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Shear and Moment Response of the Airplane Wing

to Nonstationary Turbulence*

By Yoshinori FUIIMORI**

ABSTRACT

Response formulation of the shear force and bending moment of the airplane wing has
been established in terms of evolutionary cross spectrum. Frequency distribution of the
responses of arbitrary wing sections can be obtained at any time instant of our interest after
the airplane enters the nonstationary atmospheric turbulence. Conventional stationary solutions
are included in this analysis as the special case.

Contribution by the pitching motion is the highest to both shear and moment responses.
The effect of the shear force to the stress level is negligibly smaller than that due to the
bending moment.

When the envelope profile looks like a step function, mean square moment takes the
maximum in the transient stage whose spectrum is dominated by rigid modes. But the spectrum
at stationary state, where its mean square moment is lower than the transient maximum, shows
both rigid and flexible motions. Therefore the search of the stationary solutions only is not
adequate in view of ultimate strength and fatigue life of the airplane structure.
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INTRODUCTION the acceleration response in the turbulence are said to

be of nonstationary random nature, and in the worst

Necessity to analyze the nonstationary structural  .,¢e 5 big airplane suffers structural catastrophe just

responses has grown out of our broad experiences  afier entering the turbulent field behind the high

that various phenomena such as airplane motion in mountain even in the clear sky.

the gust, ground buildings’ response under the earth- Data piled up for years by means of observations

quakes, overshoot of vibration amplitude in recipro- experiment indicate to us how essential the

cating or rotary machineries and so forth show  ypngient vibration is from the view point of tolerable

mostly the nonstationary time-wise trend. Within the load as well as fatigue damage of the structure

scope of aeronautical problems most flight records of  Ajthough the analysis of the airplane response to the

atmospheric turbulence was tried as early as in 1930’s
* Received Octber 22, 1974.

**x 2nd Airframe Division.

and the advance in the stochastic technique gave
impetus to the improvement of the analysis, our
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knowledge has in most cases remained in the sta-
tionary regime. Moreover since it was thought that
the spectrum analysis of the time series is valid only
for stationary processes, the progress of nonsta-
tionary analysis has been so limited in spite of its
importance.

The first attempt was lately made by Howell and
Lin® who analyzed the plunging mode response of
the airplane to nonstationary atmospheric turbulence
using evolutionary power spectra proposed by Priest-
ley. As the original definition by Priestley pertains to
the single-degree-of-freedom problems, Fujimori and
Lin extended the concept to evolutionary cross
spectra analysis of the response of multi-modal linear
systems”>?), which is the up-to-date general method to
obtain the nonstationary responses as well as the
stationary ones. Various responses of our interests
such as displacement, velocity and acceleration at a
certain time instant are to be estimated in terms of
evolutionary spectra and their mean square values.
Those results emphasize quantitative anticipation of
transient maximum responses and comparison be-
tween those and conventional stationary responses.

In this report the author intends to work out the
procedure to calculate important responses such as
the acting forces on the wing, shear force and bending
moment of the airplane wing sections to nonstation-
ary atmospheric turbulence. By making use of their
practical values we are able to evaluate the stress or
strain levels in the structure, which seems an indis-
pensable task at the initial design phase of the all
aircrafts. The numerical examples are carried out
about the same model handled in the previous
reports?2).

PROBLEM STATEMENTS

We are considering the airplane as the multi-modal
linear system whose motion is governed by?

[} ' 2 _
M GHE M0 6=¢; )

where

M= S¢]2 (z, y) plx, y)dxdy= j-th generalized mass

7

Q.= ‘[ {FM(z, y, t)+F%(a, y, t)}¢,(x y)dady

= j-th generalized force

5j= j-th generalized coordinate

¢j= j-th mode eigen function

0, = mass per unit area of the airplane wing
"9,': damping coefficient of j-th mode

w;= j-th circular natural frequency

Aerodynamic forces are simply assumed to be

My, ) =—tpbz(x,y, t)/2-10,U

xg'z(.r.y,tl)¢(¢—zl)¢tl @
0

t 1
FG(x,y,t)= TP U SOW'(x—Utl, ¢ (t—t)d ¢,

3

where z(x,y,¢)= E 8, (x, y) £;(¢) =Total response
7

¢ (¢) = Wagner’s function

¢(¢) = Kdssner’s function

b = A half of the reference chord length
U = Airplane forward velocity

W (x-Ut, y)= Vertical gust velocity

O = Air density

(x,y) are moving coordinates that have the origin at
the gravity center of the airplane.

