		06	1	00	25	8 0	 85	11000	06		125	225	7 0	01		10150		12150	2
8	4	-							2							e					 4			4						4			
12	-	4							S						÷	9					7			10						11			

This document is provided by JAXA.

[Note] Mal, Ma2; E/G Ma, C-12, T-12 etc.; O'clock position (from tail) at compressor or turbine casing -; No operation , Blank ; No data

							Т	Table	8 E	xperi	Experimental	results		実験結	₩	(Run	13~1	18)			ŀ	-		
Run	Chae	N (EL	(تحوا) م	a I Seb	[%] ⊽a, max ∆(∆i ∎ [deg/8]	∆¢ ana [deb]	T+] [8] [bg	IX M.	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	- 3	€ 1 م 1 م 1 م 1 م	9 9	4	Co.mr. Domar Clarr Co.	= \∆@ \\@		<u>کی</u> 19	I + Me	(kem) [1/2]	<u> </u>	-	*•
13	5	11300	124	+4	+30.0	+27.5	+ 2.3		1.0	144 1	132 0.9	0.92 5.48	8 4.11						+				-	
			120	Return	-35.0	-37.5	-2.8		1.0 1	42	50 •	0.93 5.54	4 4.15											
		12200	104	+4	+27.5	+30.0	+ 3.7	+ 4.8	1.0 1	139 10	168 1.2	1.21 7.21	1 5.41											
			102	Return	-3 0.0	-30.0	-2.4	-4.0	0.6	138	* 1.2	1.22 7.27	27 5.45											
		12600	86	+4	+32.5	+27.5	+ 3.3		0.6 1	134 1	188 1.4	1.40 8.34	4 6.25											
			82	Return	-30.0	-30.0	-3.4	-3.5	0.7 1	133	" 1.4	1.41 8.40	0 6.30						<u> </u>					
	-																							
16	5	11350	130	4 +			+	0			<i>с</i>													
			128	Return																				
		12300	120	+4	+27.5	+27.5	+ 3.6		1.0 1	142 1	172 1.2	1.21 7.21	21 5.41											
			116	Return	-25.0	-25.0	-3.3	-3.5	1.0 1	141	• 1.2	1.21 7.27	27 5.45											
-	-	12800	108	+4	+32.5	+30.0	+ 3.8	+ 4.0	1.1	140 1	196 1.4	1.40 8.34	4 6.25											
			104	Return	-27.5	-27.5	-3.9	-3.5	1.2 1	39	1.4	1.41 8.40	10 6.30											
			(1																		1	
17	9	11500	128		+17.5									+4	+27.1		+28		1.2 4		373 0.7	5	2	
			124		-12.5									Return	n306	5 -36.4	-25		1.0 4		. 0.7	9 4.7	2	
	1	12400	112		+15.0	+17.5								+	+314	1 +4 1.7	+3.4	+4.0	0.8 4	472 4	483 1.0	0.2 6.1	5 4.6	32
			108		-1 0.0	-1 0.0								Return	n	-330)28	-33	0.7 4	472	. 1.0	0.2 6.1	5 4.6	
		12850	96		+20.0	+20.0								+	+320	+422	+38	+3.0	0.6 4	470 5.	543 1.1	1 6 7.0	0 5.2	25
			92		1 5.0	-15.0								Return	n –251	41.7	-33	-28	0.7 4	470	. 1.1	6 7.0	0 5.2	د ی د
18 7	7,8]	11500	105	+	+32.5	+30.0	+3.1	+ 3.6	1.1	139 1	138 0.9	0.99 5.90	90 4.42	<u></u>	-125	50	60-	63	ч —	471 3(363 0.7		5 3.4	61
			104	Return	-31.0	-30.0	-3.1	-4.0	1.3]	139	.0.0	0.99 5.90	90 4.42	0	+100		0+08	0		471	. 0.7	7 4.6	5 3.4	61
	-	11400	100		+25.0	+ 27.5	+ 1.1	+ 0.3		138 1	135 0.9	0.98 5.84	34 4.38	8 +4	+28.9	9 +635	1+28	+4.0	1.2 4	471 3(363 0.7	7 4.6	5 3.4	19
			98		-20.0	-20.0	-1.0	-0.3	_	137	.0	0.99 5.90	90 4.42	Return	n29.4	1-552	-26	-3.8	1.1	471	. 0.7	7 4.6	5 3.4	6 †
		12400	90	+4	+27.5	+25.0	+ 4.1	+ 4.8	1.2]	135 1	177 1.3	1.31 7.80	30 5.85		-150) - 50	-10	-0.5	4	470 4	483 1.0	3 6.2	2 2 4.6	36
	<u> </u>		88	Re turn		-35.0	-3.7	-4.5	1.6 1	135		1.31 7.80	30 5.85	<u>.</u>	+250	(+1 00	+14	+0.3	v	470	* 1.0	3 6.2	2 4.6	<u>5</u> 6
		12400	82		+15.0	+17.5	+1.3	+ 0.5		133 1	177 1.5	1.33 7.92	2 5.94	1 +4	+26.6	5 +5 3.9	+31	+35	6.0	469 4	483 1.0	3 6.2	2 4.6	36
			80		-15.0		- 0.8	0		133	. 1.	1.33 7.9	7.92 5.94	Return	n27.4	1-41.7	-23	7	60	469	. 1.0	3 6.2	2 4.6	5 6
	-	12800	70	+4	+27.5	+27.5	+ 3.8	+4.3	1.1	131 1	198 1.5	1.51 8.99	99 6.75		-125	5 - 50	-11	ŝ		468 5	538 1.1	5 6.9	4 5.2	20
			99	Return	-30.0	-30.0	-3.6	-4.3	1.3	129		1.53 9.11	11 6.83		+150	0 + 50	+15	+05		468	, 1.1	5 6.9	4 52	20
	-	12800	62		+20.0	+22.5	+ 1.6	+0.3		129 2	0	1.55 9.23	23 6.92	+	+27.4	1 +4 1.0	+25	+3.3	0.7	468 5	538 1.1	5 6.9	4	20
			60		-20.0	-20.0	-1.1	-0.3		128	." 1.5	1.56 9.29	29 6.97	Return	n240	435	6 2.5	-35	6.0	467	" 1.1	15 6.9	4 52	20
[Note]	و آ	L:St	Step input		∆; Difi	riangle : Difference between input and steady state output . $ullet : from figure$	betwee	ndui uc	t and	stea	ly stat	le outj	put.	•:from	a figur	e 8,10	-	** ; calculated	alcula	ted			,	

