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Study on Lee-Surface Heating over Yawed Blunt
Cone in Hypersonic Flow*

By Shigeaki NOMURA**

ABSTRACT

Theoretical and experimental studies have been conducted on three-dimensional
Jaminar heat transfer over a blunt cone, at moderate angles of attack, in a hypersonie
flow of Mach number 7. With the exception of lee-surface heating in a separated region,
the small cross flow theory together with three-dimensional inviscid flow solutions was
found to agree quite well with the experimental data. From the comparison between
experimental results and three-dimensional inviscid flow solutions, it was found that
the interaction effect of the separated boundary layer over the lee-surface was small.
With regard to heat transfer distribution on the lee-meridian plane, a new concept of
cross flow energy thickness has been drawn from the energy integral of the three-dimen-
sional boundary layer equations. From this concept, it has been exhibited analytically
that once the cross flow separation occurs, heat transfer increases significantly along
the most leeward generator due to negative cross flow displacement thickness. The
correlation equation for heat transfer along the most leeward generator has been in-
troduced from similar solutions of boundary layer equations and has been found to
agree quite well with the experimental data on several different conditions.
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NOMENCLATURE
[AL,[B],[C},[D]): coefficient matrix defined in
APPENDIX A
[AF?[AQ"][AG™]: coefficient matrix defined in
APPENDIX C

a: speed of sound
a: Fourier coefficients
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C: pp/(ot)w
C: c/Pr
¢p: specific heat or (p—p«)/(p=V=%/2)
d: diameter of spherical nose
E: row vector defined in eq. (3-5)
f

: Suidr) or function in eq. (3-4)
&

. 9
Fi: 5

[G]: amplification matrix
g: H/H, or function in eq. (3-4)
G.: he/H,
H: h+u2+v%/2
H: row vector in eq. (3-b)
h: cpT
hi,hs,hy: metric coefficients of x,,23,23
hy: 4X/4Z
he: 4Y /42
@,7,k): finite difference mesh corrdinates
[I1: unit matrix
%: thermal conductivity coefficient of
air

M:
M¢Z

m:
p
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Mach number

Mach number of ¢ velocity com-
ponent

source strength of out flow

: pressure
Pr:

Q:

Q1:

Gw:
Rn:
(r,9,2):

'y

Prandtal number
v
Ve
Q7
heat transfer rate to the wall
spherical nose radius
cylindrical coordinate system
r coordinate of the body surface
r coordinate of shock wave

S: entropy

8

T:
Ui, Ug, Uz’

U, Y, W:

V:

X,Y,Z:
A4X,4Y,4Z:
x:

A

Xy

X3

length measured along cone gener-
ator

temperature

velocity components in 7,4,z direc-
tions

velocity components in q,%5,%3
magnitude of velocity vector
transformed coordinate in eq. (3-4)
mesh size in X,Y,Z coordinates
length measured along invisecid
surface streamline

coordinate along the streamline in
the streamline coordinate system
coordinate normal to 2, and tangent
to the wall

length measured normal to the
wall

: #, coordinate along the most

leeward generator

: length measured along cone axis

from the top of the model

: angle of attack
ﬁi; t=1~4:

boundary layer edge parameters
defined in eq. (4-25)

: Bi/G. and By/G. respectively

VM1

: ratio of specific heats
: displacement thickness of boundary

layer

. streamwise 0* in eq. (4-33)
. cross flow 6* in eq. (4-33)
: transformed coordinate in eq.

(4-20)

D ugt—a?