In writting Eq. (2) and (3) two-dimensional
aerodynamic theory in incompressible flow (strip
theory) is adopted. These aerodynamic forces are
assumed to depend only on the local motion and
local gust velocity. No claim is made of the accuracy
when Eq. (2) and (3) are applied to a practical
airplane geometry, but they appear to be reasonable
assumptions for the purpose of the present study. We
have shown the procedure to obtain the impulse
response matrix of the system by making use of
equations (1), (2) and (3) in the previous study®. The
expressions of forces acting on the wing, shear and
moment at the wing section of our interest will be
derived about the wing configuration illustrated by
Fig. 1. First the acting force on the wing at the
coordinates (x,y) per unit area is given by

Flx,y, t)=F¥*4+FC-p 2
2 t
=mOOUS W{xz~Ur, y)¢ (t—1)dT
]
L]
-zpouj 2,y 1) Ble—1) dr
0o

~n0, b2 (x, ¥ t)/2—ﬂ(z.y)5 (x,y, )
(4)
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1 Coordinates of the Swept-back Wing
Configuration.
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Putting B, , =0, (2,5 Y1:3)+2x0, Ub, 2 and
[I=m poU the expectation of the product of F{x,, y,, ¢;)

and F(x,, y,, ¢,) can be written as

E[F(xl, Y tl)F(-z'zy Yo tg)]
2,
=1 Sl ¢(t—1)dr,
0
[ ]
Xj : Oltg— 1) dry E(W(ay—Ury, ¥)F (2= Uty, %))

0

fyo
—”2 S ! 95( tl_‘r])d‘tl
)
! ]
Xs; $(te—t)d 1 E(W (2y—Uty, ) 2 (2, ¥, 75) )
4
- S : 9!’(t2~rg)dr2
)
t
xgol ¢y~ 1)dT, E[; () Yy TF (2~ Uy, ¥3) )
t
+1r .‘ol o(t1—1)d1
t
X_‘: ¢( tg—‘[z)d'fz E[;(.rl, Yo T)) 2(x2, Yo Tz)]
g ', AN . [
- So Clt-1))dr) G E(F (5~ Uty, y) 2 (2, %, £5))

ot ]
-1 jo ¢(t2-72)d12/181 E[z(xl, Y tl)W'(xg‘Ufz,yg)J

t. M '
o jo‘ S ti-1)dry B EC (a3, 1) 3 (20 950 20))

L At '
+1 ,‘ ¢ (t-1)d1a B E(2( 2y 3y, 1)) 2( %y, Y50 T3))
0

+B8 E(5 (5,9, 1) (2, 900 £5)) (5)

The shear and moment at the wing section L-T can
be obtained by integration of Eq. (5) within the
hatched area (H. A) of Fig. 1, then we formulate the
expectation of the product of the shear forces at ( y,,
ty)and (¥,, ¢) in the following.

E[S(yl’ tl)S(yg, tg)]

= j j df] dﬂl J J.dfs d’]? E[F‘(elv Ty tl) Hf?s B tg)]

H.o4., HoA, g 6)

% and ¥: indicate the distance from the wing root, ¢,
and ¢; the corresponding time instants. For the
bending moment we also have

E[M(yl, t})M(_yzr t2)J

= jj.dfl dh -[Idf‘fz d %y (1= %) (71— y)

H.o4., Hodg

XE(F(Epmyty) F(&, T t5)) )

As is assumed in the previous work, the non-
stationary gust velocity is factored into the product
of a deterministic envelope functionc (x—-t¢, y) and
a stationary random gust velocity ¢ (x—Ut¢, ¥),

Flx=Ut, y)=C(x—Ut, y) G(x—Ut, y) ®)
Also we assumed
C(x-Us, ¥)=C, {e—a(Ut-x)_e-ﬂ(Ux-z) } ©)

where €, is a normalizing constant and o, are gust
parameters with 0< @< 5. Stationary part of the
vertical gust G has the spectrum

O(¢ 7, 0)=0,(w) e Y )

where {=x—x, 7=y-% and 9,(w)= Dryden’s
spectrum.

