UDC 629.73.017.2: 533.694.51: 551.551

航空宇宙技術研究所報告

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY

TR-429

乱れた気流中における飛行機の横方向の操縦性の研究

別府護郎

1975 年 10 月

航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

自 次

§ 1	まえがき
§ 2	記 号
§ 3	従来の研究と本論文の概要 4
§ 4	機体に持たせた運動特性12
§ 5	V. S.A. 機と計測装置 ······13
§ 6	飛行実験及びその結果17
§ 7	飛行実験データを解析して求めたバイロットの伝達関数22
§ 8	乱れた気流中におけるバイロットの操縦を含んだ機体の応答27
§ 9	バイロットの操縦を含けた飛行機の開ループ伝達関数と位相余有58
§ 10	バイロットのゲインが変化した時の乱気流に対する機体の応答の状態変数の r.m.s76
§ 11	孤立突風に対するパイロットの操縦を含んだ機体の応答・・・・・・・・・・91
§ 12	結 論94
§ 13	あ とがき95
§14	文 献95

乱れた気流中における飛行機の横方向の 操縦性の研究*

別府護郎**

Flight and analytical investigations of airplane lateral and directional response, including pilot control, in turbulent air

by Goro BEPPU

SUMMARY

Control difficulties in turbulent air flight were investigated to test various couplings between roll and yaw controls, in order to improve aircraft characteristics. In order to simulate various couplings, a variable stability airplane was prepared with large positive N δa , large negative N δa , large L_r or large negative N_P. Flight tests were carried out under simulated turbulent air conditions by means of the variable stability airplane. The pilot was required to control the airplane, which has various roll-yaw couplings, so as to maintain a straight level flight. Controllability limits were determined. They are $0.2 > N\delta a/L\delta a > -0.2$, L_r>3.0 and N_p>-1.0. These limits are different from the boundaries stated in MIL SPEC 8785B. The specifications which define the controllability limits of roll-yaw couplings were investigated by determining the pilot describing functions through analysis of the flight test data. Using these pilot describing functions the transfer functions (ϕ/β_B , γ/β_B) of gust response were calculated using the root locus method, considering the effects of pilot control. The power spectrums of gust response were then calculated. Through those calculations, the response of control difficulties in turbulent air flight were identified and a was sought method to decide whether a certain airplane has an allowable roll-yaw coupling or not.

§ 1 まえがき

乱れた気流中での飛行機の操縦性は、飛行機の重要な飛行性の一つである。また、横方向の飛行性のパラメータとして、補助翼、方向舵の舵の効き、ダッチロールモードの振動数とダンピング、ロールモード、スパイラルモードの時定数、横揺れ運動と偏揺れ運動の連成等々が考えられるが、横揺れ運動と偏揺れ運動の連成の問題については、MIL SPEC 等に基準は出されているものの未だ不備で、完全に解明されているとは云い難い。そこで、Variable Stability の飛行機を用いて、種々の横揺れ運動と偏揺れ運動の連成を持たせ、その他の飛行特

性は固定して、乱気流中の飛行を模擬した飛行実験を行ない、連成度の許容限界を求め、MIL SPECのそれと比較した。その結果、実験結果とMIL SPEC とはかなりの差がある事が認められた。そこで実験結果を検討して操縦の難しさがどのような原因によって発生するかを調べ、連成度の許容限界を定める方法を探究した。操縦の難しさを調べるのに、従来はバイロットの補正動作を含まない操舵応答とか乱気流応答の計算による方法等が行われていたが、1957年McRuerらが補正動作を行なう人間の伝達関数をシミュレータ実験で求めて以来、バイロットの補正動作を含んだ飛行機の運動解析が行われるようになって来た。しかしバイロットの動作特性としては簡単なシミュレータ実験で求めたものを用いている

^{*} 昭和49年10月31日 受付

^{**} 飛行実験部

のが殆んどで、実際の飛行実験で求めたものを用いている例は殆んどない。本論文では飛行実験データを解析してバイロットの伝達関数を求め、それを用いてバイロットの補正動作を含んだ乱気流応答を計算して、操縦の難しさを検討した。そして、MIL SPEC 8785Bに代る横揺れ運動と偏揺れ運動との連成度の許容値を決める方法を考えた。

このような研究はシミュレータ実験でも可能であるが、 Variable Stability の飛行機による実験では、バイロットの得る視界、動揺感覚が完全である事とパイロットが実際の飛行機を操縦していると云う心理状態がシミュレータ実験では得られない事等の利点があるため Variable Stability の飛行機による実験を行った。

§ 2 記 号

- (1) 一般的記号
- A シグマ線図を示す時の分子の2次式の角振動数
- $A(\omega_i)$ 角振動数 ω_i におけるクロススペクトル密度の実数部
- $A'(\omega_i)$ ハミングのウィンドウをかけた後の角振動 $oldsymbol{\Sigma} \omega_i$ におけるクロススペクトル密度の実数部
- $B(\omega_i)$ 角振動数 ω_i におけるクロススペクトル密度の虚数部
- $B'(\omega_i)$ ハミングのウィンドウをかけた後の角振動 数 ω_i におけるクロススペクトル密度の虚数部
- ℓ1, ℓ2 2変数制御の場合の誤差
- G₀(s) 2変数制御の場合の1つの系の伝達関数
- $G_{11}(s)$, $G_{22}(s)$ 2変数制御の場合の伝達関数
- Gp方向舵操舵量の横揺れ角速度に比例した部分の比例定数
- Gr 補助翼操舵量の偏揺れ角速度に比例した部 分の比例定数
- Gφ 方向舵操舵量の横揺れ角に比例した部分の比例定数
- Gy 補助翼操舵量の偏揺れ角に比例した部分の 比例定数
- I_X 機体のX軸まわりの慣性能率
- I2 機体のZ軸まわりの慣性能率
- K システムのゲイン
- K_1 補助翼のステップ操舵による横揺れ角速度 応答の根 $(-\zeta_d \omega_d + i \omega_d \sqrt{1-\zeta_d^2})$ のゲイン

- K_2 補助翼のステップ操舵による横揺れ角速度 応答の根($-\zeta_d\,\omega_d-i\,\omega_d\,\sqrt{1-{\zeta_d}^2}$) のゲ
- K_D 補助翼のステップ操舵による横揺れ角速度 応答のダッチロールモードのゲイン
- Kp 補助翼操舵量の横揺れ角速度に比例した部分の比例定数,あるいは一般的なパイロットのゲイン
- K_R 補助翼のステップ操舵による横揺れ角速度 応答のロールモードのゲイン
- Kr 方向舵操舵量の偏揺れ角速度に比例した部分の比例定数
- Ks 補助翼のステップ操舵による横揺れ角速度 応答のスパイラルモードのゲイン
- Κφ 補助翼操舵量の横揺れ角に比例した部分の比例定数
- Ky 方向舵操舵量の偏揺れ角に比例した部分の 比例定数
- L 気流の乱れのスケール
- L_G (横風により発生する機体の横揺れモーメント) $/I_X$
- m 補助翼操舵量のレムナント,あるいは一般 的な操舵のレムナント
- m' 方向舵操舵量のレムナント
- m1, m2 2変数制御の場合の制御者の制御量
- N_G (横風により発生する機体の偏揺れモーメント) $/I_Z$
- N_G^* N_G / L_G
- n ノイズ信号
- Nvg 横風による横揺れ角応答の伝達関数の分子
- Nwg 上下風の左右の翼に当る速度差による横揺 角応答の伝達関数の分子
- N 8 a 補助翼操舵に対する横揺れ角応答の伝達関数の分子
- $N_{V_q}^{,\Psi}$ 横風による偏揺れ角応答の伝達関数の分子
- Ngr 方向舵操舵に対する偏揺れ角応答の伝達関数の分子
- $N(au/eta_G)$ 補助翼,方向舵の操舵を含んだ au/eta_G 伝達 関数の分子
- $N(\phi/eta_G)$ 補助翼,方向舵の操舵を含んだ ϕ/eta_G 伝達 関数の分子
- P 横揺れ角速度
- R システムの出力

au	偏揺れ角速度		ロス・コレレーション
s	ラブラス演算子	7nm/()	ノイズnとレムナントm′とのラグ(u)の
T	計測時間	rum (u)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$1/T_I$	バイロットの発生するラブ項の時定数の逆		- A WE BUILD THE NU AND WE
-, -1	数	γ , γ_1 , γ_2 δ_a	補助翼操舵量
$1/T_L$	パイロットの発生するリード項の時定数の	δ_a δ_e	月降舵操舵量
	逆数	δ_r	方向舵操舵量
$1/T_N$	パイロットの操作における筋肉系及び体内	Δ	補助翼,方向舵の操舵を含んだ飛行機の横
	の信号伝達機構の時間おくれの時定数の逆	2	方向の運動方程式の特性方程式
	数	∆ 1	操舵なしの場合の飛行機の横方向の運動方
1/Tw	ヘッディング制御における閉ループ特性方	-1	程式の特性方程式
•	程式を 1+B/Aと書いた時 Bの中の1つの	Δ_{GP}	伝達関数 r/δ_r の分母の方向乾操舵の G_p
	項の時定数の逆数	-01	のみによる部分
$1/T_{\Psi_1}'$	ヘッディング制御における閉ループ特性方	Δ'_{N}	伝達関数 r/δ_{r} の分子の操舵によらない部
	程式の分子の中の1つの項の時定数の逆数	••	分
$1/T_{CL_1}$,	1/T _{CL2} 閉ループの実根	$\Delta'_{N,K}$	伝達関数 r/δ_r の分子の補助翼操舵による
t	時間	·	部分
u	ラグ	$\Delta \delta_{ au}$	⊿の中の方向舵のみ操舵による部分
V_0	飛行速度	$\Delta \delta_a \delta_r$	⊿の中の補助翼及び方向舵操舵の影響が同
X	2 次振動系の S¹ の係数		時に入る部分
x_1 , x_2	2 変数制御の場合の入力	$\Delta_{N,\tau}$	$N(~r/eta_G~)$ の中の操舵によらない部分
Y	2 次振動系の S ⁰ の係 数 , あるいは 2/τ _a	$\Delta_{N, \tau}^{ \delta_{a}}$	$N(au/eta_G)$ の中の補助翼操舵による部分
Y_{A}	飛行機,あるいは被制御系の伝達関数	_	
Y_P	バイロットの伝達関数	$\Delta_{N,\tau}^{\delta_{ au}}$	$N(\tau/eta_G)$ の中の方向舵操舵による部分
$Y_{P\delta a}$	補助翼操舵についてのパイロットの伝達関数	$\Delta_{N,\phi}$	$N(\phi/eta_G)$ の中の操舵によらない部分
V	が 方向舵操舵についてのバイロットの伝達関	$A_{N,\phi}^{\delta_{T}}$	$N(\phi/eta_G)$ の中の補助翼操舵による部分
$Y_{P\delta \tau}$	数	Ν, φ	ダンピング比
y ₁ , y ₂	2 変数制御系の出力		別ループのダンビング比
Z	2/ _{Tr}	$egin{array}{c} oldsymbol{\zeta}_{CL} \ oldsymbol{\zeta}_{d} \end{array}$	ダッチロールモードのダンピング比
β	横滑り角	ζά ζά	バイロットの操舵を含んだ閉ループの特性
β_G	横風突風と飛行速度との比	v a	方程式を 1+B/A と書いた時, Aの中の 2
$\gamma_{nr}(u)$			次式のダンピング比
	クロス・コレレーション	ζ_d^s	パイロットの操舵を含んだ閉ループの特性
$\gamma_{np}(u)$	ノイズ n と横揺れ角速度 p とのラグ(u)の	·u	方程式の分子の2次式のダンピング比
•	クロス・コレレーション	ζφ	伝達関数 p/δ_a の分子の 2 次式のダンピン
$\gamma_{n\delta_a}(u)$	ノイズ $_n$ と補助翼操舵量 δ_a とのラグ (u) の	r	夕 比
	クロス・コレレーション	θ	飛行機の機体の姿勢角
$\gamma_{n\delta_{\tau}}(u)$	ノイズ $_n$ と方向舵操舵量 δ_r とのラグ (u) の	λ	不安定な1次の被制御系の時定数の逆数
	クロス・コレレーション	λ_R	ロールモードの時定数の逆数
$\gamma_{n\phi}(u)$	ノイズ n と横揺れ角 φ とのラグ (u) のクロ	λ_S	スパイラルモードの時定数の逆数
	ス・コレレーション	σ_r	乱気硫に対する偏揺れ角速度応答のr.m.
$\gamma_{n}\psi(u)$	ノイズ n と偏揺れ角 Ψとのラグ (u) のクロ		s.
	ス・コレレーション	σ_V	横風のr.m.s.
$\gamma_{nm(u)}$	ノイズnとレムナントmとのラグ(u)のク	$\sigma_{\!oldsymbol{\phi}}$	乱気流に対する横揺れ角応答の r.m.s.

乱気流に対する偏揺れ角応答のr.m.s. $\sigma \psi$ 乱気流に対する補助翼操舵量の r.m.s. $\sigma \delta a$ 乱気流に対する方向舵操舵量の r.m.s. OBT バイロットの操舵のむだ時間 バイロットの補助翼操舵のむだ時間 τ_a バイロットの方向舵操舵のむだ時間 $T\tau$ $\mathcal{O}_{n\,n}$ ノイズ信号のパワスペクトル密度 (以下P SD と記す) Φ_{nr} ノイズ n と偏揺れ角速度 r とのクロススペ クトル密度 ϕ_{np} ノイズ n と横揺れ角速度 p とのクロススペ クトル密度 ノイズnと補助翼操舵量 δ_a とのクロスス $\Phi_{n \delta a}$ ベクトル密度 ノイズルと方向舵操舵量 み とのクロスス $\phi_{n\delta\tau}$ ベクトル密度 ノイズ n と横揺れ角 φとのクロススペクト $\Phi_{n\phi}$ ル密度 ノイズ n と偏揺れ角 Ψ とのクロススペクト $\Phi_{n}\psi$ パイロットの操舵がない場合の乱気流に対 Φ_{OL} する機体の応答のPSD 上下風の左右の翼に当る速度差のPSD Φ_{Wq} ϕ_{Vg} 横風の速度のPSD 横風の速度と飛行機の速度との比のPSD $\Phi_{\beta G}$ 飛行機の運動のPSD Φ_{EE} 乱気流に対する横揺れ角応答のPSD Odo 乱気流に対するパイロットの操縦を含んだ $\Phi_{\phi,CL}$ 機体の横揺れ角応答のPSD 乱気流に対するパイロットの操縦を含まな Ø O.OL い場合の機体の横揺れ角応答のPSD んだ機体の偏揺れ角応答のPSD 乱気流に対するパイロットの操縦を含まな $\Phi_{\Psi,OL}$ い場合の機体の偏揺れ角応答のPSD 横揺れ角 ø 角振動数 ω 閉ループ伝達関数が1になる角振動数。 ω_C クロスオーバ振動数と呼ばれる。 閉ループの2次根の角振動数 ω_{CI} ダッチロールモードの角振動数 ωd パイロットの操舵を含んだ閉ループの特性 Wa' 方程式を1+B/Aと書いた時, Aの中の2

次式の角振動数

パイロットの操舵を含んだ閉ループの特性

 $\omega_d{''}$

```
方程式の分子の2次式の角振動数
        伝達関数 ø/δa の分子の 2 次式の角振動数
 \omega_{\phi}
 Ψ
 (2) 安定微係数
        (横滑り角による横力)/(機体の質量)
 Y_{\beta}
        (横揺れ角による横力)/ { (機体の質量)
 Y_{\phi}
        ×速度
        (横滑り角による偏揺れモーメント)/I2
 NB
        (偏揺れ角速度による偏揺れモーメント)
 N_{\tau}
        (横揺れ角速度による偏揺れモーメント)
 N_p
        (方向舵操舵による偏揺れモーメント)/
 Nor
        I_Z
        (補助翼操舵による偏揺れモーメント)/
 Noa
        (横滑り角による横揺れモーメント)/IX
 L_{\mathcal{B}}
        (偏揺れ角速度による横揺れモーメント)
 L_{\tau}
        /I_X
        (横揺れ角速度による横揺れモーメント)
 L_{p}
        補助翼操舵による横揺れモーメント)/Ix
 L_{\partial a}
 N_{\delta a}^*
        N_{\delta a}/L_{\delta a}
 (3) 乱気流応答の伝達関数の分母,分子の操舵による
ゲイン変化による根軌跡とポード線図とを関係づけるた
め、各根の所に記号を書き入れた。原則として次のよう
な記号を用いた。
        ダッチロールモード
 D
        ロールモード
 R
 S
        スパイラルモード
```

- R ロールモード
 S スパイラルモード
 Ta 補助翼の操舵時間おくれによる根
 T_r 方向舵の操舵時間おくれによる根
 O 偏揺れ角に比例して方向舵を操舵する時に現われる小さな根
 N₁, N₂, N₃ 横揺れ角応答の場合は分子の根にも原
- N_1 , N_2 , N_3 横揺れ角応答の場合は分子の根にも原則として上記の記号を用いた(\S 10では異なる場合がある)が,偏揺れ角応答の分子の根の内 T_a , T_r に相当するものを除いてこの記号を用いた。

なお、モードが連成する場合はそのモードを並べて書いた。例えばロールスパイラル連成の場合はRS を用いた。

§ 3 従来の研究と本論文の概要

完全自動化されていない飛行機では、大気の気流の乱

れの存在する中でも、パイロットの操作により離陸、上 昇,針路保持あるいは針路変更,旋回,降下,着陸等の オペレーションが行われなければならない。これらの操 作を安全かつ容易に行えるように航空機を設計する事が、 航空機の良し悪しを決定する一つの要因になっている。 これまでは試行錯誤によって作られた基準にのっとって 飛行機を設計し、設計後にシミュレータ試験により手直 しをする等の方法がとられてきた。しかし、バイロット が飛行機のオペレーションに当って何を検知し、如何に 舵やスロットルを操作するかと云う動作特性が判明すれ ば,パイロットの動作を含んだ飛行機の特性を解析する 事が可能になり、そのオペレーションを安全かつ容易に パイロットが遂行出来る効率の良い飛行機の設計方 法が明らかになるものと考えられる。このような基 本的な考えのもとにパイロットの動作特性の研究が行 われるようになり, 1959 年に Mc Ruer ⁽¹⁾等は初めてこ の研究を体系づけ,システムの中の1つの要素としての バイロットモデルを作る事を試みた。その研究の概要は 次の通りである。

ある被制御系が外乱を受けて変動する時、パイロットがその変動をなるべく小さくする制御を行なう場合、すなわち1変数のトラッキング制御を行なう場合に、バイロットはどのように操作するかを伝達関数の形で表わした。上述の事をブロック図で示せば図3.1のようであり、パイロットは出力 R を検知して操作δを行なうが、その時の伝達関数をつぎのように表わした。

$$\frac{\delta}{R} = \frac{K_p(s+1/T_L)e^{-\tau s}}{(s+1/T_N)(s+1/T_I)} + m(s)$$
 (3.1)

ことで、 K_p はバイロットのゲイン、 T_N は人間の筋肉系・人間体内の信号伝達系等の時間遅れで約0.1秒としており、 τ は反応むだ時間で $0.3\sim0.5$ 秒としている。 $(s+1/T_L)/(s+1/T_I)$ はバイロットが 被制御系の動特性に応じて適当に選べる所謂 equalizerの項である。m(s) は人間が検知したRに線型的には関係しない量で

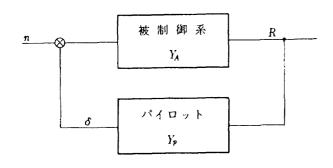


図3.1 パイロットの補正動作のブロック線図

通常レムナントと呼ぶ。パイロットは図3.1の系の開ループ伝達関数 Y_PY_A の位相余有が 60° ~ 110° になるようにゲインを選ぶとしている。このモデルは長い間パイロットの特性を表わすものとして用いられて来ている。さらに1965年再びMcRuerら $^{(2)}$ はさらに研究を重ねた結果を発表した。この研究ではモデルは殆んど上記と同じであるが、つぎのような所謂クロスオーバモデルを作った。すをわち、図3.1のような系の開ループ伝達関数は、被制御系に殆んど関係なく、クロスオーバ周波数 (Y_PY_A) = 1になる周波数)付近でつぎのように表わされるとした。

$$Y_{P}Y_{A} = \frac{K_{P} e^{-j(\omega\tau + \alpha/\omega)}}{j\omega}$$
 (3.2)

さらに、最近では人間の生理学と結びついた研究もさ かんに行われている。Magdaleno ら (3) は生理学者の求 めた人間の筋肉の力学的性質についてのデータ,すなわ ち筋肉の長さと筋肉に働く張力を体内の他の部分から来 る信号をバラメータとして表わしたものと,筋肉の伸張 の速度に対して筋肉が発生する力を同じく体内の他の部 分から来る命令信号をパラメータとして表わしたデータ を用いて、筋肉系の動等性をバネ及びダンパーで表わし、 操縦桿の動特性と結びつけて,トラッキングを行なう時 のバイロットの動特性をサーボ理論を用いて計算し、バ イロットが緊張して操舵する時は,弛緩して操舵する時 に比べて位相遅れが少なくなる事を解析的に示した。さ らに Magdaleno らは人体の信号の検出機構,及び脳や 脊髄の信号の伝達機構を生理学的に調べ,それを力学的 に表現して人間の動作特性を考察した。この種の研究は 現在でも続けられている。

我が国では人間の操縦限界についての研究,つまりどの程度の不安定な系まで人間は操縦出来るかと云う研究がさかんに行われて来た。そして鷲津ら^{(4),(5)} は2次の不安定系を操縦する人間のモデルとして、理論及び実験的につぎのようなモデルを発見した。

$$Y_{P}(s) = \frac{K_{P} e^{-\tau s} (1 + T_{L} s + s^{2} / Y)}{(1 + 1 / T_{N} s) (1 + 1 / T_{L} s)}$$
(3.3)

この場合,被制御系の伝達関数はつぎのようなものである。

$$Y_A(s) = \frac{K}{s^2 + Xs + Y} \tag{3.4}$$

つまり,不安定な系の振動数を人間は検知し,2次のリード項を発生し得る事を考え,実験的に証明した。

パイロットの特性を加味した飛行機の運動解析の研究

としては、1962年にAshkenas とMcRuer⁽⁶⁾ が縦の短 周期運動の特性の許容限界を規定するのにパイロットの 操縦を含んだ系について解析を行った。つぎのような飛 行機の伝達関数に対して

$$Y_A(s) = \frac{\theta}{\delta_e} = \frac{K(s + 1/T_L)}{s(s^2 + 2\zeta\omega s + \omega^2)}$$
(3.5)

パイロットの伝達関数をつぎのように仮定した。

$$Y_{\mathbf{P}}(s) = K_{\mathbf{P}} e^{-\tau s} = K_{\mathbf{P}} \frac{1 - \tau / 2 \cdot s}{1 + \tau / 2 \cdot s}$$
(3.6)

そしてつぎの要求が満足されるとき,系の操縦性は良好 であるとした。

- 1. 操縦者+飛行機の系の開ループ伝達関数のゲインが 1 になる角振動数 ω_c が外乱の振動数 ω_i (通常 1 rad /sec をとる。) より大きい事。
- 2. 操縦者+飛行機の系の閉ループの振動モードの減衰比ぐが0.35 より大きい事
- 3. 操縦者がリード,ラグを必要としない事(上記の Y_P はそのように選んだ。)

(3.5) 式と (3.6) 式を用いた系の閉ループ 伝達 関数は つぎのように書ける。

$$Y_{P}Y_{A} = \frac{KK_{P}(s+1/T_{L})(1-\frac{\tau}{2}s)}{s(s^{2}+2\zeta\omega s+\omega^{2})(1+\frac{\tau}{2}s)}$$
(3.7)

A shkenas らはボード線図及びシグマ線図(文献14参照)を用いて,との Y_PY_A から閉ループの ζ_{CL} をつぎのように求めた。

$$\zeta_{CL} = \frac{2\zeta \omega + 2/\tau - 1/T_{CL} - 1/T_{CL2}}{2\omega_{CL}}$$
(3.8)

ここで、 ω_{CL} , $1/T_{CL1}$, $1/T_{CL2}$ は閉ループの2 次根

の角振動数と 2 つの実根である。 ζ , ω を種々変化させて, $\omega_c=1.0$ の線, $\zeta_{CL}=0.35$ の線を求め示したのが図 3.2 である。

横方向のパイロットの操縦を含んだ飛行機の運動解析を初めて体系づけたものは1959年に発表したAshkenas Mc Ruerの論文⁽⁷⁾である。その中でパイロットによる横揺れ角の制御を問題にしているのでそれを紹介する。飛行機の横揺れ角の操舵に対する応答は,横揺れ運動と偏揺れ運動との連成が小さく,スパイラルモードの根が小さければつぎのように書ける。

$$Y_A = \frac{K_{\phi\delta}}{s(s + \lambda_R)} \tag{3.9}$$

バイロットの伝達関数としてはHall の実験結果²¹から 類推して次式のようなものを用いた。

$$Y_P = K_P e^{-\tau s} \tag{3.10}$$

したがって開ルーブ伝達関数は次式のようになる。

$$Y_{P}Y_{A} = \frac{K_{P}K_{\phi\delta} e^{-\tau s}}{s (s + \lambda_{R})}$$
(3.11)

$$K_P K_{\phi \delta} \approx \omega_{CI}$$
 (3.12)

$$K_P K_{\phi \delta} (1/\lambda_R + \tau) = \frac{\pi}{2} - \varphi_M = 0.57$$
 (3.13)

実験結果より、 ω_{CL} はほぼ一定の値をとるので $K_P K_{\phi\delta}$ は一定の値をとり、 $K_{\phi\delta}$ が大きすぎると K_P は極端に小

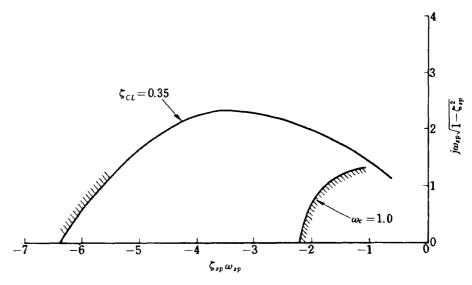


図3.2 縦の短周期モードの(ω,ζ)の許容限界

さな値を取らればならないし、 $K_{\phi\delta}$ が小さ過ぎるときはその逆である。しかし、バイロットの操作には K_P のとる値に限度があるのでその事から $K_{\phi\delta}$ の上下限が定まる。 $K_PK_{\phi\delta}$ の値を定めて τ の値を定めると (3.13) 式から λ_R の値が定まる。 $1/\lambda_R$ が大き過ぎると $K_PK_{\phi\delta}$ を一定にしておくと位相余有が小さくなり安定が悪くなる。 K_P $K_{\phi\delta}$ を小さくする事は ω_{CL} を小さくする事で、操舵効果を悪くする事になる。したがって $K_PK_{\phi\delta}$ 等にある程度の幅を持たせて λ_R をつぎのように規定した。

$$1/\lambda_R < 1 \tag{3.14}$$

このようにして決めた $K_{\phi\delta}$, λ_R の限界値はッミュレータによる実験結果と良い一致を示した。

また、Caporali ら^{(8),(9)}は横揺れ角制御の問題についてつぎのような研究を発表した。バイロットの伝達関数をつぎのように考えた。

$$\delta_a = Y_P(s) \phi = -K_P \phi \tag{3.15}$$

補助翼操舵に対する横揺れ角の伝達関数はつぎのように 表わされる。

$$\frac{\phi}{\delta_a} = \frac{L_{\delta a} \left(s^2 + 2\zeta_{\phi} \omega_{\phi} s + \omega_{\phi}^2\right)}{\left(s + \lambda_S\right) \left(s + \lambda_R\right) \left(s^2 + 2\zeta_{d} \omega_{d} s + \omega_{d}^2\right)}$$
(3.16)

この横揺れ角制御のブロック図は図3.3のようになる。 この系の安定,不安定は特性根つまり $1+Y_PY_A=0$ の根 によって判定される。との式はつぎのように書ける。

$$1 + \frac{K_P L_{\delta a} (s^2 + 2\zeta_{\phi} \omega_{\phi} s + \omega_{\phi}^2)}{(s + \lambda_S) (s + \lambda_R) (s^2 + 2\zeta_d \omega_d s + \omega_d^2)} = 0$$
(3.17)

 K_P が変化した時の上式の根軌跡を $\omega_\phi/\omega_d > 1$, $\omega_\phi/\omega_d < 1$ の場合について書くと図 3.4 のようになる。通常補助翼にアドヴァースョーがある時は, $\omega_\phi/\omega_d < 1$ となる事が多く,プロヴァースョーがある時は, $\omega_\phi/\omega_d < 1$ のは > 1 となる事が多い。図を見ると $\omega_\phi/\omega_d < 1$ の時,横揺れ角制御によりダッチロールモードのダンピングは増加するが, $\omega_\phi/\omega_d > 1$ の時はダンピングは悪くなり,最悪の場合は発散する事もあり得る。補助翼としてスポイラを用いる飛行機では補助翼操作に対してプロヴァースョーの性質を示すが,この種の飛行機において実際に補助翼操舵によりダッチロールモードのダンピングが悪化する事が経験された。

以上述べた研究は全て1変数制御の場合であり、この分野では研究はかなり進んでいるが、2変数以上の制御になるとその研究は数少ない。Bekey (10) はこの問題と取組み、パイロットは各変数について制御すると同時に、2変数間の連成を消す操作も行なうと云う結果を発表している。井口(11) は図3.5に示すような2変数の間に干渉

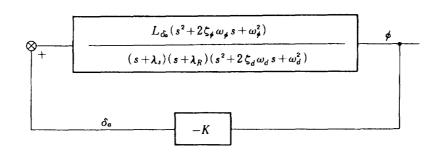


図 3.3 横操縦のブロック線図

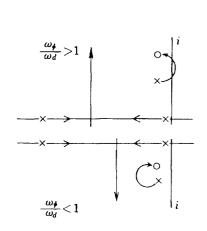


図3.4 横操縦のパイロットのゲイン変化の根軌跡

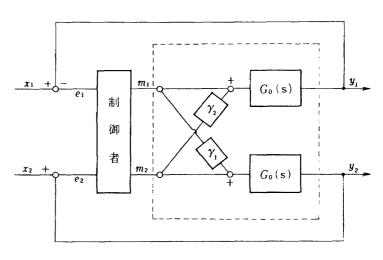


図 3.5 2変数制御のブロック線図

のある問題を考えた。方程式は次式で表わされる。

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} G_0(s) & O \\ O & G_0(s) \end{bmatrix} \begin{bmatrix} 1 & r_2 \\ r_1 & 1 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$$
(3.18)

ア= τ₁= τ₂ の場合を考え,τ (干渉係数)が変化する時,制御成績(偏差の絶対値平均/目標値の絶対値平均)がどのようになるかを,種々の被制御系について実験し,図 3.6 のような結果を得た。後藤¹²は干渉のない 2 つの系を両手を用いて制御する問題を解いた。すなわち,つぎのような伝達関数をもつ系を考える。

$$G_{11} = K / s \tag{3.19}$$

$$G_{22} = \lambda / (s - \lambda) \tag{3.20}$$

1の系を主として2の系を従とする。上の系に外乱を入れてその結果をCRT 上に示し、1の系の動きをなるべく小さくするようにし、2の系は発散しないように制御した。その結果つぎのような基本法則を発見した。

「制御者は主ループの CRT上の Permissible error region を定め、 ϵ_1 、 $\dot{\epsilon_1}$ 、 $\dot{\epsilon_1}$ (ϵ_1 は 1 の系の偏差)を読む事により従ループの制御をしている間に主ループの ϵ_1 がその Permissible error regionを越えないとの予測をして、従ループに関心を移して制御する。」

J.Franklin (13) は多変数系である実際の飛行機の乱気流中でのパイロットの操縦を含めた応答を、適当なパイロットの伝達関数を用いて解析し、飛行実験で現われた現象を良く説明した。彼は縦運動の場合と横方向の運動の場合とを分けて発表しているが、ここでは以下の章で横方向の問題のみ取扱うので、彼の横方向の場合の研究結果の概略を述べる。乱気流中におけるパイロットの操縦を含んだ飛行機の横揺れ角応答のパワスペクトル密度Φø,CLは次式で与えられる。

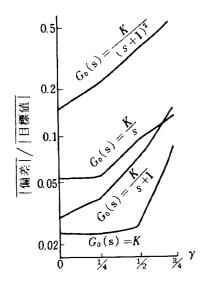


図 3.6 2変数の干渉係数γと偏差/目標値

$$\phi_{\phi,CL} = \frac{\phi_{\phi,OL}}{|1 + Y_P Y_A|^2}$$
 (3.21)

φ_{φ,OL}はパイロットの操縦が入らない時の乱気流応答で ある。横揺れ角応答の場合次式のようになる。

$$\phi_{\phi,CL} = \left\{ \left| \frac{N_{Wg}^{\phi}}{J_1} \right|^2 \phi_{Wg} + \left| \frac{N_{Vg}^{\phi}}{J_1} \right|^2 \phi_{Vg} \right\}$$

$$\int \left| 1 + Y_{P\delta a} \frac{N_{\delta a}^{\phi}}{J_1} \right|^2$$
(3.22)

ここで、 \mathbf{o}_{Wg} 、 \mathbf{o}_{Vg} はそれぞれ外乱のパワスベクトル密度,前者は上下風の左右の速度差による項,後者は横風による項である。 \mathbf{d}_1 は操舵のない時の特性方程式に対応するものである。 \mathbf{N}_{Wg}^{ϕ} は上下風の左右の速度差による横揺れ角応答の伝達関数の分子であり, \mathbf{N}_{Vg}^{ϕ} は横風によるそれであり, \mathbf{N}_{O}^{ϕ} は補助翼操舵による機体の応答の伝達関数の分子である。 $\mathbf{Y}_{P\delta a}$ はパイロットの伝達関数で次式により表わされるものを用いた。

$$Y_{P\delta a} = K_{\phi} \left(s + 1/T_L \right) e^{-\tau_{\phi} s} \phi \tag{3.23}$$

閉ループの伝達関数の特性方程式は次式で表わされる。

$$1 + \frac{K_{\phi} L_{\delta a}(s+1/T_L)(s^2+2\zeta_{\phi}\omega_{\phi}s+\omega_{\phi}^2)}{(s+\lambda_S)(s+\lambda_R)(s^2+2\zeta_{d}\omega_{d}s+\omega_{d}^2)}$$

$$\frac{1 - \frac{\tau_e}{2}s}{1 + \frac{\tau_e}{2}s} = 0$$

$$(3.24)$$

上式で $\lambda_S=0$ であり、分母分子の2次式の根が近く、 バイロットはロールモードの時定数と同程度のリード項 を発生するとすると上式は次のようになる。

$$1 + \frac{K_{\phi} L_{\delta a} (-s + 2/\tau_{e})}{s (s + 2/\tau_{e})} = 0$$
 (3.25)

上式は正に前述したクロスオーバモデルに殆んど等しい。 したがって,実際の飛行機の横揺れ角制御の場合にも上 述の諸仮定が満足されれば,クロスオーバモデルでバイ ロットの制御の問題が取扱える。

横風のみ考える時は (3.22)式の分子の第2項のみでよく,次式のようになる。

$$\left|\frac{N_{Vg}^{\phi}}{\Delta_{1}}\right|^{2} \varphi_{Vg} = \left|\frac{\left(L_{\beta}/\omega_{d}^{2}\right) s}{\left(s+\lambda_{R}\right)\left\{\left(s/\omega_{d}\right)^{2}+2\zeta_{d}\left(s/\omega_{d}\right)+1\right\}}\right|^{2}$$

$$\cdot\frac{\left(\frac{\sigma_{V}}{V_{0}}\right)^{2} \cdot \frac{L}{\pi V_{0}}}{\left(\frac{s}{L}\right)^{2}+1}$$

$$(3.26)$$

上式で σ_V は横風のr.m.s., Lは乱れのスケール, V_0 は機体の速度である。閉ループのパワスペクトル密度は (3.24)式を2乗して逆数をとり (3.26)式に掛けたものである。これを図3.7に示す。パワはダッチロールモードの周波数付近に集まり、その周波数における乱気流応答の操舵ありとなしとの比は次式で与えられる。

$$\left[\frac{\boldsymbol{\varphi}_{\phi, CL}}{\boldsymbol{\varphi}_{\phi, OL}}\right]_{\omega=\omega_d} = \frac{\omega_d^2 T_L}{K_{\phi} L_{\delta a}}$$
(3.27)

ヘッディングの制御の問題も取扱っており, ヘッディングのパワスペクトル密度は近似的に次式で表わされる。

$$\phi_{\Psi,CL} = \left\{ \left| \frac{N_{Vg}^{\Psi}}{\Delta_1 + \Delta_{\delta a}} \right|^2 \phi_{Vg} \right\}$$

$$\int \left| 1 + Y_{P\delta T} \frac{N_{\delta T}^{\Psi}}{\Delta_1 + \Delta_{\delta a}} \right|^2 \tag{3.28}$$

ここで,補助翼操舵は行われているとしている。 N_{Vg}^{Vg} は横風に対するヘッディングの伝達関数の分子, $N_{\delta r}^{V}$ は方向能操舵に対するそれである。 $d_1 + d_{\delta a}$ は補助翼操舵を含んだ時の特性方程式である。 $Y_{P\delta r}$ はパイロットの伝達関数で次式で表わされるものを用いる。

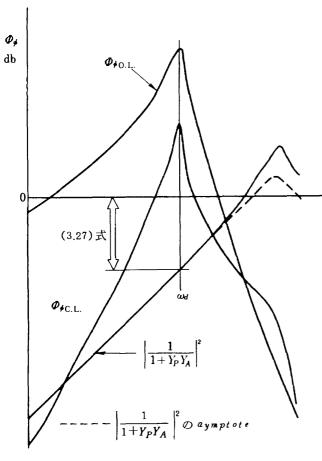


図 3.7 横揺れ角応答のPSD

$$Y_{P\delta\tau} = K_{\Psi} \left(s + 1/T_L \right) e^{-\tau e S} \tag{3.29}$$

閉ループの特性方程式は次式のように表わされる。

$$1 + Y_{P\delta \tau} \frac{N_{\delta \tau}^{\Psi}}{\Delta_{1} + \Delta_{\delta a}} = 1 + \frac{K_{\Psi}(s + 1/T_{L})}{s(s^{2} + 2\zeta_{d}'\omega_{d}' + {\omega_{d}'}^{2})} \times \frac{(s + 1/T_{\Psi_{1}})(-s + 2/\tau_{e})}{(s + 2/\tau_{e})}$$
(3.30)

 $A_1 + A_{\delta a}$, $N_{\delta T}^{\Psi}$ は補助翼操舵によって変化するが,分母のスパイラルモードとパイロットの操舵時間おくれによる根の連成によって生ずる 2 次根と,分子の操舵なしの場合 0 付近にあった根とパイロットの操舵時間おくれによる根が補助翼操舵によって連成して発生した 2 次根とは互に近く,上式では打消し合っている。 1 大の母のロールモードの根と分子のロールモードに近い根とが互に打ち消し合っている。 1 大 Ψ_1 は $-Y_\beta$ に近い。上式で K_{Ψ} T_L 、 T_{Ψ_1} 、 $N_{\delta T}$ 等に所定の値を入れて計算すれば次式を得る。

$$1+Y_{P\delta\tau} \frac{N_{\delta\tau}'^{\Psi}}{\Delta_{1}+\Delta_{\delta a}} = \frac{(s+1/T_{\Psi_{1}})(s^{2}+2\zeta_{d}''\omega_{d}''s+\omega_{d}''^{2})}{s(s^{2}+2\zeta_{d}'\omega_{d}'s+\omega_{d}'^{2})} \times \frac{(-s+2/\tau_{e})}{(s+2/\tau_{e})}$$
(3.31)

分子は次のように書ける。

$$\frac{N_{Vg}^{\prime Vg}}{\Delta_{1} + \Delta_{\delta a}} = \left| \frac{N_{\rho}^{\prime} / \omega_{d}^{2}}{\left(s / \omega_{d}\right)^{2} + 2\zeta_{d}\left(s / \omega_{d}\right) + 1} \right|^{2} \cdot \frac{\left(\frac{\sigma_{V}}{V_{0}}\right)^{2} \cdot \frac{L}{\pi V_{0}}}{\left(\frac{s}{\sqrt{3}} \frac{L}{V_{0}}\right)^{2} + 1} \tag{3.32}$$

ただし、 $N_{\delta a}/L_{\delta a} \ll N_{\beta}/L_{\beta}$ 、 $N_{P}/L_{P} \ll N_{\beta}/L_{\beta}$ で且つ ϕ/δ_a の零点がダッチロールモードの極に近いとして計算した。この時、補助翼による効果は省略してある。 (3.31)式の2 乗の逆数と (3.32)式とを掛けて、ヘッディング応答のパワスペクトル密度を得る。これ等を図 3.8 に示す。パワはダッチロールモードの周波数付近まで平坦であるが、これは、 $|1/\{1+Y_{P\delta T}N_{\delta T}^{\Psi}/(d_1+d_{\delta a})\}|^2$ の影響でかなり小さくなるその度合はにぼ次式に比例する。

$$\frac{\boldsymbol{\sigma}_{\boldsymbol{\Psi},CL}}{\boldsymbol{\sigma}_{\boldsymbol{\Psi},OL}} = \left(\frac{\boldsymbol{\tau}_{e}' \, \boldsymbol{\omega}_{d}''}{\boldsymbol{\tau}_{e} \, \boldsymbol{\omega}_{d}''}\right)^{2} \tag{3.33}$$