 Γ :Step input Δ :Difference between input and steady state output . *: from figure 8.10 , ••: calculated $\phi \ge 0$ etc; clockwise to nose , $\theta \ge 0$ etc; Nose up

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														t	Ľ	t						ł	ŀ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Chase		N	£	ิ ฮ		\sim	Ľ.			ار و)	<u>р</u> ,	-		_			7	<u> </u>				۲ .
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 1	2	~ !	•	NO.2		2		×.		-	24	• •			Ъ.	ĝ	ov N		<u>ت</u>	с С	<u>۲</u>]	_	[1
$ \begin{bmatrix} 12400 & 12338 & - & - & 115 \\ 10000 & 9998 & - & - & 100 & 190 & - & - & 155 & 155 & 105 & 125 & 120 \\ 10000 & 9998 & - & - & 80 & - & 110 & 102 & - & - & 150 & 114 & 55 & 150 & 112 \\ - & - & - & 11000 & 11965 & - & 100 & - & - & 100 & 174 & 55 & 55 & 107 & 110 & 105 & 128 \\ - & - & - & 11000 & 11965 & - & 100 & - & - & 100 & 174 & 112 & 105 & 113 & 128 & 128 \\ - & - & - & 12300 & 11965 & - & 100 & - & - & - & 110 & 098 & 080 & 053 & 073 & 9 & - & 550 & 107 & 118 & 112 \\ - & - & - & 12300 & 11936 & 100 & 10347 & - & - & 210 & 194 & 172 & 155 & 155 & 155 & 156 & 11 & - & 560 & 137 & 118 & 112 \\ - & - & - & 12300 & 11936 & 1000 & 1932 & 080 & 080 & 080 & 057 & 114 & 495 & 560 & 100 & 138 & 108 \\ - & - & - & 12300 & 10287 & 858 & 83 & 83 & 83 & 83 & 83 & 83 & 8$	**	10	66	988 089	11		1 1	8.0 8.7	11	50		1 1		00	5 7		5						1	4 0
$ \begin{bmatrix} 12000 & 12338 & - & - & 140 & - & 110 & 110 \\ 1 & - & - & - & 11900 & 11965 & - & - & 120 & 1190 & 0 & 0.85 & 0.75 & 0.55 & 4 & 470 & - & 105 & 1103 & 1103 \\ - & - & - & 110900 & 11965 & - & - & 1200 & 1161 & 125 & 105 & 115 & 155 & 155 & 107 & 118 & 112 \\ - & - & - & 12370 & 12288 & - & 1400 & - & - & 110 & 0.98 & 0.85 & 0.77 & 111 & - & 560 & 0.77 & 111 & - & 560 & 111 & 112 \\ - & - & - & 12370 & 12328 & - & 140 & - & - & 110 & 0.98 & 0.85 & 0.77 & 111 & - & 560 & 0.77 & 111 & - & 560 & 118 \\ - & - & - & 12370 & 1236 & 100 & 105 & 125 & 105 & 0.98 & 106 & 0.77 & 111 & - & 560 & 0.77 & 111 & - & 560 & 113 & 112 \\ 11800 & 11779 & 11300 & 11379 & 1126 & 100 & 105 & 1125 & 1156 & 1157 & 1137 & 1137 & 1138 & 100 & 148 \\ 11800 & 11779 & 11300 & 11379 & 1120 & 100 & 105 & 112 & 120 & 0139 & 112 & 123 & 12$		11	6	183		·	1	1 1.5	1	0	6 9			2	2		<u>د</u>			3 1	5 1			2
$ \begin{bmatrix} 10000 & 9988 & - & - & - & 80 & - & 110 \\ - & - & - & 1000 & 11937 \\ - & - & - & 1000 & 11947 \\ - & - & - & 1000 & 11947 \\ - & - & - & 12370 & 1228 \\ - & - & - & 12370 & 17218 \\ - & - & - & 12370 & 17218 \\ - & - & - & 12370 & 17218 \\ - & - & - & 12370 & 17218 \\ - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 17218 \\ - & - & - & - & 12370 & 19247 \\ - & - & - & - & 12370 & 19247 \\ - & - & - & - & 12370 & 19247 \\ - & - & - & - & 12370 & 19247 \\ - & - & - & - & 12370 & 19248 \\ - & - & - & - & - & 12370 & 19248 \\ - & - & - & - & - & - & - & 140 \\ - & - & - & - & - & - & - & - & 140 \\ - & - & - & - & - & - & - & - & - & -$		1 2 4	4	233			1	14.0		0	06.			n	ഹ		വ			5	5 1		1	\sim