The final form of the force per unit area of the
wing, shear and moment are given by

E[F(‘l:l) Yo tl)F(xgryzv t2)] |
] E(S{y;, )5(y,, £3))
E(M(y,, £,)M(y,, ¢3))

\
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too N (wl‘(‘rv}’l’tvxg’yz’ 3+ @)
=§- é° =ty X?WS(yl’tl’ Y%, t2 P @)

o0

dw
Pl b var by 3 @)
(11)
vhere  ¥ir s~ ¥ir s M) .00 Pir.s m)es

Ve smpa TV F s M0 (12)
¥lr.sM),er~ cy @) ( T (Fs M, ad (T Yo t1 Ty Y L3 @)

_;;{[Is 2Tpsm)es s (o 1o i Bu Yo 137 @)

+ 1 27:[F,S,M].ai‘kt*(a:2’ Yor L33 1, Yy £15 @)

+ T s M).o8 k2 (B0 Y 817 Tps Yoy B33 @)
+1r ET{F,S,M},uﬁ,kl*(x?’ Yor b2’ & Y1 43 @) )
+§§;§{ m T(r.s M), 08, jkim T Yotii Ty Yp L3 @)
+1r T(F.5 M} a8 jkim (@ 3 4 X Yp £7 @)
+1r 7T{F,s,1a.1},cﬁ,ju:(”2btz‘-’pyvtl‘“‘)

2
T (Tip s M}, ap, jhim (T Yo i3 Tz Vg ty 0)}]

13
The asterisk (*) indicates the conjugate. >
1T(F 5 M},a0 (Z1s Y15 813 330 Y1 12, @)
=N, (¢, w)N,*( ts,@){ Ap . (2, 91, ©)
XAF,I*(‘”P ¥, ©), A5 o () As_ﬂ*(ys) ,
Ayga(31) Ay 5 (33)) (14)

2T(F sy arps(F10 310 17 By Yy 133 @)
o~ % *
= N,( tl,(l)) M‘l." (tgra))Rl" (w){Ap'u(l'pypw)
xAp’p*(xgv ygva)) ’ As’a(}’pm) BS.a(y2) ’
Ay o(y1@) By (33))
sT(F M), erpe (T0 o 813 Ty Ygo £33 @)

=N(t,0) My, S (4,0 R, (@)

(15)

N\ VAN
X{ Ap o (1, 31, @) By (@1 31) Oy, As o(3), @) B ((¥3),

A
Ay (31, @) By 4(%3) } (16)

T(r s M) op, jeim T Y10 b3 Ty Yo Lg3 ©)

=¥, o t10) By N (4,0)R, () R, S (@)

jm.
x{ ¢j(‘rl’yl) 823, ), st(yl) Bs',,(yg),
BM,_,'( ¥) BM_k(yz)}
7T{F_SM},uﬂ,jA1m(xl’y1v 4335, Yo t3h @)
( tl yﬁ)) 2M‘l_‘*( tg,(l)) Rm'c(a’) R[.ﬂ*(w)

N AY
x{ @,(x1,3,) ¢z, )4 Bs ; (%) Bs ,(33),

~
Bhl'j(.yl) EM,A(.‘/z)}

Q17)

N\
= Mjm o

(18)

QT{F,SM},“’,jklm(xl » Y b X Yoy g @)
— thm'd( tl’w) 2M‘[.,*( tgow)&'.a(w) Rt'ﬁ*((l))

x{ 8;(z ) B, %) 8,8, By (1) By (%),
The definitions of used functions are
4p (7 y, @)= Lomive (20)
45 (y, 0)= H T ey (21)
H, A,
Ay oLy @)= ” (1-3) & Gedn @
H A,
5= [ [ 8,6 m dear (23)
H.A,
B, [ [ Aemoenaear @
H_4,
By 0= [[ 99 e mraear @