: energy thickness

: streamwise 6 in eq. (4-29)
: cross flow @ in eq. (4-29)
: half cone angle

() G
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k,: lateral curvature in inviscid
. 1 om
streamline of Fohy 2t

1 ars\? ars \?
Ks: \/1+<7'_s a¢) +(j§z_‘)
a larger value in 2¢,, ip,, respec-
tively
eigenvalue of matrices [C], [D],
respectively
¢: transformed coordinate in eq. (4-
20)
: density
shear force
circumferential angle
r—¢
function defined in eq. (4-21)
V1
u: viscosity

AcmsADm:

IG,ZD:

€ € GyB. A

subseripts
1,7,k: value estimated at (1,7,k)

7: value at the sphere-cone junction

p: component normal to trough of

isobaric line
7n: normal component
o,st: stagnation point value

w,wall: value at the wall

co: free stream condition

superscripts
n: iteration number
(™): value at predictor stage

I. INTRODUCTION

Though the study of three-dimensional flow
has a long history?-®, detailed and extensive
investigations of this field have been made
recently in connection with the actual require-
ments from the hypersoniec flight and lifting
re-entry program. Among several unknown
problems remained in this field? with an actual
importance, the heat transfer problem accom-
panied by a three-dimensional flow separation
over a blunt body at a high angle of attack has
attracted a number of investigations: experi-
ments about a severe heating on the upper sur-
face of a vehicle® ", fundamental experiments
for lifting body®*?, experiments about flow
separation!’?-1® and numerous theoretical and
numerical investigations!®-%9,

For the purpose of physical understanding of
a separated flow in three-dimensions, Tracy®®
was the first to measure a detailed profiles of
static and pitot pressure distributions and head
transfer over a surface of yawed sharp cone
in a hypersonic flow of Mach number 7.95.

Tracy showed a thick separated viscous layer,
an embedded cross flow shock wave over a lee-
ward surface, and peaks of surface pressure
and heat transfer at the leeward meridian
plane,

The leeward phenomena became more clear
from the experiments by Whitehead et al.’®:*?
and Stetson®®. Whitehead et al. visualized a
viscous flow over a leesurface of a delta wing
at an angle of attack by a flow visualization
technique®® in a hypersonic flow of Mach num-
ber 6. They observed a small pair of vortices,
the thinning of boundary layer between vor-
tices, and the remarkable heat transfer in-
crease along the centerline. They explained
this heat transfer increase by mixing and thin-
ning of boundary layer caused by a pair of
vortices.

Stetson measured surface and pitot pressure
distributions in detail over sharp and blunt
cones at angles of attack in a hypersonic flow
of Mach number 14.2, From these data, Stet-
son presented a separated flow model with a
pair of vortices named “Stream Ribbons” over
the leeward surface.

Regarding to the three-dimensional flow
separation, Maskell*® proposed two typical pat-
terns; a bubble type structure with an isolated
singular point and a free vortex layer type
structure without any singularity. The sepa-
rated flow models with a pair of vortices pro-
posed by Whitehead et al. and Stetson belong
to a free vortex layer type classified by
Maskell. However, Maskell did not show a
detailed flow properties of a separated flow.

On the otherhand, the theoretical and
numerical investigations of the three-dimen-
sional flow have been conducted actively in
this decade. The methods of theoretical ap-
proaches to the three-dimensional viscous flow
can be classified into three categories; (1)
boundary layer analysis with a small cross
flow approximation (2) three-dimensional
boundary layer analysis restricted on a sym-
metric plane of a yawed body (3) complete
numerical solution of the fully three-dimen-
sional viscous flow.

Due to the axisymmetric analogy introduced
by assuming a small cross flow in three-dimen-
sional boundary layer equations, the heat
transfer distribution can be calculated by the
well established correlation equation in two-
dimensional flow. Vaglio-Laurin‘® showed the
applicability of the small cross flow approxi-
mation even along a highly curved inviseid
surface streamline around a stagnation region

This document is provided by JAXA.



of a blunted body in a hypersonic flow. In
order to apply the small cross flow method, the
geometry of inviseid surface streamlines and
flow properties along them should be deter-
mined in advance where the numerical proce-
dures for them become very complicated in
three-dimensional flow. DeJarnette'® provided
a simplified method for these procedures by
using Newtonian flow and showed good results
for heat transfer over a three-dimensional
body. However, this method is, of course, not
applicable for a separated flow due to a severe
cross flow in it.