$ \begin{bmatrix} 10 & - & - & - & 19990 & 9754 & - & 75 & - & -110 & 098 & 080 & 063 & 073 & 9 & - & 550 & 107 \\ - & - & - & 112000 & 11947 & - & - & 120 & 154 & 152 & 155 & 155 & 155 & 155 & 130 & 118 & 112 & 938 & 86 \\ - & - & - & 12020 & 12428 & - & 140 & - & - & - & 210 & 194 & 172 & 155 & 155 & 155 & 130 & 118 & 112 & 938 & 86 & 86 & 100 & 10287 & 88 & 8250 & 110 & 10287 & 88 & 8250 & 110 & 10287 & 88 & 1200 & 10287 & 88 & 1200 & 10287 & 88 & 120 & 1238 & 1120 & 10287 & 132 & $		10(0	66	1		1	8.0		0				2	2		4			5 1	3 1			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1	I	6	0	75	ł			 1	0	ø	0	<u>е</u>		- 6							0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		I	10	0 1	0 6	ł	0			0 1	41	2	5		1 ∞		0 1					6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				I	19	0	94	1	N			0	9	0	0			9	5 1	10	8			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		ł	23	0	42	I	4	1		0	4	2	5			9	5 1	7 1	7 1			
$ \begin{bmatrix} 1 & 9900 & 9940 & 9720 & 9807 & 75 & 75 & 105 & 098 & 106 & 098 & 080 & 052 & 070 & 14 & 495 & 562 & 08250 & 118 \\ 10820 & 11779 & 11300 & 11336 & 100 & 103 & 175 & 157 & 150 & 117 & 8400 & 78 & 100 & 48 & 10000 & 1003 & 9910 & 72 & 100 & 103 & 102 & 9250 & 1106 & 128 & 1000 & 1003 & 9910 & 175 & 157 & 150 & 117 & 120 & 117 & 8400 & 70 & 128 & 1000 & 128 & 100 & 138 & 100 & 132 & 102 & 037 & 077 & 054 & 154 & 100 & 178 & 100 & 148 & 100 & 102 & 1028 & 1526 & 150 & 128 & 100 & 132 & 128 & 100 & 132 & 128 & 100 & 132 & 128 & 100 & 134 & 108 & 10.4 & 117 & 120 & 117 & 8400 & 70 & 108 &$		I 		ł	~	0	83	1		1		0 0	86	2	9	2		<u>.</u>						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 9	006	94	67	0	80	7.5	2	ŝ	8	6 0	86	0	2	0	4 4	5 5					50	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		108	820	085	102	0 1	28	8.5	3				<u></u>	S	2	95 1	4	0 5	0				S	
$ \begin{bmatrix} 12450 & 12368 & 11990 & 11978 & 125 & 120 & 135 & 132 & 175 & 157 & 157 & 545 & 577 & 117 & 120 & 117 & 8400 & 70 \\ \hline 10000 & 10035 & 9870 & 9914 & 75 & 75 & 105 & 102 & 112 & 102 & 077 & 545 & 177 & 120 & 117 & 8100 & 48 \\ \hline 11000 & 10035 & 1001 & 10 & Experimental results \\ \hline 111050 & 85 & -330 & 03 & +400 & -175 & -25 & -451 & 120 & 133 & 12 & 991 & 542 & 406 & 470 & 325 & 669 & 416 & 312 & 1128 & 11400 & 64 & +600 & 03 & 560 & +225 & +43 & 10 & -550 & -100 & 133 & 12 & 092 & 548 & 411 & 470 & 7 & 069 & 416 & 312 & 128 & 11400 & 64 & +600 & 03 & -650 & +326 & 100 & 134 & 7 & 092 & 548 & 411 & 470 & 7 & 069 & 416 & 312 & 11400 & 64 & +600 & 03 & -650 & +326 & 100 & 134 & 7 & 092 & 548 & 411 & 470 & 7 & 069 & 416 & 312 & 11400 & 64 & +600 & 03 & -650 & +530 & 110 & -50 & -100 & 134 & 7 & 092 & 548 & 411 & 470 & 7 & 069 & 416 & 312 & 11400 & 64 & +600 & 03 & -650 & +530 & 110 & -50 & -100 & 134 & 7 & 092 & 548 & 411 & 470 & 7 & 068 & 416 & 312 & 11400 & 64 & +600 & 03 & -650 & +530 & 110 & -50 & -100 & 129 & 7 & 105 & 523 & 469 & 468 & 7 & 078 & 471 & 353 & 11400 & 62 & -423 & 03 & +63 & +530 & 12 & +75 & +150 & 129 & 105 & 523 & 469 & 468 & 7 & 078 & 471 & 353 & 11400 & 62 & -423 & 03 & -650 & +530 & +53 & +53 & 120 & 129 & 105 & 523 & 469 & 468 & 7 & 078 & 471 & 353 & 11400 & 62 & -423 & 03 & +63 & +530 & +23 & 03 & -75 & -150 & 127 & 116 & 091 & 542 & 406 & 467 & 307 & 066 & 398 & 299 & 11400 & 62 & -423 & 03 & -420 & -422 & -43 & 12 & +75 & +150 & 127 & 116 & 091 & 542 & 406 & 467 & 307 & 066 & 398 & 299 & 114400 & 62 & -423 & 03 & 6600 & +226 & +500 & 03 & -75 & -150 & 127 & 116 & 091 & 542 & 406 & 467 & 307 & 066 & 348 & 71 & 353 & 108$		3 1 1 8	800	177	113	10	33	1 0.0	0.5	2	69	9	S	0	2	32	ഹ	0 5	5 1	0 1	5	2 8	50	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	124	450	236	119	10	97	1 2.5	2.0	5 G	94	0	33	S	2	55	<u>ں</u>	0 5	7 1	7 1	10	7 8	0	