J.Franklin はこのような基本的な考察に基を,つぎのような方法で外乱のr.m.s.の影響,パンド幅の影響,

ロールダンピンクの影響,方向安定の大きさの影響,ダッチロールモードのダンピンクの大きさの影響,補助翼により発生する偏揺れモーメントの影響を調べた。これ等を横揺れ角については補助翼操舵のみで調べ,ヘッディング応答では補助翼・方向舵両方用いる場合を調べている。すなわち,外乱に対する応答の伝達関数の分母の根がバイロットの操舵のゲインによってどのように変化するかを根軌跡を用いて調べ,次に閉ループ伝達関数を計算し,続いて応答のパワスペクトル密度を調べた。最後に $\sigma_{\delta a}$, $\sigma_{\delta r}$ (補助翼および方向舵の操舵量のr.m.s.)を一定にした時の σ_{ϕ} , σ_{Ψ} (横揺れ角,ヘッディンクのr.m.s.の値)及び σ_{ϕ} , σ_{Ψ} を一定にした時の $\sigma_{\delta a}$, $\sigma_{\delta r}$ を調べた。以上の諸計算結果から上記の諸問題について考察を行ない,飛行実験によるパイロットの所見と比較して良い一致を得ている。

J.Franklin によってこの分野の仕事はかなりなされたが、ヘッディング応答の計算に乱気流応答の伝達関数の分子に補助翼の効果を考えに入れていないのでかなりの誤差を導入する可能性がある。また ϕ/δ_a の分母と分子の 2 次式の根が S 平面でかなり離れている場合の操縦性は如何になるかについては、わずかに検討されている

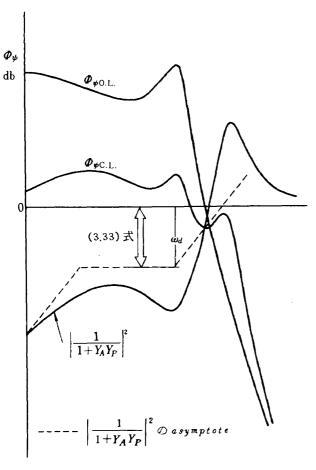


図 3.8 偏揺れ角応答のPSD

に過ぎない。そこで,この問題を取上げ,従来の研究に ついての歴史的流れを踏まえて,以下に述べるような研 究を行った。

航空機が乱れた気流中を飛行する時経験する操縦の困 難が,どの様な機体の運動特性を持つとき生ずるかを飛 行実験で調べ、その困難がどの様な物理的原因によって 生ずるかを,機体の運動特性と人間の応答特性との関連 に於て考察した。なお以下に述べる検討は横方向のみに 限るとし、乱気流としては横風のみを考えた。勿論、飛 行実験では縦の安定も保つように操縦しなければならな いが、その特性は実験に使用した原型機(ビーチクラフ ト社 65 型機,以下Q.A.機と書く。Q.A.機の三面図 及び諸元を図3.9に示す。)のままとした。 Variable Stability Airplane (V.S.A.と書く) 化されたQ. A. 機を用いて、機体に各種の運動特性を持たせ、機体 に乱気流中の飛行を模擬する様に補助翼, 方向舵を通じ て攪乱を与えた。乱気流としては横風のみを考えており、 また所謂質点近似を用いて横風の速度の,機体の長さの 範囲内での変化を無視する。このように考える時、横風 によって機体に発生する横揺れモーメントと偏揺れモー メントとを,補助翼と方向舵により発生する横揺れモー メントと偏揺れモーメントで模擬出来ると考えられる。 したがって、乱気流中の飛行を模擬するため、テープレ コーダーに記録した,実際の乱気流と相似なパワスペク トルを持つランダムを信号で,補助翼及び方向舵を動か す事によって横方向の攪乱を与えた。この際、横風の発 生する横力の模擬は無視した。このような状態でパイロ ットに水平直進飛行を行わせ、操舵量及び機体の状態量 $(\delta_a, \delta_r, \beta, p, r)$ さらにノイズ信号n(t) を計測 すると共に, バイロットに操縦性についての所見を聞い た。このような実験を、機体の運動特性を操縦が難しく なるように変化させながら繰返し行ない操縦可能の限界 点を見出した。そして,原型機及びその限界点における パイロットの動作特性を計測量を元にして解析して、伝 達関数の形で求めた(§7)。つぎにその伝達関数を用 いて、バイロットの操縦を含んだ機体の乱気流に対する 横揺れ角及び偏揺れ角速度応答のパワスペクトル密度を 計算した。計算は先ず機体の乱気流に対する応答の伝達 関数の分母分子の根が、バイロットの操舵のゲインが変 わるときどのように変るかを根軌跡の形で調べ、つぎに 伝達関数のボード線図及びそのスケルトンを書いて、そ れが原型機と比べてどのように変化するかを調べ、最後 に乱気流に対する機体のバワスペクトル密度を調べた。 これらの計算を通して操縦の難しさの原因を探索した (§8)。さらに、バイロットの操縦を含んだ機体の運 動系の、外乱に対する開ループ伝達関数を§8と同様な 方法で求め、クロスオーバ周波数と位相余有を計算し、 パイロットはどの程度の位相余有でゲインを定めるかを 調べた(§9)。つづいて飛行実験で用いた乱気流の時 系列を用いて、パイロットの操縦を含んだ系の応答を、 パイロットのゲインを変化させて計算し、操舵量及び状 態変数の r.m.s.を求め、パイロットのゲインによって それ等がどのように、そして何故に変化するかを調べた (§ 10)。最後に,孤立した突風に対するパイロットの 操縦を含んだ機体の応答を計算し,操舵量及び状態量の 時間的変化を調べた(§ 11)。以上の計算を通して,操 縦の難しさの物理的原因を考察した。

以下において、 \S 4 では機体に持たせた運動特性について、 \S 5 ではV.S.A. と計測装置について、 \S 6 では飛行実験及びその結果について、 \S 7 \sim \S 11 では上記の事を述べ、 \S 12 で結論を述べる。

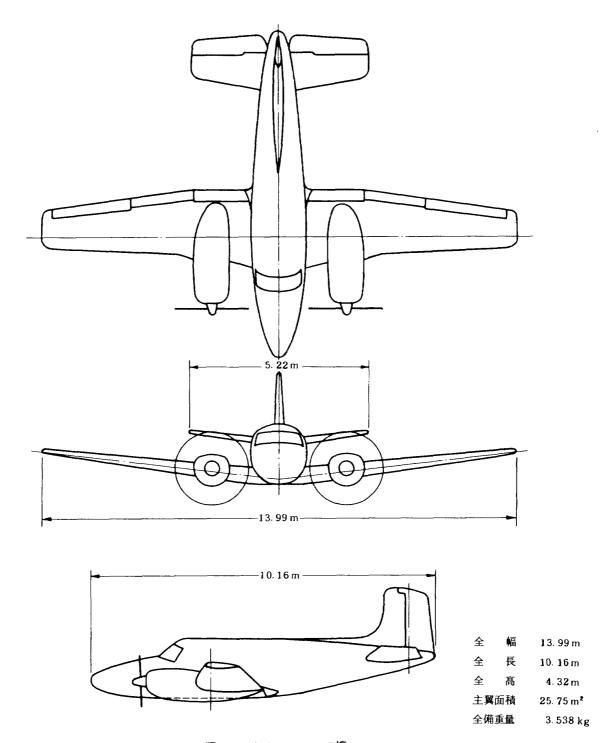


図3.9 クイーン・エア機

§ 4 機体に持たせた運動特性

機体の横及び方向の運動方程式を次のように書く。 $(s-Y_{\beta})\beta + r - Y_{\phi} \phi = 0$ (4.1) $-N_{\beta}\beta + (s-N_{\tau})r - N_{P}s\phi = N_{\delta\tau}\delta_{\tau} + N_{\delta a}\delta_{a} + N_{G}\cdot\beta_{G}$ (4.2)

$$-L_{\beta}\beta - L_{\tau}\tau + s(s-L_{P})\phi = L_{\delta a}\delta_{a} + L_{G}\cdot\beta_{G}$$
(4.3)

外乱は今横風のみを考えているとし、正の横揺れモーメントが発生する横風は負の偏揺れモーメントを発生するので、第2式でNG < 0である。

補助翼の操舵に対する横揺れ角速度の伝達関数は次のように書ける。

$$\frac{P}{\delta_a} = \frac{L_{\delta a} s \left(s^2 + 2\zeta_{\phi} \omega_{\phi} s + \omega_{\phi}^2\right)}{\left(s + \lambda_s\right) \left(s + \lambda_R\right) \left(s^2 + 2\zeta_d \omega_d s + \omega_d^2\right)}$$
(4.4)

上式で $1/\lambda_s$ はスパイラルモードの時定数, $1/\lambda_R$ はロールモードの時定数, ω_d はダッチロールモードの角振動数, ζ_d はその減衰比である。

補助翼のステップ操舵に対する横揺れ角速度応答を時間平面で書くと次のようになる。

$$\frac{P(t)}{L_{\delta a} \delta_a} = K_s e^{-\lambda_s t} + K_R e^{-\lambda_R t} + K_D e^{-\zeta_d \omega_d t}$$

$$\sin(\omega_d \sqrt{1 - \zeta_d^2} t + \varphi_d) \qquad (4.5)$$

 K_S , K_R , $K_D = K_1 e^{-i\varphi_d} + K_2 e^{+i\varphi_d}$ は部分分数の展開 定理により次式のように求められる。(文献 35 参照)

$$K_{s} = \frac{s^{2} + 2\zeta_{\phi} \omega_{\phi} s + \omega_{\phi}^{2}}{(s + \lambda_{R}) (s^{2} + 2\zeta_{d} \omega_{d} s + \omega_{d}^{2})} \Big|_{s = -\lambda_{S}}$$
(4.6)

$$K_{R} = \frac{s^{2} + 2\zeta_{\phi} \omega_{\phi} s + \omega_{\phi}^{2}}{(s + \lambda_{s}) (s^{2} + 2\zeta_{d} \omega_{d} s + \omega_{d}^{2})} \Big|_{s = -\lambda_{R}}$$
(4.7)

$$K_{1} = \frac{s^{2} + 2\zeta_{\phi}\omega_{\phi} s + \omega_{\phi}^{2}}{(s + \lambda_{s})(s + \lambda_{R})(s + \zeta_{d}\omega_{d} - i\omega_{d}\sqrt{1 - \zeta_{d}^{2}})} \Big|$$

$$|s = -(\zeta_{d}\omega_{d} + i\omega_{d}\sqrt{1 - \zeta_{d}^{2}}) \qquad (4.8)$$

$$=\frac{1}{2}K_De^{i\varphi_d}$$

$$K_2 = \frac{1}{2} K_D e^{-i\varphi_d} \tag{4.9}$$

これを図示すると図4.1のようになる。図 \pm り K_D/K_S が大きいと応答は振動的になることが判る。この比は次式で与えられる。

$$\frac{K_D}{K_s} \cong \frac{2 d_1}{\omega_d} \tag{4.10}$$

ここに d_1 は分母の2次式(f_2 チロールモード)の根から分子の f_2 次式の根迄の f_3 平面上での距離で与えられ、 f_4 f_2 f_3 f_4 f_4 f_5 f_5 f_6 f_7 f_8 f_8 f_8 f_8 f_8 f_8 f_9 f_9

$$\frac{K_D}{K_s} = 2\left(1 - \frac{\omega_\phi}{\omega_d}\right) \tag{4.11}$$

となる。したがってd₁が大きい時,補助翼操舵に対する横揺れ角速度応答は振動的になる。この応答が振動的である事は操縦性を悪化すると考えられるので,種々の方法でこの量を大きくして操縦の限界点を調べた。すなわち,Q.A.機のフラップ 20 %,速度 115 mph,高度6,000 ft を原型機とし,それからV.S.A.装置を用いてつぎのような変化をさせて操縦の限界点を探った。

(i)
$$N_{\delta a}^* = N_{\delta a} / L_{\delta a}$$
 変化

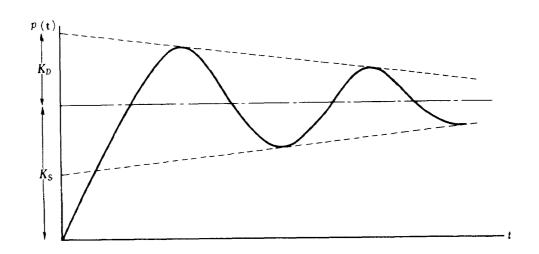


図 4.1 補助翼のステップ操舵に対する横揺れ角速度応答

	Nβ	N_{τ}	N_p	L_{β}	L_{r}	L_p
原型機	1.8	-0.25	-0.300	- 5.000	1.000	- 2.800
$L_{\tau}=0.5$	2.021	-0.185	-0.500	- 2.497	0.500	- 2.870
1.0	1.609	-0.247	-0.500	- 4.293	1.000	- 2.800
2.0	1.036	-0.255	-0.500	- 6.351	2.000	- 2.790
3.0	0.715	-0.206	-0.500	- 7. 748	3.000	- 2.840
4.0	0.423	-0.129	-0.500	- 8.858	4.000	-2.920

表1 安定 微係数

$N_p = 0$	2.171	-0.222	-0.000	- 7. 291	1.000	- 2.828
0.5	1.609	-0.247	-0.500	- 4.293	1.000	- 2.800
1.0	1.223	-0.203	-1.000	- 3.321	1.000	- 2.847
1.5	0.917	-0.131	-1.500	- 2.791	1.000	- 2.919

 $N_{\delta a}^*$ を 0, +0.1, +0.2, -0.1, -0.2と変化させた。

(ii) L_{τ} 変化(但し $N_{P}=-0.5$)

 L_{τ} を 0.5, 1.0, 2.0, 3.0, 4.0 と変化させた。

(iii) N_P 変化(但し $L_T=1.0$)

 N_P を 0 , -0.5 , -1.0 , -1.5 と変化させた。 $N_{\delta a}^*$ は $N_{\delta a}$ $/L_{\delta a}$ を表わす記号とし以下これを用いる。 各場合について横方向の運動方程式の特性根は変化しないように,各徴係数を変化させた。各徴係数の値を表 1 に示す。

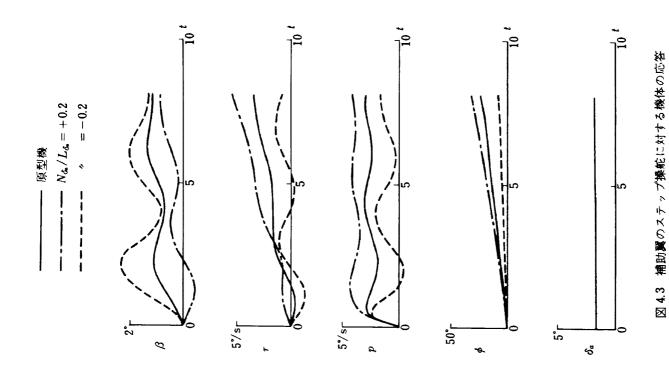
原型機, $N_{\delta a}^* = +0.1, +0.2, -0.1, -0.2$ の場合の補助 翼のステップ操舵に対する横揺れ角速度応答の分母の2 次式の根(これは全ての場合同じである。)と分子の2 次式の根を図 4.2 に示す。原型機, $N_{\delta a}^* = +0.2$, -0.2, の場合の補助翼のステップ操舵に対する機体の応答を図 4.3 に示す。図より $N_{\delta a}^* = -0.2$ の場合は d_1 がかなり大 きく、横揺れ角速度応答もかなり振動的になっているの がみられる。 $L_r = 0.5, 1.0, 2.0, 3.0, 4.0, N_P = 0$, -0.5,-1.0.-1.5 と変化させた時の補助翼のステップ 操舵に対する横揺れ角速度応答の分母の2次式の根(こ れは全ての場合同じである。)と分子の2次式の根を図 4.4 に示す。原型機、 $L_r = 2.0$, $N_P = -1.0$ の場合の補 助翼のステップ操舵に対する機体の応答を図4.5に示す。 これ等の図から、 $L_r = 2.0$ 、 $N_P = -1.0$ の場合は d_1 がか なり大きく, 横揺れ角速度応答はかなり振動的になって いるのが見られる。

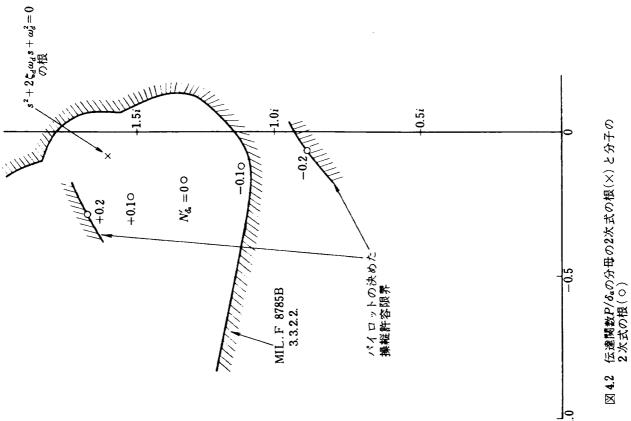
§ 5 V.S.A. 機と計測装置

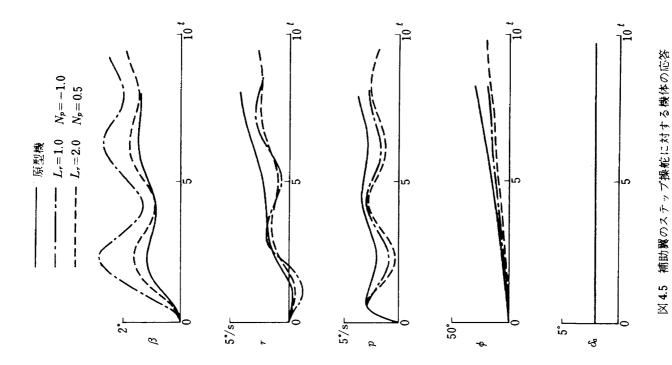
Q.A.機にオートバイロット PB20J (YS-11 に使用)のサーボ電動機を各舵に取付け、さらに PB20Jのサーボ増幅器を用いて各舵が電気信号で動くようにした。そして機体の種々の状態量(β , τ ,p, δ a, δ r等)の変化を電気量として検出し、ボテンショメータを通して適当な大きさにして、サーボ電動機を通して方向舵あるいは補助翼を作動させて機体にモーメントを与え、機体の運動特性、操舵応答特性を変化させた。各サーボ電動機にフィードバックされる状態を示すと図 5.1 のようである。運動特性、操舵応答特性の変化の性質はフィードバックする状態量を適当に選ぶ事により、またその程度はフィードバックの比例常数をボテンショメータにより変化させる事で変えられた。

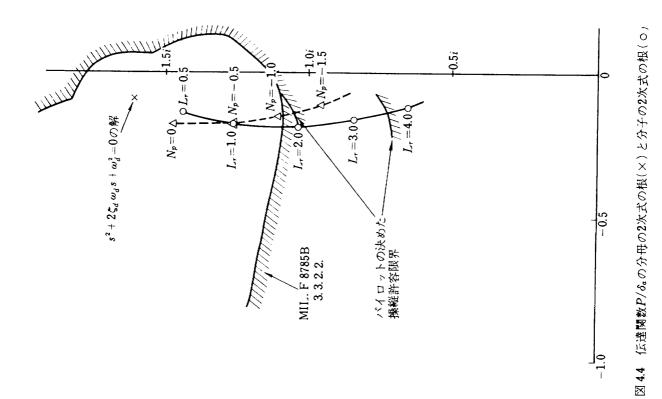
さらに、可変安定化のため若干機体の改修を行った。 つまり、操縦索とサーボ電動機とを連結し、3舵をサー ボ電動機により動かせるようにした。このままではバイロットが操縦桿を固定するとサーボ電動機は動作を行わなくなる。そこで副操縦席の操縦桿あるいはペダルと操縦索との結合を切離して、副操縦索の動きは変位計、サーボ増巾器、サーボ電動機という電気制御回路を介して舵面に伝わるようにした。

すなわち、V.S.A.機としては副操縦系統を用いる こととし、主操縦系統の機能は原型機のまま残して緊急 時の over ride を行なわれるようにした。副操縦系統の 操縦桿あるいはペダルには操舵力を与えねばならないの でスプリングにより変位に比例した力を与えた。操縦桿









にはふらふらしないようにダンバーも取付けた。実際には方向舵ペダルについては原型機の機構を利用したが、昇降舵、補助翼用とそれに付随した機構は新たに製作し、操縦席と計器盤との間の床面に取付けた。改修後の昇降舵系統、補助翼系統、方向舵系統の模様を図5.2(a),(b),(c)に示す。各舵の単位変位についての操舵力は方向舵ペダルについては5.3 kg/cm・補助翼輪については97.8g/deg, 昇降舵操縦輪については0.88 kg/cmである。なか、補助翼系のサーボ増幅器、サーボ電動機、舵面及びその間の機構を含めた周波数特性は図5.3(a)の通りである。ゲインは(実際の舵角)/(操縦輪の動き)を示す。振幅8°の時は固有振動数は約0.8 Hz,振幅2°の場合は1.5 Hzである。振幅2°の場合低周波でゲインがや

や落ちるが、これは各部のフリクションの影響と考える。位相かくれは振幅 8°, 2°の場合共に低周波において約20°あった。方向舵については図 5.3(b)に示すが、振幅4.6°で固有振動数約0.8Hz、振幅1.1°で約1.5Hzであった。この場合も低振幅の時ゲインの落ちがあった。位相差はこの場合も低周波で約20°あった。以上のようにサーボ機構にやや欠点はあったが、操縦上問題になるのは0.05~1Hz の周波数であり、バイロットも操縦桿及びベダルの時間かくれについて不具合を云わなかったので以上の状態のまま実験を行った。

計測は,操舵量 (δ_a, δ_r) と機体の状態量 (β, p, r) と乱気流を模擬するのに用いたノイズ信号について行った。 δ_a , δ_r の計測はセルシン (400 Hz 使用) を用いた

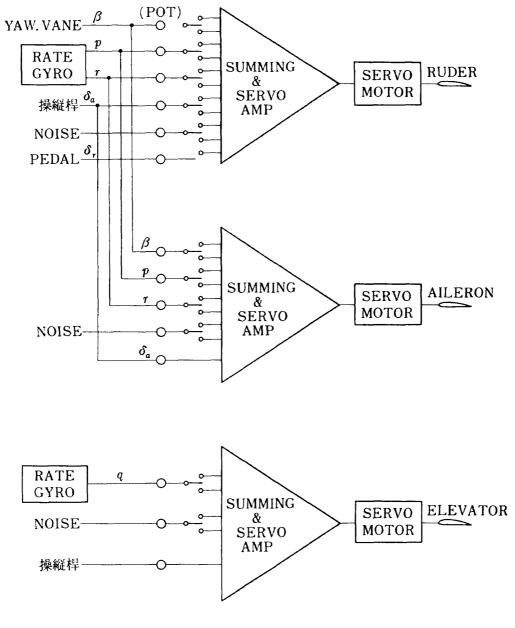


図51 V.S.A.装置のフィードバック量のブロック線図

ボジショントランスミッタ(図 5.4 に示す)を使用した。 βの計測は図 5.5 に示すような矢羽根を用いた。この矢 羽根の横滑りによる変角をセルシン型のボジショントラ ンスミッタで電気量とした。矢羽根の周波数特性は飛行 速度 115 mph で固有振動数 10 Hz, ダンピング比 0.1 である。 p, rの計測は rate gyro を用いそのセンサも セルシン型ボジショントランスミッタを使用した。計測 量はペンレコーダでモニタすると同時にテープレコーダ に記録した。テープレコーダに適当なゲインで記録する ために、計測アンプ及びボテンショメータでゲインを調整した。サーボ電動機用、サーボ増幅器用、rate gyro 用、ボジショントランスミッタ用の 400 Hz の電源は機 上電源 28 VDC をインバータ(JET MODEL SCR-751)を通して得た。サーボ増幅器、計測用増幅器、記 録器等の機内に搭載した模様を図 5.6 に示す。

§ 6 飛行実験及びその結果

飛行実験はV.S.A. 化されたQ.A.機を用い、機体

に§ 4 で述べた各種の運動特性を持たせ、高度約6000ft フラップ角 20 %, 速度 115 mph (IAS) において, テ ープレコーダに記録したノイズ信号をサーボ電動機に入 れて,補助翼及び方向舵を動かして機体に攪乱を与えて おき、パイロットに水平直進飛行を2分間行わせ、パイ ロットの所見を得ると共に,横滑り角(β),横揺れ角速 度 (p), 偏揺れ角速度 (r), 操舵量 (δ_a, δ_r) 及び使 用したノイズ信号(n)の計測を行なった。計測結果の 1 例を図 6.1 に示す。機体を質点と考え、機体の胴体方 向の攪乱の大きさの変化による効果を無視し、機体は大 気の攪乱によって攪乱速度に比例した横揺れモーメント 及び偏揺れモーメントを受けると考える。したがって、 これらのモーメントを補助翼及び方向舵によって与える よりに、大気の攪乱に比例したノイズを記録したテープ レコーダの出力で補助翼用サーボモータ,方向舵用サー ボモータを動かした。使用したノイズのパワスペクトル 密度を図6.2に示す。その大きさは原型機においてパイ ロットが中程度と感じる程度とした。 r.m.s.は補助翼

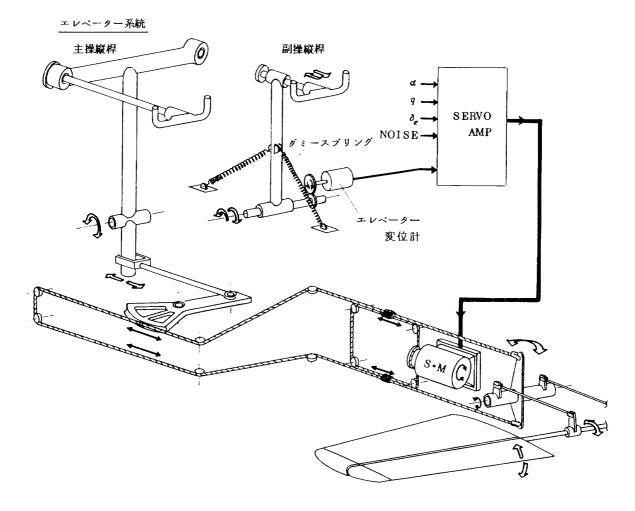


図 5.2(a) エレベーター系統のサーボモーター (S・M) 取付状況とダミー操縦桿

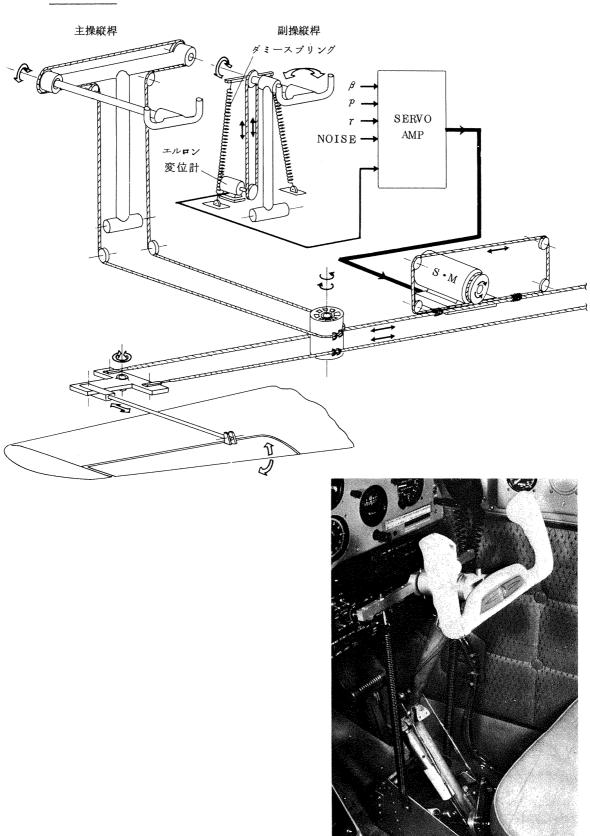
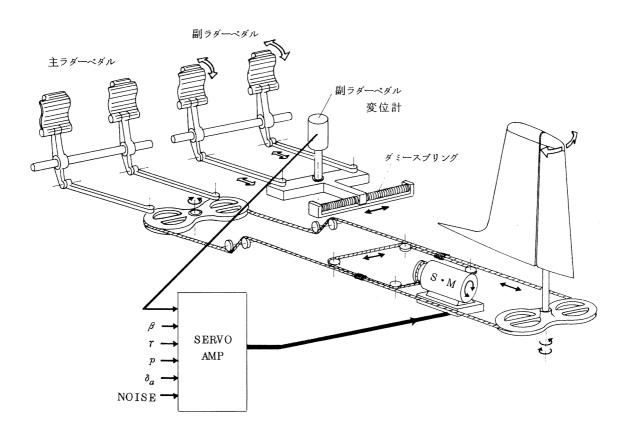


図 5.2(b) エルロン系統のサーポモーター(S・M) 取付状況とダミー操縦桿

ラダー系統



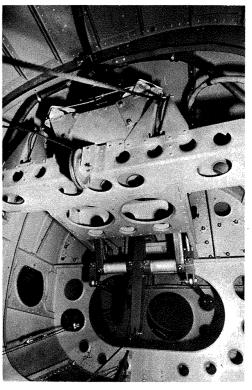
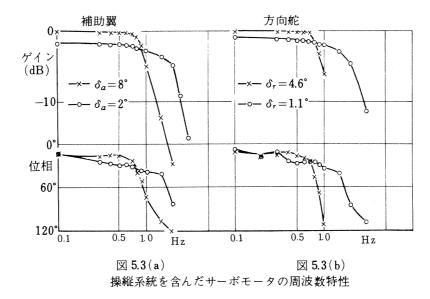


図 5.2(c) ラダー系統のサーボモーター (S・M) 取付状況



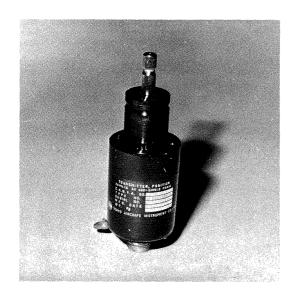


図 5.4 ポジショントランスミッター

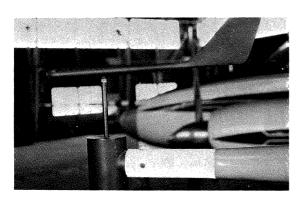


図 5.5 月計



図 5.6 サーボ増巾器,計測用増巾器,記録器 等の機内に搭載した模様

の角度にして 0.9° である。機体に与える横揺れモーメントと偏揺れモーメントの比はパイロットが実際に近いと感じるように定めてもらった。その結果,その比は次の通りである。

 $L_G: N_G = 1: -0.18$

符号は \S 4 で述べたように横風のみを考えているので, L_G と N_G の符号は上記のように逆である。もしこれが同符号であれば,パイロットから原型機でも運動は異様であるとの苦情が出され,パイロットは L_G と N_G の符号に関して非常に敏感であると飛行実験で確認された。上記の比は機体を質点とみなして大気から受けるモーメントを考える時は L_β : N_β であるべきである。原型機の場合この比は1:-0.36である。これではパイロットが

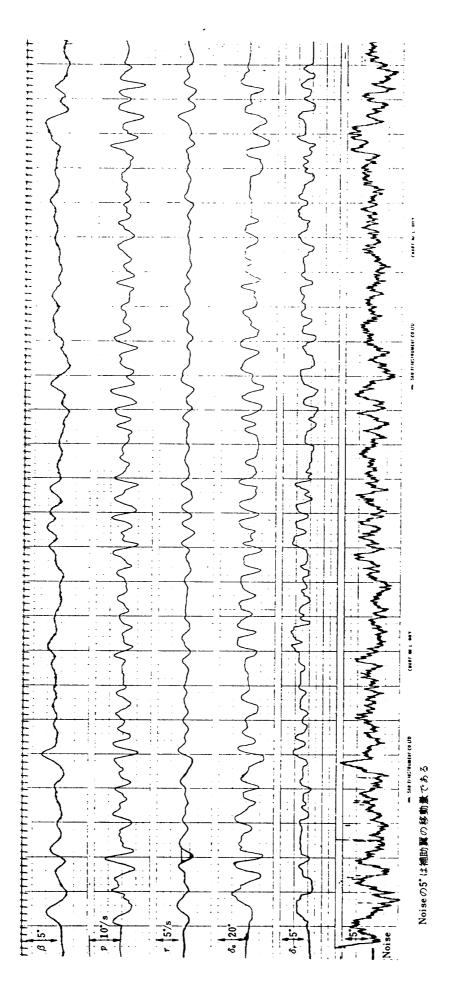


図 6.1 計測データの一例

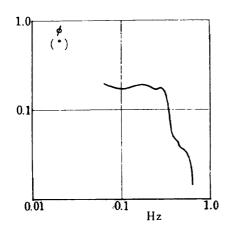


図 6.2 ノイズのPSD

横揺れモーメントに比して偏揺れモーメントが大き過ぎると感じたのは、機体を質点と見た事による誤差と考えられる。すなわち機体の胴体方向の大気の乱れの速度の分布を考えて簡単化の近似をすると、このような比になると考える。外乱は全ての場合同じものを使用した。すなわち、理論的にはV.S.A. 機でその安定徴係数を変化させた場合には、舵面によって与える疑似外乱の比 $L_G:N_G$ を安定徴係数の比 $L_p:N_p$ に応じて変化させるべきであるが、このようにすると $L_p:N_p$ の変化の影響が実験結果に強く現われて研究対象である伝達関数変化の効果を把握しにくくなるので、実験を通じて同一の外乱を用いた。

実験結果はつぎのとおりである。 $N_{\delta a}^*$ を変化させた場 合、①方向では+0.2 が操縦可能の限界値であり、偏揺 れ運動が大きいと云うパイロットの所見が得られた。⊖ 方向でも-0.2が操縦可能限界値である。大きな横風が 機体に対して右方向から吹いて来る場合、パイロットは 負の横揺れ運動を感じて右回転の補助翼操作をすると同 時に左足を踏む。しかし、右回転の補助翼操作に伴って, $N_{\delta a}^*$ が負に大きくなるにつれてアドヴァースヨーの性質 が大きくなり、左回転の偏揺れ運動を始めるため、左足 の踏み込みに続いて直ちに右足を踏むと云う所謂足の踏み 変えが必要となる。このため操縦が複雑になり、これ以 上 N が 負に大きくなると操縦不可能と云う所見が得ら れた。 $N_{\partial a}^*$ 変化の場合について、図 4.2 の中に限界線を 入れた。MIL SPEC 8785B⁰⁵では、§ 4で述べた ような補助翼操舵に伴う横揺れ運動の振動量を規定した 基準があるので、それを図4.4中に書き入れた。実験結 果とMIL SPECの限界線とはかなりの差が見られる が、その原因の一つにMIL SPEC は方向舵をあまり 使用しないパイロットを対象として作られているが、実 験を行ったパイロットは足の操作の難しいへリコブタの操縦の経験も豊かであるため方向舵を有効に用いたという事がある。 $N_{\delta a}^* = +0.2$, -0.2 に現われた操縦の困難さについては後の章でまた考察する。

次に L_r を変化した場合の実験結果を述べる。 $L_r=3.0$ が操縦可能の限界値であった。この場合は偏揺れ運動はそれ程でもないが,横揺れ運動が大きくなり操縦が困難になると云うバイロットの所見が得られた。 N_P を変化した場合は $N_P=-1.0$ が操縦可能の限界値であった。この場合は偏揺れ運動が非常に大きく現われ操縦が困難になると云うバイロットの所見が得られた。 L_r 変化、 N_P 変化の場合の操縦の限界は図 4.4 中に書き入れた。 N_{ba}^* 変化の場合と同様,MIL SPECと実験結果とは差が見られるが,その原因は N_{ba}^* 変化の時述べたと同じ理由によると考えられる。 $L_r=3.0$, $N_P=-1.0$ の時に現われた操縦の困難については後でまた考察する。

§ 7 飛行実験データを解析して求めたパイロットの伝 達関数

飛行実験データを次のように解析してパイロットの伝達関数を求めた。先ず、補助翼操作について考える。

機体が外乱によって攪乱を受けるとき、パイロットは 機体の何らかの運動を感じ、機体の運動を小さくしよう と補助翼を操作するわけであるが、補助翼操作の場合 0.05 Hz~1 Hzの周波数の範囲の操舵は、横揺れ角をな るべく小さくして機体を水平に保とうとしていると考え られる。それでは、どのような運動を検知しているかと 云う事は自明ではなく、また実験的にそれを求める事は, 運動方程式 (4.1) が示すように各状態量 (β, p, r等) が互に連成しているので、非常に困難である。 そこでこ こでは,物理的に考えて不当と思われないような次のよ **うな仮説をする。すなわち補助翼は機体の横揺れ角,横** 揺れ角速度、偏揺れ角、偏揺れ角速度に比例して、ある 時間遅れ τ_a で操舵される。さらにこの他外乱に線型的 に無関係な操舵、m(t)も行なりと仮定して議論を進め る。この時任意の時刻 t における補助翼の操舵量 $\delta_a(t)$ は次のように書ける。

$$\delta_{a}(t) = K_{\phi} \cdot \phi (t - \tau_{a}) + K_{P} \cdot p(t - \tau_{a}) + G_{\phi} \cdot \Psi (t - \tau_{a}) + G_{\tau} \cdot \tau (t - \tau_{a}) + m(t)$$

$$(7.1)$$

ここで、 K_{ϕ} , K_{P} , G_{Ψ} , G_{τ} は比例常数である。また、 τ_{a} は ϕ ,p, Ψ , τ で各々異る値を示すかもしれないが、これは人間の生理機能に基く量で、実験的には0.1 ~ 0.5 sec の値をとると証明されており、補助翼操作と云う 1 つの操作であるためと、各値を一定としても後述

の運動計算に及ぼす誤差は少ないと考え一定とした。上式に時刻t以前の色々な時刻t-uにおける外乱n(t-u)を掛けて、時刻 $u-\tau_a$ (但し $u>\tau_a$)からT(Tは計測時間)まで積分し, $T-u+\tau_a$ で割った量を求める。例えば $\delta_a(t)$ については次の通りである。

$$\frac{1}{T-u+\tau_a} \int_{u-\tau_a}^{T} \delta_a(t) n(t-u) dt = \gamma_n \delta_a(u)$$
(7.2)

 $\phi(t-\tau_a)$ については次の通りである。

$$\frac{1}{T-u+\tau_a} \int_{u-\tau_a}^{T} \phi(t-\tau_a) n(t-u) dt = \gamma_{n\phi}(u-\tau_a)$$
(7.3)

上記のような積分された量を右辺のようにで表わす。 ここで用いる外乱とは、§ 6 で述べた乱気流中の飛行を 模擬するために補助翼、方向舵をランダムに動かすのに 用いたノイズの時系列の事である。(7.1)式の両辺の項 全部についてこの操作を行なうと次式を得る。

$$\gamma_{n\delta_{a}}(u) = K_{\phi} \gamma_{n\phi}(u - \tau_{a}) + K_{P} \cdot \gamma_{np}(u - \tau_{a}) + G_{\psi} \gamma_{n\psi}(u - \tau_{a}) + G_{\tau} \cdot \gamma_{n\tau}(u - \tau_{a}) + \gamma_{nm}(u)$$

$$(7.4)$$

実際には、テープレコータのノイズによる S/N 比を良くするため、成分の多い低周波を小さくし、成分の少ない高周波成分を高める図7.1に示すような周波数特性を持ったフィルタを通して記録したデータを使用した。また、サンプリングに伴うアライアジングの影響を防ぐため、AD変換を行なう前に高周波カットのフィルタを通した。そして0.1秒かきにサンプルしたデータを用いて(7.2)、(7.3)の積分は区分求積法によって求めた。 Tは100秒とし、 uは0.1秒かきに5秒まで50点計算した。7nm は外乱とレムナントは無相関と云う考えから以下においては0として計算した。

(7.4) 式をフーリエ変換して次式を得る。

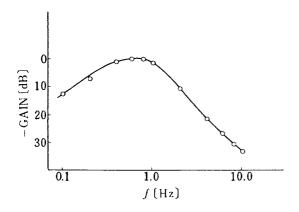


図7.1 プレホワイトニング用フィルター

$$\Phi_{n\delta a}(j\omega) = \left[K_{\phi} \Phi_{n\phi}(j\omega) + K_{P} \Phi_{np}(j\omega) \right]
+ G_{\Psi} \Phi_{n\Psi}(j\omega) + G_{r} \Phi_{nr}(j\omega) e^{-j\tau a\omega}
(7.5)$$

上式で例えば $\phi_{n\delta a}(j\omega)$ は次式のようにして計算した。

$$A(\omega_i) = \int_0^5 \gamma_{n\delta a}(u) \cos(\omega_i u) du$$
$$= \sum_{n=1}^{50} \gamma_{n\delta a}(n\Delta u) \cos(\omega_i n\Delta u) \Delta u$$

$$B(\omega_i) = \int_0^5 \gamma_{n\delta a}(u) \sin(\omega_i u) du$$

$$= \sum_{n=1}^{50} \gamma_{n\delta a}(n\Delta u) \sin(\omega_i n\Delta u) \Delta u$$
(7.7)