As showen by Raetz’s dependence-influence
principle?, the flow along a symmetry plane of
a yawed body can be determined independently
of the flow outside of this plane. The three-
dimensional boundary layer analysis on a lee-
ward symmetric plane was done first by
Moore*” about a sharp cone at angles of attack
with an assumption of parabolic similarity of
Blasius type. He, however, could obtain solu-
tions only for a small angle of attack without
separation. Libby et al.®® solved compressible
boundary layer equations with a parabolie
similarity assumption at a hypersonic speed
where they emphasized the importance only of
a streamwise pressure gradient as in a two-
dimensional case. The successful treatment on
a symmetric plane was done by Wang?®:*?
about incompressible flow on a spheroid at an-
gles of attack in subsonic flow without simi-
larity assumption. From the numerical solu-
tions, Wang showed possible separation pat-
terns of a free vortex layer type and a bubble
type over a lee-surface of spheroid.

In regard to the numerical solutions of three-
dimensional boundary layer equations over a
blunt cone at an angle of attack, Der®® and
Fannelop'® could not obtain a separated flow
reasonably. Der suggested a bubble type sepa-
ration with a singular point on a lee-surface
and Fannelop could not obtain any separation;
both results do not agree with experiments.
However, Fannelop pointed out interesting
remarks that the heat transfer result given by
a parabolic similarity assumption agreed quite
well with the nonsimilar solutions over the
leeward region with strong cross flow, even
though the detailed flow profiles across the
boundary layer were affected significantly by
nonsimilar effects.

More recently, the flow with cross flow sepa-
ration has been solved successfully over a
sharp cone at angles of attack by Lin and
Rubin®*®, Lubard and Helliwell*? and McRae?*,
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Lin and Rubin used experimental pressure data
for the computation of the three-dimensional
boundary layer equations where they remained
second derivative terms of velocity with respect
to ¢ to avoid numerical instability at the cross
flow separation. The solutions show a pair of
vortices and heat transfer peak on a leeward
meridian. The methods of Lubard and Helli-
well and McRae are the numerical solutions of
Navier-Stokes equations with assumptions of
negligible streamwise derivatives in viscous
terms and of the complete conical flow, respec-
tively. The former obtained a pair of vortices
and a heat transfer peak in ¢ direction, and
the later obtained a pair of vortices and a
vortical singurality lifted off the lee-surface at
large angles of attack. In these analysis, Lin
and Rubin pointed out important flow be-
haviors on a leeward meridian plane as fol-
lows; (1) for a<¥., flow shows parabolically
similar behavior (2) for a<#, the detailed flow
profiles across the boundary layer do not have
similarity due to a thick mass flow accumula-
tion, but a heat transfer distribution has a
parabolic similar profile (3) for a>#6., a thick
layer moves out of the symmetric plane and
flow again becomes to have similar profiles.

Though Moore*” suggested a parabolic simi-
larity for a case of conical external flow, the
item (2) in Lin and Rubin shows nonsimilar
flow and this thick nonsimilar boundary layer
may give the nonuniqueness in similar solu-
tion of Moore. This item (2) is the same as
the result pointed out by Fannelop'”.

In addition to these viscous flow studies, a
number of numerical investigations about the
three-dimensional inviscid flow have been con-
ducted which are essential for the boundary
layer analysis. A brief review of these studies
is to be presented in chapter III of this paper.

Although several experiments and numeri-
cal solutions have provided fairly clear-cut
flow. models and fairly good numerical predic-
tions, the physical causality and mechanism of
the heat transfer increase in a separated flow
have not become clear yet. Main reason for
this unclearness, seems to the author, will be
in consequence of the complete numerical treat-
ment in the theoretical investigations and,
therefore, this situation will require analytical
and semi-empirical investigations for this
problem.

In this paper, under these circumstances,
theoretical and experimental investigations
have been conducted about heat transfer over
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Flow Model

Fig. 1.

a blunt cone at angles of attack in a hyper-
sonic flow.