H. 4,

By () = ” 2(e, 1)¢,(€, 1) (1-y) dEd7
()

H.4,

— ¢ —
NA(t,w)=¢ Ut j 9’:(1) LoU—ie) dr 27

0

4 —jw
B ati0)= | 007" 1My, (mr, @)ar
. .

jm
(28)
On the definitions of R, (@), M, (¢, @) and
oM o, @), SEC Ref. 2). The final forms of the

geometrical coefficients used in the numerical exam-
ples are as follows.

(e—iw/UX{sina—c_)

w)={ T V_1, £

A5 (3,
~ Lo UXsted=cp)y (g /U a0 A)
for a—tw/ U0

for a—iw, /U=0
(29)

=25 (Loos A~y)
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Aoy @)= e?( i V) _ g0 (i UXLsina=cp)

X{(Zsin A~y) /(A= 10,/U), a0 A~1/ (a— i U ¥
Sl Ay LTI @ADLy

St A) A a~ 1w/ U)
=b(Los A-y)

for a— it/ U#0
for a—tw/U=0
(30)
Bs (y)=2b(leos A-y) 31)
Bg ,(¥)=B,b(L cos A=y)( 2¢,~ 25~/ sin A= yran A)
(32)

BS,s(y)='2122{51(9—41—8"’”—9~A3 +e_A3y)

=S (c0s A—cos Ay, —cas Agtcos Ay))

+ 83 (cosh A—cosh A, ,— cosh Ag+-oosh A, )

— S, (sin 4, —sin Aly‘ sin A4+ sin A3.¥ )} (33)
By, ()= b (Lo A-y)* (34)
BM_z(y)=sz(lwsA-yHcg lcosA~egy

- 2 sin Aos A4 un Aty
—b[oos/f—}——:l;-y[sin A} (35)

Bys(3) = 24 25 (Si{€ M (Lo A+ 23)—€ H(Leood
+2)-€ (Y A+ € D (y+25) )

+ S, {— loos Acos A+ 2y sin A+ £ cos Acos Ag— 25 sin Ay
+ycos Ay 2ysin Ay~ yeos A+ Ay sin 4 )

— S, { £ oo Asin A+ 2,005 A, — £ cos Asin Ag— Jgcos A

= ysindy — dyeos Ay A ysin Ay + Agoos Ay}

+ S { {cos Asinh A, — 1,000 A, — £ cos Asinh A+ 2gcosh Ay
= ysih A, + Zpomh A, +y simh Ay — Agoosh Ay })

~YBg s (y) (36)

where B, = normalizing coefficient of pitching mode,
Sy, Sz, S3 and S =
bending mode ¢g = distance from the front tip of the
wing to the center of the gravity, / = wingspan, A =

normalizing coefficients of

swept angle. And given constants are;
=179/ sind, Ro="Loos A/ L,
A={1+(2b-c))sin 4,/ [} Ly, Ay=(1—c,sinA/¢)
G, Ay={(2b—c)sin A/ L+ y/ ! feos A} Oy,
Ay={y/ L Soos A—c,sin A//} Q5 and Ly=eigen
value of the bending vibration.

When p (x, ¥) is uniform over the wing, we can equate.

{ﬁs'j(y)} ﬁw{BS,j(y)}
By ;(y) By ;(¥) ) with B,=7

(37

If the wing has tapered mass distribution or attached
mass such as the engine pod, we have to formulate
fi}' ;(¥) and %_ j(y) differently but the the principle
remains the same as cited.

Lastly we give the practical forms of M;,, (¢, @),
il\jm .(t,w)and N,(¢,w) We may have the general
exp;essions for the impulse response functions,
Kussner’s and Wagner’s functions of

Nj N .
e, o 24
hit)= 1 Cipp €™, $()= A, €%
L=1 ly=
Nw
a t .
and ¢(¢)= Z 4,, ¢ w.ly respactively. We can
ly=1

compose
various sets of (A‘-lk’ ag 4,) and (A, 2,y “w,lw)
considering the airplane flying speed as far as our
calculation is to be based on the strip theory.