ただし、ことで $\Delta u=0.1$ である。 ω_i は $\pi/10$ rad/secから $\pi/10$ rad/sec かきに 1.2π rad/sec まで求めた。 さらに上の計算結果の分散を小さくするために、ハミングの ウィンドウを掛けて次の量を得た。

$$A'(\omega) = 0.54 A(\omega) + 0.46 A(\omega \pm \pi/10)$$

$$B'(\omega) = 0.54 B(\omega) + 0.46 B(\omega \pm \pi/10)$$

$$\omega = \pi/10: + (7.8)$$

$$\omega = 2\pi : - (7.9)$$

$$A'(\omega) = 0.54 A(\omega) + 0.23$$

$$\left[A(\omega - \pi/10) + A(\omega + \pi/10)\right]$$

$$B'(\omega) = 0.54 B(\omega) + 0.23$$

$$\left[B(\omega - \pi/10) + B(\omega + \pi/10)\right]$$

$$\omega \neq 2\pi \quad (7.11)$$

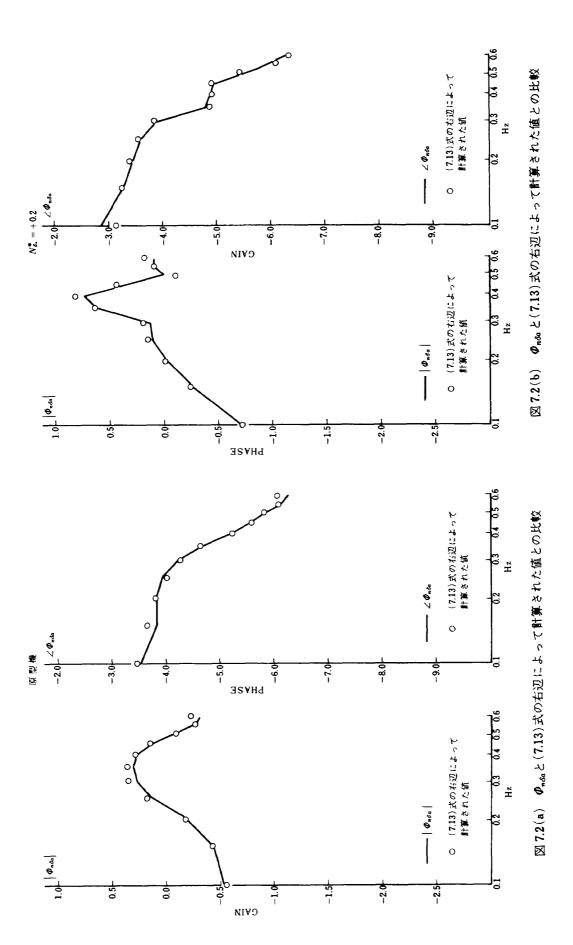
上の量を用いて $\phi_{n\delta a}(j\omega)$ は次のように表わされる。

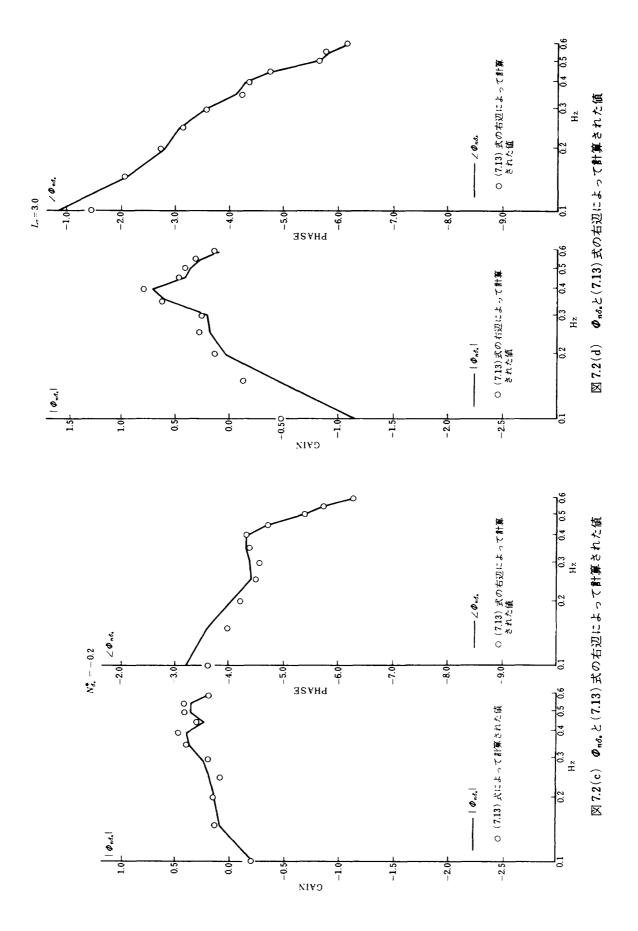
$$\Phi_{n\delta a}(j\omega) = A'(\omega) + jB'(\omega) \tag{7.12}$$

他の量も同様に計算した。(7.5) 式はまたつぎのように書ける。

$$\Phi_{n\delta a}(j\omega) = \left\{ \left[K_{\phi} / j\omega + K_{P} \right] \Phi_{np}(j\omega) + \left[G_{V} / j\omega + G_{T} \right] \Phi_{nr}(j\omega) \right\} e^{-j\tau_{a}\omega}$$
(7.13)

(7.13)式の $\mathbf{o}_{n\delta a}(j\omega)$, $\mathbf{o}_{np}(j\omega)$, $\mathbf{o}_{nr}(j\omega)$ は実験の計 測データ (n, δ_a, p, r) から上記のようにして計算されるので, $\omega = \pi/10$ rad/sec $\sim 1.2\pi$ rad/sec までの 12 点について振幅と位相の 24 個の方程式を得る。 この式に適合するように K_{ϕ} , K_P , G_{Ψ} , G_{τ} , T_a を求めた。 適合の度合を図 7.2 (a), (b), (c), (d), (e)に示す。 図中の実線は $\mathbf{o}_{n\delta a}$ の実験データをスペクトル解析して求めた \mathbf{o}_{np} , \mathbf{o}_{nr} 及びマッチングにより得られた K_{ϕ} , K_P ,





 G_{W} , G_{T} , T_{α} を用いて (7.13) 式によって計算した $O_{n\delta\alpha}$ である。原型機, $N_{\delta a}^* = +0.2$, $N_{\delta a}^* = -0.2$, $L_{\tau} = 3.0$, $N_P = -1.0$ の場合の各値を表 2 に示す。表を見ると G_{Ψ} G_r は K_o , K_P に比して小さく,最初補助翼は偏揺れ角, 偏揺れ角速度にも比例して動かしていると仮定したが、 解析結果ではその量は小さく、主に横揺れ角、横揺れ角 速度に比例して補助翼を動かしていると考えられる。ま た、表2を見るとKpの値は各場合でほぼ一定であるの が見られる。Kpは角速度に比例して動かす量であるの で,パイロットは原型機の操縦に慣れているので反射的 に Kp の値を定めていると考えられる。そして、機体の 特性が変化した時の操縦の適応は Ko によって行ってい ると考える。 K_{ϕ} , K_{P} の乱気流応答に及ぼす効果につい ては、§ 10 で述べる。をお、以下では次のようなモデ ルを用いる。

$$\delta_a(s) = -(K_P s + K_\phi) e^{-\tau_a s} \phi + m(s)$$
 (7.14)

次に方向舵について考える。との場合も方向舵操舵は 通常偏揺れ運動を小さくしようとして行なうと考えられ

るが、その操舵は如何なる量に比例して行われるかを決 定する事が困難であるので,補助翼操舵の場合と同様に, 方向舵は機体の横揺れ角、横揺れ角速度、偏揺れ角、偏 揺れ角速度に比例して、ある時間おくれてて操舵され、 さらにこの他に外乱と線型的に無関係な操舵m'(t)も行 なうと仮定して考える。この時任意の時刻 t における方 向舵の操舵量 $\delta_r(t)$ はつぎのように書ける。

$$\delta_{\tau}(t) = G_{\phi} \cdot \phi(t - \tau_{\tau}) + G_{p} \cdot p(t - \tau_{\tau}) + K_{\psi} \cdot \Psi(t - \tau_{\tau}) + K_{\tau} \cdot \tau(t - \tau_{\tau}) + m'(t)$$

$$(7.15)$$

ここで、 G_{ϕ} 、 G_{p} 、 K_{Ψ} 、 K_{r} は比例定数である。 以後補助翼の場合と同様の解析を行って次式を得る。

$$\Phi_{n\delta\tau}(j\omega) = \left\{ \left[G_{\phi} / j\omega + G_{p} \right] \Phi_{np}(j\omega) + \left[K_{\Psi} / j\omega + K_{\tau} \right] \Phi_{n\tau}(j\omega) \right\} e^{-j\tau_{\tau}\omega}$$
(7.16)

再び補助翼の場合と同様に実験データを用いて計算さ $n \neq \Phi_{n \delta r}(j \omega)$, $\Phi_{n p}(j \omega)$, $\Phi_{n r}(j \omega) \oslash \omega = \pi / 5$ rad /sec ~ 1.2π rad/sec までの 12 点について振幅と位



oximes 7.2(e) $\phi_{n\delta_e}$ と(7.13)式の右辺によって計算された値

表2 パイロットのゲインと時間遅れ

(1) 補助翼

	K_{ϕ}	K_p	Gqr	G_{τ}	τ_a
原型機	0.85	0.25	0.07	0.03	0. 3
$N_{\delta a}^{*} = +0.2$	0.75	0. 25	0.13	0.06	0. 3
$N_{\delta a}^* = -0.2$	1.05	0.25	0.08	0.00	0.3
$L_r = 3.0$	0.8	0.25	0.14	0.00	0.3
$N_p = -1.0$	0.5	0.3	0.02	0.01	0.45

(2) 方向舵

	$G_{m{\phi}}$	G_p	K_{Ψ}	K_{τ}	Tr
原型機	- 0.00	- 0.15	0	0.7	0. 2
$N_{\delta a}^* = +0.2$	- 0.04	- 0.27	0.15	1.2	0.3
$N_{\delta a}^* = -0.2$	- 0.02	- 0.19	0.45	0.6	0.15
$L_{\tau} = 3.0$	- 0.03	- 0.12	0.15	0.25	0.3
$N_p = -1.0$	- 0.02	- 0.19	0.3	1.15	0.25

相の 24 個の方程式を求め,この式に適合するように G_{ϕ} , G_{p} , K_{Ψ} , K_{r} , τ_{r} を求めた。この適合の度合を各場合について図 7. 3(a),(b),(c),(d),(e)に示す。図中の実線は $o_{n\delta r}$ の実験データをスペクトル解析して求めた値であり,〇印は実験データをスペクトル解析して求めた o_{np} , o_{nr} 及びマッチングで求めた $o_{n\delta r}$ である。原型機, $o_{n\delta r}$ である。根拠の場合の $o_{n\delta r}$ の値を表 $o_{n\delta r}$ である。表を見ると $o_{n\delta r}$ はかなり大きく,結局方向能は横揺れ角速度,偏揺れ角,偏揺れ角速度に比例して操舵されると考えられ,以下ではつぎのようなモデルを用いる。

$$\delta_{\tau}(s) = -G_{p} s e^{-\tau \tau_{S}} \phi - (K_{\Psi}/s + K_{\phi}) e^{-\tau \tau_{S}} r + m'(s)$$

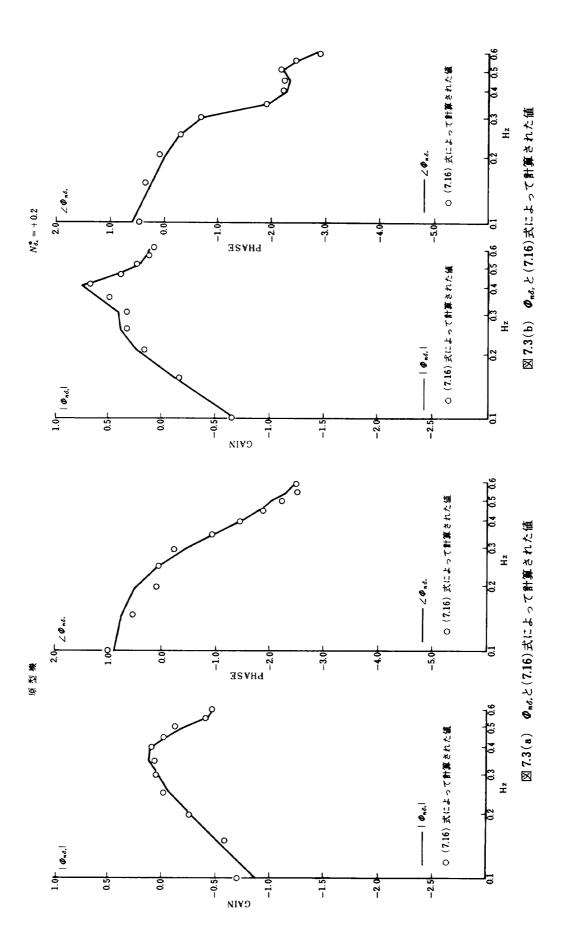
$$(7.17)$$

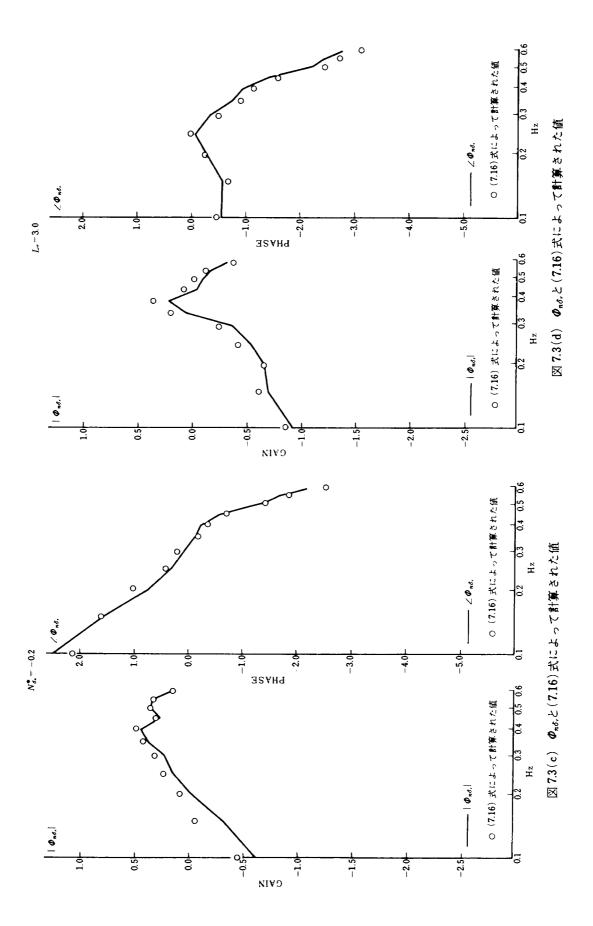
方向舵は通常上述のように偏揺れ運動を制御するのに 用いられると考えられるのに、横揺れ角速度に比例した 操舵が入って来る。これは機体が横風を受けるときは、 横揺れモーメントと偏揺れモーメントを受けるが、機体 の特性から,つまりロールモードの時定数がダッチロールモードの振動数よりかなり小さいため,横揺れ運動の方が偏揺れ運動より先に出る。バイロットは横風の攪乱により横揺れ運動を感ずるとき,補助翼操作を行なうが,続いて起る偏揺れ運動を予想して方向舵操舵を行なりと考えられ,これが G_p となって表現されたと考えられる。しかも (7.17)式で表わされた G_p は負で横揺れ運動に伴なり偏揺れ運動を打消す方向と一致している。

§ 8 乱れた気流中におけるパイロットの操縦を含んだ 機体の応答

(1) 乱れた気流中におけるパイロットの操縦を含んだ 機体の運動方程式と伝達関数

乱れた気流として横風のみを考える事とし、横風に対する横力は小さいとして無視する時、横風は機体に偏揺れモーメント $N_G\beta_G$ 、横揺れモーメント $L_G\beta_G$ を生む。ベイロットは \S 7に示したように補助翼を横揺れ角、横揺れ角速度に比例して動かすとし、方向舵を偏揺れ角、偏揺れ角速度、横揺れ角速度に比例して動かすとする。上記の事を考えて運動方程式は次のように書ける。





$$\begin{cases} (s-Y_{\beta}) \beta +_{\tau} -Y_{\phi}\phi = 0 & (8.1) \\ -N_{\beta} \beta + (s-N_{\tau})\tau & -N_{p}S\phi = 0 \\ N_{\delta\tau} \delta_{\tau} + N_{\delta a} \delta_{a} + N_{G} \cdot \beta_{G} & (8.2) \\ -L_{\beta} \beta & -L_{\tau}\tau + s(s-L_{p})\phi = 0 \\ L_{\delta a} \delta_{a} + L_{G} \cdot \beta_{G} & (8.3) \\ \delta_{a} = -(K_{p}s + K_{\phi})e^{-\tau_{a}s}\phi & (8.4) \\ \delta_{\tau} = -G_{p}se^{-\tau_{\tau}s}\phi - (K_{\tau} + K_{\psi}/s)e^{-\tau_{\tau}s}\tau \end{cases}$$

$$(8.5)$$

(8.4) 式と (8.5) 式を (8.2) 式, (8.3)式に代入して次式を得る。

$$\begin{cases} (s-Y_{\beta})\beta - \tau - Y_{\phi}\phi = 0 & (8.6) \\ -N_{\beta}\beta + \left(s - N_{\tau} + N_{\delta\tau}(K_{\tau} + K_{\psi}/s)e^{-\tau_{\tau}s}\right)\tau \\ + \left(-N_{p}s + N_{\delta\tau}G_{p}se^{-\tau_{\tau}s} + N_{\delta a}(K_{p}s + K_{\phi})e^{-\tau_{a}s}\right)\phi = N_{G} \cdot \beta_{G} \end{cases}$$

$$(8.7)$$

$$-L_{\beta}\beta - L_{\tau}\tau + \left[s(s - L_{p}) + L_{\delta a}(K_{p}s + K_{\phi})e^{-\tau_{a}s}\right] \phi = L_{G} \cdot \beta_{G}$$
(8.8)

 $e^{-\tau s}$ に対して Pa'de の近似式 $e^{-\tau s}=(-s+2/\tau)/$ $(s+2/\tau)$ を用いて運動方程式は次式のように書ける。 ただし, $2/\tau_a=Y$. $2/\tau_r=Z$ とおく。

$$(s-Y_{\beta})\beta + \tau - Y_{\phi}\phi = 0$$

$$-N_{\beta}\beta + (s-N_{\tau} + N_{\delta\tau}(K_{\tau} + K_{\Psi}/s))$$

$$\times (-s+Z)/(s+Z) r$$

$$+ (-N_{p}s + N_{\delta\tau}G_{p}s(-s+Z)/(s+Z))$$

$$+N_{\delta a}(K_{p}s + K_{\phi})(-s+Y)/(s+Y) \phi = N_{G} \cdot \beta_{G}$$

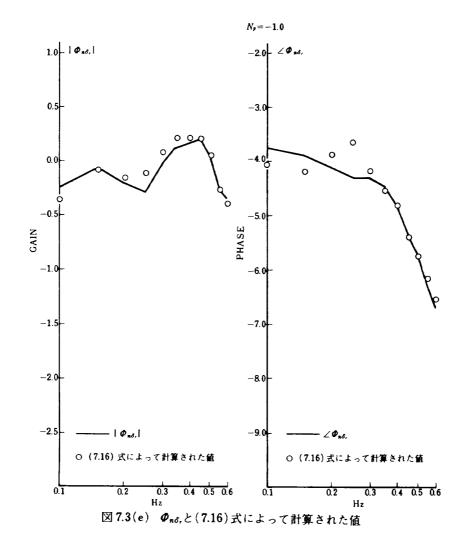
$$(8.10)$$

$$-L_{\beta}\beta - L_{\tau}\tau + (s(s-L_{p}) + L_{\delta a}(K_{p}s + K_{\phi}))$$

$$\times (-s+Y)/(s+Y) \phi = L_{G} \cdot \beta_{G}$$

$$(8.11)$$

上式より横風 $oldsymbol{eta}_G$ に対する偏揺れ角速度 $_{oldsymbol{ au}}$, 機揺れ角 $_{oldsymbol{\phi}}$ の伝達関数は次式のようになる。



$$\frac{\tau}{\beta_G} = \frac{1}{d} \begin{vmatrix} s - Y_{\beta} & 0 \\ -N_{\beta} & N_G \\ -L_{\beta} & L_G \end{vmatrix}$$

$$-N_{\beta} + N_{\delta\tau}G_{p}s \frac{-s + Z}{s + Z} + N_{\delta\alpha}(K_{p}s + K_{\phi}) \frac{-s + Y}{s + Y}$$

$$s(s - L_{p}) + L_{\delta\alpha}(K_{p}s + K_{\phi}) \frac{-s + Y}{s + Y}$$

$$\frac{d}{\beta_G} = \frac{1}{d} \begin{vmatrix} s - Y_{\beta} & 0 \\ -N_{\beta} & s - N_{\tau} + N_{\delta\tau}G_{\beta} & s - N_{\tau} & s - N_{\tau}G_{\beta} & s - N$$

ここで、
$$\Delta$$
は次のように書ける。
$$\Delta = \Delta_1 + \Delta_{\delta a} + \Delta_{\delta \tau} + \Delta_{\delta a}, \delta \tau$$

$$\Delta_1, \Delta_{\delta a}, \Delta_{\delta \tau}, \Delta_{\delta a}, \delta_{\tau}$$
は次の通りである。
$$\Delta_1 = \begin{vmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{vmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{vmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{vmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{vmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{pmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{pmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{pmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & -Y_{\phi} \\ -N_{\beta} & s - N_{\tau} & -N_{p} s \\ -L_{\beta} & -L_{\tau} & s (s - L_{p}) \end{pmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & N_{\delta}^* & s - N_{\sigma} \\ -N_{\beta} & s - N_{\sigma} & N_{\delta}^* & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} & s - N_{\delta} & s - N_{\delta} \end{pmatrix}$$

$$\Delta_1 = \begin{pmatrix} s - Y_{\beta} & 1 & N_{\delta}^* & s - N_{\sigma} \\ -N_{\beta} & s - N_{\sigma} & N_{\delta}^* & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} & s - N_{\delta} & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} & s - N_{\delta} & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} & s - N_{\delta} & s - N_{\delta} & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} & s - N_{\delta} & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} \\ -N_{\delta} & s - N_{\delta} & s - N_{\delta}$$

$$\Delta_{\delta a} = \begin{vmatrix} s - Y_{\beta} & 1 & 0 \\ -N_{\beta} & s - N_{\tau} & N_{\delta a} (K_{p} s + K_{\phi}) \frac{-s + Y}{s + Y} \\ -L_{\beta} & -L_{\tau} & L_{\delta a} (K_{p} s + K_{\phi}) \frac{-s + Y}{s + Y} \end{vmatrix}$$

$$= L_{\delta a} (K_{p} s + K_{\phi}) \frac{-s + Y}{s + Y} \left((s - N_{\tau}) (s - Y_{\beta}) + N_{\beta} + N_{\delta a}^{*} (L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta}) \right)$$
(8.16)

$$\Delta_{\delta\tau} = \begin{vmatrix} s - Y_{\beta} & 0 & -Y_{\phi} \\ -N_{\beta} & N_{\delta\tau}(K_{\tau} + K_{\psi}/s) \frac{-s + Z}{s + Z} & -N_{p} s \\ -L_{\beta} & 0 & s(s - L_{p}) \end{vmatrix}$$

$$+ \begin{vmatrix} s - Y_{\beta} & 1 & 0 \\ -N_{\beta} & s - N_{\tau} & N_{\delta\tau}G_{p} s \frac{-s + Z}{s + Z} \\ -L_{\beta} & -L_{\tau} & 0 \end{vmatrix}$$

$$= N_{\delta\tau} \frac{-s + Z}{s + Z} \Big((K_{\tau} + K_{\psi}/s) \Big\{ s(s - L_{p}) (s - Y_{\beta}) \\ -L_{\beta} & s(s - L_{p}) \Big\} + G_{p} s(L_{\tau} s - L_{\tau}Y_{\beta} - L_{\beta}) \Big\}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G} N_{\delta\tau} (K_{\tau} + K_{\psi}/s) (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$= L_{G}$$

$$\Delta_{\partial a.\,\partial \tau} = L_{\partial a} \cdot N_{\partial \tau} \frac{-s+Y}{s+Y} \cdot \frac{-s+Z}{s+Z} (s-Y_{\beta})$$

$$\times (K_{p} s+K_{\phi}) (K_{\tau}+K_{\psi}/s) \qquad (8.18)$$

$$\tau/\beta_{G} \mathcal{O} \mathcal{H} \mathcal{F} N (\tau/\beta_{G}) \dot{t} \mathcal{H} \mathcal{O} \mathcal{L} \mathcal{G} \mathcal{H} \mathcal{B} \mathcal{H} \mathcal{B}_{o}$$

$$N (\tau/\beta_{G}) = \Delta_{N,\tau} + \Delta_{N,\tau}^{\partial a} + \Delta_{N,\tau}^{\partial \tau} \qquad (8.19)$$

$$\mathcal{L} \mathcal{C} \mathcal{T}, \quad \Delta_{N,\tau}^{\partial a}, \quad \Delta_{N,\tau}^{\partial \tau}, \quad \Delta_{N,\tau}^{\partial \tau} \mathcal{H} \mathcal{H} \mathcal{O} \mathcal{B} \mathcal{G} \mathcal{D} \mathcal{B}_{o}$$

$$\Delta_{N,\tau} = \begin{vmatrix} s-Y_{\beta} & 0 & -Y_{\phi} \\ -N_{\beta} & N_{G} & -N_{p} s \\ -L_{\beta} & L_{G} & s(s-L_{p}) \end{vmatrix}$$

$$(8.20)$$

$$\Delta_{N,\tau}^{\delta a} = \begin{vmatrix} s - Y_{\beta} & 0 & 0 \\ -N_{\beta} & N_{G} & N_{\delta a}(K_{p} s + K_{\phi}) \frac{-s + Y}{s + Y} \\ -L_{\beta} & L_{G} & L_{\delta a}(K_{p} s + K_{\phi}) \frac{-s + Y}{s + Y} \end{vmatrix}$$

$$= -L_{G} L_{\delta a}(N_{G}^{*} + N_{\delta a}^{*}) (s - Y_{\beta}) (K_{p} s + K_{\phi}) \frac{-s + Y}{s + Y}$$
(8.21)

$$\Delta_{N,\tau}^{\delta\tau} = \begin{vmatrix} s - Y_{\beta} & 0 & 0 \\ -N_{\beta} & -N_{G} & N_{\delta\tau} G_{p} s \frac{-s + Z}{s + Z} \\ -L_{\beta} & L_{G} & 0 \end{vmatrix}$$
$$= -L_{G} N_{\delta\tau} G_{p} s (s - Y_{\beta}) \frac{-s + Z}{s + Z}$$

$$(8.22)$$

$$\phi/\beta_G$$
 の分子 N (ϕ/β_G) は次のように書ける。
$$N$$
 (ϕ/β_G) = $\Delta_{N,\phi} + \Delta_{N,\phi}^{\delta r}$ (8.23)

ここで、
$$\Delta_{N,\phi}$$
 , $\Delta_{N,\phi}^{\delta\tau}$ は次の通りである。
$$\Delta_{N,\phi} = \begin{vmatrix} s - Y_{\beta} & 1 & 0 \\ -N_{\beta} & s - N_{\tau} & N_{G} \\ -L_{\beta} & -L_{\tau} & L_{G} \end{vmatrix}$$
(8.24)

$$\Delta_{N,\phi}^{\delta\tau} = \begin{vmatrix} s - Y_{\beta} & 0 & 0 \\ -N_{\beta} & N_{\delta\tau}(K_{\tau} + K_{\psi}/s) \frac{-s + Z}{s + Z} & N_{G} \\ -L_{\beta} & 0 & L_{G} \end{vmatrix}$$

$$=L_{G}N_{\delta\tau}(K_{\tau}+K_{\psi}/s)(s-Y_{\beta})\frac{-s+Z}{s+Z}$$
(8.25)

なお、以下において $eta_G' = N_G \cdot eta_G$ とし伝達関数 au/eta_G

の代りに次式を計算して議論する。

$$\frac{r}{\beta_G'} = \frac{N(r/\beta_G)}{N_G \cdot \beta_G} \tag{8.26}$$

(2) 乱れた気流中におけるパイロットの操縦を含んだ 機体の応答のパワスペクトル密度

(j) 原型機の場合

他の場合も同じ様に計算した。

乱れた気流に対する機体の偏揺れ角速度応答,横揺れ角応答のパワスペクトル密度(以下PSD と記す。) ϕ_{rr} , $\phi_{\phi\phi}$ は (8.26) 式,(8.13) 式で与えられる伝達関数 r/β_G , ϕ/β_G を用いて,次式より計算する。

$$\Phi_{r\tau} = N_G^2 \left| \frac{\tau}{\beta'_G} \right|^2 \Phi_{\beta G}, \ \Phi_{\phi \phi} = \left| \frac{\phi}{\beta_G} \right|^2 \Phi_{\beta G}$$
(8.27)

以下の計算では $oldsymbol{arphi}_{eta G}$ は図 6.2 に与えられたノイズのPSD に近似的に近い次式で与えられるものを用いた。 $oldsymbol{arphi}_{eta G}=1/\left(s^2+4\right)$ (8.28)

(8.27) 式を用いてPSD θ_{rr} , $\theta_{\phi\phi}$ を計算すると図 8.1 (a) (b)のようになる。図中にバイロットが全く操縦を行なわない場合の機体の応答のPSD , 補助翼のみを操舵した時の機体の応答 PSD , 方向舵のみを操舵した時

の機体の応答のPSDを同時に示した。図にLれば補助

翼操舵は低周波領域における応答を軽減する効果があり、方向能操舵はそのような効果はないが、ダッチロールモードのダンピングを大きくして、その付近における応答を軽減する効果がある。上述の事が生ずる原因を以下の方法で調べた。先ずパイロットの操舵を含んだ伝達関数が操舵によりどのように変化するかを、その分母分子の根がパイロットのゲインが0から増加して行く時どのように変化するかを根軌跡を書いて調べる事により検討する。続いてこの伝達関数のボード線図及びそのスケルトンを調べ、これらによって伝達関数の中味とPSDの表現とを結びつける。これらの事によって乱気流応答への操縦の効果を検討した。

(j)-1 横揺れ角応答

操舵のない場合を考える。 伝達関数は次式で与えられる。

$$\frac{\phi}{\beta_G} = \frac{\Delta_{N,\phi}}{\Delta_1} \tag{8.29}$$

ここで、 $A_{N,\phi}$ はつぎのように書ける。

$$\Delta_{N,\phi} = L_G \left((s - N_T) (s - Y_\beta) + N_\beta - N_G^* \times (L_T s - L_\beta - L_T Y_\beta) \right)$$
(8.30)

上式を見ると, N_G^* の項のためかなりアドヴァースヨーの大きい機体の補助翼操舵に対する応答に似る。したがって,横風に対する横揺れ角応答にかなりのダッチロー

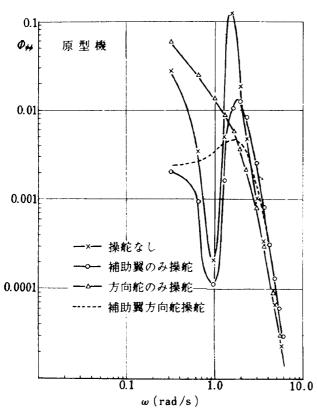


図 8.1(a) 横揺れ角のPSD

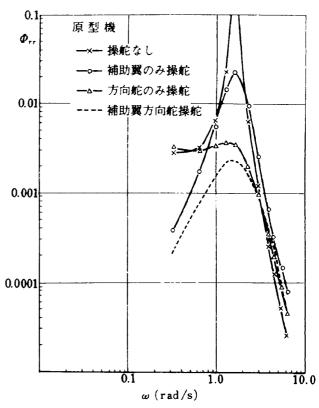


図8.1(b) 偏揺れ角速度のPSD

ルモードの成分が生ずる事が予想される。実際,上式を 計算してφ/β_Gに代入するとつぎのようになる。

$$\frac{\phi}{\beta_G} = \frac{8.35 \left\{ \left(\frac{s}{0.939}\right)^2 + 2 \times 0.091 \left(\frac{s}{0.939}\right)}{\left(\frac{s}{0.0138} - 1\right) \left(\frac{s}{2.97} + 1\right) \left\{ \left(\frac{s}{1.604}\right)^2 + 2 \times 0.06} - \frac{+1}{1.604} \right\}}$$

$$(8.31)$$

上式から、 N_G^* の項のため分母分子の 2 次式の根は複素面上でかなり離れてしまう事が判る。これは横風に対する機体の横揺れ角応答の特質と考える。

上記の伝達関数のボード線図及びそのスケルトルを書 くと図8.2(c)のようになる。この図の線の下の面積が小 さい程、ホワイトノイズの乱気流に対して感度が小さい と云える。大気中に存在する乱気流はあるパワスペクト ル密度を持っているので、大気中に存在する乱気流に対 する応答はこのパワスペクトル密度に直接影響を受ける。 しかし以下では先ず伝達関数の性質を把握し、続いて乱 気流のパワスペクトル密度を考えに入れた考察に進む事 にする。ボード線図の下の面積は、伝達関数の分母の因 子の1次式ではsの項の分母,2次式ではs² の項の分 母が大きい程,分子の因子のそれが小さい程,一般には 小さい。しかしこれは2次系のダンピングの効果につい ての考察を行っていない。分母についてはダンピングが 大きい程,分子については小さい程,面積は小さくなる。 スケルトン図上の各モードの所に, 分母(図(a)), 分子 (図(b))の根軌跡と対応出来るように記号を書き入れた。 各根の記号は原則としてダッチロールモードは D, スパ イラルモードはS, ロールモードはR, 方向舵操舵時間 おくれによる根は Tr , 補助翼操舵時間おくれによる根 は T_a , また連成した根は各記号を並べて書いた。 例え ばロールモードとスパイラルモードの連成根はRSと書 いた。尚分母のモードは上方から矢印で示し、分子のモ ードは下方から矢印で示した。

パワスペクトル密度 (PSD) は図 8.2(d)のようになり、 分母、分子の2次式のダンピングが小さいのでそれぞれ の周波数で大きな山と深い谷が出来る。

補助翼のみ操舵した場合。 伝達関数は、(8.13)式で δ_{τ} を含む項を0として書くと、次式のようになる。

$$\frac{\phi}{\beta_G} = \frac{\Delta_{N,\phi}}{\Delta_1 + \Delta_{\delta a}} \tag{8.32}$$

つまり、操舵なしの場合と比べて分母のみつぎのように 変化する。

$$\Delta_{1} + \Delta_{\delta a} = \Delta_{1} \left(1 + \frac{L_{\delta a} K_{p} (s + K_{\phi} / K_{p}) \left\{ (s - Y_{\beta}) \right\}}{\Delta_{1} (s + Y)} \times \frac{(s - N_{r}) + N_{\beta} \left\{ (-s + Y) \right\}}{\Delta_{1} (s + Y)}$$

$$(8.33)$$

したがって, K_{ϕ}/K_{P} を固定し, K_{P} を変化した時の上式の根軌跡を書くと図 8.3 (a)の実線のようになり,飛行実験時のパイロットゲインで△印の根を得る。×印は操舵なしの場合の根である。図から以下の事が判る。パイロットのゲインを増すとダッチロールモードはそのダンピングを増加する。スパイラルモードとロールモードは一体となり連成して振動根RS となる。 これは,操舵により横揺れ角に復元モーメントを持つようになり, 2つの 1 次系が連成して 2 次の振動系となるためである。飛行実験時のパイロットゲイン $K_{P}=0.25$ では $\omega=2.14$ rad/sec の振動根となっている。パイロットの操舵時間おくれによる根 (T_{a}) は減少し,-6.67 から-4.36 になる。分子は操舵なしの場合と変らないので,伝達関数は次式のようになる。

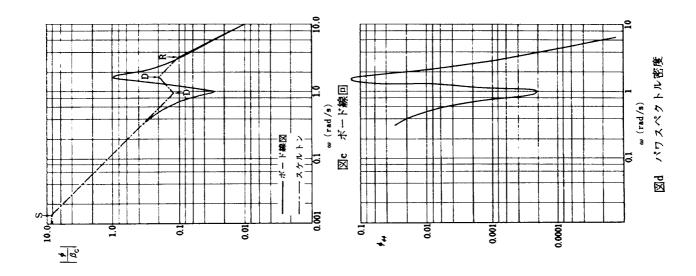
$$\frac{\phi}{\beta_G} = \frac{0.101 \left(\frac{s}{6.667} + 1\right) \left\{ \left(\frac{s}{0.939}\right)^2 + 2 \times 0.302 \left(\frac{s}{1.633}\right) + 1 \right\}}{\left(\frac{s}{4.36} + 1\right) \left\{ \left(\frac{s}{1.633}\right)^2 + 2 \times 0.302 \left(\frac{s}{1.633}\right) + 1 \right\}}$$

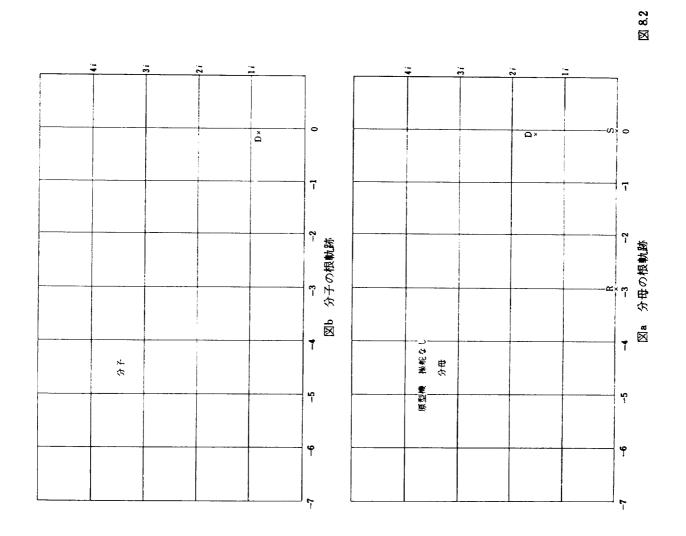
$$\frac{+2 \times 0.091 \left(\frac{s}{0.939}\right) + 1}{\left\{ \left(\frac{s}{2.238}\right)^2 + 2 \times 0.681 \left(\frac{s}{2.238}\right) + 1 \right\}}$$
(8.34)

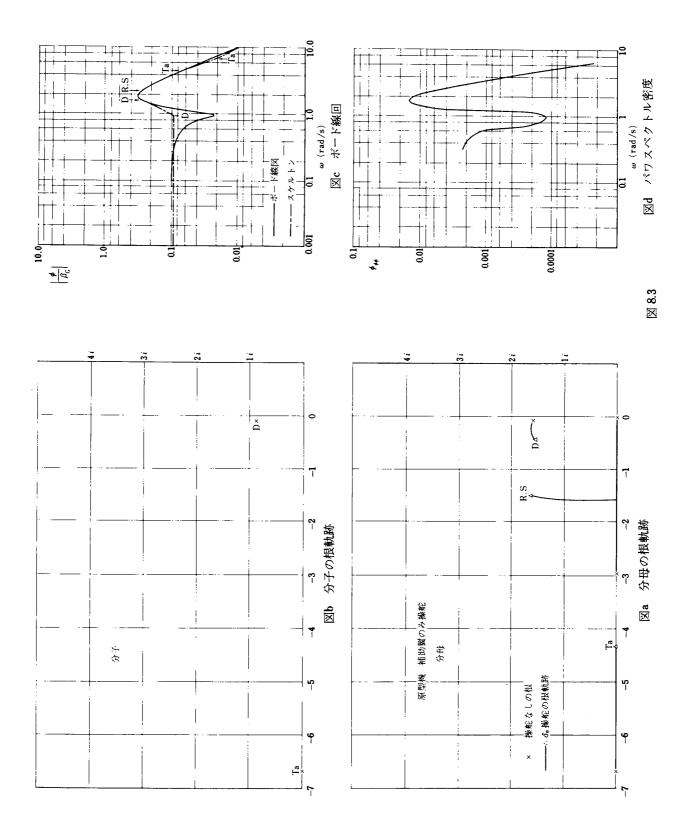
ボード線図及びそのスケルトンを書くと図 8.3(c)のようになる。(s/6.667+1)/(s/4.36+1)により若干変化するが,その効果はあまり大きくない。スパイラルモードとロールモードの連成はロールモードの根をやや小さくするがスパイラルモードの根を非常に大きくするため,低周波における乱気流に対する応答を著しく軽減している。この現象は所謂クロスオーバモデルを見出すのに用いた被制御系 1/s を操縦する時のパイロットの効果に似ている。その場合のパイロットの伝達関数は

$$Y_p = K e^{-\tau s} = K \frac{-s + 2/\tau}{s + 2/\tau}$$
 (8.35)

であると考えられ、その時の閉ループの分母の式の根はパイロットのゲインが0の時は0と-2/で にあるが、パイロットのゲインが大きくなると、その2つの根が連成して複素根となる。(図8.4(a))つまり操縦がない時、分母の根が0にあるため外乱による低周波の攪乱が大きいが、パイロットの操舵が入ると0にある根がある程度大きい複素根になるため、外乱による低周波の攪乱が軽減される。この場合の操舵あり、なしの場合の、被制御