In chapter II, experimental apparatus, test
facilities, and experimental results are pres-
ented. The purpose of this experiments is to
obtain physical features of flow in order to
provide useful informations for a theoretical
treatment of it. The experimental results have
suggested a separable treatment of inviscid
flow and laminar boundary layer flow as shown
in the flow model of Fig. 1. Then, the three-
dimensional Eulerian equations have been
solved numerically in chapter III. There are
presented a short review of numerical methods,
a brief explanation for the applied method, and
the numerical solutions compared with experi-
mental results. The purposes of this numeri-
cal computation are to estimate the order of
viscous interaction effeet and secondary flow
in a boundary layer, and to obtain the inviscid
flow structure, the inviscid flow geometry on
the surface and inviscid flow conditions on the
outer edge of the boundary layer. In chapter
IV, analyses of three-dimensional boundary
layer are described. The semi-empirical method
with small cross flow approximation has been
applied first. The main purpose of this chapter
is to provide an analytical explanation and
the quantitative correlation equation for heat
transfer in a separated region along the most
leeward generator.

For computation of Eulerian equations and
boundary layer equations, the 2 CPU System
of FACOM 230-75 electric computers was em-
ployed.

II. EXPERIMENTAL
INVESTIGATIONS

The detailed measurements of surface pres-
sure, heat transfer and limiting streamlines
over a blunt cone at angles of attack have been

conducted in a hypersonic flow of nominal
Mach number 7.

In this chapter, a brief explanation of ex-
perimental apparatus and the detailed inves-
tigations about experimental results are
presented.

2.1. Test Facilities and Model Configuration

Tests have been done using 50 cmg hyper-
sonic wind tunnel in National Aerospace Labo-
ratory of Japan: the main characteristics of
the wind tunnel are listed in Table 1. A model
supporting system is of ginbals-strut type and
its angle of attack can be changed by *20°
during a run. A model can be shot into a flow
at any time with a travelling time of less than
1 sec.

The model configurations (Fig. 2) are as
follows; an interchangeable spherical nose
with Rn=5, 10, 15 mm, the half cone angle
6,=156° and the axial length for Rn=10 mm of
264.3 mm.

The pressure model has 43 surface pressure
holes with 1mm¢ over a half cone surface
along generators of $=0°, 456°, 90°, 135°, 157.5b°
and 180°. Two sets of pressure transducers of
variable reluctance type with scanning valves
were set inside of a sting close to the model
base.

Table 1. NAL Hypersonic Wind Tunnel

Type Blow Down

Test Section Free Jet, 50 cmg
Nozzle Axisymmetric, Contour
Heater Pebble Bed of Alumina
Po 10-100 ata

To 300-1000°C

Duration 30-200 sec

Mach number 5,79, 11

MODEL CONFIGURATION

Bc=15"

157%

250.0
264.3
2786

Fig. 2. Model Configuration
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The heat transfer model has 32 probes in-
stalled over a half cone surface along genera-
tors of ¢=0° —180> at 30° interval. The probe
is made of a small copper slug senser thermally
shielded by ceramics, and the transient tem-
perature rise of the senser is measured by
thermo-couple to determine heat transfer rate.
The heat transfer model was shot into a flow
after the total temperature of a flow had be-
come stable.

The oil flow model has 72 holes of oil exits
with 0.5mm¢ from which vacuum pump oil
colored by lump black is pushed out slowly.
The oil moved by shear force drew clear streaks
which showed limiting streamlines over a sur-
face. Pictures of oil streaks were taken during
a run from windward, sideward and leeward
directions.

2.2. Experimental Results

Fig. 3a shows a schlieren photograph taken
from the sideward of a blunt cone with Rn=
15 mm at an angle of attack a=15° in M.="1.1.

Fig. 3a. Schlieren Picture (a=15°, Mw="17.1)

_ Rn{mm)
~~PHESENT Exn]o 10
- X 15

3-D INVICID SOL, ——

CONICAL FLOWSOL,
BY BABENKOETAL.

Fig. 3b. Shock Wave Patterns

As seen in the windward region, the photo-
graph shows clearly an adversely curved shock
wave and compression waves caused by an
overexpansion-recompression process after the
curvature discontinuity at the sphere-cone
junction. However, density is too small to see
a viscous layer in the leeward region.