Then

jm Tk
M, (¢ 0)= ZL Y Gmi Ay %y 0,8 @)
‘h ()
N}"ﬂ Ny Ny,
Mpotso)= B L L Gy A gy Ao, By
L 4 4,

XL t4.t,.0(t ©) (30)

Ny
-yt .
N (¢, w)= Z Ak,l, %0, e T, (¢, a‘_l‘+aU—uo)
Ly (40)

t
where T (¢ s)= I x" e dx, N = non negative
0

integer. (41)

Depending on the values of 7; a, 4@ and e, ,
» T w
we have different forms for 1, ,, , and I t4.t,a SO
we list up six cases;
1) alU-i1w+tag, =0 and alU-i1w+7,=0

Uty

IL,lk.ﬂ(t,m)= t2 (4 (42)

2

JL,lk,lw,a(t'w)=(CDO Tz ( ¢, ng )/2—2%7; (t, 613)
+Ty (2 Gg))

where Gn=aU—z’m+a*.z‘, Goy=al—ro+7,,

Gl3=—aU—aw,lw+ LW, G“=aw’lw— L.

(43)

Go(;:aU— 104
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2) Gy=0 and Gy70

I 4 (t0)= (€M = 60— e,
(44)
Tt ot @)= 1Ty (& Go) Gis" = Goo" Ty (£, Gyg)

S/ Gra (260 Grg+Go®) To (2, Gy3) } St
(45)

where Gy =T~ 1w, Gp=T -0, , .
3) G0, 012750 and rL s <0

IL,gk',,(t,a))={(e Lot )/031 (e21’ o,
/Gi3}/ Gy )

jL_lk,lw,a<t’2w =1V 6y=1,"/Gp) Ty (8, Gy)
(@ 4) T (¢,G33)/ a1+ G Ty (£, G5 )./ Gy )
x e 6, (47)

where Gy =7;—¢a, Ly Gy=a, Ve L@, Gg3=

4) Gp#0, G0 and Gy=0
('; —(e Goy ¢

a —a
k¢ w,lw

—aUt

1 )V Gy (48)

L,lk,a(t'w)—{

IL L (t Q))={( k. ) Il(t qu)‘J{‘ZGk l 7O(t 633)

~7’ Ty (¢, G)/ Gyt Goy T (£, 013)/0u} /Gn
(49)
5) G;;7#0, Gy=10 and G370

I, 4, o(ts0)={ (& ) Gt Y6y
(50)
Lty W(6,0)=(=GCy Ty (¢, G)+7, 7T, (¢, Gp) Gy
+2600 1, (6,6i9)+ (g, ) 2Ty (£, Gyg) Gy

x ¢’ /Gy (51)

6) Gll7£ 0, (712=0 and 031=O

Gqot  —aUt
ILJk'.,(t,(z))=(€32—e )t/(,'u

(52)

2 .
JL.[ka’a(t,a))={(ak,lk) T, (¢, Gg)
+2a; 4 Ty (6 Gy) = Gy "1 (¢

Gyt
426, To(t,—aw'[w)} e /6y

)
(53)

’ _a‘w, lw

NUMERICAL EXAMPLES

The numerical examples are carried out on the
same airplane wing configuration as the previous
studies”>?. The following physical data were used in
=42 ft, b=7ft, 4=30°,U=

750 ft, O, = 2.5 slugs/ft®> 25 =
= 13.63 rad/sec.

the computation:
586.6 ft/sec, Lg =
1.955, wg

-Bs. 2 Pitching

85.3

w | Bending
Bs.i
N Plunging
ol—
O(WING ROOT) y (ft) (WING TIP)36.4

Fig. 2 Spanwise Variation of Shear Coefficients.

104

Bu.2
Pitching

(ft3)

M3

Bending

103

Bum.i
Plunging

(y}

102
T

A~

R 1

O(WING ROOT) y ft (WING TIP)36.4

Fig. 3 Spanwise Variation of Moment Coefficients.