系 1/s の乱気流応答のPSD の_s を図 8.4 (b)に示す。但しパイロットのゲインは位相余有が 1 rad になるように選んだ。つまり、前述の実際の飛行機の横揺れ角制御に似ている。PSD のφφ は図 8.3 (d)に示すようになり、低周波において操舵なしの時に比べて小さくなっているが、メッチロールモードのダンピングが未だ悪いため、またボード線図のスケルトンに見られるように分母分子の 2 次式の根が離れているため、ダッチロールモード付近に山が出来て、PSD にも山が出来る。分子の 2次式のダンピングも小さいのでその周波数付近に谷が出来る。

方向舵のみ操舵の場合。 伝達関数は (8.13)式で δ_a を含む項を 0 とおいてつぎのように求められる。

$$\frac{\phi}{\beta_G} = \frac{\Delta_{N,\phi} + \Delta_{N,\phi}^{\delta \tau}}{\Delta_1 + \Delta_{\delta \tau}} \tag{8.36}$$

この場合は操縦によって分母も分子も変化するが,先 ず分母について考える。分母は次式のように書ける。

$$\Delta_{1} + \Delta_{\delta \tau} = \Delta_{1} \left(1 + \frac{N_{\delta \tau} \left((K_{\tau} + K_{\overline{\psi}} / s) \left\{ s \left(s - L_{p} \right) \left(s - Y_{\beta} \right) \right\} - L_{\beta} Y_{\phi} \right\} + G_{p} s \left(L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta} \right) \right)}{s + Z} \cdot \frac{-s + Z}{s + Z} \right) (8.37)$$

 K_r , K_{Ψ} , G_p が 0 の時から (根を×印で示す)先ず K_{Ψ}

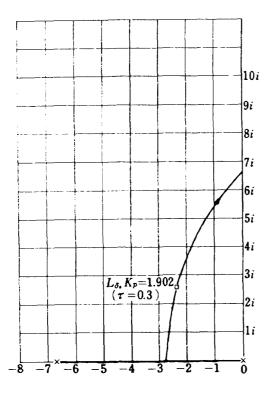


図8.4(a) 被制御系 1/Sのパイロットの ゲインが変化する時の閉ループの根 軌跡

を与えて(大きく変化する時のみ ∇ 印で示す) G_p は 0 にして K_r を増加した時の分母の根軌跡を書くと図 8.5 (a)の点線のようになり,飛行実験時のパイロットゲインの時を \bigcirc 印で示す。 つぎに G_p を変化させて根軌跡を一点破線で示し飛行実験時のパイロットゲインの時を \bigcirc 印で示す。 図より方向舵の効果はスパイラルモード,ロールモードへの影響は小さいが,ダッチロールモードのダンピングを大きくするのに役立っているのが見られる。 つぎに分子はつぎのように書ける。

$$\Delta_{N,\phi} + \Delta_{N,\phi}^{r} = \Delta_{N,\phi} \left(1 + \frac{L_G N_{\delta r} \left(s - Y_{\beta} \right) \left(K_r + K_{\Psi} / s \right)}{\Delta_{N,\phi}} \right)$$

$$\cdot \frac{-s + Z}{s + Z}$$

$$(8.38)$$

K_r を変化した場合の上式の根軌跡を示すと図8.5(b) のようになり、この場合も2次式のダンピングを大きくしているのが見られる。結局伝達関数は次式のようになる。

$$\frac{\phi}{\beta_G} = \frac{0.919 \left(\frac{s}{6.953} + 1\right)}{\left(\frac{s}{0.218} + 1\right) \left(\frac{s}{2.725} + 1\right) \left(\frac{s}{6.882} + 1\right)} \times \frac{\left\{ \left(\frac{s}{1.204}\right)^2 + 2 \times 0.813 \left(\frac{s}{1.204}\right) + 1\right\}}{\left\{ \left(\frac{s}{1.638}\right)^2 + 2 \times 0.63 \left(\frac{s}{1.638}\right) + 1\right\}} \tag{8.39}$$

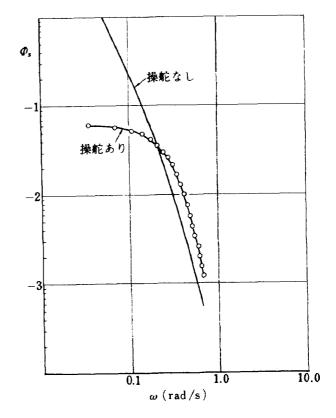
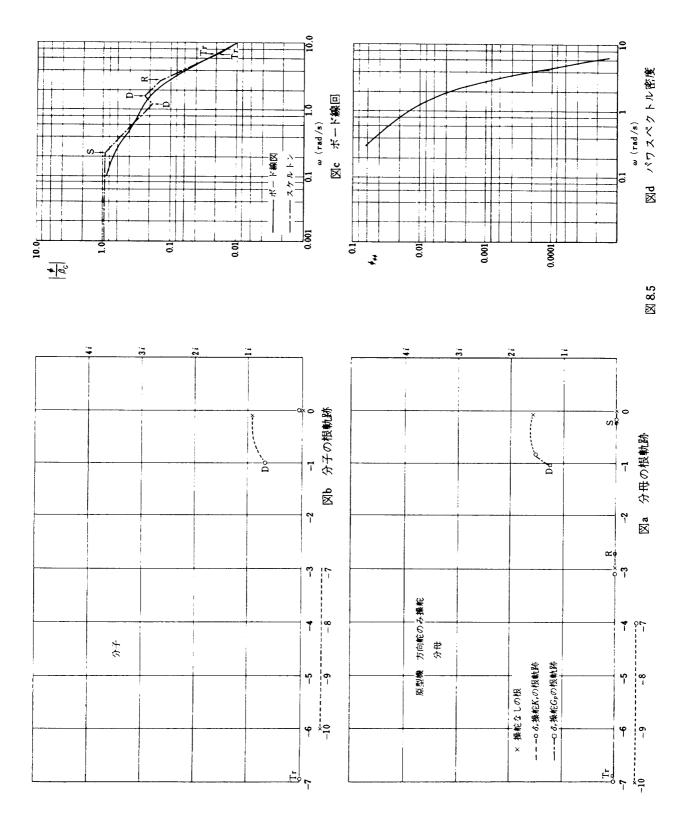
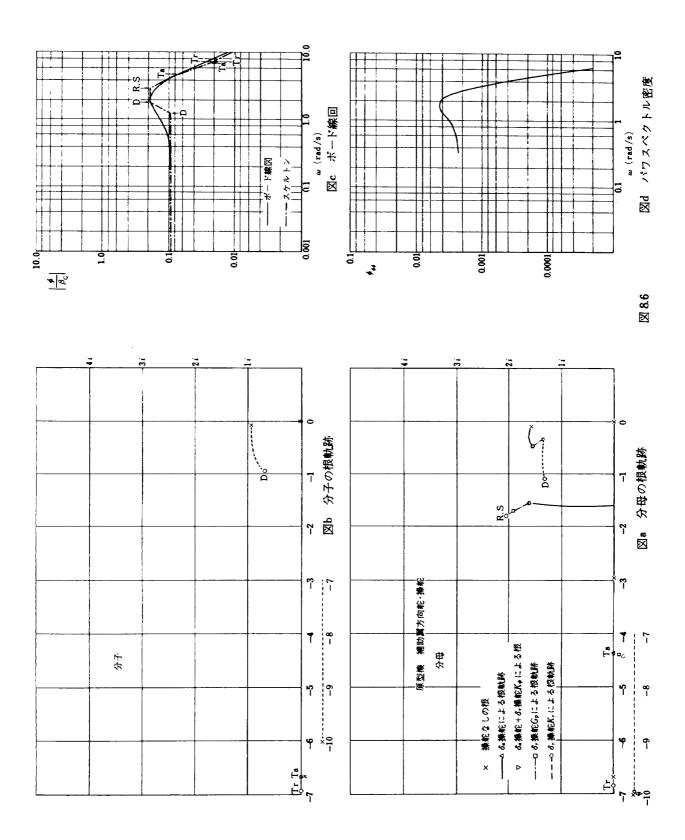


図8.4(b) 被制御系 1/SのPSD





ボード線図及びそのスケルトンを示すと図8.5(c)のようであり、スパイラルモードの根(S)が-0.218であるため、乱気流応答の低周波における軽減率がかなり小さい事を示し、所謂クロスオーバモデルの時に考えられる効果が少ない事が判る。しかし、ダッチロールモードのダンピングが大きくなるため、PSDの図8.5(d)に見られるように、ダッチロールモードの周波数の所に山が現われず、この点で乱気流応答の軽減の役をなしている。反面、分子の2次式のダンピングも大きくなっているので、その周波数付近の谷もなくなる。

補助翼、方向舵両方用いる場合。 この時は、ほぼ両方の効果の和と考えられる。伝達関数の分母の根の操舵による根軌跡への効果を補助翼について先に示し、それに方向舵の効果を加えた図を図8.6(a)に示す。概略において両舵の効果の和であるのが図から見られる。分子の根の舵による効果は方向舵のみ操舵の場合と同じである。伝達関数は次式のようになる。

$$\frac{\phi}{\beta_{G}} = \frac{0.095 \left(\frac{s}{6.667} + 1\right) \left(\frac{s}{6.953} + 1\right)}{\left(\frac{s}{4.417} + 1\right) \left(\frac{s}{6.923} + 1\right) \left\{ \left(\frac{s}{1.743}\right)^{2}} \\
= \frac{\left\{ \left(\frac{s}{1.204}\right)^{2} + 2 \times 0.813 \left(\frac{s}{1.204}\right) + 1\right\}}{+2 \times 0.636 \left(\frac{s}{1.743}\right) + 1\right\} \left\{ \left(\frac{s}{2.751}\right)^{2} + 2 \times 0.65 \left(\frac{s}{2.751}\right) + 1\right\}} \tag{8.40}$$

ポード線図及びそのスケルトンは図 8.6(c)のように補助翼操舵によるロールモードとスパイラルモードの連成 (RS)によるスパイラルモードの根の増大が効いて,低周波領域における乱気流応答の軽減が顕著である。

PSD $\phi_{\phi\phi}$ は 図 8.6(d)に示すようになり、上記の補助 翼の効果の外に方向舵によるダッチロールモードのダン ピンクの増大の効果のため、その周波数付近の乱気流応 答の軽減を顕著にしている。

(j)-2 偏揺れ角速度応答

この場合と横揺れ角応答との違いは伝達関数の分子に あるのでそれに注目しながら議論する。

操舵なしの場合。 伝達関数の分子は横揺れ角応答の場合 2 次式であったが、ここではつぎのように 3 次式になる。

$$\left(s(s-Y_{\beta})(s-L_{p})-L_{\beta}Y_{\phi}+(-L_{G}/N_{G})\right) \times \left\{-N_{p}s(s-Y_{\beta})-N_{\beta}Y_{\phi}\right\}$$
(8.41)

上式で, L_G/N_G 以下の項がなければ,方向舵操舵に対する機体の偏揺れ角速度応答の伝達関数の分子の式に一致する。 L_G/N_G の値が 0 から増加した時の (8.41)式=

0とした根軌跡を示すと図8.7のようになり、今後の計算に用いる $-L_G/N_G=5.56$ の場所を \square 印で示す。 $L_G/N_G=0$ の値からかなりの変化がみられる。これは要するに横風によって横揺れモーメントが発生し、これが機体の運動方程式を通して偏揺れ角速度に及ぼす効果と考えられる。(8.41) 式=0 に実際の値を入れて乱気流(横風)に対する機体の偏揺れ角速度応答の伝達関数を書くと、つぎのようになる。

$$\frac{\frac{r}{\beta_G'} = \frac{9.057 \left(\frac{s}{0.396} - 1\right)}{\left(\frac{s}{0.0138} - 1\right) \left(\frac{s}{2.97} + 1\right)} \times \frac{\left(\frac{s}{0.546} + 1\right) \left(\frac{s}{4.417} + 1\right)}{\left\{\left(\frac{s}{1.604}\right)^2 + 2 \times 0.06 \left(\frac{s}{1.604}\right) + 1\right\}}$$
(8.42)

ボード線図及びそのスケルトンは図 8.8 (c)のようになる。スケルトンの図で、分子のモードについては N_1 、 N_2 、 N_3 と名付けて下方からの矢印でその位置を示し、根軌跡との対応づけを見易くした。以下全てこのようにする。図のダッチロールモードの周波数付近をみると、それ以上の周波数では (s/4.417+1)/(s/2.97+1)すなわち N_3 /R という形で分母分子の影響が打消し合って ω^{-1} の傾斜でダッチロールモードに近付く。ダッチロールモードの周波数より小さい所では ω^{+1} の傾斜になり、続く分子の根が小さいので $\omega=0.546$ rad /s ec(N_2) まで ω^{+1} の傾斜が続き、結局ダッチロールモードの所に山が出来る。実際のボード線図ではダッチロールモードのダンピングが小さいため、スケルトンよりかなり高い山になる。

PSD Ø_{rr} は図 8.8(d) のようになり、上述のようにダッチロールモードの周波数の所に山が出来る。

補助翼のみ操舵の場合。 伝達関数の分子はつぎのようになる。

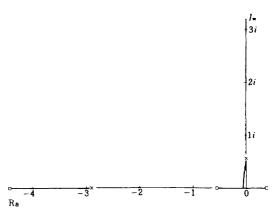
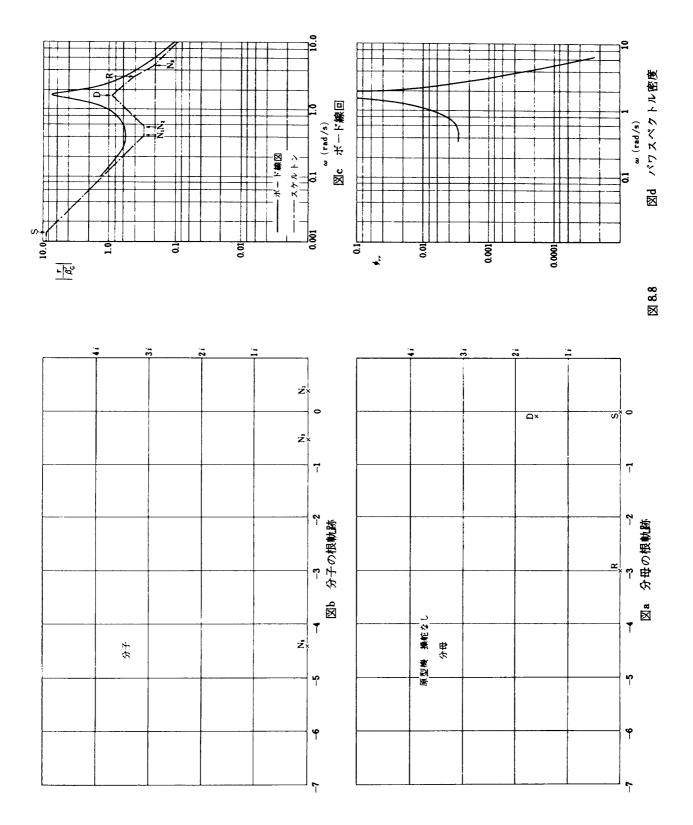


図 8.7 伝達関数 $r/eta_{
m G}'$ の分子の根の $L_{
m G}/N_{
m G}$ 変化の根軌跡



$$\frac{\Delta_{N,\tau} + \Delta_{N,\tau}^{\delta a}}{-N_G} = \frac{\Delta_{N,\tau}}{-N_G} \left(1 - \frac{L_{\delta a} \left(N_G + L_G N_{\delta a}^* \right) \left(s - Y_{\beta} \right)}{\Delta_{N,\tau}} \times \frac{\left(K_p \, s + K_{\phi} \right)}{s + Y} \cdot \frac{-s + Y}{s + Y} \right) \tag{8.43}$$

 K_ϕ/K_P を一定にして K_P が変化する時の根の動きは図8.9 (b)に示すようになる。 $\Delta_{N,\tau}$ の根-4.43 (N_3)とバイロットの操舵時間おくれによる根-Y=-6.667 (T_a)とが連成して複素根 (T_aN_3)となる。伝達関数は次式のようになる。

$$\frac{r}{\beta_G'} = \frac{0.053\left(\frac{s}{0.083} - 1\right)\left(\frac{s}{1.69} + 1\right)}{\left(\frac{s}{4.358} + 1\right)\left\{\left(\frac{s}{1.633}\right)^2 + 2 \times 0.302\left(\frac{s}{1.633}\right) + 1\right\}} \times \frac{\left\{\left(\frac{s}{4.729}\right)^2 + 2 \times 0.867\left(\frac{s}{4.729}\right) + 1\right\}}{\left\{\left(\frac{s}{2.238}\right)^2 + 2 \times 0.68\left(\frac{s}{2.238}\right) + 1\right\}} \tag{8.44}$$

ボード線図及びそのスケルトンは図 8.9 (c)のようになる。この場合にも、横揺れ角応答の場合と同様に分母の小さい根がなくなるため、低周波領域における乱気流応答の軽減度は大きい。しかし、補助翼操舵の影響で分子の小さい根も大きくなり、 $s=-0.54→-1.69(N_2)$ この軽減度を少し悪くしている。これは補助翼の偏揺れ角速度への効果が直接的でないためと考えられる。スケルトンはダッチロールモードの周波数付近のゲインが大きくなる事を示している。

PSD の_{TT} は図 8.9 (d) に示すようで、ボード線図及びスケルトンで判明した性質を示しており、すなわち低周波における乱気流応答の軽減率は大きい。また、ダッチロールモードのダンピングは補助翼操舵により増加するが、スケルトンからも予想されるし、またダンピングの増加分が充分でないため、ダッチロールモードの振動数の所に山が出来る。

方向舵のみ操舵の場合。 っになる。 伝達関数の分子はつぎのよ

$$\frac{\Delta_{N,\tau} + \Delta_{N,\tau}^{\delta\tau}}{-N_G} = \frac{\Delta_{N,\tau}}{N_G} \left[1 - \frac{L_G N_{\delta\tau} G_p \ s \left(s - Y_{\beta} \right)}{\Delta_{N,\tau}} \right]$$

$$\cdot \frac{-s + Z}{s + Z}$$
(8.45)

この根の操舵による動きは図 8.10(b)のように 複素根は 現われず、伝達関数は次式のようになる。

$$\frac{\tau}{\beta_G'} = \frac{0.871 \left(\frac{s}{0.47} - 1\right) \left(\frac{s}{0.747} + 1\right)}{\left(\frac{s}{0.218} + 1\right) \left(\frac{s}{2.725} + 1\right) \left(\frac{s}{6.882} + 1\right)}$$

$$\times \frac{\left(\frac{s}{1.971} + 1\right)\left(\frac{s}{13.818} + 1\right)}{\left\{\left(\frac{s}{1.638}\right)^{2} + 2 \times 0.63\left(\frac{s}{1.638}\right) + 1\right\}}$$
(8.46)

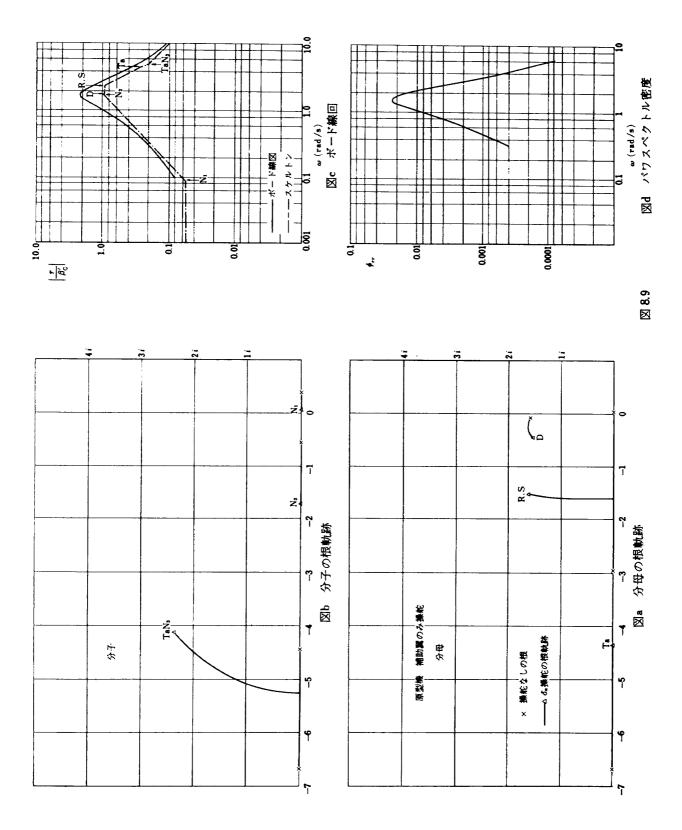
ボード線図及びそのスケルトンは図 8.10 (c) に示すように、高周波でややゲインが大きくなる他、横揺れ角応答の場合と同様低周波領域における乱気流応答の軽減率は小さい。ボード線図ではダッチロールモードのダンピングが大きくなっているため、スケルトンより大きくなる事はなく、根 N₁ 、 N₂ は 1 次式であるため、スケルトンより大きく出て、スケルトンで N₁ 、 N₂ の所に現われた谷はかなり浅くなる。

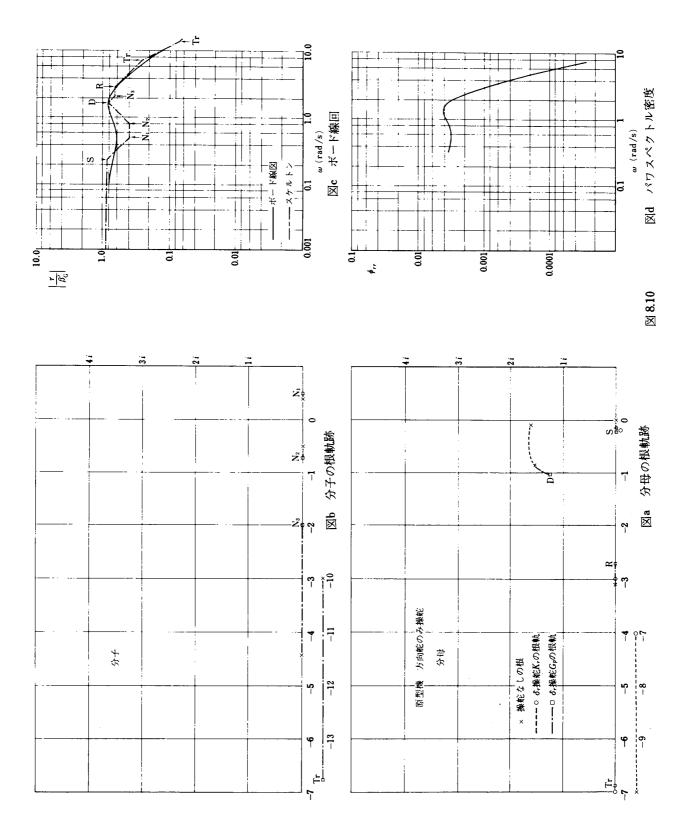
PSD Φ_{rr} は図8.10は)に示すようにダッチロールモードのダンピングが大きいので、その周波数付近の乱気 流応答の軽減率が大きくなっているのが見られる。

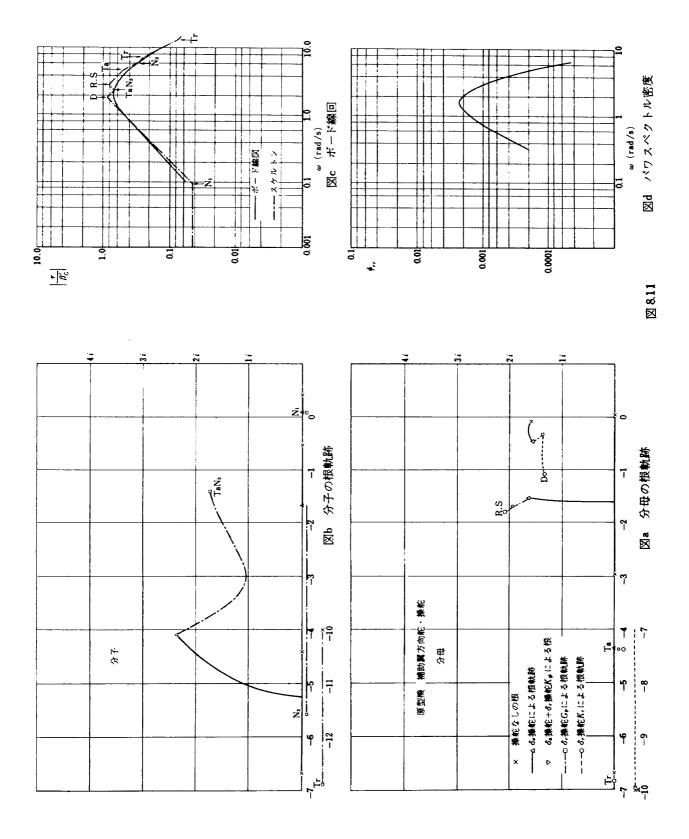
補助翼、方向舵操舵両方を行なり場合。 横揺れ角応答の場合と同様ほぼ個々の場合の効果の和となる。伝達関数の分子の根の操舵による動きを、補助翼による動きを先に行ない、後に方向舵操舵による動きを画いたのを図8.11(b) に示す。図に示すように分子の複素根(T_aN_3)は大きく動き、小さくなるが、s=-1.69の根(N_2)は-5.608と大きくなる。 T_aN_3 が小さくなるのは G_p の効果である。 G_p を負に大きくする事は N_p を負に小さくする事に相当するので偏揺れ角速度応答を小さくする。さらに分母分子で方向舵の操舵時間おくれによる根(T_r)の動きが大きく、すなわち、(s+10)/(s+10) \rightarrow (s+12.926)/(s+6.93)となる。この場合の伝達関数は次式のようになる。

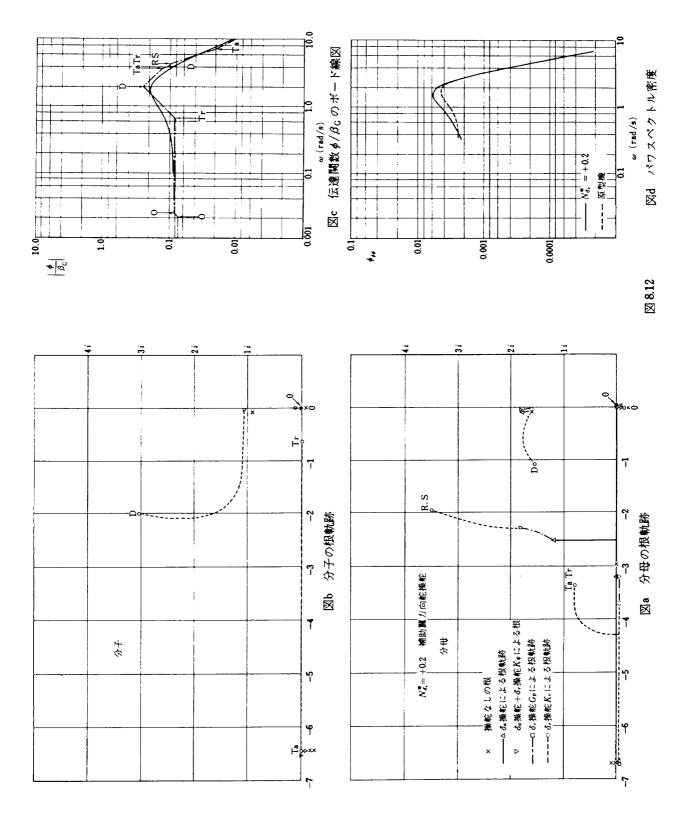
$$\frac{r}{\beta_G'} = \frac{0.046 \left(\frac{s}{0.087} - 1\right)}{\left(\frac{s}{4.417} + 1\right) \left(\frac{s}{6.923} + 1\right)} \times \frac{\left(\frac{s}{5.608} + 1\right) \left(\frac{s}{12.926} + 1\right)}{\left\{ \left(\frac{s}{1.743}\right)^2 + 2 \times 0.636 \left(\frac{s}{1.743}\right) + 1\right\}} \times \frac{\left\{ \left(\frac{s}{2.231}\right)^2 + 2 \times 0.641 \left(\frac{s}{2.231}\right) + 1\right\}}{\left\{ \left(\frac{s}{2.751}\right)^2 + 2 \times \left(\frac{s}{2.751}\right) + 1\right\}} \tag{8.47}$$

ボード線図及びそのスケルトンを図 8.11(c) に示す。 スケルトンは補助翼操舵のみの場合に似ているが,N₂ と T_a N₃ の位置が逆転している所が異なる。ボード線図 は,ダッチロールモードのダンピングが大きくなるため, ダッチロールモード付近のゲインが小さくなり山もなだ らかになる。









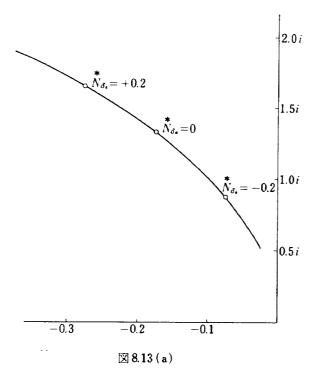
PSD の_{てて}は図8.11(d)に示す。図はボード線図及びスケルトンで見られた事をよく示している。すなわち乱気流に対する機体の偏揺れ角速度応答のバイロットの操縦による効果は、横揺れ角応答の場合と同様で、補助翼により低周波領域における応答を軽減し、方向舵によりダッチロールモードのダンピンクを増加させ、その周波数付近の応答を軽減する事であると考えられる。

原型機の特性と比較しながら,以下 $N_{\delta a}^*=+0.2$, $N_{\delta a}^*=-0.2$, $L_r=3.0$, $N_P=-1.0$ の各場合について乱気流応答の PSD が如何になるかを調べて,操縦の困難さの原因を検討する。

- (ji) Noa = +0.2 の場合
- (jj)-1 横揺れ角応答

乱気流に対する横揺れ角応答の伝達関数は次式で与えられる。

$$\frac{\phi}{\beta_G} = \frac{0.0727 \left(\frac{s}{0.021} + 1\right)}{\left(\frac{s}{0.0243} + 1\right) \left\{ \left(\frac{s}{1.905}\right)^2 + 2 \times 0.569 \left(\frac{s}{1.905}\right) + 1\right\}} \times \frac{\left(\frac{s}{0.655} + 1\right) \left(\frac{s}{6.667} + 1\right)}{\left\{ \left(\frac{s}{3.469}\right)^2 + 2 \times 0.974 \left(\frac{s}{3.469}\right)^2 + 1\right\}} \times \frac{\left\{ \left(\frac{s}{3.63}\right)^2 + 2 \times 0.55 \left(\frac{s}{3.63}\right) + 1\right\}}{\left\{ \left(\frac{s}{3.937}\right)^2 + 2 \times 0.49 \left(\frac{s}{3.937}\right) + 1\right\}} \tag{8.48}$$



伝達関数P/&の分子の2次式のN。変化 による根軌跡

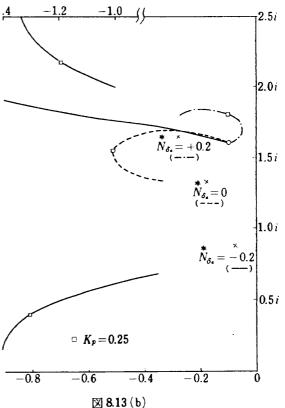
操舵なしの場合から、補助翼操舵、方向舵操舵によって (8.48)式の分母分子を得る過程を図 8.12(a),(b)に示す。 図 8.12(a) より、ダッチロールモードの根は補助翼操作により殆んどダンピングが変化しないのが見られる。 この事を今少し詳しく調べてみる。 この場合の補助翼操舵のみの乱気流応答の伝達関数の分母の式をつぎのように 書く。

$$\Delta_{1} + \Delta_{\partial a} = \Delta_{1} \left[1 + \frac{L_{\partial a} K_{p} (s + K_{\phi} / K_{p}) \left\{ (s - Y_{\beta}) (s - N_{\tau}) \right\}}{\Delta_{1}} + \frac{+N_{\beta} + N_{\partial a}^{*} (L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta})}{s + V} \cdot \frac{-s + Y}{s + V} \right] (8.49)$$

上式の根の K_P を変化した時 (K_{ϕ}/K_P は一定とする。) の根軌跡を書く事によって操舵による根の動きが理解されるが,原型機と異なるのは零点の 2 次式が $N_{\partial a}^*$ によって変化する事である。そこで上式の $\{$ $\}$ の中のみ取出して考えてみる。変形して次のように書く。

$$1 + \frac{N_{\delta a}^* L_{\tau} (s - Y_{\beta} - L_{\beta} / L_{\tau})}{(s - Y_{\beta}) (s - N_{\tau}) + N_{\beta}}$$
(8.50)

上式で N_{ba}^* が変化した時の根軌跡を書くと図 8.13(a) になる。 $N_{ba}^*=+0.2$ の場合の根の位置を図中に示す。原型機の場合の K_{b}/K_{P} の値 3.4,Y の値 6.667 を用い,



伝達関数 φ/β_Gの分母のK,変化による根軌跡

Kp が変化した時の伝達関数の分母のダッチロールモー ドの根の変化の模様を $N_{\delta a}^* = +0.2$, 0, -0.2 の場合に ついて書くと図 8.13 b) のようになる。 $N_{\delta a}^* = +0.2$ の 場合は原型機に比べて Kp の増大に伴いダッチロールモ ードのダンピングがあまり良くならないのが図より見ら れる。このようになったのは図8.13(a) に示した零点の 差に起因する。図8.12(a)に見た事は上述の通りである。 また図8.12(a)において、方向舵操舵 K_r のゲインが大 きいため, 方向舵操舵によりダッチロールモードのダン ピングは原型機と同程度に増加するのが見られる。その 他, 方向舵操舵により分母分子の根はかなり変化するが, 分母の根 (RS)は分子の根 (D)に近く, 互に打消し合い, ポード線図に顕著な変化を生まない。分子の根 (T_r) は 非常に小さくなり,図8.12(c)に見られるように、ポー ド線図で原型機の場合の分子の根 (D)の役目をして,結 局との場合のボード線図は原型機と大きな差はない。し たがって、PSD も図 8.12(d)に見られるように、原型機 と殆んど同じである。つまり、この場合は補助翼でダッ チロールモードのダンピングを増加出来なかった分を方 向舵で補う事によって、PSDの大きさを原型機と同じ 程度にしている。

(ii)-2 偏揺れ角速度応答

乱気流に対する偏揺れ角速度応答の伝達関数は次式で 与えられる。

$$\frac{r}{\beta_G'} = \frac{0.237S\left(\frac{s}{0.01} - 1\right)}{\left(\frac{s}{0.0243} + 1\right)\left\{\left(\frac{s}{1.905}\right)^2 + 2 \times 0.569\left(\frac{s}{1.905}\right) + 1\right\}} \times \frac{\left(\frac{s}{9.46} + 1\right)\left(\frac{s}{6.667} + 1\right)}{\left\{\left(\frac{s}{3.461}\right)^2 + 2 \times 0.974\left(\frac{s}{3.461}\right) + 1\right\}} \times \frac{\left\{\left(\frac{s}{2.571}\right)^2 + 2 \times 0.387\left(\frac{s}{2.571}\right) + 1\right\}}{\left\{\left(\frac{s}{3.957}\right)^2 + 2 \times 0.499\left(\frac{s}{3.957}\right) + 1\right\}} \tag{8.51}$$

伝達関数の分母は横揺れ角応答の場合と同じである。分子は補助翼操舵により図8.14(b)に示すように,原型機に比して次の理由によって大きく変化する。補助翼操舵のみの場合,分子の式を次のように書く。

$$\frac{\Delta_{N,\tau} + \Delta_{N,\tau}^{\delta\tau}}{N_{G}} = \frac{\Delta_{N,\tau}}{N_{G}} \left(1 - \frac{L_{\delta a}(-N_{G} + N_{\delta a}^{*} L_{G}) (s - Y_{\beta}) (K_{p} s + K_{\phi})}{\Delta_{N,\tau}} \frac{(-s + Y)}{(s + Y)} \right)$$
(8.52)

原型機と異なるのは、上式の根軌跡のゲインが $-N_G$ から $-(-N_G + N_{\delta a}^* L_G)/N_G = 2.1$ 倍だけ変化する事である。根 軌跡の様子を図8.14(b)に示すが、形としては原型機と 差はないが、顕著に変化しているのは、ゲインが大きい ため実根 s=-1.78→-2.28(N2)と複素根(-4.1, 1.92i) \rightarrow $(-2.98, 4.34i)(T_a N_3)$ に変化した事であ る。方向舵操舵 G_p の効果により,図 8.14 (b) に示すよ らに補助翼操舵で大きくなった複素根がかなり減少し, そのダンピングも小さくなっている。ボード線図は,横 揺れ角応答の所で述べたように,方向舵操舵によりダッ チロールモードのダンピングが原型機と同じ程度になっ ている事と,上述のように方向舵操舵 $G_{\mathbf{p}}$ の効果により 分子の根が小さくかつダンピングが小さくなっているた め、原型機と同じ大きさになっている。したがって、P SD も図8.14(d)に示すように原型機との差は小さい。 これを要するに,偏揺れ角速度応答も横揺れ角応答と同 様に、補助翼操舵によって低周波の乱気流応答は軽減す るが、ダッチロールモードのダンピングへのメリットは 殆んどなく, 逆に偏揺れ運動を大きくする。それを補う 意味で方向舵のゲインを大きくしてダッチロールモード のダンピングを大きくし, 乱気流応答の度合を原型機と 同じ程度にしている。逆に云えば、乱気流応答の軽減度 を原型機と同じ程度にするためには方向舵のゲインを大 きくし,延いてはワークロードを大きくする必要がある と云える。パイロットが $N_{\delta a}^*$ の限界を+0.2に選んだの はこのような理由によると考える。

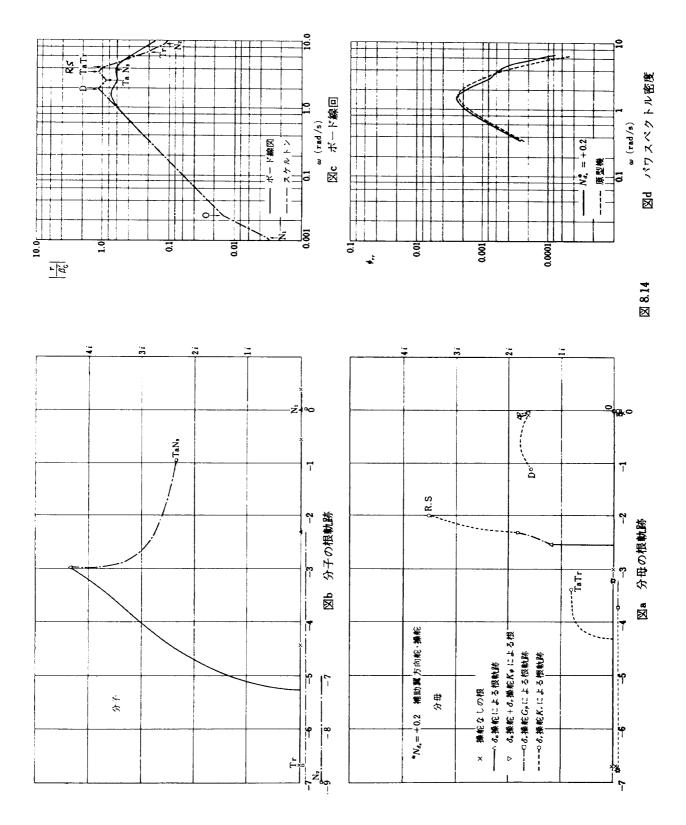
(ji) N*a =-0.2の場合

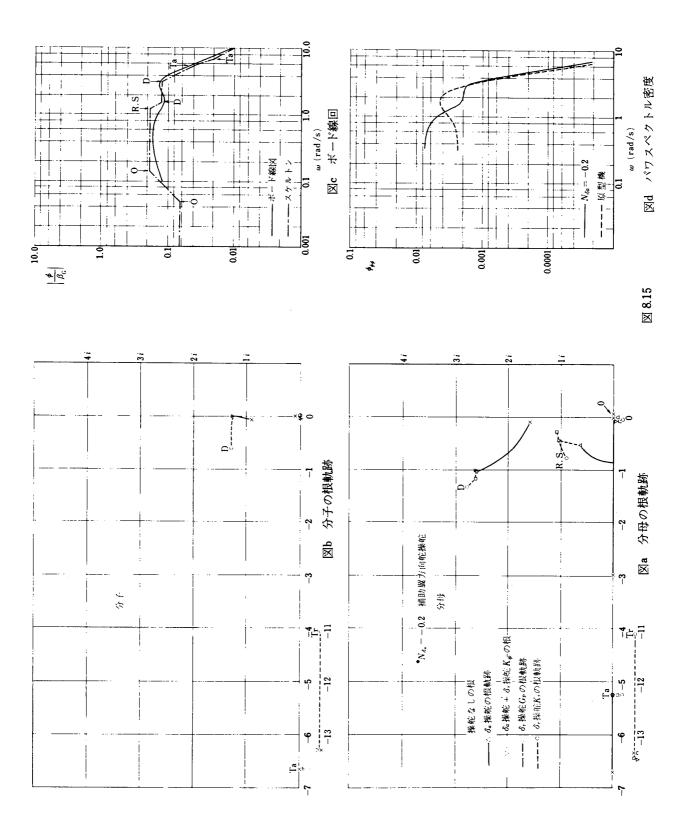
(ji)-1 横揺れ角応答

乱気流に対する横揺れ角応答の伝達関数は次式で与え られる。

$$\frac{\phi}{\beta_G} = \frac{0.0647 \left(\frac{s}{0.047} + 1\right)}{\left(\frac{s}{0.135} + 1\right) \left(\frac{s}{5.253} + 1\right) \left(\frac{s}{11.072} + 1\right)} \times \frac{\left(\frac{s}{6.667} + 1\right) \left(\frac{s}{11.12} + 1\right)}{\left\{ \left(\frac{s}{1.218}\right)^2 + 2 \times 0.682 \left(\frac{s}{1.218}\right) + 1\right\}} \times \frac{\left\{ \left(\frac{s}{1.443}\right)^2 + 2 \times 0.435 \left(\frac{s}{1.443}\right) + 1\right\}}{\left\{ \left(\frac{s}{3.102}\right)^2 + 2 \times 0.426 \left(\frac{s}{3.102}\right) + 1\right\}} \tag{8.53}$$