Fig. 4a. Oil Flow Visualization; a=15° ¢=0°,
En=15mm

Fig. 4b. 0il Flow Visualization; a=15°, ¢=90°,
REn=15mm

Fig. 4c. 0il Flow Visualization; a=5°, ¢=180°,
REn=15mm
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Fig. 4d. Oil Flow Visualization; «=10°, ¢=
180°, Rn=15 mm

Fig. 4e. 0il Flow Visualization; «=15°, ¢=
180°, Rn=15mm

Fig. 4f. 0il Flow Visualization; «=15°, ¢=
180°, En=10 mm

In Figs. 4, pictures of oil flow visualization
are shown which were taken from the three
different directions for the conditions of a=5°,
10°, 15°, and 20° with Rn=10 mm and 15 mm
in Mw.=7.1 during each run. The pictures
taken from windward and sideward directions
show a strong cross flow rolling up from the
stagnationline of ¢=0° to the leeward region.

Fig. 4g. 0il Flow Visualization; a=20°, ¢=
180°, Rn=15mm

The pictures of the leeward side show only an
oil accumulation at a=5°, a very small region
of separation at a=10°, a widely separated
region at a=15° and a strong reverse cross
flow in a widely separated region at a=20°.
Since the half cone angle 6. is 15°, the result
at a=10° shows that the separation can occure
on the surface with a positive local angle of
attack. Comparing the photographs for Rn=
10 and 15mm at a=15° (Figs. 4e, 4f), oil
streaks and patterns of separated regions of

— Cp— Rn
& =0 &ii Smm
Meo=T.1 PRESENT| & 1o
c EXP,
P i
3DIM INVISCID SOLUTION
ozr «— CONICAL FLOW SOL. BY
BABENKO ET AL.
5.3 X p, SR
Q"/Hy@’f ¢ $ & ¥
/A/
ot B
0 : + + -
0 10 20 g/Rn 30 40 50
Fig. ba. Longitudinal Pressure; a=0°
b
&
— Cp— S 3?;
. — Rnlmm) g 25
& =5 OPEN B § v 60
Moz 7.1 oreN’ o 10 o %
OPEN 0 15 A 180
CLOSED ® 254----CLEARY'S EXP,
Mo=T4 RexiGlem
30IM INVISCID SOLUTION
c <—  CONICAL FLOW SOL. BY
"4 | BABENKO ETAL.
3t e o
e
] N —
5 fod o B
3 L\\‘{\L__‘Mg 2 fe% leg
e s 5o
0
(" 5 10 gme 15 20 25

Fig. bb. Longitudinal Pressure; a=5°
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g o | B
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Mo =74 Reoz107cm
30M INVISCID SOLUTION

<— CONICAL FLOW SOL.BY
BABENKO ET AL.

~—0'

—{e—4S*

%)’//D‘:ﬂ' —

0 %Y 0 og & g I Cmgt
E N e
\ﬂﬂ—q_gm.b...—w—h——{ E—Z<—10"
0. 5 1 omn 15 20 5

Fig. 6c. Longitudinal Pressure; a=10°

PRESSURE  DISTRIBUTION
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OPEN o 15 )
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Fig. 56d. Longitudinal Pressure; a=15°
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Fig. be. Longitudinal Pressure; a=20°
both cases become duplicate completely, if the

surface length of the cone is normalized by
Rn in the pictures.