The spanwise variation of shear and moment
coefficients Bs ; (y) and By ; (y) are given in Fig. 2
and Fig. 3. Those coefficients show the relative
weight of the movements to the shear and moment
responses. In this example, the absolute value of
pitching coefficient is larger than others, which
means that the pitching motion contributes most
The

second place of shear coefficients is shared by

both to the shear and moment responses.

plunging and bending motions depending on the
distance y from the wing root but that of the
moment coefficients is occupied by bending vibration
for all over the wing span.
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Next we give the profile of the envelope function
versus retarded time t-x/U in Fig. 4, where the two
curves, case A and B, are pictured. In case (A) the
gust input reaches the maximum amplitude at about
8 sec. after the airplane enters the turbulence. The
result for t - o in case (B) inciudes the conventional
stationary solutions.

The evolutionary spectrum of shear forces at wing
root is given by Fig. 5 and Fig. 6 for case (A) and (B)
respectively. In both cases, while t is small, the
spectrum curves have flat portion below @ = 1
radfsec and sharp decline in the level for upper
frequency range. But as time t gets large, they turn to
have double peaks, one at @ = 0.1 ~ 1.0 rad/sec and

1.0

Q- xaq’:}
B=4xI0

0.5

(B){

Normalized Amplitude C(x-ut,y)

0

{cwo.?zls

a=Ixi0™*

(A)
p=4xl0"*

1

10

15

Fig. 4 Profile of the Envelope Function.

(o bZsec®/t?)
10°

2
G

10°

e Dy

¥, (0,1:0,t;w)/0
10"

10°

A

|

1072

O

w(rad/sec) 0

Fig. 5 Evolutionary Spectrum of Shear Forces at
the Wing Root for case (A).

This document is provided by JAXA.



TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-404T

o L
n‘)\ wOL-
o =
o L
(%) L
o
-Q =
«¥ —
0
~N O 9_
O
~
3 I
.e r——y
S vl 0 T=O.35secl
PR A 15
» i o
S |7 J
0
O \ 1 L a1 oL PR | 1 1
- -2 -1
0 10 10 I 10
w(rad/sec)
Fig. 6 Evolutionary Spectrum of Shear Forces at
the Wing Root for case (B).
(L)
9_

_0°

7
[0)
e

Y, (0.1:0,t;0) /02 (2b%sec®)

e t=|sec
I o 2
° o 9 CASE (A)
o X 15
o
9 ' |_2..411-|4...|....1 N
0 10 [0]

| 10
w(rad/sec)

Fig. 7 Evolutionary Spectrum of Moment at the
Wing Root for case (A).
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[¢)}
o
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g ok
Bre) [
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Q ot o t=0l sec)
3 T e 035
P o 15 | CASE(B)
s | x 35
o “of s 150
e =l
>
m r
9 ? 1 1 1 1 1 1 i i L L ! A

1072

07

I 0]
W (rad/sec)

Fig. 8 Evolutionary Spectrum of Moment at the
Wing Root for case (B).

the other at @ = 13.6 rad/sec which is the circular
natural frequency of the bending vibration. The first
peak exhibits the contribution from Dryden’s
spectrum and the rigid motions. The spectrum curves
have some fluctuations in the level at around @ = 0.3
~ 1.0 rad/sec for large t, so we can do only rough
estimate as to where the maximum peak is.

The evolutionary spectrum of moment at wing
root is also pictured by Fig. 7 and Fig. 8 for case (A)
and (B) respectively. The general profile of curves
looks alike to those of the shear force except that the
spectrum curves of the bending moment show very
stable level all over the frequency considered. Accord-
ingly we can easily detect the maximum level of the
spectrum and its corresponding frequency.