分母分子の操舵なしの場合から操舵による根の動きを図 8.15(a), (b) に示す。図8.15(a) によれば補助翼操舵に





よりダッチロールモードはその振動数をかなり増すが、ロールスパイラル連成根の振動数は小さい。これらの理由は次のように考えられる。この場合・図8.13(b)にも見られたように原型機と様子が異なり、図8.13(a)に示したように分子の2次式の根がダッチロールモードの根のかなり下方にずれて来ているため、下に述べるようにスパイラルモードとロールモードの結合にかなりのゲインを必要とし、またブレークアウトの点が低周波側による。そのため分子の2次式にこの連成された根が近づくようになる。ダッチロールモードの根は上方に向い、ダンピングを良くするが、ゲインが非常に大きくなるとダンピングは悪化し始め、遂には虚軸を横切り不安定根になる。

上述のダッチロールモードの根と分子の2次式とのずれが、Kp が増加する時のロールモードとスパイラルモードの連成に如何なる影響を及ぼすかを調べる。先ず次式を考える。

$$Y(s) = \frac{K(\frac{s}{3.4} + 1)}{(\frac{s}{0.0138} - 1)(\frac{s}{2.97} + 1)} \times \frac{\{(\frac{s}{A})^2 + 2 \times 0.06(\frac{s}{A}) + 1\}(-\frac{s}{6.667} + 1)}{\{(\frac{s}{1.604})^2 + 2 \times 0.06(\frac{s}{1.604}) + 1\}(\frac{s}{6.667} + 1)}$$
(8.54)

1+Y(s)=0 が実根を持ち得る範囲は上式で $s=\sigma$ (実数)とおいた時Y/K<0となる所であるから、S>6.667、0.0138>s>-2.97、-3.4>s>-6.667 の所である。今ロールモードとスパイラルモードの連成について考えているので、0.0138>s>-2.97 の範囲について注目

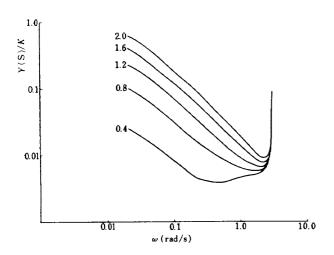


図 8.16(8.54) 式のσ線図

する。両対数のグラフにY(s)/Kの図を、-0.014>s>-2.9 までAの値を0.4、0.8、1.2、1.6、2.0と変化 させて書くと図8.16 のようになる。縦軸のある値例え ば a において横軸に平行に引いた線とY(s)/Kとの交点 は、Kを 1/aにした時の 1+Y(s)=0 の実根を現わす。 Kを大きくすると、aは小さくなり、したがってこの線 は下る。Y(s)/Kの図は下に凸であるから、Kを大きく して行くとこの線はある点でY(s)/Kの曲線に接しそ れ以上Kを大きくすると交点はなくなる。この接点がプ レークアウトの点で、その時のゲインがプレークアウト するゲインである。図8.16 を見ると、Aが小さくなる につれて、プレークアウトゲインが大きくなるのがみら れる。つまり、Aが小さくなるにつれて、スパイラルモ ートとロールモートの結合により大きなゲインを必要と する。また、Aが小さくなるにつれてプレークアウトの 点は低周波の方によっているのが見られる。 14 水 =-0.2 の場合はA = 0.88 に相当する。

方向舵操舵 Krにより,分母の根 (RS)と分子の根 (D) のダンピングは増加するが、分母の根 (D) の変化は小さ い。これは、分母の根Dは操舵なしのダッチロールモー ドの根から根軌跡が連っているので, ダッチロールモー ドと名付けたが、根軌跡を書く時 Nza = 0 として先ず補 助翼操舵による根軌跡を書き、続いて Naa を変化した時 の根軌跡を書くと、現在名付けてある根 (D) はロールス バイル連成根から動いて来た根となる。したがって方向 舵操舵のゲイン Kr を大きくしても根(D) があまり変化 しないのは、この根がダッチロールモード、すなわち偏 揺れ運動を主体としたものではなく、ロール運動を主体 としたものであるためと考えられる。分子の根(D)は方 向舵操舵 K_r , G_p によってダンピングは増大するが、方 向舵操舵 Ky によりダンピングが悪くなっているため、 原型機に比してダンピングは小さい。ボード線図は図8. 15(c) に示すように、分母の根 (RS)の振動数が小さい ため低周波のゲインは大きくなるが,分子の根(D)のダ ンピングが小さいためその周波数付近のゲインを小さく し、分母の根(D)の振動数付近のゲインにも影響を及ぼ レゲインを小さくする。PSD は図8.15(d) に示すよう に原型機とかなり異なり、上述のように低周波でゲイン が大きい。高周波では分子の根(D)のダンピングが小さ い事と分母の根(D)の振動数が大きいため、乱気流のP SDの影響を受けてゲインはかなり小さくなる。

(ii) 偏揺れ角速度応答

乱気流に対する偏揺れ角速度応答の伝達関数は次式で 与えられる。

$$\frac{\tau}{\beta_G'} = \frac{0.825S\left(\frac{s}{0.587} + 1\right)\left(\frac{s}{0.06} - 1\right)}{\left(\frac{s}{0.0138} + 1\right)\left(\frac{s}{5.253} + 1\right)\left(\frac{s}{11.072} + 1\right)} \times \frac{\left(\frac{s}{2.074} + 1\right)\left(\frac{s}{6.674} + 1\right)}{\left\{\left(\frac{s}{1.218}\right)^2 + 2 \times 0.632\left(\frac{s}{1.218}\right) + 1\right\}} \times \frac{\left(\frac{s}{17.827} + 1\right)}{\left\{\left(\frac{s}{3.102}\right)^2 + 2 \times 0.436\left(\frac{s}{3.102}\right) + 1\right\}} \tag{8.55}$$

伝達関数の分母の式は横揺れ角応答の場合と同様で、根 (D) は方向舵操舵 Kr によってダンピングはあまり変化 しない。分子の根は(8.52)式に示すように補助翼操舵の 効果が $(N_G + N_{\delta a}^* L_G)/N_G$ 倍となるが,この場合はこ れが負で小さな値であるため, 分子の根は補助翼操舵に よって殆んど影響を受けない。したがって、原型機に見 られたような T_a N_3 のような根は現われない。 さらに方 向舵操舵 G_p によって根 N_3 が実根のままその値を減ず るだけで、原型機に見られたような、ダンピングの小さ い、分母の根RS に近い複素根は現われない。上の結果 として、ポード線図は、横揺れ角応答のように分子にダ ンピングの小さい複素根がないため、分母の根RS が小 さいことが影響し, また, ダッチロールモードの根(D) が方向舵操舵によりダンピングを増加する量がわずかで あるため、ダッチロールモードの振動数付近のゲインが 大きい。PSD は図8.17(d)に示すように、ダッチロー ルモードの振動数が大きいため、乱気流のPSD の影響 を受けてその振動数付近でゲインが小さくなり大いさは 原型機と同じ程度になる。しかし,山の位置は高周波側 に寄っているので、偏揺れ角速度応答の r. m. s.は原型 機に比して大きくなる。

(V) $L_r = 3.0$ の場合

W-1 横揺れ角応答

乱気流に対する横揺れ角応答の伝達関数は次式で与えられる。

$$\frac{\phi}{\beta_G} = \frac{0.051 \left(\frac{s}{0.589} - 1\right) \left(\frac{s}{0.805} + 1\right)}{\left(\frac{s}{0.145} + 1\right) \left(\frac{s}{3.699} + 1\right) \left(\frac{s}{5.888} + 1\right)} \times \frac{\left(\frac{s}{0.065} + 1\right) \left(\frac{s}{5.832} + 1\right)}{\left\{\left(\frac{s}{1.039}\right)^2 + 2 \times 0.926 \left(\frac{s}{1.039}\right) + 1\right\}}$$

$$\times \frac{\left(\frac{s}{6.667} + 1\right)}{\left\{\left(\frac{s}{2.613}\right)^2 + 2 \times 0.566 \left(\frac{s}{2.613}\right) + 1\right\}}$$
(8.56)

伝達関数の分母分子の根の操舵による動きは図 8.18 (a), (b)に示す。分母の根は $N_{\delta a}^* = -0.2$ の場合に似ている。すなわち伝達関数 P/δ_a の分子の 2 次式の根が,分母の 2 次式の根よりかなり小さくなるため,補助翼操舵によってロールモードとスパイラルモードとが連成するのにかなりのゲインを必要とする。この場合は補助翼操舵では連成せず実根のまま止まり,方向舵操舵により複素根 (RS)となる。ダッチロールモードは補助翼操舵により振動数とダンピングをかなり増し,方向舵操舵により振動数とダンピングをわずか増す。この場合のも 9.100 特徴は分子にある。操舵なしの場合の分子の式は次式のよりに表わされる。

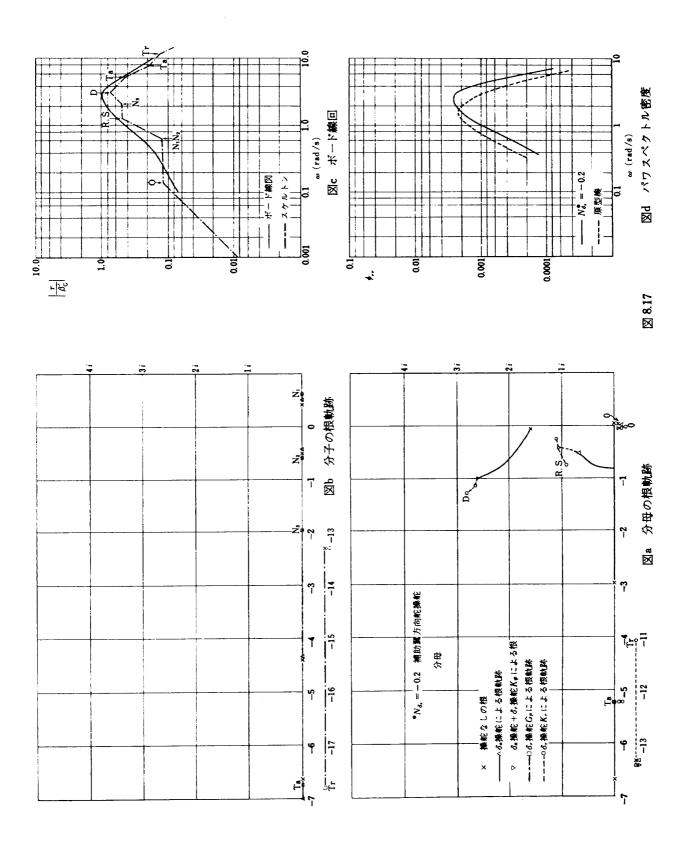
$$L_{G}((s-Y_{\beta})(s-N_{\tau}) + N_{\beta}-N_{G}^{*}(L_{\tau}s-L_{\tau}Y_{\beta}-L_{\beta}))$$

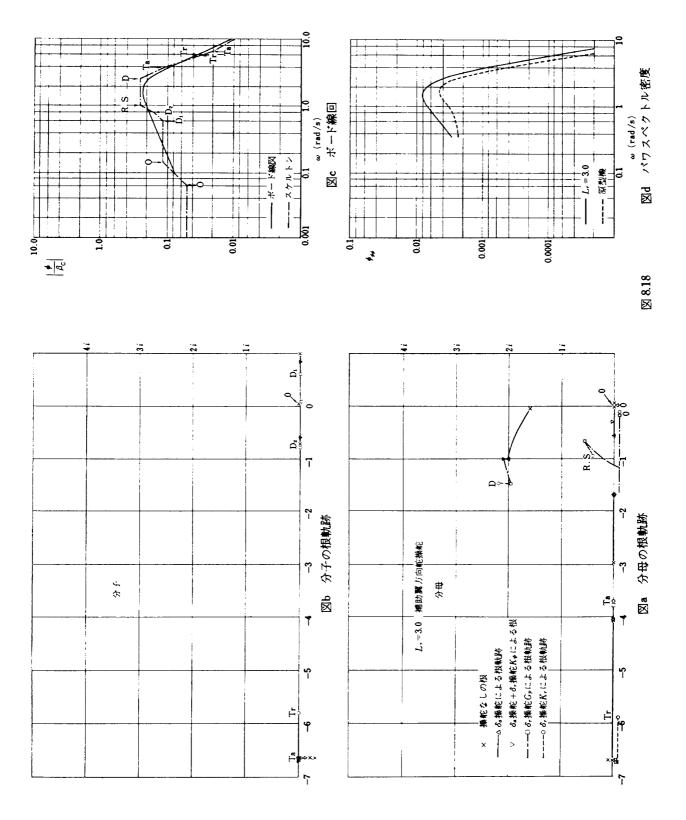
$$(8.57)$$

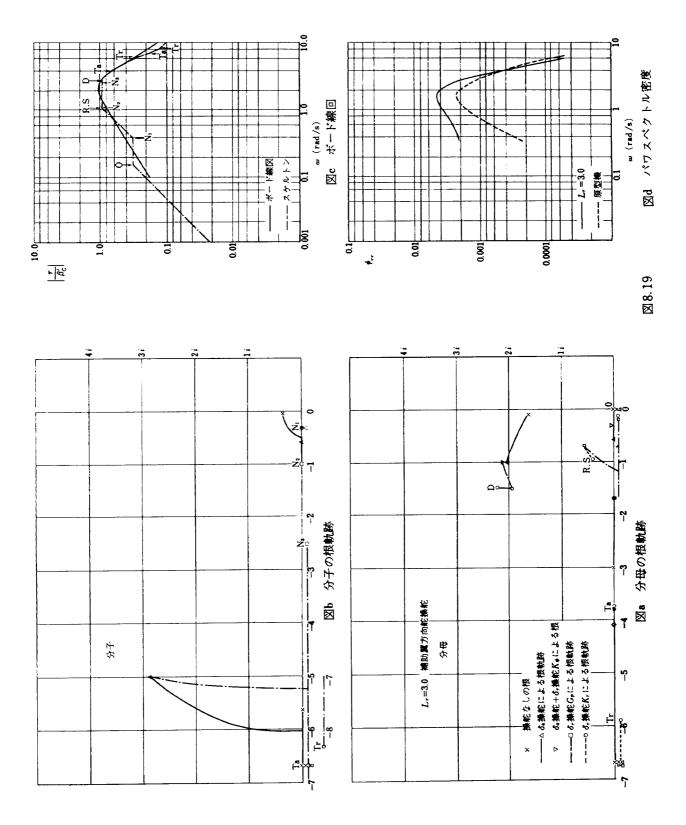
この場合, L_{β} , L_{τ} は共に大きく, N_{β} は小さいので原型機では複素根であったのが、2つの実根になる。

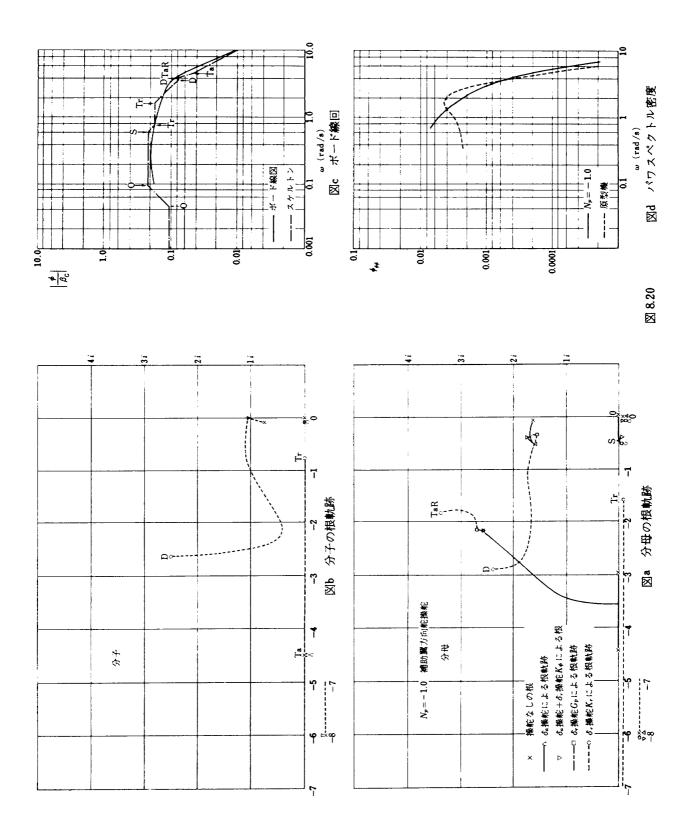
補助翼のみ操舵の場合を原型機と比較すると、 ϕ/β_G 伝達関数の分子は、原型機ではダンピングの小さい 2 次式であるが $L_r=3.0$ の場合は 2 つの実根である。 そのため原型機ではその周波数付近のゲインをかなり小さくするが、 $L_r=3.0$ の場合はそのような事がない。 したがって、ダッチロールモードの減衰比は $L_r=3.0$ の場合が大きいにも拘らず、 $L_r=3.0$ の方がダッチロールモードの周波数付近のごくわずかの周波数帯を除いて、 ϕ/β_G 伝達関数はかなり大きい。 つまり、 $L_r=3.0$ の場合は、 ϕ/β_G 伝達関数の分子が実根である事と、スパイラルモードの根の増加が小さい事とが原因して、補助翼のみ操舵で横揺れ角応答があまり小さくならない。そのため、方向舵に気を配る余裕に欠け、方向舵のゲインはかなり小さい。

この場合,方向舵のゲインが小さいので分子の根は方向舵操舵によって殆んど動かず実根に止まる。ボード線図は図8.18(c) に示すように,分母の根 (RS)が小さい事と,1rad/sec付近にある分子の根が実根であるため $N_{\delta a}^*=-0.2$ の場合のようにダンピングの小さい2次根によって,その周波数付近でゲインの減少を来すような事がないため,ゲインは原型機に比して全周波数にわたって大きく出る。PSD も図8.18(d)に示すように原型機より全体的に大きい。この原因は上述の通りで,分母の









根 (RS)が小さいのは ϕ/δ_a 伝達関数の分子の 2次式が 分母の 2次式よりかなり小さいためである。

(V)-2 偏揺れ角速度応答

乱気流に対する偏揺れ角速度応答の伝達関数は次式で 与えられる。

$$\frac{r}{\beta_G'} = \frac{2.189S\left(\frac{s}{0.362} + 1\right)\left(\frac{s}{1.03} + 1\right)}{\left(\frac{s}{0.145} + 1\right)\left(\frac{s}{0.399} + 1\right)\left(\frac{s}{5.878} + 1\right)} \times \frac{\left(\frac{s}{2.478} + 1\right)\left(\frac{s}{6.667} + 1\right)}{\left\{\left(\frac{s}{1.039}\right)^2 + 2 \times 0.926\left(\frac{s}{1.039}\right) + 1\right\}} \times \frac{\left(\frac{s}{8.29} + 1\right)}{\left\{\left(\frac{s}{2.613}\right)^2 + 2 \times 0.566\left(\frac{s}{2.613}\right) + 1\right\}} \tag{8.58}$$

伝達関数の分母は横揺れ角応答の場合と同じである。操 舵なしの場合の分子はつぎのように書ける。

$$\left(s \left(s - Y_{\beta} \right) \left(s - L_{p} \right) - L_{\beta} Y_{\phi} - L_{G} / N_{G} \left\{ -N_{p} s \left(s - Y_{\beta} \right) - N_{\beta} Y_{\phi} \right\} \right)$$

$$(8.59)$$

この場合 L_P が大きくなるため,原型機は全て実根であったが,1つの実根と振動数の小さい複素根となる。補助翼操舵により,この複素根は小さい2つの実根となる。実根は原型機のようにバイロットの操舵時間おくれの項と連成して複素根となる。しかし方向舵操舵 G_P により,他の2つの実根が小さいため,再び実根となる。ボード線図は図8.19(c)のように,分母の根(RS)が小さい事と分子に分母の根と相殺するような複素根が現われない事のためゲインは大きい。PSD も図8.19(d) に示すように原型機に比してゲインは大きい。特に低周波においてそれが顕著である。この場合,方向舵の操舵のゲイン K_T がかなり小さいにも拘らずダッチロールモード振動数付近で予想される程ゲインが大きくならないのは,補助翼操舵によってダッチロールモードのダンピングがかなり増加するためである。

(V)
$$N_p = -1.0$$
 の場合

(V)-1 横揺れ角応答

乱気流に対する横揺れ角応答の伝達関数は次式のよう になる。

$$\frac{\phi}{\beta_G} = \frac{0.107 \left(\frac{s}{0.043} + 1\right) \left(\frac{s}{0.765} + 1\right)}{\left(\frac{s}{0.09} + 1\right) \left(\frac{s}{0.604} + 1\right) \left(\frac{s}{1.593} + 1\right)}$$

$$\times \frac{\left(\frac{s}{4.444} + 1\right)}{\left\{\left(\frac{s}{3.749}\right)^{2} + 2 \times 0.78 \left(\frac{s}{3.749}\right) + 1\right\}} \\
\times \frac{\left\{\left(\frac{s}{3.024}\right)^{2} + 2 \times 0.724 \left(\frac{s}{3.024}\right) + 1\right\}}{\left\{\left(\frac{s}{3.836}\right)^{2} + 2 \times 0.478 \left(\frac{s}{3.836}\right) + 1\right\}}$$
(8.60)

伝達関数の分母分子の操舵による根の動きを図8.20(a), (b)に示す。先ず分母の根を調べる。この場合、補助翼操 舵のゲイン K_o が K_p に比して小さいため、補助翼操舵 によってロールモードの根はバイロットの操舵時間おく れの根と連成して複素根となる。そして、スパイラルモ ードの根は実根のまま止まる。方向舵操舵のゲイン Kr はかなり大きいのでダッチロールモードの根はかなり振 動数とダンピングの大きい根となる。パイロットの操舵 時間おくれの根 (T_r) はかなり小さくなり、根 $(T_a R)$ は振動数を増す。分子の根は方向舵操舵 Kr により、や はり2次式の根の振動数とダンピングが大きくなり,バ イロットの操舵時間おくれによる根 (T_r) は小さくなる。 ボード線図は図8.20(c)を高い周波数から見て行くと, 高周波では分母分子で根(D)が相殺し、分母の根 (T_aR) のみ残り、その振動数で40db/dcの傾斜の変化をする。 1rad /sec 付近の振動数では分母分子のパイロットの 方向舵操舵の時間おくれによる根の差でゲインが増し. さらにスパイラルモードの根によりゲインが増す。これ らのため低周波におけるゲインは大きい。PSD は図 8. 20(d) に示すように原型機に比して低周波でゲインが大 きく、ダッチロールモード振動数付近でゲインが小さい。 これは、補助翼操舵のゲイン K_{ϕ} が小さいため、スパイ ラルモードの根があまり大きくならないためと、方向舵 操舵のゲインが大きいため、根(D)は分母分子で相殺し てしまい, 残った根 (RS)はダンピンゲが大きいだけで なく,振動数も大きいため,乱気流のPSD の影響を受 けて小さくなる。

(V)-2 偏揺れ角速度応答

乱気流に対する偏揺れ角速度応答の伝達関数は次式の

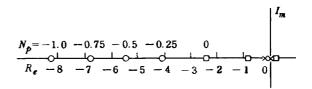
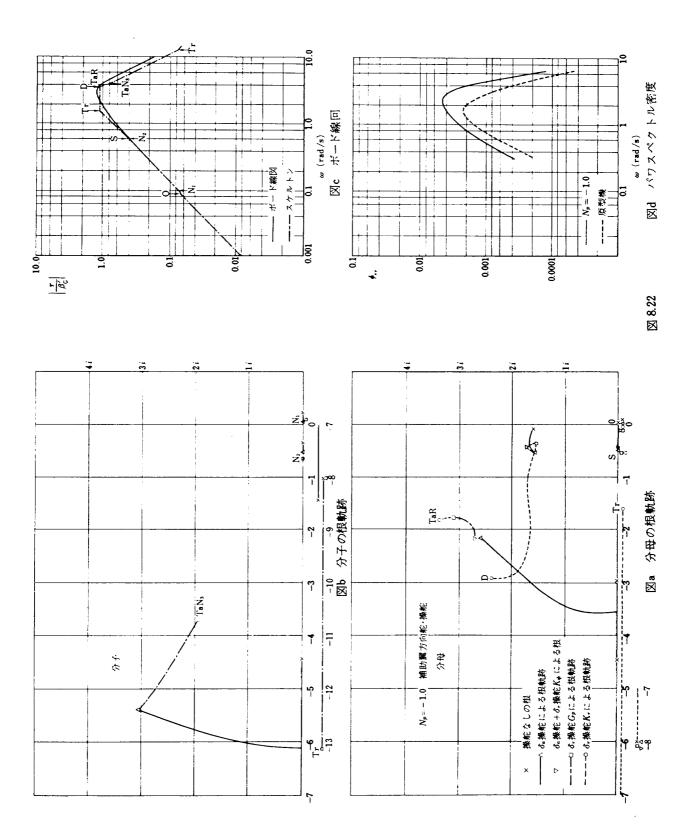


図 8.21 操舵なしの $_{m r}/m eta_{m G}$ の分子の根の N_p 変化の根軌跡



ようになる。

$$\frac{\tau}{\beta_G'} = \frac{0.079 \left(\frac{s}{0.098} - 1\right)}{\left(\frac{s}{0.09} + 1\right) \left(\frac{s}{0.604} + 1\right) \left(\frac{s}{1.593} + 1\right)} \times \frac{\left(\frac{s}{0.616} + 1\right) \left(\frac{s}{13.14} + 1\right)}{\left\{\left(\frac{s}{3.749}\right)^2 + 2 \times \left(\frac{s}{3.749}\right) + 1\right\}} \times \frac{\left\{\left(\frac{s}{4.222}\right)^2 + 2 \times 0.886 \left(\frac{s}{4.222}\right) + 1\right\}}{\left\{\left(\frac{s}{3.836}\right)^2 + 2 \times 0.486 \left(\frac{s}{3.836}\right) + 1\right\}} \tag{8.61}$$

伝達関数の分母は横揺れ角応答と同じである。操舵なし の場合の分子の式は次のように書ける。

$$\left(s\left(s-Y_{\beta}\right)\left(s-L_{p}\right)-L_{\beta}Y_{\phi}\right) - L_{G}/N_{G}\left\{-N_{p}s\left(s-Y_{\beta}\right)-N_{\beta}Y_{\phi}\right\}\right)$$
(8.62)

これを次式のように変形する。

$$\left[s(s-Y_{\beta})(s-L_{p})-L_{\beta}Y_{\phi}+(L_{G}/N_{G})N_{\beta}Y_{\phi}\right] \times \left[1+\frac{(L_{G}/N_{G})N_{p}s(s-Y_{\beta})}{s(s-Y_{\beta})(s-L_{p})-L_{\beta}Y_{\phi}-(L_{G}/N_{G})N_{\beta}Y_{\phi}}\right]$$
(8.63)

上式の2つ目の〔〕の中に実際の値を入れると次式を得る。

$$1 + \frac{(L_G/N_G)N_p s(s+0.1)}{(s-0.327)(s+0.823)(s+2.4)}$$
(8.64)

この式の N_p の値を変化させた時の根軌跡を書くと図 8.21 のようになる。 N_p が負に大きくなると図に示すように、 s=-2.4 の根がかなり大きくなる。 $N_p=-1.0$ の時は s=-8.4 となる。伝達関数の分子の根が大きくなる事は,乱気流応答を大きくする事を意味するので, N_p が負に大きくなると偏揺れ運動は大きくなる。

補助翼操舵,方向舵操舵 G_p の 効果 が入る時,原型機と同様な変化をするが, N_p が負に大きい事が影響して,方向舵操舵 G_p が加わっても分子の根 $(T_a N_3)$ はあまり小さくならない。ボード線図は図 8.22(c) のようになり,分子の根 $(T_a N_3)$ の影響で高周波にある根 (D) の振動数付近のゲインを大きくする。 PSD は図 8.22(d) に示すように,原型機に比してかなりゲインが大きく,山の位置も高周波側によっている。

§ 9 パイロットの操縦を含んだ飛行機の運動系の開ループ伝達関数について

前節と同じ様に、開ループ伝達関数の分母分子の根が

バイロットの操舵ゲインが変化した時どの様に変わるかを根軌跡を書いて調べ、つぎに開ループ伝達関数のボード線図のスケルトンを書いて伝達関数の性質を考察し、 最後に実際のボード線図の絶対値と位相を書いて位相余 有を検討する。

(1) 補助翼操舵から見た開ループ伝達関数

方向舵操舵はすでに行われていると考えて、横揺れ角 を検知して補助翼を操舵するとした、飛行機+パイロッ ト系のプロック図は図 9.1 のようになる。

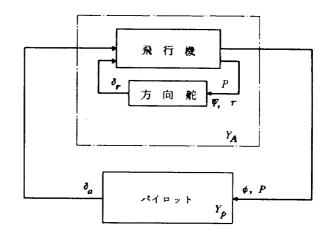


図 9.1 方向舵操舵は行われているとした時の 飛行機及び補助翼操舵のプロック図

運動方程式は次式で表わされる。

$$(s-Y_{\beta})\beta + \tau - Y_{\phi} \phi = 0$$

$$-N_{\beta}\beta + \left[s - N_{\tau} + N_{\delta\tau}(K_{\tau} + K_{\Psi}/s) \frac{-s + Z}{s + Z}\right]\tau$$

$$+ \left[-N_{p}s + N_{\delta\tau}G_{p}s \frac{-s + Z}{s + Z}\right]\phi = N_{\delta a}\delta_{a}$$

$$(9.2)$$

$$-L_{\beta}\beta - L_{\tau} r + s (s - L_{p}) \phi = L_{\delta a} \delta_{a}$$
 (9.3)

$$\delta_a = -(K_p s + K_\phi) \frac{-s + Y}{s + Y} \phi \tag{9.4}$$

ここで, パイロットの操舵時間おくれの項については § 8 と同様な P'ade の 1 次近似を用いた。

上式より補助翼操舵に対する機体の横揺れ角応答を書くとつぎの通りである。

$$Y_{A} = \frac{\phi}{\delta_{a}} = \frac{\Delta_{N, \delta a} + \Delta_{N, \delta a}^{\delta r}}{\Delta_{1} + \Delta_{\delta r}}$$
(9.5)

ここで、 A_1 、 $A_{\delta T}$ は \S 8で定義されたものと同じである。分子の $A_{N,\delta a}$ 、 $A_{N,\delta a}^{\delta T}$ はつぎのように書ける。

$$\Delta_{N, \delta a} = \begin{vmatrix} s - Y_{\beta} & 1 & 0 \\ -N_{\beta} & s - N_{\tau} & N_{\delta a} \\ -L_{\beta} & -L_{\tau} & L_{\delta a} \end{vmatrix}$$

$$= L_{\delta a} \left[(s - Y_{\beta}) (s - N_{\tau}) + N_{\beta} + N_{\delta a}^{*} (L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta}) \right]$$

$$(9.6)$$

$$\mathcal{L} \mathcal{L} \mathcal{T}, \quad N_{\partial a}^{*} = N_{\partial a} / L_{\partial a} \mathcal{T} \mathcal{B} \mathcal{B}_{o}$$

$$\mathcal{L}_{N,\partial a}^{\delta \tau} = \begin{vmatrix} s - Y_{\beta} & 0 & 0 \\ -N_{\beta} & N_{\partial \tau} (K_{\tau} + K_{\Psi} / s) (s - Y_{\beta}) \frac{-s + Z}{s + Z} N_{\partial a} \\ -L_{\beta} & 0 & L_{\partial a} \end{vmatrix}$$

$$= L_{\partial a} N_{\partial \tau} (K_{\tau} + K_{\Psi} / s) (s - Y_{\beta}) \frac{-s + Z}{s + Z} \quad (9.7)$$

(9.5) 式に見られるように、分母分子共方向舵操舵の影響を考えながら、原型機、 $N_{\delta a}^*=+0.2$ 、 $N_{\delta a}^*=-0.2$ 、 $L_{\tau}=3.0$ 、 $N_p=-1.0$ の各場合について開ループ伝達関数 Y_p Y_A について考察する。

(i) 原型機の場合

方向舵操舵なしの場合。 $Y_A = A_{N, \delta a}/A_1$ となり、 開ループ伝達関数はつぎのように書ける。

$$Y_{p}Y_{A} = \frac{0.097(\frac{s}{3.4} + 1)}{(\frac{s}{0.0138} - 1)(\frac{s}{2.97} + 1)} \times \frac{\{(\frac{s}{1.351})^{2} + 2 \times 0.129(\frac{s}{1.351}) + 1\}}{\{(\frac{s}{1.604})^{2} + 2 \times 0.06(\frac{s}{1.604}) + 1\}}$$
(9.8)

上式のボード線図のスケルトンを書くと図9.2(c)のようになる。§ 8と同様各モードの所を矢印で明記した。分母分子の2次式の根が近く,ロールモード(R)とバイロットのリード項の根(T_L)が近いので,図はゲインが1になる付近で-20db/dcの直線になっている。これは§ 8に述べたクロスオーバモデルのそれに等しい。しかし実際の線を書くと図9.2(c)のようになり分母分子の2次式のダンピングが小さいため,その根の所で大きな山と谷が出来る。位相変化も複雑で図9.2(e)の点線のようになる。

方向舵操舵のある場合。 YAの分母の根の操舵による変化は§8の原型機の方向舵のみ操舵の場合と同じで再び図9.2(a)に示す。2次式のダンピングが良くなっているのが見られる。分子の根も方向舵操舵により動き,は分母のそれに似て2次式のダンピングを良くする。その模様は次式の根軌跡を書いて理解される。

$$1 + \frac{N_{\delta \tau} (K_{\tau} + K_{\Psi} / s)}{\left[(s - Y_{\theta})(s - N_{\tau}) + N_{\theta} \right]} \frac{(-s + Z)}{(s + Z)} = 0$$
 (9.9)

根軌跡を図9.2(b) に示す。結局開ループ伝達関数は次式のようになる。

$$Y_{p}Y_{A} = \frac{0.921 \left(\frac{s}{3.4} + 1\right) \left(\frac{s}{6.923} + 1\right)}{\left(\frac{s}{0.218} + 1\right) \left(\frac{s}{2.725} + 1\right) \left(\frac{s}{6.882} + 1\right)} \times \frac{\left\{ \left(\frac{s}{1.698}\right)^{2} + 2 \times 0.644 \left(\frac{s}{1.698}\right) + 1\right\}}{\left\{ \left(\frac{s}{1.638}\right)^{2} + 2 \times 0.63 \left(\frac{s}{1.638}\right) + 1\right\}}$$
(9.10)

ボード線図のスケルトンを書くと図9.2(d)のようにやはり分母分子の2次式の根が近く,ロールモードの根(R)とパイロットのリード項の根(T_L)が近いので,やはりクロスオーバ周波数付近で-20 db/dc の直線になり,低周波で大きな値を持っている。この場合は実際の線も図9.2(d)に示すように,分母分子のダンピングが大きくなるため,スケルトンに近い線となり,位相も図9.2(e)の実線に示すように滑らかな線になっている。クロスオーバ周波数は1.72 rad/sec で位相余 有は59°である。

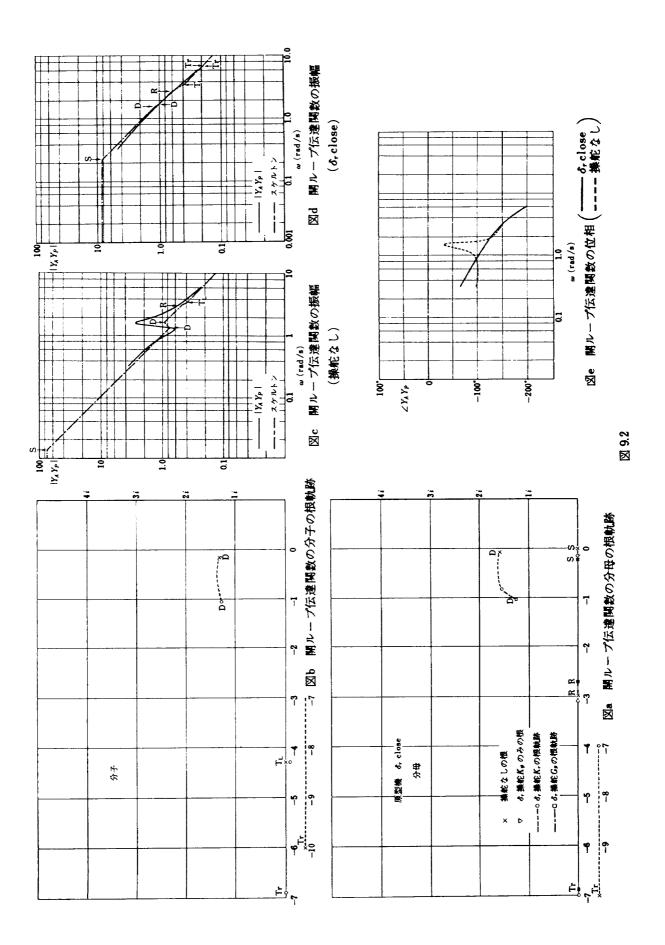
(ii) N* = +0.2 の場合

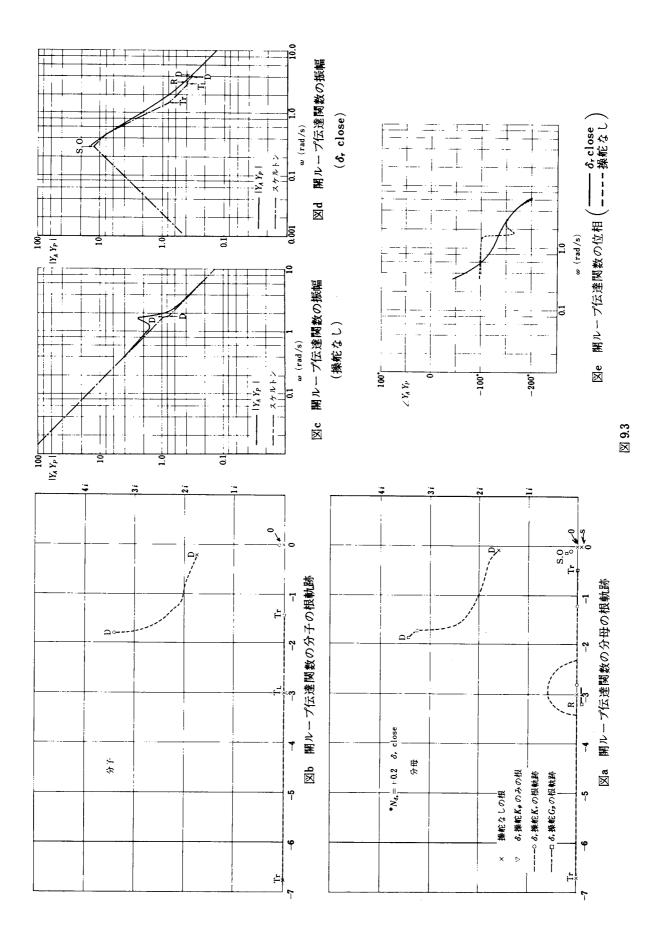
方向舵操舵なしの場合。 Y_A の分母は原型機と同じであるが,分子は $N_{\delta a}^*$ により変化する。その変化の模様は\$8の横揺れ角応答の操舵なしの場合に記述した事と同じであり, $N_{\delta a}^*$ 変化による2次式の根の動きは図8.12(a)(p109)に示す通りである。開ループ伝達関数は次式のようになる。

$$Y_{p}Y_{A} = \frac{0.0704\left(\frac{s}{3.0} + 1\right)}{\left(\frac{s}{0.0138} - 1\right)\left(\frac{s}{2.97} + 1\right)} \times \frac{\left\{\left(\frac{s}{1.687}\right)^{2} + 2 \times 0.163\left(\frac{s}{1.687}\right) + 1\right\}}{\left\{\left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06\left(\frac{s}{1.604}\right)^{2} + 1\right\}}$$

ボード線図のスケルトンは図 9.3(c)のようであり,実際のボード線図及び位相は図 9.3(c),図 9.3(d) の点線のようである。(9.11)式から見られるように,分子の 2 次式のダンピングが原型機に比してやや良くなり,図 9.3(c)に示した $|Y_pY_A|$ の谷の出方が小さい他,原型機と似ている。

方向舵操舵のある場合。 Y_A の分 母の根のバイロットの操舵ゲイン $K_{I\!\!P}$, K_{T} , G_p を変化させた時の根軌跡は\$ 8 の N_{kk}^* =+0.2 の場合の方向舵操舵の場合と同じで





$$Y_{p}Y_{A} = \frac{18.531 \left(\frac{s}{3.0} + 1\right)}{\left(\frac{s}{0.447} + 1\right) \left(\frac{s}{3.176} + 1\right)} \times \frac{\left(\frac{s}{0.008} + 1\right) \left(\frac{s}{1.45} + 1\right)}{\left\{ \left(\frac{s}{0.281}\right)^{2} + 2 \times 0.494 \left(\frac{s}{0.281}\right) + 1\right\}} \cdot \frac{\left\{ \left(\frac{s}{3.894}\right)^{2} + 2 \times 0.462 \left(\frac{s}{3.894}\right) + 1\right\}}{\left\{ \left(\frac{s}{3.912}\right)^{2} + 2 \times 0.48 \left(\frac{s}{3.92}\right) + 1\right\}} (9.12)$$