$ \left[\text{Note} \right] \text{ See note in table } 7 \\ \hline \text{Table 10 } \text{ Table 10 } \text{ Experimental results} \textbf{m} \text{ m} $		10	000	003	8 8	0	6	7.5	2		2	5	~	2	~	77	4	0		_	_		0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ت	~	See n	<u>.</u>	table	1																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			I								'imen t		sults		帮	<u> </u>	'n							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							<u>ă</u> ,	Ĭ	_		4	20	<u>,</u>		L	 					┣──	н На (+_(
$ \begin{bmatrix} 12 & 11050 & 85 & -33.0 & 0.3 & +40.0 & -17.5 & -2.5 & -4.5 & 1.2 & +3.5 & +10.0 & 135 & 123 & 0.91 & 54.2 & 4.06 & 470 & 325 & 0.69 & 4.16 & 3.12 \\ 11050 & 82 & +35.0 & 0.5 & -60.0 & +12.5 & +3.3 & 1.0 & -5.0 & -17.5 & 134 & * & 0.92 & 54.8 & 4.11 & 470 & * & 0.69 & 4.16 & 3.12 \\ 11050 & 82 & +35.0 & 0.2 & -60.0 & +12.5 & +3.3 & 1.0 & -5.0 & -10.0 & 134 & * & 0.92 & 54.8 & 4.11 & 469 & * & 0.69 & 4.16 & 3.12 \\ 11050 & 82 & +36.0 & 0.3 & -50.0 & +3.5.0 & +3.3 & 1.0 & -5.0 & -10.0 & 129 & * & 105 & 6.25 & 46.9 & 46.8 & * & 0.78 & 4.71 & 3.53 \\ 111400 & 64 & +60.0 & 0.3 & -65.0 & +25.0 & +5.5 & +7.5 & +15.0 & 127 & 116 & 0.91 & 54.2 & 40.6 & 46.7 & 30.7 & 9.6 & 3.98 & 2.99 \\ 111400 & 62 & -42.3 & 0.3 & +60.0 & -28.0 & -4.2 & -4.3 & 1.2 & +7.5 & +15.0 & 127 & 116 & 0.91 & 54.2 & 40.6 & 46.7 & 30.7 & 9.6 & 3.98 & 2.99 \\ 110850 & 52 & +70.0 & 0.2 & -70.0 & +5.0 & +6.3 & +5.5 & 0.9 & -7.5 & -15.0 & 127 & 116 & 0.91 & 54.2 & 40.6 & 46.7 & 30.7 & 0.66 & 3.98 & 2.99 \\ 1100 & 62 & -42.3 & 0.3 & +6.0 & -28.0 & -4.2 & -4.3 & 1.2 & +7.5 & +15.0 & 127 & 116 & 0.91 & 54.2 & 40.6 & 46.7 & 30.7 & 0.66 & 3.98 & 2.99 \\ 1100 & 62 & -42.3 & 0.3 & +6.0 & -28.0 & -4.2 & -4.3 & 1.2 & +7.5 & +15.0 & 127 & 116 & 0.91 & 54.2 & 40.6 & 46.7 & 30.7 & 0.66 & 3.98 & 2.99 \\ 1100 & 62 & -42.3 & 0.3 & +6.0 & -28.0 & -4.2 & -4.3 & 1.2 & -7.5 & -15.0 & 127 & 116 & 0.91 & 54.2 & 40.6 & 46.7 & 30.7 & 0.66 & 3.98 & 2.99 \\ 1100 & 62 & -42.3 & 0.18 & \pm6.4 & \pm2.05 & \pm4.0 & \pm10.0 & 138 & 113 & 0.82 & 4.88 & 3.66 & 4.71 & 2.93 & 0.62 & 3.74 & 2.8 \\ 000 & 113 & 10700 & 98 & \pm6.4.4 & \pm20.5 & \pm5.1 & \pm4.6 & -5.0 & \pm7.5 & \pm7.5 & 12.9 & 12.6 & 7.50 & 5.63 & 46.8 & 4.44 & 0.95 & 5.73 & 4.3 & 3.3 \\ 112100 & 64 & \pm36.6.5 & 0.18 & \pm6.4 & \pm2.05 & \pm5.1 & \pm4.6 & -5.0 & \pm7.5 & \pm7.2 & 12.9 & 16.3 & 1.26 & 7.50 & 5.63 & 46.8 & 4.44 & 0.95 & 5.73 & 4.3 & 3.24 & 2.8 & 1.12 & 0.06 & 5.63 & 46.8 & 4.44 & 0.95 & 5.73 & 4.3 & 3.24 & 2.8 & 1.21 & 0.05 & 5.73 & 4.3 & 3.24 & 0.24 & 0.55 & 5.73 & 4.3 & 3.24 & 0.24 & 0.25 & 5.73 & 4.3 & 0.24 & 0.25 & 5.73 & 4.3 & 0.24 & 0.25 &$	+	┥				_	Ð	뫼		_	_		B			\rightarrow			5	-+	+	<u>)</u>	هر	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2]	50	ی د			1	7.5	2°.5		+	Ŧ	-	5 12	6.0		2	6 4	3	ഹ	6	9		
$ \begin{bmatrix} 11050 & 82 & +36.0 & 0.2 & -60.0 & +12.5 & +3.9 & +4.3 & 1.0 & -5.0 & -10.0 & 134 & r & 0.92 & 5.48 & 4.11 & 46.9 & r & 0.69 & 4.16 & 3.12 \\ 11400 & 64 & +60.0 & 0.3 & -5.0 & +35.0 & +5.6 & +5.0 & 1.0 & -5.0 & -10.0 & 129 & r & 105 & 6.25 & 46.9 & 46.8 & r & 0.78 & 4.71 & 3.53 \\ 11400 & 62 & -42.3 & 0.3 & +60.0 & -28.0 & -4.2 & -4.3 & 1.2 & +7.5 & +15.0 & 129 & r & 10.5 & 6.25 & 46.9 & 46.8 & r & 0.78 & 4.71 & 3.53 \\ 11400 & 62 & -42.3 & 0.3 & +60.0 & -28.0 & -4.2 & -4.3 & 1.2 & +7.5 & +15.0 & 129 & r & 105 & 6.25 & 46.9 & 46.8 & r & 0.78 & 4.71 & 3.53 \\ 11400 & 62 & -42.3 & 0.3 & +60.0 & -28.0 & -4.2 & -4.3 & 1.2 & +7.5 & +15.0 & 129 & r & 10.5 & 6.25 & 46.9 & 46.8 & r & 0.78 & 4.71 & 3.53 \\ 10850 & 52 & +70.0 & 0.2 & -70.0 & +5.3 & +5.5 & 0.9 & -7.5 & -15.0 & 127 & 116 & 0.91 & 5.42 & 4.06 & 4.67 & 307 & 0.66 & 3.98 & 2.99 \\ \hline \text{(Note) See note in table 8 & Table 11 Experimental results \cancel{\mathbf{w}}_{\mathbf{w}} \ \overrightarrow{\mathbf{w}}_{\mathbf{w}} \$		-	50	4		-	+	2.5	4.1			7	-	4		2	8	1 4	0		9 4	9		