Talking on the first peak we have maximum level
in the moment and shear spectrum at @ = 0.1 and
rad/sec and @ = 0.5 rad/sec respectively when { =9
sec. in case (A). In case (B) both stationary moment
and shear spectrums have the maximum at @ = 0.2

rad/sec. Those values are slightly different from the
the
maximum, that is, in the present calculation, @ =
U/Lg/ 3 = 0.451 rad/sec. This shift has risen from
the aerodynamic damping effect associated with rigid

frequency that makes Dryden’s spectrum

motions. In either shear or moment spectrum the
effect of flexibility comes in at about £ = 1.5 sec.
Precisely speaking the second peak of the shear
spectrum first appears at the upper side of the
circular frequency of the first bending vibration, on
the contrary that of the moment spectrum does at
the lower side and eventually their locations tend to
coincide with the first bending frequency.

The mean square value of shear or moment
response can be obtained by numerical integration of
evolutionary spectrum curves. The time-wise trend of
mean square shear in given by Fig. 9 for case (A). The
curve takes the maximum at f = 12 sec. which is
nearly 4 sec. delayed from the time that makes the
envelope function maximum. The mean square
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10 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-404T

moment of case (A) is graphed in Fig. 10, where we
see the same time-wise trend of the curve as that of
mean square shear and the maximum occurs at about
9 sec. point. In case (A) roughly speaking the time of
maximum moment falls to that of the maximum
amplitude given by Fig. 4. The mean square shear for
case (B) pictured by Fig. 11 shows quite different
time-wise trend from that of Fig. 9, where we observe

the maximum at about { = 12 sec. and the curve goes,
with some fluctuations, to the stable level. The time
that makes the mean square shear maximum is almost
the same for both cases (A) and (B), which means
that the shear response is not sensitive to the
envelope profile of the gust field.

Speaking of the mean square shear at the wing
root we could say Max. of case (A) > Max. of case

C o
- | O
NS x
&
N_Q -
]
Vm_
Nt()_') N |
Sk ot y=0 ft,Wing Root
Ni‘ I CASE (A)
&
o—k
at y=145 ft
40% Semispan From the Wing Root
1 1 1 1 | 2 1 1 L 1 ! 1 1 1 |
<o 5 0 5 t(sec) 20
Fig. 9 Mean Square Shear for case (A).
~FO
>

EC M?(y,1)1/02 (2b%sec?)

0.5

o)

y=0, ft Wing Root

CASE(A)

at y=145 ft, 40% Semispan From the

Wing Root

10

15 t(sec) 20

Fig. 10 Mean Square Moment for case (A).
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Shear and Moment Response of the Airplane Wing to Nonstationary Turbulence 11

(B) > Stationary level of case (B).

The mean square moment for case (B) is plotted in
Fig. 12, where we observe the maximum at about { =
0.35 sec. As we have seen in the evolutionary
spectrum curves, at the time of { = 0.35 sec., it is
clear that rigid motions dominate. From the level of
maximum mean square moment, we can say.

Max. of case (L) > Max. of case (A) = Stationary
level of case (B).

The reason that the logarithmic scale is adopted in
Fig. 11 and 12 for both response and time is to
magnify the incipient stage and stationary level. In
practise we need not go further than 4 or 5 sec. to
obtain the stationary moment. The results of Fig. 12
for larger time instants are given only for the sake of
comparing purposes.

It is meaningful to check the stress levels due to
shear force and bending moment. Now the uniform
beam of the rectangular cross section with width W
and depth H is considered. As we have oM =MH /2]
and o5=3S5/2WH for the maximum stress due to
bending moment and that due to shear force respec-

tively, the ratio of mean square values yields

E(og) _ B E(SY)
E(gyf) 16 E(u?)

In case (A) we see from Fig. 9 and 10 that the
ratio of the E[S?] versus E[M?] is less than 1/100,
then taking the root of both sides of Eq. (54) we get

v E(6?)
v E(6f)

(54)

< HXT7.9X10 ° <1, where H in ft.
(55)

Therefore it can be said that stress level due to
shear force is negligibly smaller than that due to
bending moment. Interaction of shear force and
bending moment should be taken into account in the
practical structures but the above discussion will not
lose its generality. Comparison in terms of strain,
strain energy or deflection levels would be different
quantitatively but lead to the similar conclusion.