ボード線図のスケルトンを書くと図 9.3(d)のようになり,分母分子の T_r の位置の差が現われて、その間で-40~db/dcの 傾斜となる。 実際のボード線図は図 9.3(d)に示すように分母分子のダッチロールモードのダンピングが大きいため,山や谷が現われず滑らかな線となる。しかし, $\omega=0.6~rad/sec$ 付近以下で傾斜が急になる。位相も図 9.3(e)の実線で示すように滑らかで,クロスオーバ周波数は 1.71~rad/sec,位相余有は 44° である。 (ii) $N_{da}^*=-0.2$ の場合

方向舵操舵なしの場合。 Y_A の伝達関数の分母は原型機と同じであるが,分子は $N_{\delta a}^*$ により変化する。その変化の模様は\$ 8の横揺れ角応答の操舵なしの所で記述した事と同様である。開ループ伝達関数は次式のようになる。

$$Y_{p}Y_{A} = \frac{0.178 \left(\frac{s}{4.2} + 1\right)}{\left(\frac{s}{0.0138} - 1\right) \left(\frac{s}{2.97} + 1\right)} \times \frac{\left\{ \left(\frac{s}{0.897}\right)^{2} + 2 \times 0.084 \left(\frac{s}{0.897}\right) + 1\right\}}{\left\{ \left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06 \left(\frac{s}{1.604}\right) + 1\right\}} (9.13)$$

ボード線図のスケルトンは図 9.4(c)のようになり、分母分子の 2 次式の根 (D) の差が顕著である。 ボード線図は図 9.4(c)のようになり、分母分子の 2 次式の周波数の所

に山と谷が出来る。位相も図 9.4(c)に点線で示すよりに, そこで複雑な変化をする。

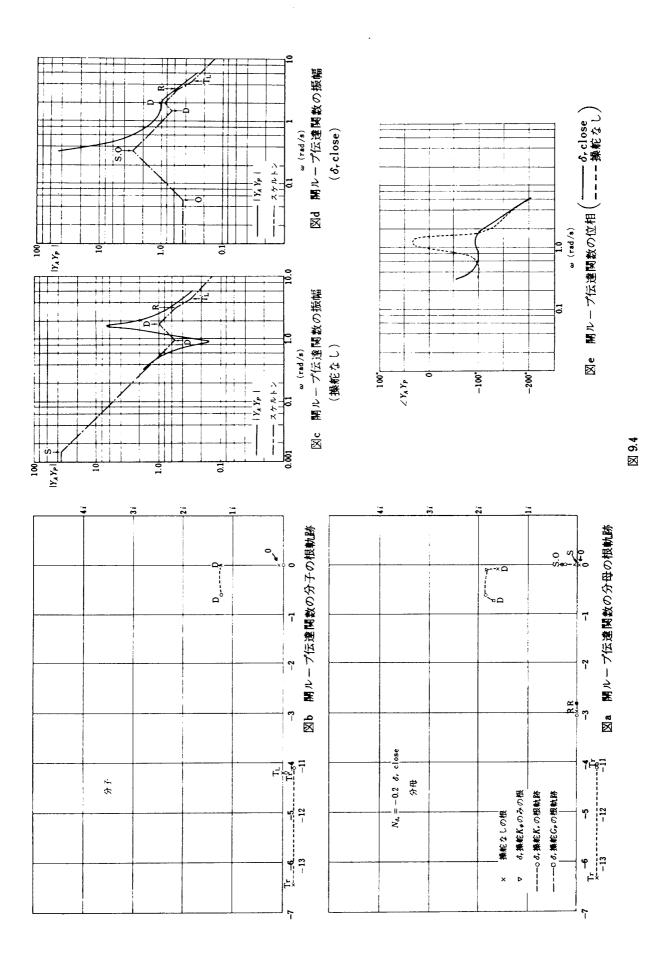
方向舵操舵のある場合。 Y_A の分母は§8の $N_{0a}^*=-0.2$ の方向舵操舵のみの場合と同じように変化する。図9.4(a)にこれを示す。 $N_{0a}^*=+0.2$ の時のようにスパイラルモードが K_{Ψ} による根Oと結びついてダンピングの小さい,振動数の小さい複素根(SO)となる。分子の方向舵操舵のゲイン K_{Ψ} , K_{r} を変化した時の根軌跡を図9.4(b)に示す。図よりダッチロールモードの根は分母と同じ様に変化し,その根の値も分母とあまり変らない。パイロットの操舵時間かくれの根(T_r) の変化は小さく,S=-11.1(T_r) で分母のS=-11.0 に非常に近い。結局伝達関数は次式のようになる。

$$Y_{p}Y_{A} = \frac{13.205\left(\frac{s}{4.2}+1\right)}{\left(\frac{s}{2.8}+1\right)\left(\frac{s}{11.09}+1\right)} \times \frac{\left(\frac{s}{0.049}+1\right)\left(\frac{s}{11.12}+1\right)}{\left\{\left(\frac{s}{0.316}\right)^{2}+2\times0.044\left(\frac{s}{0.316}\right)+1\right\}} \times \frac{\left\{\left(\frac{s}{1.411}\right)^{2}+2\times0.437\left(\frac{s}{1.411}\right)+1\right\}}{\left\{\left(\frac{s}{1.823}\right)^{2}+2\times0.413\left(\frac{s}{1.823}\right)+1\right\}}$$
(9.14)

ボード線図のスケルトンは図 9.4(d)のようになり,分母分子のダッチロールモードの根は値の差はあまりないが,対数目盛で図示しているので顕著にその差が見られる。実際のボード線図は図 9.4(d)に示すようであり,ダッチロールモードの根はダンピングが大きいため山や谷は現われないが,分母分子で周波数にやや差があるために,その周波数付近で平坦になる。また, $\omega=0.316$ における分母の 2 次式の根はダンピングが小さいため,その付近のゲインは大きくなる。位相は図 9.4(e)に実線で示すように滑らかである。クロスオーバ周波数は $\omega_C=2.0$ rad /sec で位相余有は 7.1° である。

(V) $L_r=3.0$ の場合。 Y_A の分母は原型機と同じである。分子は N_p , N_r 等の徴係数の値が異なるために異なり、伝達関数は次式のようになる。

$$Y_{p}Y_{A} = \frac{0.256 \left(\frac{s}{3.2} + 1\right)}{\left(\frac{s}{0.0138} - 1\right) \left(\frac{s}{3.97} + 1\right)} \times \frac{\left\{\left(\frac{s}{0.857}\right)^{2} + 2 \times 0.178 \left(\frac{s}{0.857}\right) + 1\right\}}{\left\{\left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06 \left(\frac{s}{1.604}\right) + 1\right\}}$$
(9.15)



ボード線図のスケルトンは図9.5(c)に示す通りであり、分母分子の2次式の根の差が顕著である。実際のボード線図は図9.5(c)に示すように分母分子の2次式のダンピングが小さいためそこに山と谷が出来る。位相も図9.5(e)に点線で示すように分母分子の2次式のダンピングが小さいため複雑な変化をする。

方向舵操舵の場合。 方向舵操舵の効果を計算に入れるとつぎのようになる。 Y_A の分母は \S 8 の $L_r = 3.0$ の方向舵のみ操舵の場合と同じように変化する。図9.5(a) に示すように変化は小さいが、 $N_{\delta a}$ 変化の場合と同様スパイラルモードの根と K_{Ψ} によるOとが結びついて振動数もダンピングも小さい複素数(SO)を作る。分子の根が方向舵操舵によって変化する様子を図9.5(b)に示す。2次式の根のダンピングがやや良くなっているのが見られる。パイロットの操舵時間おくれの項の変化はあまりなく、分母の値に近い。開ループ伝達関数は次の通りである。

$$Y_{p}Y_{A} = \frac{0.931 \left(\frac{s}{3.2} + 1\right)}{\left(\frac{s}{3.015} + 1\right) \left(\frac{s}{5.559} + 1\right)} \times \frac{\left(\frac{s}{5.787} + 1\right)}{\left\{\left(\frac{s}{0.288}\right)^{2} - 2 \times 0.0587 \left(\frac{s}{0.288}\right) + 1\right\}} \times \frac{\left\{\left(\frac{s}{1.087}\right)^{2} + 2 \times 0.327 \left(\frac{s}{1.087}\right) + 1\right\}}{\left\{\left(\frac{s}{1.603}\right)^{2} + 2 \times 0.255 \left(\frac{s}{1.603}\right) + 1\right\}}$$

ボード線図のスケルトンは図 9.5(d)に示すように、分母分子の 2 次式の差が顕著である。実際のボード線図を図 9.5(d)に示す。この場合、分母分子の 2 次式の根がある程度離れている事と、バイロットのゲイン Kr があまり大きくないため、ダッチロールモードのダンピングが充分には大きくならないため、分母のダッチロールモードの所に山、分子の 2 次式の所に谷が出来る。さらにω=0.288 rad/sec における分母の 2 次式のダンピングが著しく小さいため、その周波数付近でゲインは大きくなる。位相は図 9.5(e)に実線で示すように、分母分子の 2 次式のダンピングが他の場合に比して小さいため、他の場合と異なりω=1.5 rad/sec 付近に山が出来る。この場合、ゲインが1になる周波数は周波数の大きい方をとり、クロスオーバ周波数とするとωc=2.15 rad/sec で、位相余有は 65°である。

(V) $N_p = -1.0$ の場合

方向舵操舵なしの場合。 Y_A の分母は原型機と同じ

である。分子は N_g , N_r 等の徴係数の値が異なるため異なり、伝達関数はつぎのようになる。

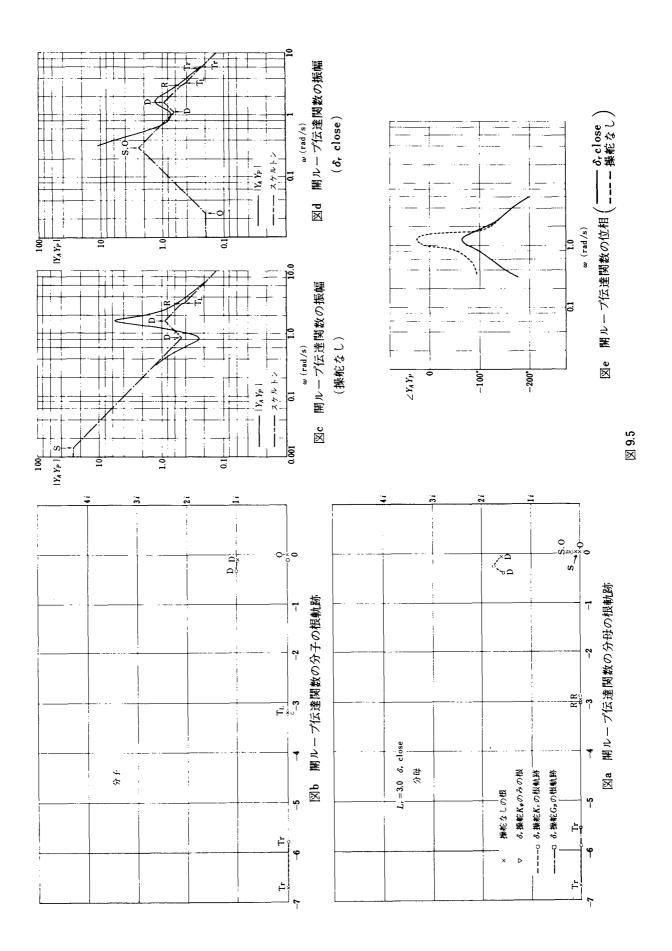
$$Y_{p}Y_{A} = \frac{0.272\left(\frac{s}{1.67} + 1\right)}{\left(\frac{s}{0.0138} - 1\right)\left(\frac{s}{2.97} + 1\right)} \times \frac{\left\{\left(\frac{s}{1.15}\right)^{2} + 2 \times 0.136\left(\frac{s}{1.15}\right) + 1\right\}}{\left\{\left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06\left(\frac{s}{1.604}\right) + 1\right\}}$$
(9.17)

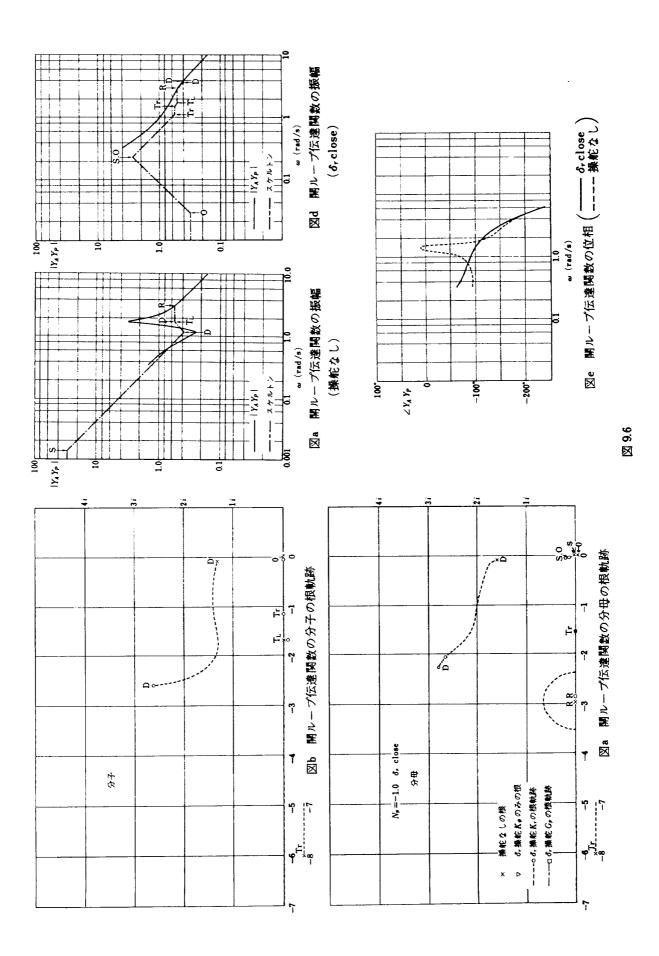
ボード線図のスケルトンを書くと図9.6(c)のようになり、分母のロールモードs=-2.97(R)とバイロットのリード項 $s=-1.67(T_L)$ との差と、分母のダッチロールモードの根(D)と分子の2次式の根(D)との差が顕著である。実際のボード線図は図9.6(c)に示すように、分母分子の2次式の間波数の所に、ダンビングが小さいため山と谷が出来る。位相は図9.6(e)に示す。

方向舵操舵の場合。 Y_A の分母は§ 8 の $N_p = -1.0$ の 方向舵のみ操舵の場合と同様で図9.6(a)に示すように、ス パイラルモードの根と Ky の0 とが連成して振動数, ダ ンピングの小さい複素根 (SO)が現われる事, ダッチロ ールモードの振動数とダンピングが非常に大きくなる事, パイロットの操舵時間おくれによる根が非常に小さくな る事が特色である。分子の根が、バイロットゲイン Kr が変化した時に動く様子を図9.6 (b)に示す。この場合バ イロットのゲイン K_r が大きいので根の動きは $N_{\delta a}^* = +0.2$ の場合に似ている。分子の2次式の根の動きは分母のダ ッチロールモードの根の動きに似ていて、パイロットの 選んだゲインではダッチロールモードの根と分子の2次 式の根は比較的近く、ダンピングは大きくなる。パイロ ットの操舵時間なくれの根は $N_{ba}^{*}=+0.2$ の場合と同様か なり小さくなり $s=-1.117(T_r)$ となる。分母のそれは $N_{\delta a}^{*}$ =+0.2 の場合と同様小さくなるが分子との相対位置 は逆で $s=-1.533(T_r)$ となる。開ループの伝達関数は次 式のようになる。

$$Y_{p}Y_{A} = \frac{15.358\left(\frac{s}{1.67}+1\right)}{\left(\frac{s}{1.533}+1\right)\left(\frac{s}{2.864}+1\right)} \times \frac{\left(\frac{s}{0.028}+1\right)\left(\frac{s}{1.117}+1\right)}{\left\{\left(\frac{s}{0.219}\right)^{2}+2\times0.234\left(\frac{s}{0.219}\right)+1\right\}} \times \frac{\left\{\left(\frac{s}{3.688}\right)^{2}+2\times0.693\left(\frac{s}{3.688}\right)+1\right\}}{\left\{\left(\frac{s}{3.615}\right)^{2}+2\times0.614\left(\frac{s}{3.615}\right)+1\right\}}$$

$$(9.18)$$





ボード線図のスケルトンは図 9.6 (d)のようになる。分母のダッチロールモードの根と分子の 2 次式の根は近いため図にははっきり現われない。分母のロールモードの根s=-2.86(R) とバイロットのリード項 $s=-1.117(T_L)$ との差のため $\omega=1.0\sim3.0$ rad/sec の所に平坦部が出来る。実際のボード線図は図 9.6 (d)のようになり,この平坦部はややならされるが,やはり $\omega=1.0\sim3.0$ rad/sec の所に傾斜のゆるやかな部分が出来る。分母の低周波の 2 次式の根 (SO) のダンピングが小さいため, $\omega=0.3$ rad/sec付近のボード線図の傾斜は急になる。位相は図 9.6 (e)に実線で示すように比較的滑らかである。この場合クロスオーバ周波数は 0.97 rad sec で位相余有は 92° である。

(2) 方向舵操舵から見た開ループ伝達関数

補助翼の操舵はすでに行われていると考え,また横揺れ角速度に比例した方向舵操舵 (G_p) は行われているとして,偏揺れ角及び偏揺れ角速度を検知して方向舵を操舵するとした(飛行機+パイロット)系のプロック図は図9.7 のようになる。以下においてバイロットの選んだゲイン K_r ,リード項 K_{Ψ}/K_r により開ループ伝達関数がどのような形を示すか,クロスオーバ周波数,位相余有は如何程になるかを検討する。

上に述べた(飛行機+パイロット)系の運動方程式は つぎの通りである。

$$\begin{cases} (s - Y_{\beta})\beta + \tau - Y_{\phi} & \phi = 0 \\ -N_{\beta}\beta + (s - N_{\tau})\tau + (-N_{p}s + N_{\delta\tau}G_{p}s \frac{-s + Z}{s + Z} \\ +N_{\delta a}(K_{p}s + K_{\phi})\frac{-s + Y}{s + Y} \phi = N_{\delta\tau}\delta_{\tau} \end{cases}$$

$$(9.19)$$

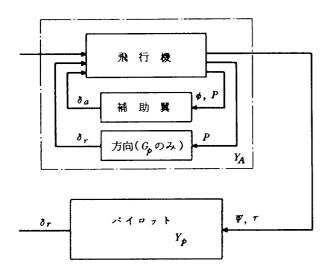


図 9.7 補助翼及び方向舵の G_p 部の操舵は行われている飛行機と方向舵操舵のプロック図

$$-L_{\beta}\beta - L_{\tau}\tau + \left(s(s - L_{p}) + L_{\delta a}(K_{p}s + K_{\phi}) \frac{-s + Y}{s + Y}\right)\phi = 0$$

$$(9.21)$$

$$\delta_{\tau} = -\frac{K_{\tau}}{s}\left(s + K_{\psi}/K_{\tau}\right)e^{-\tau \tau s}\tau$$

$$(9.22)$$

ここで、パイロットの操舵時間おくれの項については § 8 と同様 P'ade の 1 次近似を用いた。

上式より方向舵操舵による偏揺れ角速度応答 Y_A は次式のようになる。

$$Y_{A} = \frac{\Delta'_{N} + \Delta'_{N,K}}{\Delta_{1} + \Delta_{\delta a} + \Delta_{Gp}}$$
 (9.23)

 A_1 , $A_{\delta a}$ は既に§ 8で定義されたものと同一である。 A_{Ga} はつぎの通りである。

$$\Delta_{Gp} = N_{\delta\tau} G_p s \frac{-s+Z}{s+Z} \left[L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta} \right]$$
(9.24)

分子の Δ_N' 、 $\Delta_{N,K}'$ は次の通りである。

$$\Delta_{N}' = \begin{vmatrix} s - Y_{\beta} & 0 & -Y_{\phi} \\ -N_{\beta} & N_{\delta r} & -N_{\phi} s \\ -L_{\beta} & 0 & s (s - L_{p}) \end{vmatrix}$$
$$= N_{\delta r} \left[S (S - Y_{\beta}) (S - L_{p}) - L_{\beta} Y_{\phi} \right] \qquad (9.25)$$

$$\Delta'_{N,K} = \begin{vmatrix} s - Y_{\beta} & 0 & 0 \\ -N_{\beta} & N_{\delta \tau} & N_{\delta a}(K_{p}s + K_{\phi}) & \frac{-s + Y}{s + Y} \\ -L_{\beta} & 0 & L_{\delta a}(K_{p}s + K_{\phi}) & \frac{-s + Y}{s + Y} \end{vmatrix}$$

$$= N_{\delta \tau} L_{\delta a} K_{p} (s + K_{\phi} / K_{p}) (s - Y_{\beta}) \frac{-s + Y}{s + Y}$$

$$(9.26)$$

(9.22)式から見られるように分 母分子共補助翼操舵の影響を受け、分母はさらに方向舵操舵の G_p による部分の影響を受ける。これらの効果を考慮しながら原型機、 $N_{\delta a}^*$ =+0.2, $N_{\delta a}^*$ =-0.2, L_r =3.0, N_p =-1.0の各場合について開ループ伝達関数 Y_pY_A を考察し、位相余有を求める。

(i) 原型機の場合

補助翼操舵なし、かつ $G_p=0$ の場合。 $Y_A=\Delta'_N/\Delta'$ となり開ループ伝達関数は次式のように書ける。

$$Y_{p}Y_{A} = \frac{0.197 \left(\frac{s}{2.96} + 1\right)}{\left(\frac{s}{0.0138} - 1\right) \left(\frac{s}{2.97} + 1\right)} \times \frac{\left\{ \left(\frac{s}{0.571}\right)^{2} + 2 \times 0.014 \left(\frac{s}{0.571}\right) + 1\right\}}{\left\{ \left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06 \left(\frac{s}{1.604}\right) + 1\right\}} (9.27)$$

上式から見られるように分母のロールモードの根 (R) と分子の 1 次の根 (N_3) は殆んど同じで打消し合い,後に分母の 2 次式 (D) ,分子の 2 次式 $(N_1 N_2)$ と非常に低周波である分母のスパイラルモードの根 (S) のみ残る。この場合,補助翼操舵の場合のように分母分子の根は近くなく,はっきり分れている。ボード線図のスケルトンは簡単で図 9.8(c) のようになる。実際のボード線図は図 9.8(c) に示すように分母分子の 2 次式 (D,N_1N_2) のダンピングが小さいため,その周波数の所に山と谷が出来る。位相は図 9.8(e) のように,やはりその周波数の所で極端な変化が起る。

補助翼操舵及U方向舵の G_p 部操舵の場合。 Y_A の分 母分子共操舵の影響を受けて変化する。先ず分母を考え る。分母の補助翼操舵の部分は§8の原型機の補助翼操 舵のみの場合と同じで、それに G_p の効果が加わるが、 あまり大きくない。 つまりダッチロールモードの根はや やダンピングを増し、ロールモードとスパイラルモード は連成して複素根 (RS)となる。バイロットの操舵時間 なくれによる根の補助翼の部分は小さくなり、<math>s=-6.667から $s=-4.38(T_a)$ となる。方向舵操舵時間おくれに よる根の変化は小さい。これらの模様を図9.8(a)に示す。 分子は振動根が著しく変化し、振動数とダンピングの大 きい複素根 (-1.67, 1.92i)(N₁ N₂)と値の小さい実根 $s=-0.34(N_3)$ となる。複素根 (N_1N_2) は分母のロール モードとスパイラルモードの連成根 (RS)に非常に近く なる。この模様を図9.8(b)に示す。結局開ループ伝達関 数は次式のようになる。

$$Y_{p}Y_{A} = \frac{10.939 \left(\frac{s}{10.0} + 1\right)}{\left(\frac{s}{4.384} + 1\right) \left(\frac{s}{9.977} + 1\right)} \times \frac{\left(\frac{s}{0.339} + 1\right) \left(\frac{s}{4.369} + 1\right)}{\left\{ \left(\frac{s}{1.408}\right)^{2} + 2 \times 0.221 \left(\frac{s}{1.408}\right) + 1\right\}} \times \frac{\left\{ \left(\frac{s}{2.545}\right)^{2} + 2 \times 0.545 \left(\frac{s}{2.545}\right) + 1\right\}}{\left\{ \left(\frac{s}{2.593}\right)^{2} + 2 \times 0.657 \left(\frac{s}{2.593}\right) + 1\right\}} (9.28)$$

ボード線図のスケルトンは図 9.8 (d)に示すように簡単になり、分母の $\omega=1.408$ rad/sec にある 2 次式 (D) と分子の $\omega=0.339$ にある 1 次式 (N₃) のみ顕著に現われる。実際のボード線図は図 9.8 (d)のようになり、スケルトンで見られた $\omega=1.408$ rad/sec における山が分母の2 次式のダンピングがあまり大きくないため高くなる。位相も図 9.8 (e)に実線で示すように $\omega=1.408$ rad/sec で顕著に変わる形をしている。ボード線図の振幅から見

られるように、 $|Y_pY_A|$ の低周波のゲインは小さく、形の上からもこれはクロスオーバモデルとはかなり異っていると云える。§8でも述べたように、クロスオーバモデルの特徴である低周波における外乱を小さくする事は、方向舵では行われてなく、 $|Y_pY_A|$ の図で $\omega=1.408$ に山がある事は、方向舵によってダッチロールモード付近のダンピングを良くしている事を意味していると考えられる。そして、クロスオーバ周波数は $2.02\,\mathrm{rad/sec}$ である。

(ii) Na = +0.2 の場合

補助翼操舵なし、かつ $G_p=0$ の場合。 Y_A は原型機 と同じであるが、 Y_p が原 型機と異なりバイロットのリード項が入り、 $Y_p=K_r$ $(s+K_{\Psi}/K_r)/s$ となるので開ループ伝達関数はつぎのようになる。

$$Y_{p}Y_{A} = \frac{1.573\left(\frac{s}{0.125} + 1\right)\left(\frac{s}{2.96} + 1\right)}{s\left(\frac{s}{0.0138} - 1\right)\left(\frac{s}{2.97} + 1\right)} \times \frac{\left\{\left(\frac{s}{0.571}\right)^{2} + 2 \times 0.014\left(\frac{s}{0.571}\right) + 1\right\}}{\left\{\left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06\left(\frac{s}{1.604}\right) + 1\right\}} (9.29)$$

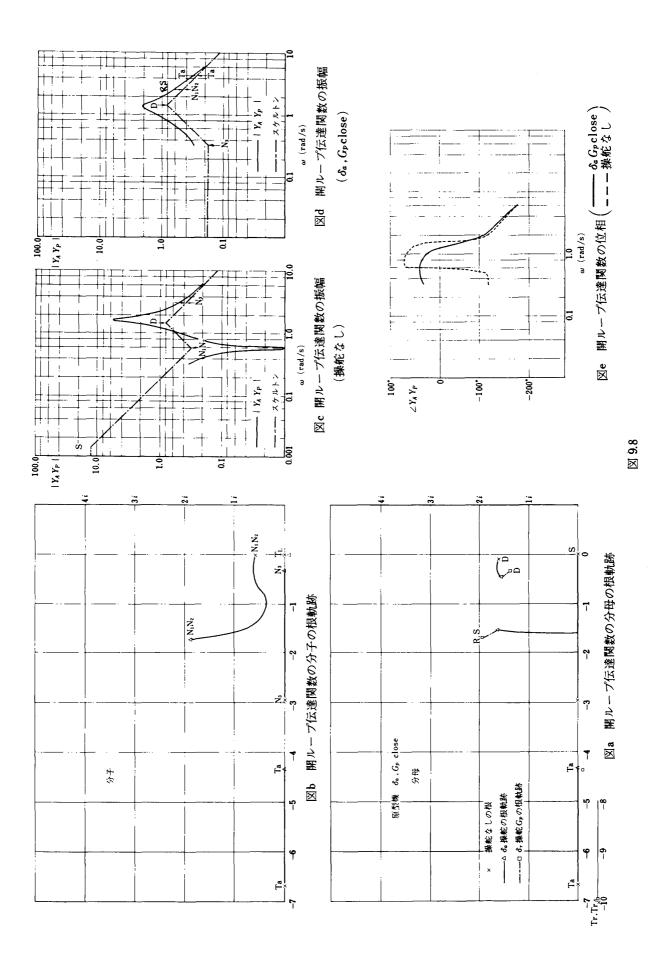
ボード線図のスケルトンは図 9.9 (c)に示すように,原型機と殆んど同じであるが,低周波のω< 0.125 rad/sec で異なる。実際のボード線図と位相は図 9.9 (c),図 9.9 (e)の点線で示すように原型機と殆んど変らないがゲインだけ異なる。

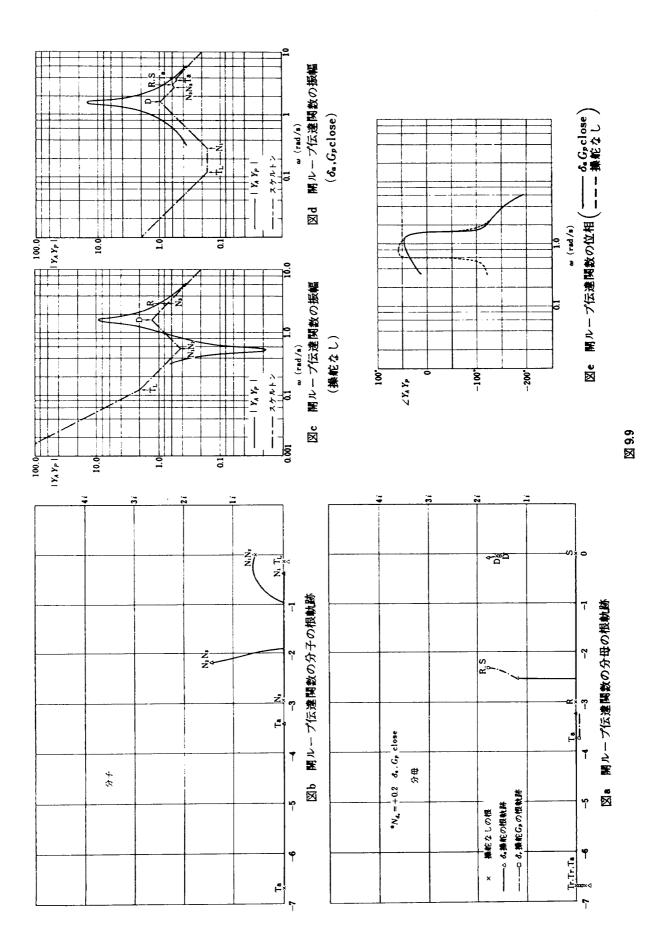
補助翼操舵及び方向舵の G_p 部分操舵の場合。 Y_A は原型機と異なる。分母は \S 8の補助翼のみ操舵の場合に比して G_p による小さい効果だけ異なる。これを図9.9 (a)に示す。なか,図 $9.9 \sim 12$ (a) では根s=0 の記入は省略した。ここで顕著なのは,操舵によってダッチロールモードのダンピングが殆んど変化しない事である。分子の補助翼操舵の効果の形は図9.9 (b)に示すように原型機と殆んど同じである。開ループの伝達関数は次式に示すようになる。

$$Y_{p}Y_{A} = \frac{121.82 \left(\frac{s}{0.125} + 1\right) \left(\frac{s}{0.396} + 1\right)}{s \left(\frac{s}{3.702} + 1\right) \left(\frac{s}{6.667} + 1\right)}$$

$$\times \frac{\left(\frac{s}{3.393} + 1\right) \left(\frac{s}{6.667} + 1\right)}{\left\{ \left(\frac{s}{1.54}\right)^{2} + 2 \times 0.03 \left(\frac{s}{1.54}\right) + 1\right\}}$$

$$\times \frac{\left\{ \left(\frac{s}{2.619}\right)^{2} + 2 \times 0.831 \left(\frac{s}{2.619}\right) + 1\right\}}{\left\{ \left(\frac{s}{2.98}\right)^{2} + 2 \times 0.772 \left(\frac{s}{2.98}\right) + 1\right\}} (9.30)$$





ボード線図のスケルトンは図 9.9 (a)に示すように、ω < 0.125 rad/sec の所を除くと原型機と大差はない。実際のボード線図は図 9.9 (d)に示すようで、原型機と同じくω = 1.54 rad/sec に山が出来るが、スケルトンの山に加えてダッチロールモードのダンピングが原型機より悪く山も高い。位相も図 9.9 (e)に示すようにω = 1.54 rad/sec付近で顕著な変化を示す。クロスオーバ周波数は、2.75 rad/sec で位相余有は 45° である。

(ii) Naa=-0.2 の場合

補助翼操舵なし,かつ $G_p=0$ の場合。 Y_A の形は原型機と全く同じであるが Y_p が異なり,開ループ伝達関数は次式のようになる。

$$Y_{p}Y_{A} = \frac{0.262 \left(\frac{s}{0.75} + 1\right) \left(\frac{s}{2.96} + 1\right)}{s \left(\frac{s}{0.0138} - 1\right) \left(\frac{s}{2.97} + 1\right)} \times \frac{\left\{ \left(\frac{s}{0.571}\right)^{2} + 2 \times 0.014 \left(\frac{s}{0.571}\right) + 1\right\}}{\left\{ \left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06 \left(\frac{s}{1.604}\right) + 1\right\}}$$

$$(9.31)$$

ボード線図のスケルトンは図 9.10(c) に示すように, $\omega=0.75~{\rm rad/sec}$ にリード項 (T_L) が現われる他は原型機と殆んど変らない。実際のボード線図は図 9.10(c) に示すように原型機と同じく $\omega=1.6~{\rm rad/sec}$ に山, $\omega=0.57~{\rm rad/sec}$ に谷が出来,位相も図 9.10(e)に示すようにそれに伴って複雑な変化をする。

補助翼操舵及び方向舵 G_p 部分操舵の場合。 Y_A の分母は \S 8 の補助翼操舵のみの場合に殆んど同じで,それに G_p の効果が加わったもので,図 9.10 (a) に示す。 \S 8 で述べたようにダッチロールモードの根 (D) とロールスパイラル連成根 (RS) との差が大きい。分子の操舵による根の動きは図 9.10 (b) に示すように,原型機に似ている。 複素根 (N_1N_2) は分母のダッチロールモードの根に近くなる。開ループの伝達関数は次のようになる。

$$Y_{p}Y_{A} = \frac{0.979 \left(\frac{s}{13.33} + 1\right) \left(\frac{s}{0.278} + 1\right)}{\left(\frac{s}{5.254} + 1\right) \left(\frac{s}{13.302} + 1\right)} \times \frac{\left(\frac{s}{5.256} + 1\right) \left(\frac{s}{0.75} + 1\right)}{\left\{\left(\frac{s}{0.85}\right)^{2} + 2 \times 0.45 \left(\frac{s}{0.85}\right) + 1\right\}} \times \frac{\left\{\left(\frac{s}{2.664}\right)^{2} + 2 \times 0.49 \left(\frac{s}{2.664}\right) + 1\right\}}{\left\{\left(\frac{s}{2.907}\right)^{2} + 2 \times 0.417 \left(\frac{s}{2.907}\right) + 1\right\}}$$

$$(9.32)$$

ポード線図のスケルトンは図 9.10(d)に示す通りであ る。パイロットの操舵時間おくれによる根 (T_a) は分母 分子で値があまり変らず、スケルトンは殆んど変らない。 ダッチロールモードの根は原型機に比べて振動数が増す が, 分母分子で値があまり変らないのでスケルトンには わずかに現われるだけである。原型機との間の顕著な違 いは、分母のロールスパイラル連成の2次根(RS)が周 波数の比較的小さい $\omega = 0.825 \text{ rad/sec}$ に現われる。そ して続いてパイロットのリード項 (T_L) は1 次式で ω = 0.75 rad/sec に現われる。したがって,原型機に見ら れたような山は出現せず、 $\omega = 0.28 \sim 0.75 \text{ rad/secKP}$ 坦部が出来る。実際のポート線図を示すと図9.10(d)の ように分母のω = 0.83 rad/sec の振動根 (RS)のタン ピングが大きいためと、スケルトンから予想されるよう に、低周波部に平坦部があり、1 rad/sec以上ではほぼ -20 db/dcの傾斜で小さくなる。位相は図 9.10(e) に実 線で示すように全体的にやや波を打っているが、ほぼ滑 らかである。クロスオーバ周波数は 1.32 rad /sec で位 相余有は 78° である。

(V) $L_r = 3.0$ の場合

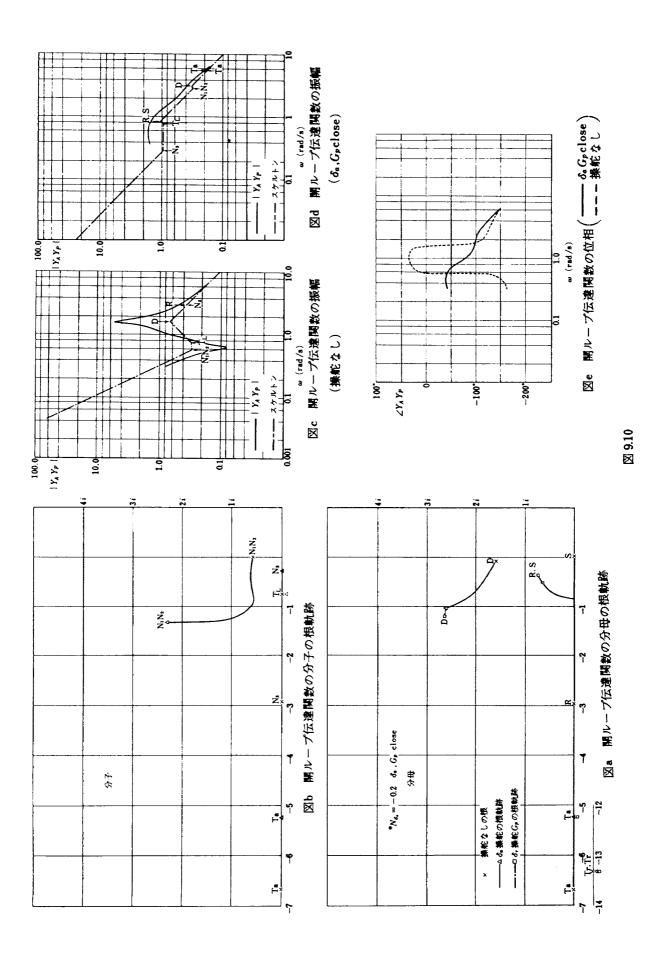
補助翼操舵なし及び $G_p=0$ の場合。 Y_A の分母は原型機と同じであるが,分子は L_p , L_β 等の徴係数の値が変化しているので変化する。特に L_β が大きいので,複素根の振動数は大きくなっている。開ループの伝達関数はつぎの通りである。

$$Y_{p}Y_{A} = \frac{0.215\left(\frac{s}{0.6}+1\right)\left(\frac{s}{3.01}+1\right)}{s\left(\frac{s}{0.0138}-1\right)\left(\frac{s}{2.97}+1\right)} \times \frac{\left\{\left(\frac{s}{0.7}\right)^{2}+2\times0.049\left(\frac{s}{0.7}\right)+1\right\}}{\left\{\left(\frac{s}{1.604}\right)^{2}+2\times0.06\left(\frac{s}{1.604}\right)+1\right\}}$$

ボード線図のスケルトンは図 9.11(c) 化示すように、バイロットのリード項が $\omega=0.6$ rad /sec にある点で原型機と異なる。実際のボード線図は図 9.11(c) に示すように $\omega=1.6$ rad /sec に山、 $\omega=0.7$ rad /sec に谷が出来る。これに伴い位相も図 9.11(e) の点線のようにその周波数付近で大きく変化する。

補助翼操舵及び方向舵の G_p 部操舵の場合。 Y_A の 分母の補助翼操舵による変化は \S 8 の $L_r=3.0$ の補助翼操舵のみの場合と同じであって,ダッチロールモードのダンピングはかなり良くなり周波数も大きくなる。しかし,前述 (\S 8) のようにロールモードとスパイラルモードは連成しない。この場合 (\S 17) 式に見られるように

(9.33)