$ \begin{bmatrix} 114\ 00\ 64\ +60.0\ 0.3\ -50.0\ +35.0\ +6.3\ +5.0\ 1.1\ -5.0\ -6.0\ 1.2\ 9\ 135\ 1.05\ 6.25\ 4.6\ 9\ 4.6\ 8\ 8\ 6.2\ 8\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 4.7\ 4.7\ 1\ 3.5\ 3.5\ 4.7\ 4.7\ 4.7\ 4.7\ 4.7\ 4.7\ 4.7\ 4.7$			50	2		_	+	2.5	3.9		<u> </u>	7	-	4		2	80	1 4	6		9 4	9		
$ \begin{bmatrix} 11400 & 64 & +60.0 & 0.3 & -65.0 & +25.0 & +56 & +5.0 & 1.0 & -5.0 & -10.0 & 12.9 & 1.05 & 6.25 & 4.69 & 4.68 & 0.78 & 4.71 & 3.53 \\ 11400 & 62 & -42.5 & 0.3 & +6.0.0 & -28.0 & -4.2 & -4.3 & 1.2 & +7.5 & +15.0 & 12.9 & 1.05 & 6.25 & 4.69 & 4.68 & 0.78 & 4.71 & 3.53 \\ 10850 & 52 & +70.0 & 0.2 & -70.0 & +50.0 & +6.3 & +55.5 & 0.9 & -7.5 & -15.0 & 12.7 & 11.6 & 0.91 & 5.42 & 4.06 & 4.67 & 30.7 & 0.66 & 3.98 & 2.99 \\ \hline \text{Note} \text{] See note in table 8} \\ \hline \text{Table 11} & \text{Experimental results } \underline{\mathbf{x}} \underline{\mathbf{k}} \underline{\mathbf{k}} \underline{\mathbf{k}} \\ \hline \text{(Run 28)} & \frac{1}{(s_1)} & \frac{1}{(s_1)} & \frac{1}{(s_1)} & \frac{1}{(s_1)} & \frac{1}{(s_2)} $			00	4		_	+	5.0	6.3 +		1	1	-	9 13	1.0	S	ŝ	9 4	33	e	8			
$ \begin{bmatrix} 11400 & 62 & -42.5 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 52 & +70.0 \\ 10850 & 542 & 503 \\ 10850 & 56 & 50 \\ 10870 & 56 & 471 \\ 10870 & 56 & 471 \\ 10870 & 56 & 471 \\ 10870 & 56 & 471 \\ 10870 & 56 & 471 \\ 10870 & 56 & 471 \\ 10870 & 56 & 471 \\ 1098 & 573 & 43 \\ 10700 & 98 & \pm47.5 \\ 10700 & 56 & 474 \\ 1000 & 138 & 113 \\ 10700 & 56 & 474 \\ 1000 & 138 & 113 \\ 10700 & 56 & 448 \\ 1200 & 56 & 444 \\ 1200 & 56 & 444 \\ 1200 & 56 & 448 \\ 1200 & 56 & 374 \\ 1200 & 56 & 374 \\ 1200 & 56 & 448 \\ 1200 & 56 & 374 \\$			00	4			+	5.0	5.6 +			ī	-			5.0	S	9 4		0.7	8 4	-	33	
Note] See note in table 8 Table 11 Experimental results 実験結果 (Run 28) Occore N V $\overline{\delta}_{11}$ f_{11} $\overline{\delta}_{11}$ f_{11} $\overline{\delta}_{11}$ f_{11} $\overline{\delta}_{11}$ $\overline{\delta}_{12}$ $\overline{\delta}_{12}$ $\overline{\delta}_{12}$ $\overline{\delta}_{1$		- 0	50	2 0			+	8.0	4.2 6.3 +	ი ი	+	7 7		- 1 	1.0	ບໍ່ທ	22	9 4	3 8	2	4 6	α	ოთ	
Come N Vr N I I Vr N I </td <td>1</td> <td></td> <td>See r</td> <td>iote in</td> <td>table</td> <td>∞</td> <td></td> <td>1</td> <td>{</td> <td></td> <td></td> <td></td> <td>$\left\{ \right.$</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td>	1		See r	iote in	table	∞		1	{				$\left\{ \right.$					1				5		
Observe N V _y $\tilde{\xi}_1$ t_{s1} $\tilde{\xi}_1$									1	E xpei	rimen t.		sul ts		ע	(R	c							
13 10700 98 ±47.5 0.18 ±5.4.0 ±25.0 ±4.0 ±3.7 -5.2 ±4.0 ±1.0.0 138 113 0.82 4.88 3.66 471 293 0.62 3.74 2.8 12.100 64 ± 56.5 0.18 ±6.44 ±2.0.5 ±5.1 ±4.6 -5.0 ±7.5 ± 7.5 12.9 163 1.26 7.50 5.63 468 444 0.95 5.73 4.3			× j			f., 1.,					Phase	l#								۲ ۲	***	G mar f	*• (8 _	н В С
13 10 10 00 36 ± 2.5 0.1 8 ± 5.40 ± 5.0 ± 4.0 ± 5.1 ± 4.6 − 52 ± 4.0 ± 10.0 138 113 0.82 4.88 3.66 471 293 0.62 3.74 2.8 12100 64 ± 26.55 0.18 ± 6.44 ± 20.5 ± 5.1 ± 4.6 − 50 ± 7.5 ± 7.5 ± 7.5 129 163 1.26 7.50 5.63 468 444 0.95 5.73 4.3	╡	Ċ		ŀ	1	5	R			=+	- 1			_	_	-	-	<u> </u>	-	1 an 80	E 22	Į J	64	<u>E</u>
	20	n	100	x 4	ທີ່ທ	xx		+ 2 0.5 + 12 0.5			1 1		II II		9 1 1	ი ი	6 2	80	3.66 5.63	6 7	6 4	0.62		0 0 m