The evolutionary spectrum of shear and moment
can be obtained at arbitrary section of the wing.
Those results show almost the same frequency distri-

TR
3=
DO -~
Nwm i
SQrF at Wing Root
~ y=0ft -

oL
NO—
Ont
pgToY=
= CASE (B)
81 — Stationary Level
w
N
J

—r y=145ft

- 40 % Semispan From the Wing Root
vl
@)
l-] 1 1 ! L 1 : ) 1 ! 1 L ! 2 L | X 1
10 | 10 t{sec) 10°
Fig. 11 Mean Square Shear for case (B).
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bution as those at the wing root just discussed.

The spanwise variations of the mean square shear
and moment are given by Fig. 13 and Fig. 14 for case
(A) and (B) respectively. In both cases the results of
the moment get gathered almost in one line, and the
decrease rate of the values resembles that of moment

2030

57 10

z

y=145 ft
40% Semispan
From the Wing Root

EC M2(y,t)1/0% (£b%sec?)

05

y=0 ft
at Wing Root

coefficients in Fig. 3. But the curves of mean square
shear scatter much for various time instants and their
spanwise decrease rate does not look to have any
correlation with the trend of the shear coefficients in
Fig. 2.

The evolutionary spectrum ¥ or mean square

CASE (B)

—= Stationary Level

el 1 1 ! 1 | |

!
0 t sec

Fig. 12 Mean Square Moment for case (B).
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Fig. 13 Spanwise Variation of Mean Square Shear
and Moment for case (A).

o t:035%¢

ECSYy,t) 1/7ELSY0,t) ) and E [ M2(y,t) 17E [M%(0,1) ]

| . 1.0
o {00
-2
10 SHEAR
x t=035%€¢
L] (X¢;
Il & 100
CASE (B)
| I |

O (WING ROOT) y ft (WING TP} 36.4
Fig. 14 Spanwise Variation of Mean Square Shear
and Moment for case (B).
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force per unit area E[F?] can be obtained in the same
manner. Since they are simply the product of the
local acceleration and local mass distribution, we did
not show the results here. Overall acceleration
spectrum or its mean square values already obtained
in Ref. 1 suffice for the stress or strain analysis of the

airplane structures.

CONCLUDING REMARKS

The general framework to analyze the shear force
and the bending moment responses of the airplane
wing has been derived based on the evolutionary
power spectrum approach.

The contribution by the pitching motion is re-
latively higher than plunging or bending motions.

The response level due to the shear force in terms
of the maximum anticipated stress is negligibly
smaller than that due to the bending moment.

Moment response of case (B), where the gust
profile looks almost a step function, takes the
transient maximum just after entering the gust field.
The rigid modes play a predominant role in the
evolutionary spectrum at the time of maximum mean
square moment. On the other hand, in the evolution-
ary spectrum at stationary moment, we see the effect
of flexibility besides rigid movements.

For the present method to be really useful at the
initial design phase of the practical airplane, we
should refine the eigen functions of the structure and
unsteady aerodynamic force, which can be done by
combining the present theory and the existing
theories in the related fields.

APPENDIX

It is convenient tha the normalizing constant Co of
the amplitude profile should be chosen so that the
maximum of the curve takes the unit level. In this
report the curve (A) of Fig. 4 is used, but in the
previous rteports™? the curve of (A’) was taken
because of an unduly placed parentheses in the
computer program.

In order to compare the spectrums and mean
square values of case (A) with those of case (B) it is
necessary that the corrective factor (Coy4 ./ Cyy )? =
8.60 should be muitiplied to the vertical scale of Fig.s
3,4,5,6,7 and 8 of Ref. 2 and Fig.s 2 and 3 of Ref.

1. Also Coa/Cox = 2.93 to Fig. 4 of Ref. 1. Aslong
as we take the same a and g values, the evolutionary

spectrum has the identical frequency distribution,
but its level depends on the normalizing constant
Co, so the spectrum of case (A) can be obtained from
the relation

¥, = Uy (Con/ Con)’ .

It is recommended that we use the unit maximum
for case (A) so that we may compare the response
level of case (A) with that of case (B).
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