 G_p のゲインは L_r 倍されるので, L_r が大きいので G_p の効果は大きく,ダッチロールモードの根のダンピングはさらに増し,ロールモードとスパイラルモードは連成して複素根 (RS) となる。しかし,ダッチロールモードの根($\omega=2.486\ rad/sec$)とロールスパイラル連成根($\omega=0.9\ rad/sec$)との差は大きい。この様子を図 $9.11\ (a)$ に示す。補助翼操舵による分子の根の動きは原型機に似ている。しかし,複素根 (N_1N_2) は $N_{\delta a}^*=-0.2$ の場合のように分母のダッチロールの根に近くなる。この模様を図 $9.11\ (b)$ に示す。結局開ループ伝達関数の式はつぎのようになる。

$$Y_{p}Y_{A} = \frac{4.362 \left(\frac{s}{6.667} + 1\right) \left(\frac{s}{0.569} + 1\right)}{s \left(\frac{s}{3.753} + 1\right) \left(\frac{s}{6.667} + 1\right)} \times \frac{\left(\frac{s}{3.868} + 1\right) \left(\frac{s}{0.6} + 1\right)}{\left\{ \left(\frac{s}{0.9}\right)^{2} + 2 \times 0.836 \left(\frac{s}{0.9}\right) + 1\right\}} \times \frac{\left\{ \left(\frac{s}{2.423}\right)^{2} + 2 \times 0.773 \left(\frac{s}{2.423}\right) + 1\right\}}{\left\{ \left(\frac{s}{2.486}\right)^{2} + 2 \times 0.61 \left(\frac{s}{2.486}\right) + 1\right\}}$$

$$(9.34)$$

ポード線図のスケルトンは図 9.11(d) のようになる。 パイロットの操舵時間おくれによる根は分母分子であま り差がなく、スケルトンには殆んど現われない。分母の $タッチロールモートの根も分子の複素根 <math>(N_1N_2)$ に近く, スケルトンに殆んど現われず, 分母のω=0.9 rad /sec における 2 次式 (RS) と分子の $\omega = 0.6$ rad $\sqrt{\sec(T_L)}$ $e^2 = 0.569 \, \text{rad} / \text{sec}(N_3) \, 0.20 \, 0.1 \,$ 次根が顕著にスケ ルトンに現われる。実際のポード線図は図9.11(d)に示 すようになり、0.3~2rad/secでは傾斜がゆるやかで、 2 rad /sec以上では-20 db /dcの傾斜で小さくなる。傾 斜がゆるやかな所は分母の 2 次式 ($\omega = 0.9 \, \text{rad} \, / \, \text{sec}$ (RS)のダンピングが大きく、また分子の1次の2つの 根が $\omega = 0.6$ rad /sec 付近に集っているためである。位 相は図9.11(e)に実線で示すように滑らかである。この 場合のクロスオーバ周波数は非常に小さく0.19 rad / sec で,位相余有は 107° である。

$$(V)$$
 $N_p = -1.0$ の場合

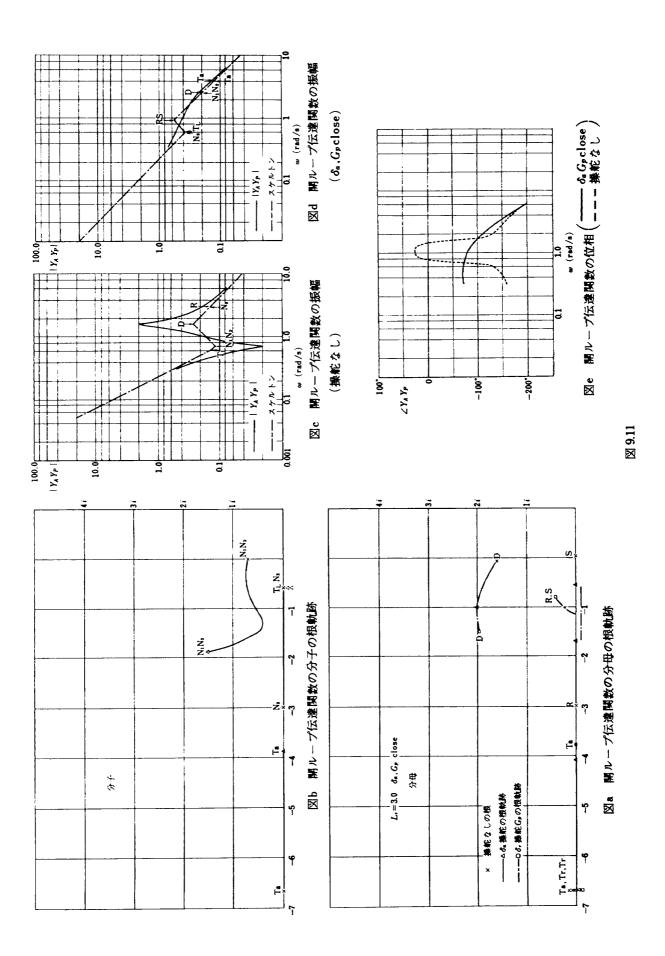
補助翼操舵なしで $G_p=0$ の場合。 Y_A の分母は原型機の分母と全く同じである。分子は L_β , L_τ 等の微係数の値が変化するため変化する。すなわち, L_β が小さいため複素根 $(N_1 N_2)$ はやや小さくなる。開ループの伝達関数はつぎのとおりである。

$$Y_{p}Y_{A} = \frac{1.151\left(\frac{s}{0.261} + 1\right)\left(\frac{s}{2.923} + 1\right)}{s\left(\frac{s}{0.0138} - 1\right)\left(\frac{s}{2.97} + 1\right)} \times \frac{\left\{\left(\frac{s}{0.465}\right)^{2} + 2 \times 0.025\left(\frac{s}{0.465}\right) + 1\right\}}{\left\{\left(\frac{s}{1.604}\right)^{2} + 2 \times 0.06\left(\frac{s}{1.604}\right)^{2} + 1\right\}}$$

ボード線図のスケルトンを画くと図9.12(c)のようになり、分子の2次式の根 (N_1N_2) が小さくなったのと、バイロットのリード項 $\omega=0.261\,\mathrm{rad/sec}(T_L)$ 以外、原型機とあまり変らない。実際のボード線図は図9.12(c)に示すように原型機のように分母の2次式の根(D) $\omega=1.6\,\mathrm{rad/sec}$ の所に山、分子の2次式の根 (N_1N_2) $\omega=0.465\,\mathrm{rad/sec}$ の所に谷が出来る。位相も図9.12(e) に示すようにその所で複雑な変化をする。

補助翼操舵及び方向舵の Gp 部分操舵の場合。 分母分子共操舵の影響を受けて変化する。分母の変化は $\S80N_p = -1.0$ の補助翼操舵のみの場合と殆んど同じで Gp の影響はごくわずかである。この場合§8でも述べ たように、ダッチロールモードのダンピングは少し良く なり、ロールモードはパイロットの操舵の時間おくれに よる根と連成して大きな振動数 ($\omega = 3.46 \, \text{rad/sec}$)の 複素根 (TaR)となる。スパイラルモードは振動数を増す (ω=0.571 rad /sec)が1次式の根(S)に止まる。 と れらの模様を図9.12(a)に示す。分子の根の操舵による 動きは, K_{ϕ}/K_{p} の値が小さい(原型機では3.4である $\dot{N}_{b} = -1.0$ では 1.64) ため原型機とかなり異なり、s =-2.9 の根とパイロットの操舵による時間おくれによる 根が連成して複素根 $\omega = 3.7 \operatorname{rad} / \operatorname{sec}(T_a N_3)$ となり、 分母の振動根の1つの根(D)に近くなっている。また, $\omega = 0.465 \, \text{rad} \, / \text{sec} \, O \,$ 複素根はダンピングの大きい ω = 0.566 rad /secの複素根 (N₁ N₂)となる。これらの模 様を図 9.12(b) に示す。結局開ループ伝達関数は次式の ようになる。

$$Y_{p}Y_{A} = \frac{24.953 \left(\frac{s}{8.0} + 1\right) \left(\frac{s}{0.261} + 1\right)}{\left(\frac{s}{0.571} + 1\right) \left(\frac{s}{7.961} + 1\right)} \times \frac{\left\{ \left(\frac{s}{0.566}\right)^{2} + 2 \times 0.94 \left(\frac{s}{0.566}\right) + 1\right\}}{\left\{ \left(\frac{s}{1.472}\right)^{2} + 2 \times 0.345 \left(\frac{s}{1.472}\right) + 1\right\}} \times \frac{\left\{ \left(\frac{s}{3.566}\right)^{2} + 2 \times 0.941 \left(\frac{s}{3.566}\right) + 1\right\}}{\left\{ \left(\frac{s}{3.46}\right)^{2} + 2 \times 0.63 \left(\frac{s}{3.46}\right) + 1\right\}}$$
(9.36)



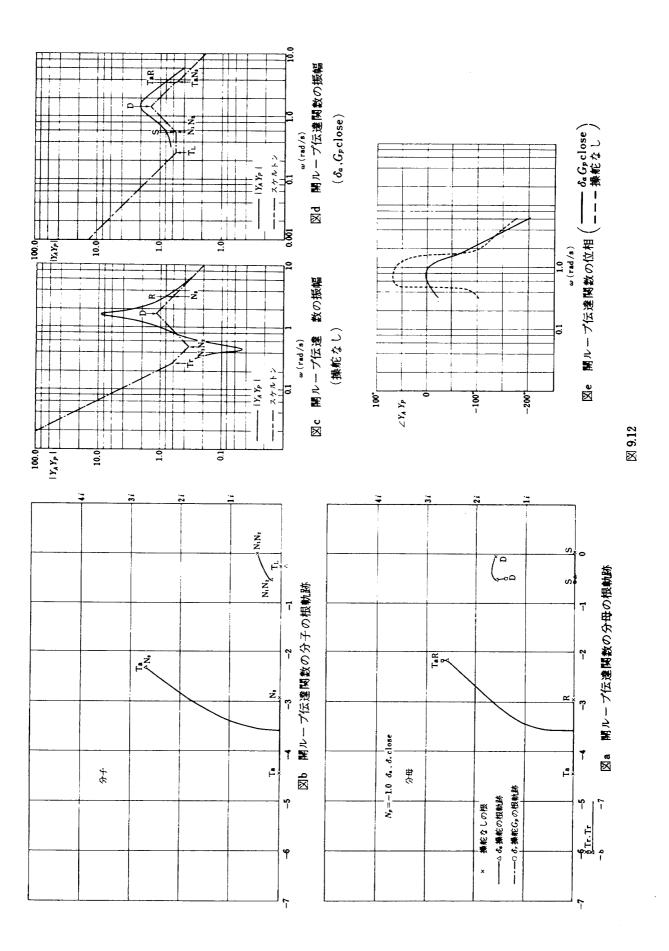


表 3 クロスオーバ周波数 (ω_c) と位相余有 (φ)

(1) 補助翼操舵

	ω _c (rad/s)	φ (°)
原型機	1.72	59°
$N_{\delta a}^{\dagger} = +0.2$	1.71	44°
$N_{\delta a}^* = -0.2$	2.0	7 1°
$L_{\tau} = 3.0$	2.15	65°
$N_p = -1.0$	0.97	92°

(2) 方向舵操舵

原型機	2.02	71
$N_{3a}^* = +0.2$	2.75	45
$N_{\delta a}^{\bullet} = -0.2$	1.32	78
$L_{\tau} = 3.0$	0.19	107
$N_p = -1.0$	3.22	47

§10 パイロットのゲインが変化した時の乱れた気流に 対する機体の応答の状態変数の r. m. s.

バイロットのゲインが変化した時の乱れた気流(横風のみを考え,そのr.m.s.が横揺れモーメントに換算して $0.091I_x$ kgm でPSD が図6.2 に示すような時系列)に対する,バイロットの操舵を含んだ横揺れ角応答,偏揺れ角速度応答,補助翼操舵量,方向舵操舵量の100秒

間のr.m.s.を計算する。以下各場合について考察する。

(1) Ka変化の場合

パイロットのゲイン K_{ϕ} が変化した時の横揺れ角応答の $r.m.s.(\sigma_{\phi})$,補助翼の操舵量の $r.m.s.(\sigma_{\delta a})$ を、 K_{r} を 0.3,0.7,1.1 と変化し K_{p} 、 K_{r} 、 G_{p} は表 2 に示した値にした場合について計算した。

(i) 原型機の場合

図 10.1 に見られるように σ_ϕ は K_ϕ が増すと減少し、ある最小値に達し、その後は増加する。 $\sigma_{\delta a}$ は K_ϕ の増加と共に増加する。 σ_ϕ がこのような変化する原因を調べてみる。以下において $K_T = 0.7$ の場合について調べる。 K_ϕ が変化する時の乱気流に対する横揺れ角応答の伝達関数の分子は一定で次式の通りである。

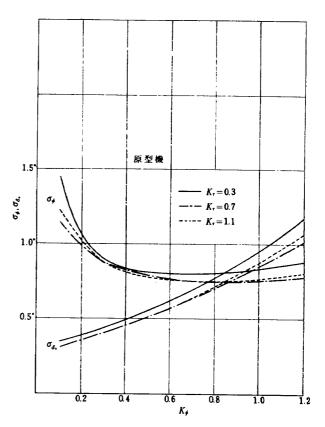
$$\mathcal{F} = \left[(s - Y_{\beta}) (s - N_{r} + N_{\delta \tau} K_{\tau} \frac{-s + Z}{s + Z}) + N_{\beta} - 0.18 (L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta}) \right] (s + Z) (s + Y)$$

$$= 67.2 \left(\frac{s}{6.667} + 1 \right) \left(\frac{s}{6.953} + 1 \right) \left\{ \left(\frac{s}{1.204} \right)^{2} + 2 \right\}$$

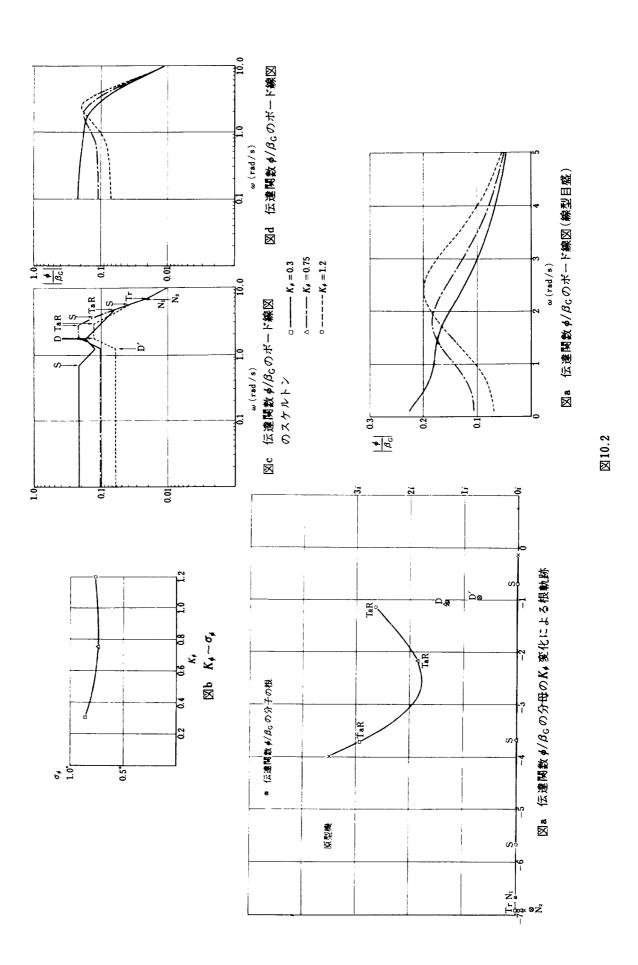
$$\times 0.81 \left(\frac{s}{1.204} \right) + 1 \right\}$$

(10.1)

分母の根は Ko によって変化するので,その模様を図10. 2(a)に示す。伝達関数のポード線図とそのスケルトンを



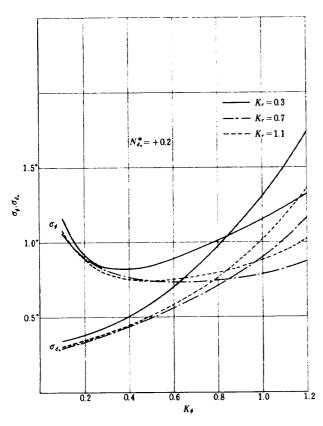
 $\boxtimes 10.1$ σ_{\bullet} , $\sigma_{\sigma_{\bullet}} \sim K_{\bullet}$



 $K_{\phi}=0.3$, 0.75, 1.2 の場合について図 10.2 (d)(c) に示 す。図10.2(d)は対数目盛であるので各場合の差が捕え 難いので線型目盛で $|\phi/\beta_G|$ を示すと図 10.2 (e)のよう になる。なお,図 10.2 (b)に σ_ϕ 対 σ_ϕ の曲線を示す。図 10.2(e)によれば、 $K_0 = 0.3$ では低周波成分が大きく、 Ka = 1.2 では高周波成分が大きいのが見られる。これ は分母の根軌跡及び対数目盛のボード線図から判断され るように、Ko が小さい時はスパイラルモードの根が補 助翼操舵によりあまり大きくならないため, 乱気流応答 の低周波領域における軽減率が悪く, Ko が大きい時は 根 TaR (図 10.2(a)) がパイロットの時間 おくれによる零 点に引き寄せられてダンピングが悪くなり、乱気流応答 の軽減率が悪くなっている。パイロットの選んだゲイン $K_0 = 0.85$ では σ_0 は最小値に近い。バイロットは横揺 れ角変動をなるべく小さくしようとして操舵していると 云う考え方とよく一致している。しかし、この σφ の最 小値を得るワークロードσδαについても考慮する必要が あり、この場合はワークロードがあまり大きくないので σφ の最小値を得るように操舵出来ていると考える。

(ii) $N_{\delta a}^{\dagger} = +0.2$ の場合

 σ_{ϕ} は図 10.3に見られるように原型機に比して $K_{\phi}=0.3$ では小さく、 $K_{\phi}=0.75$ と 1.2 の差はとの場合の方が顕著である。以下 $K_{\tau}=1.1$ の場合について調べる。乱



 $\boxtimes 10.3$ σ_{ϕ} , $\sigma_{\delta_{\bullet}} \sim K_{\phi}$

気流に対する横揺れ角応答の伝達関数の分子の根はつぎ の通りである。

分子= 1.209
$$\left(\frac{s}{0.021} + 1\right) \left(\frac{s}{0.665} + 1\right) \left(\frac{s}{6.667} + 1\right)$$
× $\left\{ \left(\frac{s}{3.63}\right)^2 + 2 \times 0.55 \left(\frac{s}{363}\right) + 1 \right\}$

(10.2)

方向能操舵のゲインが大きいためダッチロールモードの根は大きくなり方向舵操舵の時間おくれによる根 (N_2) は非常に小さくなる。また,この場合は方向舵を偏揺れ角に比例して動かしているのでs=-0.021と云う根 (N_1) が現われる。伝達関数の分子の根を図 10.4 (a)に \otimes 印で示す。伝達関数の分母の根 K_0 変化による動きを図 10.4 (a)に示す。分母の式で $K_0=0$ とした時の根を見ると,分子と同様に,方向舵の操舵のゲインの大きい影響のためダッチロールモードの根は非常に大きくなり,操舵の時間おくれによる根 (T_T) は小さくなり -0.98 となる。また,偏揺れ角に比例した方向舵操舵のため振動数の小さい複素根 (SO) が現われる。 K_0 操舵による根の動きの

$$1 - \frac{L_{\partial a} K_{\phi} \left(\left\{ (s - Y_{\beta}) (s - N_{\tau}) + N_{\beta} \right\} \right) \left((s + 0.98) (s^{2} + 0.146 + 0.029) \right)}{\left((s + 0.98) (s^{2} + 0.146 + 0.029) \right)}$$

$$\frac{+N_{\partial a}^{*} (L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta}) \left\{ (s + Z) \right\} }{\left((s^{2} + 3.744 s + 14.798) \right)}$$

$$\frac{-N_{\partial \tau} K_{\tau} \left((s + K_{\psi} / K_{\tau}) (s - Y_{\beta}) (s - Z) \right) (s - Y)}{\left((s^{2} + 8.045 s + 27.597) \right)}$$

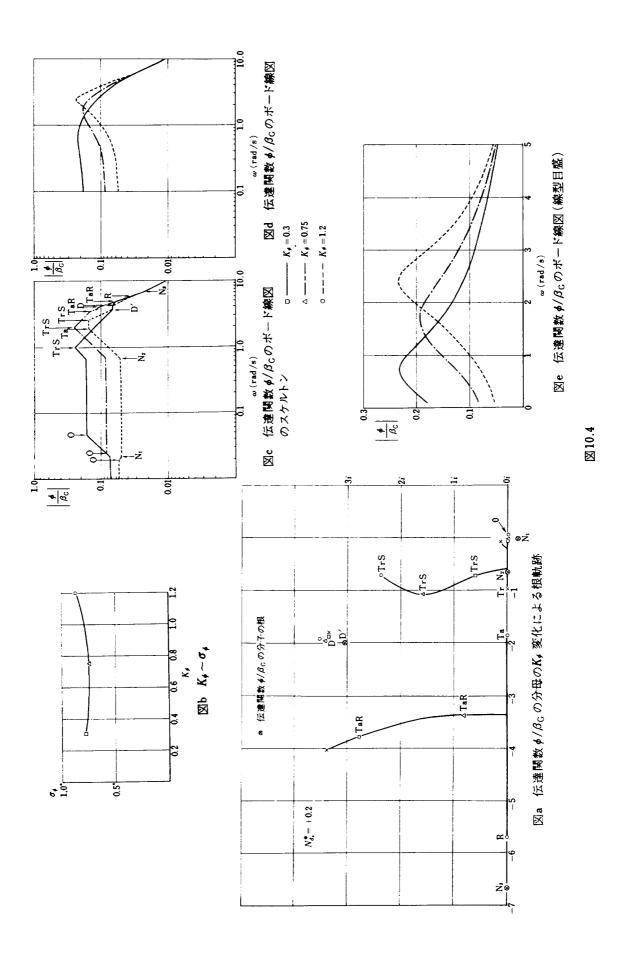
$$(10.3)$$

方程式はつきの通りである。

 K_{ϕ} を変化した時の分母の根 (SO)の動きは乱気流に対する横揺れ角応答の低周波領域における軽減度に影響する所が大きい。 この場合 $K_{\phi}=0.3$ にすると,根 (SO)の 1 つの根は 0 に近くなるが,も 5 1 つの根は根 (T_r) と連成して複素根 (T_rS) となる。原型機に比してスパイラルモードの根は大きくなる。ところが周波数 1 rad sec 付近に於て原型機では分母分子の 2 次式 (D,D') があるのに対して, $N_{\phi}^{*}=+0.2$ の時は T_rS , N_2 があり,スパイラルモードの根は大きくなるが,この場合 0.8 rad sec 付近に山が出来,その周波数付近ではこの場合の方が大きい。しかし,原型機の方が低周波,高周波で大きくなり, σ_{ϕ} はこの場合の方がわずかに小さい。

 $K_{\phi}=0.75$ では高周波でやや $K_{\phi}=0.3$ に比して軽減率は悪くなっているが,低周波で大きく軽減するので σ_{ϕ} はわずか小さくなっている。

K_φ=1.2 では低周波領域における乱気流応答の軽減に 役立っていた根は大きくなると共にダンピングが悪くな



り,高い周波数で応答性が悪くなり σ_ϕ は増加する。
(iii) $N_{Ma}^{\bullet}=-0.2$ の場合

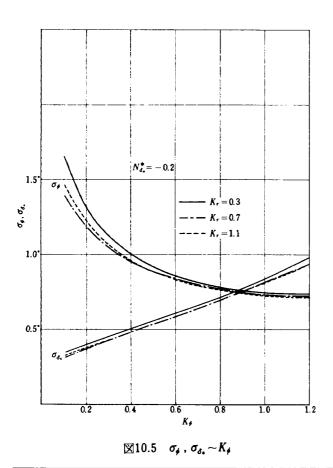
 σ_ϕ は図 10.5 に見られるように $K_\phi=0.3$ では大きく, K_ϕ の増加と共に減少し, $K_\phi=1.2$ になるまで減少し続ける。以下 $K_r=0.7$ の場合を解析する。乱れた気流に対する横揺れ角応答の伝達関数の分子はつぎの通りである。

$$\mathcal{F} = 7.25 \left(\frac{s}{0.047} + 1 \right) \left(\frac{s}{6.667} + 1 \right) \left(\frac{s}{11.12} + 1 \right)$$

$$\times \left\{ \left(\frac{s}{1.443} \right)^2 + 2 \times 0.435 \left(\frac{s}{1.443} \right) + 1 \right\} \quad (10.4)$$

つぎに分母の根の K_ϕ 変化による根軌跡を示すと図1.0. $6^{\textcircled{8}}$ (a)の通りである。

この場合は、乱れた気流に対する横揺れ角応答の伝達関数 ϕ/β_G の分子の 2 次式の振動数が大きく、ダンビングが小さい事と $\left((10.4)$ 式 $\right)$ 、補助翼操舵による横揺れ角応答の伝達関数 ϕ/δ_a の分子の 2 次式の振動数が小さい事が特徴的である。以下 $K_T=0.7$ の場合について考える。



 K_o を 0.3 にしても,伝達関数 φ/β_G の分母の根 SOは複素根のまま止まる。また、 $K_0 = 0.3$ では、伝達関数 ϕ/eta Gの分子の 2 次式の振動数が大きい事が影響し、根 SO のダンピングの小さい事と相俟って, 低周波領域に おけるゲインはかなり大きくなる。(図10.6(d), (e)) Ka=0.75 にすると、スパイラルモードの根の増大(根 SO が実根になり、実根の1つが大きくなる。)により 低周波領域におけるゲインはかなり減少するものの, 伝 達関数 φ/δ_a の分子の2次式の振動数が小さいため、伝 達関数 φ/β_G の分母に、それに近付く根 $(D)^{-1}$ がある事 (図 10.6(a)) と、伝達関数 φ/β_G の分子の2次式の振 動数が大きい事により(図10.6(c)),低周波領域におけ るゲインは未だ大きい。しかし、伝達関数 φ/eta_G の分子 の2次式のダンピングが小さい事が影響して, 高周波領 域におけるゲインの増加は顕著でないためσφ はかなり 減少する。 $K_{\phi}=1.2$ にすると、 $K_{\phi}=0.75$ で未だ大きか った低周波領域におけるゲインはさらに減少する。根 TaR による高周波領域におけるゲインの増加は、根 TaRの振動 数の増加による低周波領域に於けるゲインの減少を伴

上記2つの事が原因して、 σ_ϕ は減少する。

(V) $L_r = 3.0$ の場合

σφ, σδα の Kφ による変化は図 10.7 に示す通りである。 Kφ を増してもあまり σφは変化しない。 この場合 Kr を増すと著しくσφ が減少するのが見られるが,§ 8 で述べたように,また後述するように,この場合はダッチロールモートが補助翼によってかなりダンピングを大きくされるので,偏揺れ運動を抑制するのに方向舵のゲインを大きくする必要がない事と,また,Kr を大きくするとσφ は減少するがバイロットは原型機に適する操作に慣れており,σφ を減少するために方向舵を用いる事をしないと考えられる。また一面では,通常の操作をしている時,§ 8 でも述べたように補助翼の操作が多忙で,偏揺れ運動が極端に大きくならない限り放置しているとも考えられる。この事はバイロットの所見とも一致して

以下 $K_r=0.3$ の場合について調べる。この場合の乱れた気流に対する横揺れ角応答の伝達関数の分母の根の K_{0} 変化による根軌跡 * (図 10.8 (a))をみると, $N_{\delta a}^*=-0.2$ の場合に似ている。しかし, $N_{\delta a}^*=-0.2$ の時と異なり,

図中の $K_r=1.2$ の時の記号は根軌跡の出発点 $(K_\phi=0)$ のモードの名称に固執したため§8,§9と異なるものを用いた。図中の T_aR ,D,S, N_1 , N_2 は図8.15 のD,RS, T_a .O, T_r に相当する。

[▲]註 §8ではロールスパイラル連成根に相当する。

[※]註 図中の記号は $N_a^* = -0.2$ の場合と同様図8.18と異る。

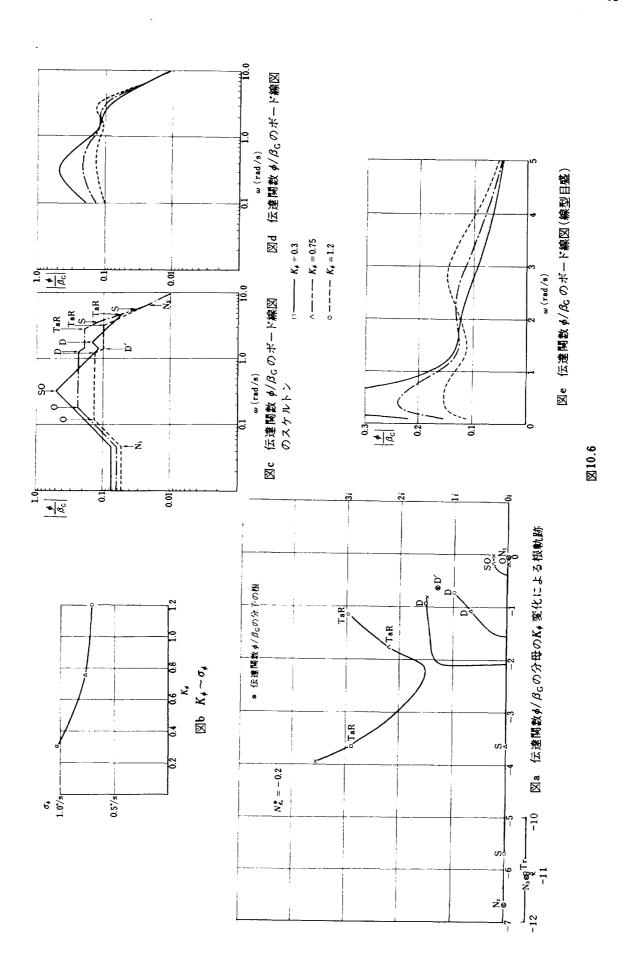


図 10.8 (b) に見られるように、 K_ϕ を 0.3 から 1.2まで増しても、 σ_ϕ の値はあまり変らず、その値は大きい。以下において K_r =0.3 の場合について考える。

この場合の特徴は、伝達関数 ϕ/β_G の分子の根が全て実根である事である。分子は次式で表わされる。

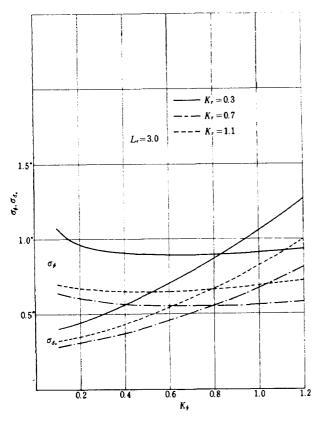
$$\Re \mathcal{F} = \left[(s - Y_{\beta}) (s - N_{\tau}) + N_{\beta} - 0.18 (L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta}) \right] s (s + Z) (s + Y) + N_{\delta \tau} K_{\tau} (s + K_{\tau} / K_{\tau}) (s - Y_{\beta}) (s - Z) (s + Y)$$

$$= 11.98 \left(\frac{s}{0.065} + 1 \right) \left(\frac{s}{0.589} - 1 \right) \times \left(\frac{s}{0.805} + 1 \right) \left(\frac{s}{5.832} + 1 \right) \left(\frac{s}{6.667} + 1 \right)$$

(105)

この場合は N_{eta} が小さく、 L_{r} 、 L_{eta} が大きい ため分子の根が実根となる。

 $K_\phi=0.3$ では,原型機, $N_{\delta a}^*=-0.2$ の場合に比してダッチロールモードのダンピングが小さい事と,伝達関数 ϕ/β_G の分子の 2 次式が実根をもつため,その周波数領域におけるゲインは大きい。しかし, $N_{\delta a}^*=-0.2$ の場合に比べて,伝達関数 ϕ/β_G の分子の根 N_1 , N_2 が小さいため,低周波領域におけるゲインは大きくない。(図 10.8(d),(e)) したがって, σ_ϕ は原型機に比べると大きいが, $N_{\delta a}^*=-0.2$ に比べると小さい。そして, $\omega=1.5$ rad



 $\boxtimes 10.7$ σ_{ϕ} , $\sigma_{\delta_{\bullet}} \sim K_{\phi}$

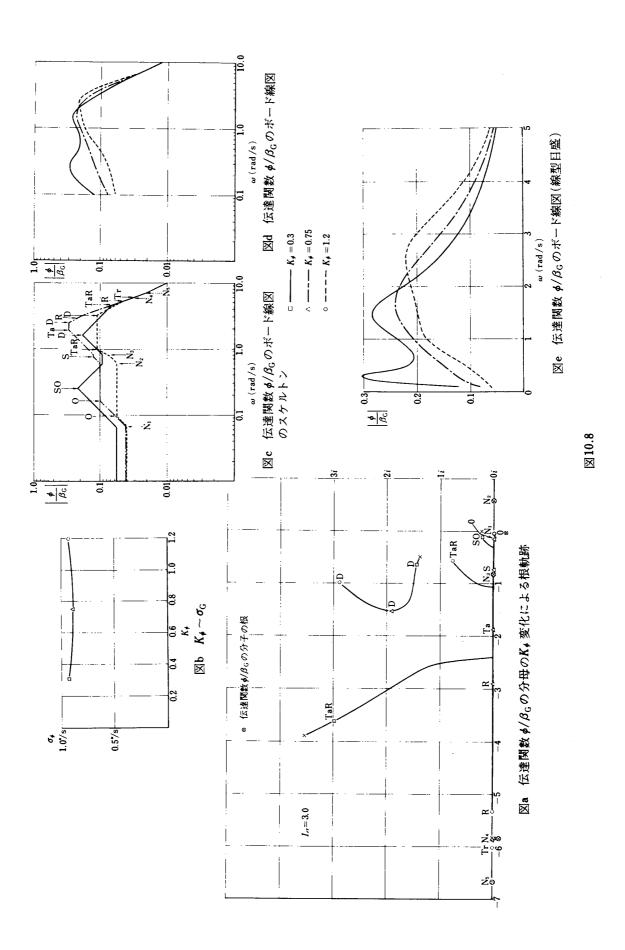
/sec 付近に大きなパワをもっている。

 $K_{\phi}=0.75$ にすると,補助翼操舵による横揺れ角応答 の伝達関数 ϕ/δ_a の分子の 2 次式の根が小さいため、伝 達関数 ϕ/β_C の分母に、それに近付く根 (T_a, S) がある ため(図10.8(a)), ω=1.5 rad/sec 付近のパワの減 少は小さい。また、 $N_{\lambda a}^* = -0.2$ の場合のように、 $K_{\phi} =$ 0.3 において,低周波領域でゲインがそれ程大きくない ため、 $K_0 = 0.75$ にして、スパイラルモードの根を大き くして,低周波領域におけるゲインを減少しても,その 効果は小さく、 K_{ϕ} =0.3 と 0.75 とで σ_{ϕ} の差は小さい。 $K_{\phi}=1.2$ にするとき, $N_{\partial a}^*=-0.2$ の場合と同様に根Dの振動数が増加するが、 $K_0=0.75$ に比して、 σ_0 はあま り差がない。この原因について考えてみる。Koを 0.75 から 1.2 にする時、 2.0 rad /sec > ω の領域の伝達関数 ϕ/eta_G のゲインに大きく影響するのは、第1に ω = 2.9 rad /sec にある 1 次根がω = 5.6 rad /sec に増大し, ゲインを減少する事である。 (これを①とする。) 第2 に根Dの振動数の増加によるゲインの減少である。(こ れを②とする。) 第 3 に根 RS のダンビングの減少によ るゲインの増加である。(これを③とする。)これらの 減少増加の度合は、伝達関数 ϕ/eta_G の大きさに比例する。 つまり, 伝達関数 ø/Bcの大きい所でその効果が大きい。 ③の効果が最も顕著に現われるのは $\omega = 1 \sim 1.5 \, \text{rad/sec}$ の領域である。しかし、 $N_{3a}^* = -0.2$ の場合はこの領域に おけるゲインはあまり大きくなく③の効果があまり出ず, ゲインの大きい低周波領域で①,②の効果が効いて,2 rad /sec < ω の領域でのゲインの減少は大きい。 $L_{ au}$ = 3.0 の場合はω=1~1.5 rad /sec の領域でゲインが大 きく、③の効果がかなり影響して、①、②の効果を減少 し, 2 rad /sec くωの領域でのゲインの減少は大きく ない。これが、 $K_{\phi}=1.2$ と $K_{\phi}=0.75$ とで σ_{ϕ} があまり変

化しない理由である。

 σ_{ϕ} , $\sigma_{\delta a}$ を図 10.9 に示す。 この場合の バイロットの ゲインは K_{ϕ} =0.5 とかなり小さく, σ_{ϕ} =0.9° になるよう にゲインを選んでいる。 この場合は \S 8 で見られたより に,また後述するように,偏揺れ運動が大きく出るため バイロットの横揺れ角制御は少なめになっているとも考えられる。以下, K_{r} =1.1 の場合について調べる。 乱れた気流に対する横揺れ角応答の伝達関数の分子の式はつぎの通りである。

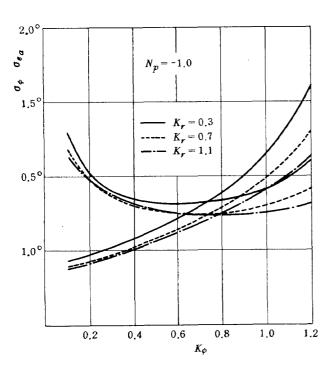
$$\mathcal{H} = 1.92 \left(\frac{s}{0.043} + 1 \right) \left(\frac{s}{0.765} + 1 \right) \left(\frac{s}{4.444} + 1 \right) \times \left\{ \left(\frac{s}{3.624} \right)^2 + 2 \times 0.724 \left(\frac{s}{3.624} \right) + 1 \right\}$$
 (106)



この場合は方向舵のゲインが大きいので、 N_{ba}^* =+0.2 の場合に似ていて、伝達関数の分子のダッチロールモートの根は大きくなり、方向舵操舵時間おくれによる根 N_2 はかなり小さくなり -0.765 となる。しかし、分母の根の K_{b} 変化により根軌跡は図 10.10 (a)に示すように N_{ba}^* = 0.2 の場合とかなり異なる。根軌跡の方程式をつぎのように書く。

$$1 - \frac{L_{\partial a} K_{\phi} \Big[\Big\{ (s - Y_{\beta}) (s - N_{\tau}) + N_{\beta} \Big\} s (s + Z)}{\Big[s (s + \tau_{a}) (s + \tau_{\tau}) (s^{2} + 2\zeta_{d} \omega_{d} s + \omega_{d}^{2}) (s + Z)} \\ - N_{\partial \tau} K_{\tau} (s + K_{\Psi} / K_{\tau}) (s - Y_{\beta}) (s - Z) \Big] (s + Y)} \\ - N_{\partial \tau} K_{\tau} (s + K_{\Psi} / K_{\tau}) \Big\{ s (s - L_{p}) (s - Y_{\beta}) - L_{\beta} Y_{\phi} \Big\} \Big] \\ \times (s - Z) - G_{p} s^{2} (L_{\tau} s - L_{\tau} Y_{\beta} - L_{\beta}) (s - Z) \Big] (s + Y)} \\ - L_{\partial a} K_{p} s \Big[\Big\{ (s - N_{\tau}) (s - Y_{\beta}) + N_{\beta} \Big\} s (s + Z) \Big] \\ - N_{\partial \tau} K_{\tau} (s + K_{\Psi} / K_{\tau}) (s - Y_{\beta}) (s - Z) \Big] (s - Y) \Big] \Big\}$$

 $(s-N_T)(s-Y_{\beta})+N_{\beta}=0$ の根が小さいため根軌跡の面上で(10.7)式の分子のパイロットの方向舵操舵時間 おくれの根 T_{r}' が分母のそれに相当する根 T_{r} の右に来る。このため, $K_{\phi}=0.3$ では根(SO)の移動は小さく,低周波領域における軽減度はあまり大きくない。 $K_{\phi}=0.75$ にすると,実軸上で零点 T_{r}' が極 T_{r} の右側にあるため,根Sは T_{r}' の方に進み,根 T_{r} は実軸上を左方に向



 $\boxtimes 10.9 \quad \sigma_{\phi} \, \sigma_{\sigma a} \sim K_{\phi}$

う。したがって、複素根 $(T_{\alpha}R)$ が虚軸に向って進むようになる。しかし未だダンピングは充分であるため、 K_{ϕ} = 0.3 に比して G_{b} は減少する。

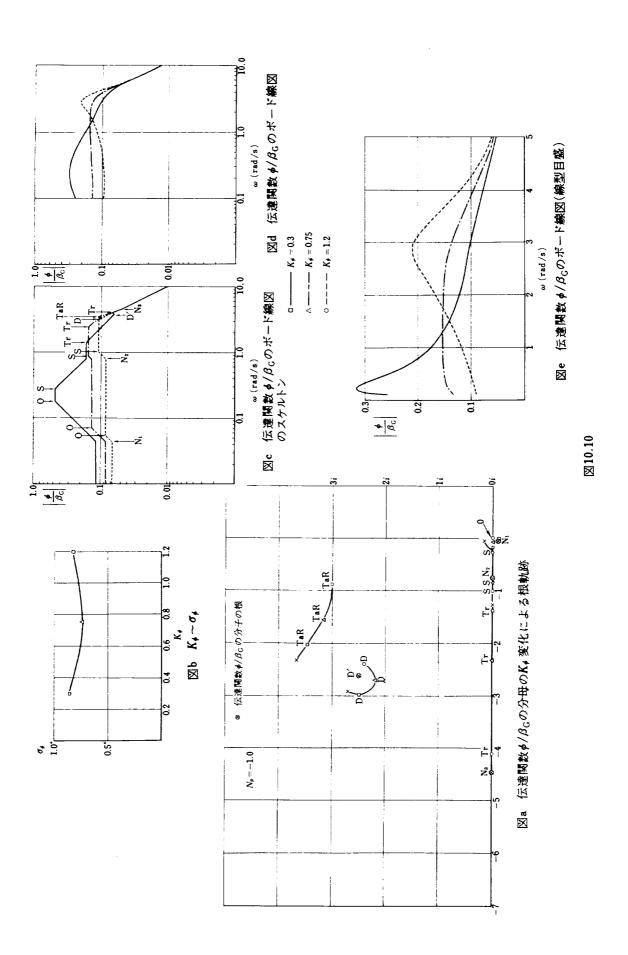
 $K_\phi=1.2$ になると複素根 (T_aR) のダンピングが悪くなり,高周波に山が現われ(図 10.10 (d),(e)) σ_ϕ は 増加する。ダッチロールモードは近くに零点があってあまり移動せず,また伝達関数の分子の根も近くにあるので乱気流応答への寄与は小さい。