フライングテストペッド姿勢制御拘束実験

	1		1		1	1				
	 من هـ*	03 03 03		۳. (۲/۳ ²)	2.90 4.53	2.81 4.39				
ł		4.0 4 3.0 4.0 4 3.0 4.0 4 3.0 4.0 4 3.0		*• 3	3.86 6.03	3.7 4 5.8 5	1		1	
F				ð	0.6 4 1.0 0	0.6 2 0.9 7		4 Z	2.80 2.80 2.80 4.33	4.3 3 4.4 6
ļ	-0 C	6 0.67 0.67 0.67 0.67 0.67		* (E 22) * *	302 470	293 456		×**	0004	0.3 5
ļ	₩ ₩ ₩ ₩	1 31		1 * [teg m e ²]	471 470	472 470			124 (
	1 * [(kg: me ² _)	9 47 3 47 3 47 3 47 3 47	3.7~41)	1 4 [Vef]	3.7 1 5.6 2	3.6 2 5.5 8	4 2~4 3)	I. [fug me ²]	0000	557 552
33)	** 5	3.9 3.9 3.9 3.9		* <u>-</u> Z	4.94 7.56	4.8 2 7.4 5		म् रे≯ड्डिं	±4.7 5 5	5 ±3.4 5
(Run	*•Z	5.18 5.24 5.24 5.24	(Run	¢.	0.83	0.81	(Run	oj (in Seeroj	±2.6 ±	+2:0 +
■ €		0.87 0.88 0.88 0.88 0.88	栗	Maria and Andread	16 1	13 68	₩			
酸枯	и.*. [eem]	120	医 数据	L [*] Lucense ²)	39 1 35 1	40 1 34 1		}_* €	over	1 ±2 7.5
₩.	IX [*] [kg me ²]	138 137 137 137 137	実	<u>ب</u> سر	2.0 1 6.0 1		実	<u> </u> 6	±2 4.5	±7 9.0
resul ts	20 anna (2	+ 7.5 +1 0.0 -1 5.0 +1 8.0	results	 	규규	±1 0.0 ±1 5.0	results	г. [в]	0.1 3	0.1 2
	[¥]	7.5 + 0.0 +1 3.0 -1 5.0 +1		∕ ∎"	±1 2.5 ±1 7.5	-¥i -¥i		1.5 2	±4.2	±4.3
Experimental	 •	+ + + +	Experimental	Phases Lag()	48 126	4 9 3 9	Experimental	a a a a a a a a a a a a a a a a a a a	0.0 0.0	0.0
Expe	ۍ ۲ ۲	+2.5 1.2 +4.0 1.6 -3.5 0.8 +4.5 1.2	Expe) 0 [2]	±2.6 ±2.6	±1.8 ±2.5	Expe	* 9 *		1.4
12	ههه] [ؤ (ف		13	i i leage l	±2.5 ±3.8	±2.3 ±3.2	14			-2.3 1
able	ma z ô maz [degre]	5.0 +1.3 0.0 +2.4 0.0 -3.0 0.0 +3.3	able	~	±1 5.0 ±2 0.0	±2 5.0	able	∆ ⁸ مدسمه ملاً		1 5.0 -
Ta		N	Та	<u> </u>	0.0 ±1 2.5 ±2	H H	Та		+ + + +	1
	∆ 8, met ∆∂	2 5.0 3 2.5 + 4 5.0 6 0.0		le*	+ 1 12 12	±3 0.0 ±4 3.0		∆ ,	- 98.0 + 75.0 -102.5	+105.0
	۲. (و)	0.2 - 0.5 - 0.6 -	ಯ ಲ	E.	0.1 7 0.2 8	0.24	e 11	• •		- 4
	کی ہے	+16.0 +35.0 -35.0 +50.0	note in table	∖≂ે €	±27.5 ±46.0	±22.0 ±35.0	See note in table	10 ² 3	+50.0 -31.0 +43.5	-33.0
	4 (1989)	100 98 96 95		* E	105 88	108 84	note	۲ ۰	6 1 2 2 2	92 69
	N N Land	10950 10950 10950 10950	te] See	N (and	10800 12300	10700 12200	-	N [utu]	700 700 700 200	12200 12200
	Galaci	17	[Note]	8	18	20	[Note	8	22	
	Run	93 93		a.	37	41	ĺ	an N	42	

航空宇宙技術研究所報告402号

50

 558
 124
 0.22
 2.80

 558
 *
 0.22
 2.80

 557
 *
 0.22
 2.80

13.1

±7 5.0 ±1 7.5 ±1.8

0.09

±3.3

+ 1.5

-20.0 -2.2 0.8 -15.0 -2.0 0.8

+ 95.0

97 **-30.0** 0.5 97 **+26.5** 0.3 92

43

[Note] See note in table 7, 10

付録 搭乗員手順表

搭乗員は、始動前操縦席内点検手順表とフライトリ クエストを1組, また始動と停止手順表を1組として, 計4枚を携行し、ほかに緊急手順表を計器板右横に掲 示した。これらの手順表は合計18枚ある。その内容 を上記の順にしたがってつぎにまとめておくが、始動 と停止手順表および緊急手順表は第3次実験³⁾の場合 と殆んど同様なので、その相違点のみを記す。

L / L			Ī
	始動前操縦席内点検手順	○印;整備員実施	٤
		- ;正常時の手順	9
		() ; 特別指定の手順	1 (
1.	始動前整備点検、ASE点検	完了確認	1 1
2.	安全ベルトおよび肩バンド	点検	1 :
() 3 .	操縦桿, ベダル 作動	全範囲確認	1 8
4.	外部電源接続	ON 確認	14
5 .	ASE SW	<u>ON</u> (OFF)確認	1 8
6.	計器板ASE以外全SW	OFF確認	1 6
7.	GEN SW	ON 確認	17
8 .	A∕T SW	<u>ON</u> (OFF)確認	~
9 .	コンソールGEN, A/T以外 全SW	OFF確認	Ç
1 0.	サーキット・プレーカ	IN 確認	
11.	ASE CLUTCH ENGAGE LIGHT	消灯確認	
1 2 .	ENGAGE LOCK LIGHT	消灯確認	
1 3 .	RED FLASH	無線合図	1
14.	WARNING, CAUTION, INDICATIN		1
15.	INVERTER SW	ON	4
1 6 .	CDP IND	零位置確認	Ę
17.	EGT IND	規定值以下	•
18.	FUEL PRESS IND	零位置確認	1
19.	HYD PRESS IND	零位置確認	8
2 0 .	FUEL Q'ty IND	燃料積載量確認	9
21.	時計	時刻を合せる	1 (
2 2.	ΙΑΤ	規定值以下	1
23.	スロットルレバー	CUT OFF位置確認	1 2
24.	ハイト・コントロール・	最低位置確認	1
25.	ENGAGE PIN ステイック	,引き出し確認	14
2 6 .	始動用空気配管	接続確認	1 9
2 7.	ブレーキ SW	OFF 確認	1 (
2 8 .	電圧 <u>26.5~27V</u> (28	確認	1 7
2 9 .	空気源合図 ~29 V)	確認	
3 0 .	点検完了	無線 合図	(

FLIGHT REQUEST Na 1

1. 161, 162 ENG 始動手順(遠隔)	実施
2. ENG アイドル	合図
8. 台車切離(指揮所合図、整備員切離)	待機
4. ENG 增速合図	確認
5. ENG 11,000 rpm に設定	合図
6. ブレーキ解除	待機
7. [#] ROLL STEP 入力 ON, OFF	待機
8. ENG 增速合図	確認
9. ENG 12,000 rpm に設定	合図
10. [#] ROLL STEP 入力 ON, OFF	待機
11. ENG 增速合図	確認
12. ENG 12,500 rpm に設定	合図
13. [#] ROLL STEP 入力 ON, OFF	待機
14. ENG 减速合図	確認
15. ENG アイドル	合図
16. ブレーキ固定合図	確認
17. 161, 162 ENG 停止手順	実施

〔注〕 (1)*印; Run 18 では Flight Request Mai の対応する番号を続けて実施

(2)5はRun 18ではENG 12,500 rpm まで 増速後実施

FLIGHT REQUEST Na 2

1. 16.1, 16.2 ENG 始動手順(遠隔)	実施
2. ENG アイドル	合図
8. 台車切離(指揮所合図,整備員切離)	待機
4. ENG 增速合図	確認
5. ENG 11,000 rpm 亿設定	合図
6. ブレーキ解除	待機
7. PITCH STEP 入力 ON, OFF	待機
8. ENG 增速合図	確認
9. ENG 12,000 rpm に設定	合図
10. PITCH STEP 入力 ON, OFF	待機
11. ENG 增速合図	確認
12. ENG 12,500 rpm に設定	合図
13. PITCH STEP 入力 ON, OFF	待機
14. ENG 减速合図	確認
15. ENG アイドル	合図
16. プレーキ固定合図	確認
17. 161, 162 ENG 停止手順	実施

〔注〕16と17の間でENG 12,500 rpm までの 加減速実施

FLIGHT REQUEST No.3

1. 緩徐操舵(中立,左一杯,中立,右一 杯,中立)	実施
2. ステップ操舵(中立, 左約20mm, 中) 右約20mm, 中立)	^立 実施
3. Mal, Ma 2 ENG 始動手順	実施
4. 台車切離	合図
5. ENG 11,000 rpm	設定
6. ブレーキ解除 無	線合図
7. ブレーキ解除完了合図	確認
8. 緩徐操舵(中立,左頃5°,中立, 右傾5°,中立)	実施
9. ステップ操舵(2に同じ)	実施
10. ENG 12,500 rpm	設定
11. 緩徐操舵(8に同じ)	実施
12. ステップ操舵(2に同じ)	実施
13. ENG アイドル	設定
14. ブレーキ固定	合図
15. ブレーキ固定完了合図	確認
16. / 1, / 2 ENG 停止手順	実施

FLIGHT REQUEST No.4

1. 緩徐操舵(中立,左一杯,中立, 右一杯,中立)	実施
2. 小舵操舵(両振幅約25≡左右,約 0.5Hz)	実施
3. 16.1, 16.2 ENG 姓動手順	実施
4. 台車切離	合図
5. ENG 11,000rpm	設定
6. プレーキ解除 無約	給図
7. ブレーキ解除完了合図	確認
8. 緩徐操舵(中立,左傾5°,中立, 右傾5°,中立)	実施
9. 小舵操舵(2に同じ)	実施
10. ENG 12,500 rpm	設定
11. 緩徐操舵(8に同じ)	実施
12. 小舵操舵(2に同じ)	実施
13. ENG アイドル	設定
14. ブレーキ固定	合図
15. ブレーキ固定完了合図	確認
16. Kal, Ka2 ENG 停止手順	実施

FLIGHT REQUEST Na5

1. 緩徐操舵(中立,引──杯,中立, 押一杯,中立)	実施
2. ステップ操舵(中立,引約25द्य, 中立,押約25द्य,中立)	実施
3. Ma1, Ma2 ENG 始動手順	実施
4. 台車切離	合図
5. ENG 11,000 rpm	設定
6. ブレーキ解除 無線	合図
7. ブレーキ解除完了合図	確認
8. 緩徐操舵(中立,頭上げ5°,中立, 頭下げ5°,中立)	実施
9. ステップ操舵(2に同じ)	実施
10. ENG 12,500 rpm	設定
11. 緩徐操舵(8に同じ)	実施
12. ステップ操舵(2に同じ)	実施
13. ENG アイドル	設定
14. ブレーキ固定	合区
15. プレーキ固定完了合図	確認
16. 16.1, 16.2 ENG 停止手順	実施