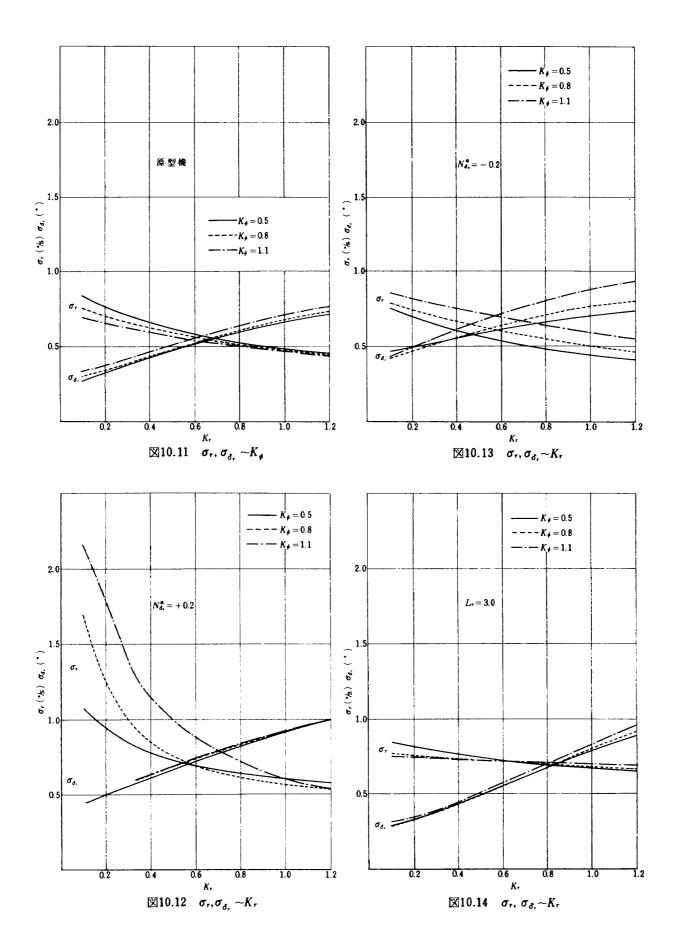
(2) Kr変化の場合

バイロットのゲインKrが変化した時の乱れた気流に 対する偏揺れ角速度応答のr.m.s. or と方向舵の操 舵量の $r.m.s.\sigma_{\lambda_{r}}$ を、 $K_{\phi}=0.5$ 、0.8、1.1と変え K_{p} 、 K_{Ψ} , G_p は表 2 に示した値とした場合について計算を行 った。これを図 10.11~15 に示す。原型機の場合パイロ ットの選んだゲイン K_r は0.7であるため σ_r の最小値を 得るような操舵を行っていない。 $N_{\delta a}^*=+0.2$ の場合は K_r の小さい時は§8の補助翼のみ操舵の時見られたように orは非常に大きくなり、Ko が大きい程その傾向は大 きい。したがってこの場合は方向舵のかなり大きな操舵 がar を小さくするために必要である。飛行実験を行っ た場合では $K_T=1.2$ を用いており、したがって、 $\sigma_{\delta T}=$ 1.0°とかなり方向舵の操舵量は大きくなっている。 Noa =-0.2の場合は K_{ϕ} を大きくすると σ_{r} が大きくなるのが 見られる。つまり、補助翼により横揺れ角制御をすると 偏揺れ運動を生ずるためである。この場合 $K_r = 0.6$ を選 び、操舵量は $\sigma_{\delta r} = 0.72$ で原型機よりかなり大きい。 こ れは、補助翼の効きが悪く、横揺れ角制御にかなり補助 翼を用い偏揺れ運動を起しているため σ_r が大きくなり、 その結果として σ_{Ar} も大きくなっている。 $L_r = 3.0$ の場 合は§8で見られたように偏揺れ運動の出方が少なく, 図 10.14 からも見られるように $K_r = 0.1$ でも $\sigma_r = 0.75$ シsec である。そして,Krを増してもあまり減少しな い。さらに、(1)で述べたように補助翼の操舵量が大きく て、偏揺れ運動が極端に大きくない限り方向舵操舵に気 を配る余裕が少ないと云う事もあって, パイロットの選 $sK_r = 0.25 \ r\sigma_r = 0.75^{\circ}/sec$,操舵量は少なく, $\sigma_{\partial r} = 0.75^{\circ}/sec$ 0.35° である。 $N_p = -1.0$ の場合は§8 でも述べたように σrは他に比べて極端に大きく、それを小さくするため にはかなりの操舵量を必要とする。飛行実験結果はKr= 1.15 を選び, 操舵量 σδτ=1.18°と大きく, パイロット が偏揺れ運動が大きくて操縦が難しいと云う所見と一致 している。

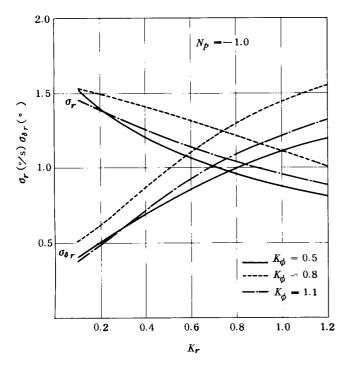
(3) K_p 変化の場合

パイロットのゲイン K_p を変化し K_{ϕ} ・ K_{ψ} ・ K_{τ} ・ G_p は表 2 に示した値にした時の乱れた気流に対する横揺れ角

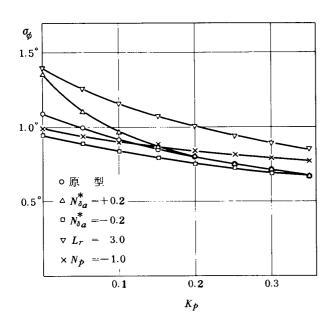




応答の $\mathbf{r} \cdot \mathbf{m} \cdot \mathbf{s} \cdot \sigma_{\phi}$ と補助翼の操舵量の $\mathbf{r} \cdot \mathbf{m} \cdot \mathbf{s} \cdot \sigma_{\delta a}$ を計算した。 σ_{ϕ} を図 10.16 に、 $\sigma_{\delta a}$ を図 10.17 に示す。 σ_{ϕ} は全ての場合について K_p が増加すると減少する。 $N_{\delta a}^* = +0.2$ の場合 $K_p = 0$ の時 σ_{ϕ} は大きいが、 K_p が大きいと急速に σ_{ϕ} は減少し、 $K_p > 0.15$ ではほぼ原型機と同じである。 $N_p - -1.0$ の場合はその逆で、 σ_{ϕ} の K_p 変化は緩徐である。 $\sigma_{\delta a}$ は $N_{\delta a}^* = +0.2$ 、 $N_p = -1.0$ の場合を除いて K_p によって極端な変化は示さない。 $N_{\delta a}^* = N_{\delta a}^* = N_{\delta a}^*$



 $\boxtimes 10.15$ σ_r , $\sigma_{\delta r} \sim Kr$



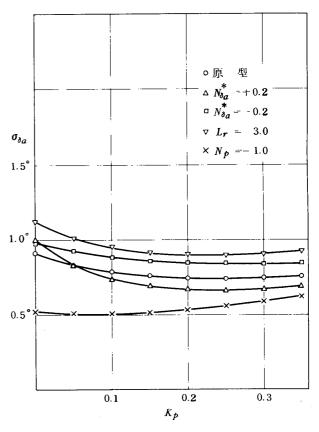
 $\boxtimes 10.16$ $\sigma_{\phi} \sim K_p$

+0.2 の場合は K_p 変化によって σ_ϕ が急激な変化をするので,それに伴い $\sigma_{\delta a}$ も同様な変化をすると考えられ, $N_p=-1.0$ の場合は K_p 変化によって σ_ϕ の変化が小さいのでゲインが増すと $\sigma_{\delta a}$ は増加すると考えられる。各場合について極端な差はないので,代表的に原型機の場合について調べる。 σ_ϕ の K_p 変化による変化を検討するのに,乱れた気流に対する横揺れ角応答の伝達関数を調べてみる。分子の式は K_p が 変化しても変らないのでつぎの通りである。

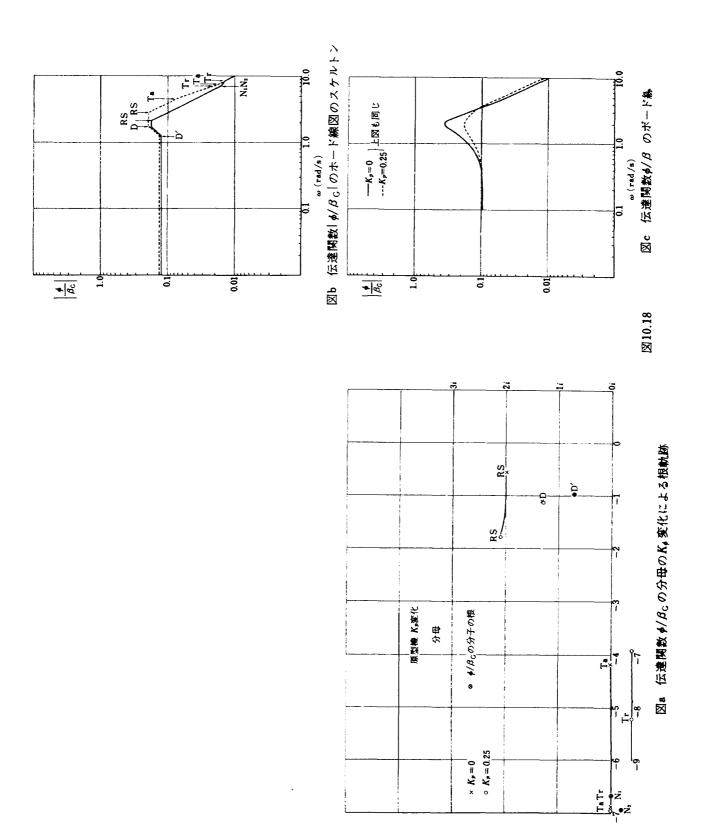
$$67.2 \left(\frac{s}{6.667} + 1\right) \left(\frac{s}{6.953} + 1\right) \left\{ \left(\frac{s}{1.204}\right)^{2} + 2 \times 0.81 \left(\frac{s}{1.204}\right) + 1 \right\}$$

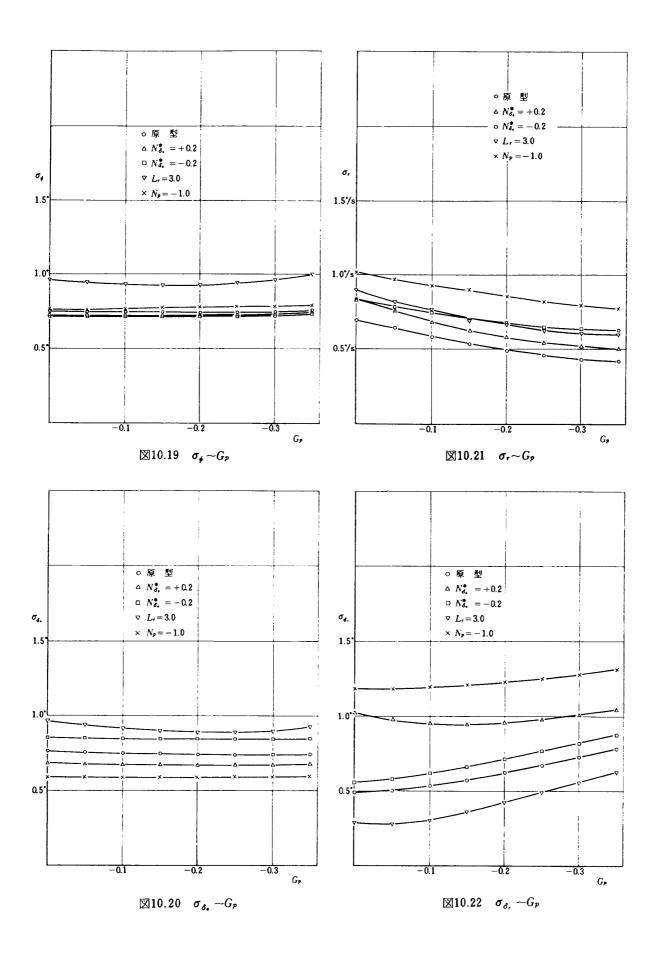
$$(10.8)$$

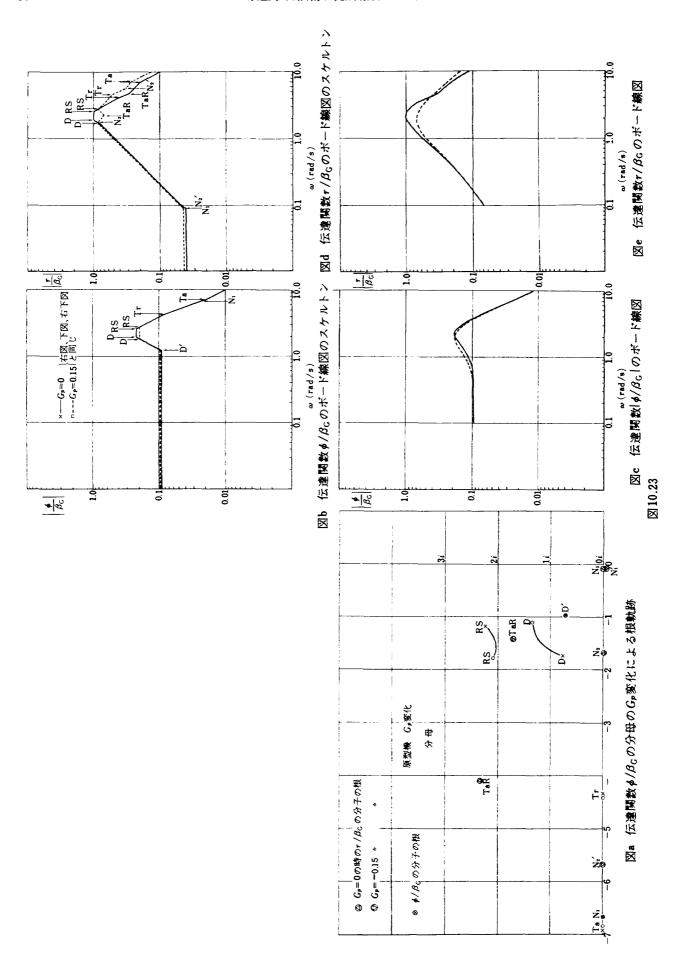
分母の根の K_p 変化による根軌跡を図 10.18 (a)に示す。 (b), (c)は $K_p = 0$ と $K_p = 0.25$ の場合の伝達関数のボード線図のスケルトンとボード線図そのものを示す。図10.20 (a)で $K_p = 0$ の場合×印, $K_p = 0.25$ の場合〇印で根の位置を示す。図によれば, K_p が増加する時ダンピングの弱い複素根のダンビングが増加するのがみられる。したがって, σ_ϕ が, K_p の値が増加する時減少するのは,このダンピングの増加によると考えられる。これは図 10.18 (c)に示したボード線図を見ても明らかである。



 $\boxtimes 10.17 \quad \sigma_{\delta a} \sim K_p$







(4) G_p 変化の場合

パイロットのゲイン G_p を変化し、 K_ϕ 、 K_p 、 K_r 、 K_ψ を表 2 化示した値にした時の σ_ϕ 、 $\sigma_{\delta a}$, σ_r , $\sigma_{\delta r}$ を各場合について計算した。その結果を図 10.19 、図 10.20 、図 10.21 、図 10.22 化示す。 σ_r は G_p 増加により各場合殆んど同じ様に減少し、 σ_ϕ は G_p による効果は小さい。そこで代表的に原型機の場合について調べる。乱れた気流に対する横揺れ角応答の伝達関数の分子はつぎの通りである。

分子= 67.2
$$\left(\frac{s}{6.667} + 1\right) \left(\frac{s}{6.953} + 1\right)$$
× $\left\{ \left(\frac{s}{1.204}\right)^2 + 2 \times 0.81 \left(\frac{s}{1.204}\right) + 1 \right\}$ (10.9)

 G_p 変化による分母の根の動きを図 10.23 (a) に示す。 G_p = 0 を×印で, $G_p = -0.15$ を \bigcirc 印で示す。分子の根を \bigcirc 印で示す。図によれば 2 つの複素根に顕著な動きが見られるが,互に効果は相殺しているようである。ボード線図を図 10.23 (c)に,そのスケルトンを図 10.23 (b)に示す。 $G_p = 0$ と-0.15 と 殆んど差がないのが見られる。

つぎに、乱れた気流に対する偏揺れ角速度応答の伝達 関数を調べてみる。その分子は G_p により変化し、 G_p =0, G_p =-0.15 のとき次式のようになる。

$$G_{p} = 0;$$

$$20.91 \left(\frac{s}{0.083} + 1\right) \left(\frac{s}{1.69} + 1\right) \left(\frac{s}{6.667} + 1\right)$$

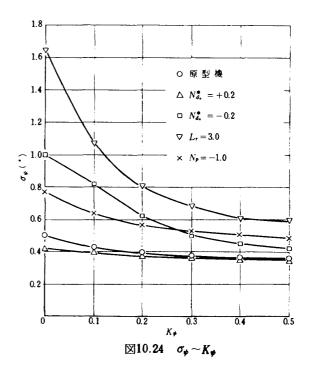
$$\times \left\{ \left(\frac{s}{4.729}\right)^{2} + 2 \times 0.867 \left(\frac{s}{4.729}\right) + 1 \right\}$$
(10.10)

$$G_{p} = -0.15$$

$$31.39 \left(\frac{s}{0.087} + 1\right) \left(\frac{s}{5.608} + 1\right) \left(\frac{s}{12.926} + 1\right)$$

$$\times \left\{ \left(\frac{s}{2.231}\right)^{2} + 2 \times 0.641 \left(\frac{s}{2.231}\right)^{2} + 1 \right\}$$
(10.11)

 G_p 変化による分母の根は横揺れ角応答の場合と同じで図 10.23 (a)に示す通りである。この場合のボード線図を示すと図 10.23 (e)で,そのスケルトンは図 10.23 (d)に示す通りである。 $G_p=-0.15$ の場合は $G_p=0$ に比して小さくなっているのがみられる。これはボード線図のスケルトンからも推測出来るように, G_p により分子の根がかなり小さくなっている事に起因している。これは \S 8 で述べた N_p の効果に似ていて, G_p が負に大きくなると N_p の効果を小さくするのに役立っていると考えられる。そのため G_p を負に大きくすると σ_r が減少する。



(5) Ky 変化の場合

 K_{Ψ} を変化し K_{ϕ} , K_{p} , K_{τ} , G_{p} を表 2 に示した値にした時の偏揺れ角の r . m . s . σ_{Ψ} を計算して調べてみると図 10.24 のようになり,原型機, $N_{\delta a}^{*}$ = +0.2 ,では比較的 σ_{Ψ} が小さい。 $N_{\delta a}^{*}$ = -0.2 の場合は K_{Ψ} = 0 の時 σ_{Ψ} は大きく,バイロットは K_{Ψ} = 0.45 を選んでいる。 L_{τ} = 3.0 の場合はかなり σ_{Ψ} は大きいが,前述のように横揺れ運動が大きく,方向舵操作にあまり気を配る事が出来ないので K_{Ψ} = 0.15 となっている。しかし K_{τ} との比を考えると比較的大きな値である。 N_{p} = -1.0 の場合も σ_{Ψ} は大きいので σ_{Ψ} = 0.54 になるように K_{Ψ} = 0.3 を選んでいる。

§11 孤立した突風に対するパイロットの操縦を含んだ 機体の応答

バイロットの操舵を含んだ機体の運動方程式 (8.1)~ (8.5) に,孤立的横風乱気流を入力して,機体の偏揺れ角速度,横揺れ角応答,及び補助翼操舵量,方向舵操舵量を,原型機, $N_{\delta a}^*$ =+0.2, -0.2, L_{τ} =3.0, N_{p} =-1.0 の場合について計算を行った。孤立した横風乱気流としては,1秒にピークを持ち0秒から2秒までの三角形状のベルスを用い,横揺れモーメントと偏揺れモーメントの比は1:-0.18 とし,前のように符号は横揺れモーメントを負,偏揺れモーメントを正とした。計算結果を図11.1~11.5 に示す。原型機を基準として他の場合についてそれからの変化の模様を調べる。

(j) N_{δα}=+0.2の場合

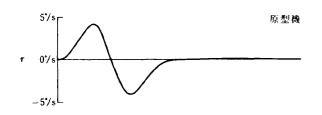
偏揺れ角速度応答にわずかな高周波の振動が見られるが、その他の状態量については原型機と大差はない。補助翼の操舵も原型機と殆んど同じである。しかし、方向舵の操舵量は原型機に比べてかなり大きい。これは方向舵のゲインからも予想される所であるが、この場合は偏揺れ運動が大きく出るので、それを方向舵のゲインを大きくして、偏揺れ角速度応答を原型機と同じ程度に抑えていると考えられる。また方向舵のゲインが大きいため、偏揺れ角速度応答に高周波の振動が現われたと考えられる。横揺角応答には、ダンピングのやや弱い分母の2次式と振動数の似た2次式が分子にあるため振動は現われない。

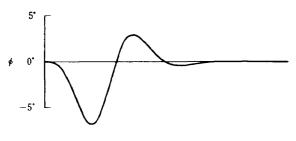
(ii) N_{ba} = -0.2 の場合

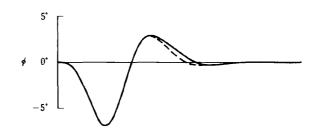
偏揺れ角速度応答も横揺れ角応答も減衰がやや悪いの が見られる。横揺れ角応答に上記のような事がないため 横揺れ角応答にも振動が現われる。これは下に述べる方 向舵操舵の複雑さのため、方向舵のゲインがあまり大きくなく、また§ 8に述べたように補助翼の効きが悪いためゲインを大きくしている事に起因すると考える。この場合で特に顕著なのは、偏揺れ運動の応答が⊕方向の山に続いて起る⊕方向の山が大きい事である。そのため方向舵も左足操作に続いて右足を大きく踏んでおり、バイロットの所見の足の踏み換えの必要性がここに現われている。

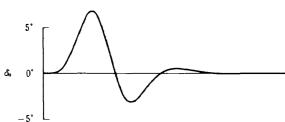
(iii) $L_r = 3.0$ の場合

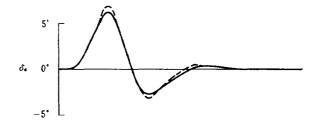
この場合に特に顕著なのは大きな横揺れ角が現われている事である。そのため補助翼操舵が大きく,偏揺れ運動が原型機に比べて大きく出ているのに方向舵のゲインが小さくなっている。この場合も Noa=-0.2 の時と同じく,補助翼の効きが悪いが,横揺れ角の出方が大きく,したがって補助翼の操舵量が大きくなってワークロードが増え、また§10 で見たようにゲインを上げても応答











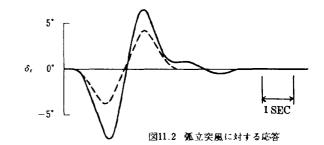
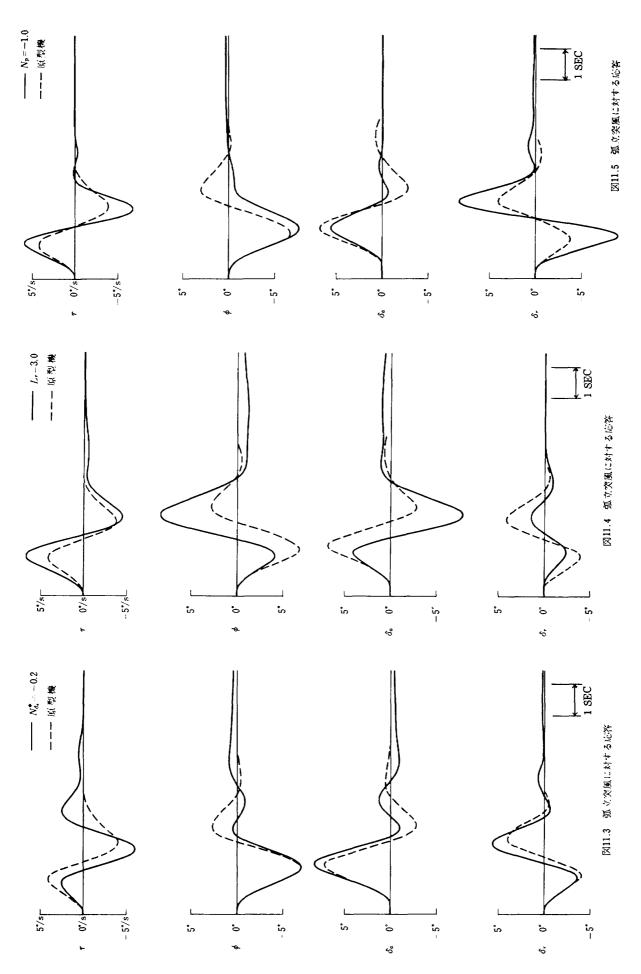


図11.1 弧立突風に対する応答



性が良くなる率が悪いため等のためゲインは大きくなく, $N_{\delta a}^* = -0.2$ の時のような振動は現われない。

(V) $N_p = -1.0$ の場合

この場合は、§ 8の解析でも明らかにされたように、 偏揺れ角速度の応答が原型機に比して非常に大きく、ま た方向舵のゲインが大きいため方向舵の操作量は非常に 大きく出ている。その割には横揺れ角応答はあまり大き くない。これも§ 8で調べた事と一致する。

§12 結 論

V.S.A.機を用いて、特性方程式の根は固定し、 ϕ/δ_a 伝達関数の分母分子の 2 次式の根の s 平面での距離を 4 つの方法で変化させ($1.N_{\delta a}$ ①変化、 $2.N_{\delta a}$ ②変化、 $3.L_r$ 変化、 $4.N_p$ 変化),乱気流中の飛行を模擬した飛行を行って操縦性の許容出来る限界を求め、その操縦の困難さの原因を、飛行試験データから解析して求めたバイロットの伝達関数を用いて、乱気流応答のPSD を調べる事により考察した。操縦性の許容限界は $N_{\delta a}^* < +0.2$ 、 $N_{\delta a}^* > -0.2$, $L_r < 3.0$, $N_p > -1.0$ であった。バイロットの伝達関数は次式の通りであった。

$$\delta_a(s) = -(K_p s + K_\phi) e^{-\tau_a s} \phi + m(s)$$

$$\delta_\tau(s) = -G_p s e^{-\tau_\tau s} \phi - (K_\tau + K_{\Psi}/S) \tau + m'(s)$$

各比例定数 Kp 等は表 2 (p76) に示す。方向舵を横揺れ 角速度に比例して動かすのが特徴的で、これは横風を受 けると先ず横揺れ角速度が現われて、続いて偏揺れ角速 度が現われるが、パイロットは横揺れ角速度が出た時偏 揺れ運動を予知して方向舵を操作するためと考えられる。 バイロットの操縦を含んだ機体の乱気流応答を計算する と、パイロットの補助翼操作により、スパイラルモード とロールモードが連成して大きな振動根になるため、乱 気流応答の低周波の軽減率を良くなる。方向舵はダッチ ロールモードのダンビングを増大するのでその周波数領 域において乱気流応答を軽減する。 $N_{\delta a}^{ullet}=+0.2$ の場合は 補助翼操作によってダッチロールモードのダンピングが 良くならないばかりでなく,かえって偏揺れ運動を大き くするので、偏揺れ運動を抑えるため方向舵のゲインを 大きくする必要があり、ワークロードが増して操縦が困 難になる。 $N_{\delta a}^* = -0.2$ の場合, ϕ/δ_a 伝達関数の分子の 2次式の根が 5平面において分母のそれより下方に来る ため,補助翼操舵によるスパイラルモードとロールモー ドの連成にかなりのゲインを必要とするが、伝達関数ø $/eta_G$ の分子にダンピングの小さい角振動数 $1.44\,\mathrm{rad}/\mathrm{s}$ の2次根があるため横揺れ角応答を小さくする効果があ るので、ゲインの大きい割には補助翼操舵のワークロー

ドが大きくならないので、大きなゲインを用いる事が出 来,また方向舵操舵にも気を配る事ができる。しかしこ の場合は、横風が来る時に発生した横揺れ運動を抑圧し ようと補助翼を操作する時、横風による偏揺れモーメン トと逆のモーメントを発生する。したがって、横揺れ角 速度により踏んだ方向舵を、踏み換える必要があり操縦 の煩雑さを生む。 $L_r=3.0$ の場合は $N_{\delta a}^*=-0.2$ の時と同 様に ϕ/δ_a 伝達関数の分子の根が s 平面で分母から離れ るためスパイラルモードの根を大きくするのに大きな補 助翼のゲインを必要とする。この場合は*N* =-0.2 の時 に比して、上記の度合が大きく、 ϕ/eta_G の分子の2次根 は振動数の小さい2つの実根であるため、 $N_{\delta a}^* = -0.2$ の 時のように補助翼のゲインを大きくしても効果がなく、 横揺れ運動が大きい。 $N_p = -1.0$ の場合は,乱気流に対 する偏揺れ角速度応答の伝達関数の分子の根の1つが, N_p が負に大きくなるため、大きくなり、偏揺れ運動が 大きく, 方向舵のゲインも大きくする必要がありワーク ロードが増大して操縦を困難にする。さらに、パイロッ トは補助翼操舵についてはクロスオーバモデルに似てい るが、方向舵操舵についてはあまり似ていない。各々の クロスオーバ周波数と位相余有を表3 (p172) に示す。 また、 σ_{ϕ} と K_{ϕ} との関係を見ると、パイロットはワーク ロートが大きくなり過ぎない限り $K_{m{ heta}}$ は $\sigma_{m{ heta}}$ の最小値にな るような値を選んでいる。 $N_p = -1.0$ の時はワークロー $F_{\sigma \delta \tau}$ が大きくて σ_{ϕ} の最小値になるように K_{ϕ} を選んで いない。Krはorの最小値になるように選ばず、ある値 以下になるように定めているようである。 K_p , G_p は大 きい程良いが, 反射的な動作と考えられて各場合殆んど 一定の値をとっている。 σ_{Ψ} は $N_{\delta a}^{*}=-0.2$, $L_{r}=3.0$, N_{p} =-1.0の時大きな値を示すので、 L_r =3.0の時を除いて K_{W} は大きな値を用いている。 $L_{T}=3.0$ の時は横揺れ運 動が大きく,方向舵に気を配る余裕がないため 🛵 も小

以上の実験、解析を通して、MIL SPEC 8785BK 定められている横方向の連成についての基準は、方向舵を有効に利用するバイロットの操縦する飛行機には不適当な面がある事が判った。代りに次のような事を調べると良いと考えられる。実験、解析を通して操縦の難しさが生ずる時、殆んどの場合 σ_{ϕ} , $\sigma_{\delta a}$, σ_{r} あるいは $\sigma_{\delta r}$ が大きい値を示した。したがってある飛行機が与えられた場合、その飛行機の横方向の連成度の許容出来る必要条件を得るには、乱気流中を定常直進飛行する時のバイロットの操舵を含んだ機体の横揺れ角応答、偏揺れ角速度応答の $r.m.s.\sigma_{\phi}$, σ_{r} 及び操舵量のr.m.s., $\sigma_{\delta a}$, $\sigma_{\delta r}$ を計算し、それらがある値以下であるか否かを調べる方法

が良いと考える。この考え方は一般の飛行機に応用出来ると考えられるが、以下に、本研究の飛行実験を元にして導いた、したがって、適用が小型軽飛行機に制限される一つの具体的計算手順を示す。

外乱としては横揺れモーメントと偏揺れモーメントの 比が $L_{\beta}/(0.5N_{\beta})$ であり、そのパワスペクトル密度は図 6.2 に示すような時系列を用いる。パイロットの伝達関 数は (8.4), (8.5)式に与えられる形で,ゲインは K_p = 0.25, $G_p = -0.2$, $K_{\psi} = 0.15$, $\tau_a = \tau_{\tau} = 0.3$ とする。先す $K_r = 0.3$ として、 K_ϕ を変化させて計算を行ない、 $(\sigma_{\delta a}$ $/\sigma_L) imes (L_eta/5.0) < 9.5 (\sigma_L$ は使用した外乱の横揺れ モーメントのr.m.s.を I_x で割ったもの。 $\sigma_{\delta a}$ の単位は 度)の範囲内で σ_ϕ が最小になる時の σ_ϕ が (σ_ϕ/σ_L) imes $(L_{eta}$ u5.0) < 9.5 $(\sigma_{\phi}$ の単位は度)である事を必要と する。さらに、 $K_r=K_{r1}$ (最初は0.3)として σ_ϕ を最小 にする K_ϕ を求めその K_ϕ を用いて $(\sigma_r/\sigma_L) imes (L_{eta}/\sigma_L)$ (5.0) = 6.7 (σ_{τ} の単位は度/秒)となる K_{τ} が得られる 事を必要とする。その K_r が得られた時、その値を K_{r2} が K_{r_1} と比べて0.1以上異なる時,最初の K_r を $K_{r}=K_{r_2}$ として計算を繰返す。 K_{r_1} と K_{r_2} との差が0.1より小さく なった所で計算を止める。その時の $\sigma_{\delta r}$ が $(\sigma_{\delta r}/\sigma_L)$ × $(L_{\beta}/0.5)$ < 9.0 であることを必要とする。

上の計算手順に現われる各数値は本研究中の数回の実験で得られたものである。この値に充分な信頼性を与えるためには数多くの実験を重ねて決める必要があるので使用する時は注意を要する。以上述べた事は巡航高度における定常直進飛行の場合であるので、着陸進入時にはもっと厳しい値が要求される事が考えられる。これ等の値についてはこの論文で示したような実験、解析を着陸進入時について行って求める必要があり、今後の研究に待ちたい。

§13 あとがき

この研究に当り御指導を賜り、かつ絶えず激励下さった東京大学教授鷲津久一郎先生に感謝申し上げる。また、東洋大学教授荒木浩先生からは色々と示唆して戴いた。航空宇宙技術研究所高木廣治機体第一部長、幸尾治朗飛行実験部長には研究に専念する時間を与えて戴いたばかりでなく、色々な欠点を指摘して戴いた。後藤芳夫操縦士、照井裕之操縦士には飛行実験に携わってもらったばかりでなく種々の所見を述べてもらった。操縦安定性研究室の坂井紀穂技官、稲垣敏治技官には実験及び解析について協力を得た。これらの方々に感謝する。

§14 参考文献

- D.T. McRuer, E.S. Krendel: The Human Operators as a Servo System Element, J. of Franklin Institute 267-5 (1959) 381 and 267-6 (1959) 511
- D.T. McRuer, D. Graham, E.S. Krendel: Human Pilot Dynamics in Compensatory Systems, J. of Franklin Institute 283-1 (1967) 1 and 283-2 (1967) 145
- R.E. Magdaleno, D.T. McRuer, G.P. Moore: Small Perturbation Dynamics of the Neuromuscular System in Tracking Tasks, NASA CR 1212 (1968)
- 4) K. Washizu, K. Miyazima: Some Consideration on the Controllability Limit of a Human Pilot, AIAAJ. vol. 3 No. 5 (1965)
- K. Washizu, N. Goto: On the Dynamics of Human Pilots in Marginally Controllable Systems, AIAAJ. vol. 12 No. 3 (1974)
- I.L. Ashkenas, D.T. Mcruer: A Theory of Handling Qualities Derived From Pilot-Vehicle System Considerations, IAS Paper No. 62-39 (1962)
- I.L. Ashkenas, D.T. McRuer: The Determination of Lateral Handling Quality Requirements From Airframe-Human Pilot System Studies, WADC TR 59-135 (1959)
- R.L. Caporali, J.P. Lamers, J.R. Totten: A Study of Pilot-Induced Lateral-Directional Instability, Princeton Univ. Aeronautical Engineering Report 604 (1962)
- E. Seckel: Stability and Control of Airplanes and Helicopters, p. 287-290 Academic Press
- 10) E.P. Todosiev, R.E. Rose, G.A. Bekey, H.L. Williams: Human Tracking Performance in Uncoupled and Coupled Two-Axis Systems, NASA CR-532 (1966)
- 11) 井口雅一: 人間 機械系 (P.81 87)情報科学講座 B-92 共立出版社
- 12) N. Goto: On Manual Control Manual Control of Multi-Variable Systems and Unstable System—: Tokyo Univ. Dr. Eng. Dissertation (1972)
- 13) J.A. Franklin: Turbulence and Lateral-Directional Flying Qualities NASA CR-1718 (1971)
- 14) D. McRuer, I. Ashkenas, D. Graham: Aircraft Dynamics and Automatic Control, Systems Technology Inc. August, 1968.
- 15) C.R. Chalk, T.P. Neal, T.M. Harris, F.E. Pritchard,

- R.J. Woodcock: Background Information and User Guide for MIL-F-8785B (ASG), "Military Specification-Flying Qualities of Piloted Airplanes" AFFDL-TR-69-72, August 1969.
- Adams, James J.: A Simplified Method for Measuring Human Transfer Functions. NASA TN D-1782, 1963.
- 17) Adams, James J. and Bergeron, Hugh P.: Measured Variation in the Transfer Function of a Human Pilot in Single-Axis Tasks. NASA TN D-1952, 1963.
- 18) Bergeron, Hugh P. and Adams, James J.: Measured Transfer Functions of Pilots During Two-Axis Tasks With Motion. NASA TN D-2177, 1964.
- 19) Adams, James J. and Bergeron, Hugh P.- Measurements of Human Transfer Function With Various Model Forms. NASA TN D-2394, 1964.
- 20) James J.: Measured Human Transfer Functions in Simulated Single-Degree-of-Freedom Nonlinear Control Systems. NASA TN D-2569, 1965.
- 21) Hall, I.A.M.: Study of the Human Pilot as a Servo-Element. Journal of the Royal Aeronautical Society, Vol. 67, No. 6, 1963, pp. 351-360.
- 22) Adams, J.J., Kincaid, J.K. and Bergeron, H.P.: Determination of Critical Tracking Tasks for a Human Pilot. NASA TN D-3242, 1966.
- 23) Adams, J.J., Bergeron, H.P. and Hurt, G.J., Jr.: Human Transfer Functions in Multi-Axis and Multi-Loop Control Systems. NASA TN D-3305, 1966.
- 24) Adams, J.J. and Bergeron, H.P.: A Synthesis of Human Response in Closed-Loop Tracking Tasks. NASA TN D-4842, 1968.
- 25) Adams, J.J. and Goode, M.W.: Application of Human Transfer Functions to System Analysis. NASA TN D-5478, 1969.
- 26) Gagne, G.A. and Wierwille, W.W.: Characterization of Time-Varying Human Operator Dynamics-(Project Icarus). NASA CR-539, 1966.
- 27) Stapleford, R.L., McRuer, D.T. and Magdaleno, R.: Pilot Describing Function Measurements in a Multiloop Task. NASA CR542, 1966.
- 28) Stapleford, Robert L., Craig, Samuel J. and Tennant, Jean A.: Measurement of Pilot Describing Functions in Single-Controller Multiloop Taskes. NASA CR-1238, 1969.
- 29) Adams, James J. and Hatch, Howard G.: An Approach to the Determination of Aircraft

- Handling Qualities by Using Pilot Transfer Functions. NASA TN D-6104, 1971.
- 30) Weir, David H.: Pilot Dynamics for Instrument Approach Taske: Full Panel Multiloop and Flight Director Operations. NASA CR-2019, 1972.
- 31) McRuer, Duamet T. and Jex, Henry R.: A Review of Quasi-Linear Pilot Models. IEEE Transactions on Human Factors in Electronics, Vol. HFE-8, No. 3, 1967, pp. 231-249.
- 32) Adams, James J. and Hatch, Howard B., Jr.: An Approach to the Determination of Aircraft Handling Qualities by Using Pilot Transfer Functions. Journal of Aircraft, Vol. 8, No. 5, 1971, pp. 319-324.
- 33) Newell, Fred D. and Pietrzak, Paul E.: In-Flight Measurement of Human Response Characteristics. Journal of Aircraft, Vol. 5, No. 3, 1968, pp. 277-284.
- 34) Ashkenas, Irving L. and McRuer, Duane T.: A Theory of Handling Qualities Derived from Pilot-Vehicle System Considerations. Aerospace Engineering. Vol. 21, No. 2, 1962, pp. 60-61, 83-102.
- 35) 別府護郎: STOL 機の横方向操縦性についての一 考察 日本航空学会誌 Vol.14 Na.145 (1966)

航空宇宙技術研究所報告 429号

昭和50年10月発行

発行所 航 空 宇 宙 技 術 研 究 所 東 京 都 調 布 市 深 大 寺 町 1880 電話武蔵野三鷹(0422)47-5911(大代表)〒182

印刷所 株 式 会 社 共 進 東京都杉並区久我山 4-1-7(羽田ビル)