FLIGHT REQUEST *M*a6

1. 緩徐操舵(中立,引一杯,中立, 押一杯,中立)	実施
2. 小驼操舵(両振幅約25 mm 押引,約 0.5 Hz)	実施
3. Mal, Ma2ENG 始動手順	実施
4. 台車切離	合図
5. ENG 11,000rpm	設定
6. フレーキ解除 無能	象合図
7. ブレーキ解除完了合図	確認
8. 緩徐操舵(中立,頭上げ5°,中立, 頭下げ5°,中立)	実施
9.小 舵操舵(2に同じ)	実施
10. ENG 12,500 rpm	設定
11. 緩徐操舵(8に同じ)	実施
12. 小舵操舵(2に同じ)	実施
13. ENG アイドル	設定
14. ブレーキ固定	合図
15. ブレーキ固定完了合図	確認
16. Mal, Ma2 ENG 停止手順	実施

FLIGHT	REQUEST	<i>N</i> a 7
--------	---------	--------------

1.	緩徐操舵(中立,左踏一杯,中立 右踏一杯,中立)	' 実施
2 .	ステップ操舵(中立,左踏約20) 中立,右踏約20째,中立)	##, 実施
3.	Mal, Maleng 始動手順	実施
4.	台車切離	合図
5.	ENG 11,000 rpm	設定
6.	フレーキ解除	無線合図
7.	ブレーキ解除完了合図	確認
8.	緩徐操舵(中立,左偏向10 [°] , 中立,右偏向10°,中立)	実施
9.	ステップ操舵(中立,左踏約20 回復,中立,右踏約2020	≇≣ , 実施 中立)
10.	ENG 12,500 rpm	設定
11.	緩徐操舵(8に同じ)	実施
12.	ステップ操舵(9に同じ)	実施
13.	ENG アイドル	設定
14.	ブレーキ固定	合図
15.	ブレーキ固定完了合図	確認
16.	.16.1, 16.2 ENG 停止手順	実施
~		link Pag

〔注〕*印; Run 42, 43ではFlight Request16.8の対応する番号を続けて実施

FLIGHT REQUEST Na.8

1.	緩徐操舵(中立,左踏一杯,中立, 右踏一杯,中立)	実施
2.	小乾操舵(両振幅約25mm左右, 約0.5Hz)	実施
3 .	Aal, Aa2 ENG 始動手順	実施
4.	台車切離	合図
5.	ENG 11,000 rpm	設定
6.	ブレーキ解除 無能	象合図
	フレーキ解除完了合図	確認
8.	緩徐操舵(中立,左偏向10°,中立 右偏向10°,中立)	'実施
9.	小舵操舵(2に同じ)	実施
10.	ENG 12,500 rpm	設定
11.	緩徐操舵(8に同じ)	実施
12.	小舵操舵(2に同じ)	実施
1 3 .	ENG アイドル	設定
14.	ブレーキ固定	合図
15.	ブレーキ固定完了合図	確認
16.	161, 162 ENG 停止手順	実施

ENG ドライ モータリング	<u>手順</u>
1. IGNITION C/B	OFF
スロットル・レバー	CUT OFF 確認 合図
ASE SW	OFF
2. 始動合図	確認
3~15 <文献(3)の対応する	手順表の 2~1 4 に同じ>
〔注〕 < 文献(3)の対応する言	手順表の〔注〕 に同じ>
ENG 燃料放出 モータリン	(ク手順)
1. IGNTION C/B	OFF
スロットル・レバー	CUT OFF 確認 合図
ASE SW	OFF
2. 始動合図	確認
3~15 <文献(3)の対応する	手順表の 2~14 に同じ>
ENG 単独始動手順	
1. 始動合図	確認
2~10 <文献(3)の対応する	手順表の3~11に同じ>
11. <文献(3)の対応する	手順表の13 に同じ>
〔注〕 ELEC POWER	
HYD EME	CRGENCY CIRCUIT
FUEL	SW OFF
ENG 単独運転 停止手順	
1. <文献(3)の対応する言	手順表の1に同じ>
2~7 <文献(3)の対応する言	手順表の3~8に同じ>
161, 162 ENG 始動手順	
<u>//a1, //a2 ENG 如動于顧</u> 1. 始動合図	確認
1. 如動合図 2~21 <文献(3)の対応する ³	
2 2 1 1 2 8 ~ 2 9 V,	確認
66. 电止 60-631,	THE BC

- ※23. BATT SW ON 24. 25<文献(3)の対応する手順表の24~27に同じ>
 - 26. CAUTION LIGHT 消灯確認
 - 27. <文献(3)の対応する手順表の27に同じ> <u>Ma1, Ma2</u> ENG 停止手順
- 1. 2 <文献(3)の対応する手順表の1,2に同じ>
- 3. HYD EMERGENCY CIRCUIT SW OFF
- 4~9 <文献(3)の対応する手順表の 3~8 に同じ>
- 10. HYD PRESS 低下確認
- ○1 1. BATT SW
- 12.13.<文献(3)の対応する手順表の12,13に同じ>△14.外部電源 OFF(整備員)合図
 - 〔注〕○印は正常運転時のみ, △印は固定運転時のみ実施

OFF

<u>緊急状態一覧表</u> <文献(3)に同じ> <u>エンジン正常停止手順</u> <文献(3)に同じ> <u>エンジン非常停止手順</u>

<文献(3)に同じ>

航空宇宙技術研究所報告402号

昭和50年1月発行

発	行	所	航空宇宙技術研究所
			東京都調布市深大寺町 1880
			電話武蔵野三鷹(0422)47-5911(大代表) ●182
印	刷	所	株式会社 東京プレス
			東京都板橋区桜川2~27~12