In Fig. b, pressure distributions for Rn=35,

10, and 15mm are shown against length s
measured along each generator from the top
of the model in a normalized form by En. Also
in Fig. 6, pressure data are plotted in the cir-
cumferential direction. Pressure data measur-
ed by Cleary” at M.=7.4 are also shown in

—Cp~d— 4
. Rn .
X =5 o 15mm '5“ %
Mw=71 o0
X 5 1.44.5
4 254 CLEARYS EXP
(Meo=7.4) 1
P ——INVISCID SOLUTION 1-31-41.5
| R _S/Rn=250 -.2-.3-.4-{5
ﬂ\A
| T8 s/Rn=150 {.14.24.344
q\.s!Rn:lZ,O\n ————J04.14.243
\O —~ad—f J
A
\WO\\D\M 04.14.2
—=
D&D—————o-w
“-G—n*.
e " — i A i o
0 30 60 30 120 150 180
¢ (DEG)
Fig. 6a. Circumferential Pressure; a=5°

—Cp~ b — t
fn 1.
o« =10 |0 15mm S %
Meo=T1 o ‘g s
a 254 CLEARYS BXR |17,
(Mo=74)
—— INVISCID SOWTION  1-31.415
4.24.3{4{5
. |J.2~.3 4
R
\u —o4.1{.2{3
—xo—=R

0 30 80 30 120
% (DEG)

Fig. 6b. Circumferential Pressure; «=10°
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w
by
Q
i
2
o
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8

h§~§l_ﬁ
0" 200 400 60 ‘80 100 1200 140" 1607 180

${DEG)

Fig. 6¢. Circumferential Pressure; a=16°
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Fig. 6d. Circumferential Pressure; a=20°

those figures. The solid lines in these figures
are the numerical results described in the next
chapter. In Figs. 5 of ¢5 vs. 8/Rn, the measured
pressure data for different nose radii line up
along a curve at each generator even at the
most leeward generator. Also in Figs. 6 of ¢p
vs. ¢, pressure data line up along a curve at
each longitudinal station. As shown from these
figures, adverse pressure gradients in ¢ direc-
tion are existing in nowhere at a=5°, in lee-
ward regions of s/Rn>156 at a=10°, of s/Rn>
7.0 at a=15° and of 8/Rn>4.0 at «a=20°. In
Fig. 6¢ of ¢, vs. ¢ at a=15°, the separation
points obtained from the oil flow visualization
are indicated. It is obviously seen that the
separation occures a little after the flow ex-
periences an adverse pressure gradient in ¢
direction. This separation point of cross flow
is similar to the case of a two-dimensional
separation which occures at a little down-
stream of the starting point of an adverse
pressure gradient in flow direction. Though
the separation criterion in two-dimensions is
simply given by t,= (p-a%)w:{), the direction,
in three-dimensional case, of the wall shear
vector to be considered in criterion can not be
given a priori, since the flow can take an an-
other direction, if it encounters an adverse
pressure gradient in one direction. The ¢
direction is not the correct direction as for in
a separation criterion in this sense and the
correct direction in a nonconical three-dimen-
sional separation criterion is to be given in
the next chapter.

The heat transfer results are presented in
Figs. 7a-Te in the normalized form by a stag-
nation point value against s/Rn. The most
remarkable feature of heat transfer data is

that the significant increase of heat transfer
along the most leeward generator can be seen
for the cases of a>15° where a wide separa-
tion is occuring as shown by an oil flow
visualization. The heat transfer data for dif-
ferent nose radii along each generator line up
on a curve even along the most leeward genera-
tor of ¢$=180° with a remarkable heat transfer
increase.

According to these experimental observa-
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tions, the significant fact should be pointed out
that if the surface length was normalized by
Rn, all measured properties for different nose
radii become duplicate in a normalized form
of heat transfer, surface pressure, shock wave
shapes, separated regions and oil streaks. This
fact obviously implies the followings about a
separated flow; (1) a local Reynolds number
effect will be small (2) thickness of a separated
viscous layer will be small and the boundary
layer approximation can be applicable (3) the
viscous interaction effect on inviscid flow will
be small and the separable treatment of invis-
cid flow and boundary layer flow can be appli-
cable as shown in Fig.1 of the flow model (4)
the separated boundary layer will have a simi-
larity rule along the most leeward generator.

III. NUMERICAL ANALYSIS OF
THREE-DIMENSIONAL
INVISCID FLOW

In this chapter, the inviscid flow behavior
in the shock layer over a blunt cone at an angle
of attack in a hypersonic flow has been inves-
tigated. Comparing with the well known axi-

symmetric flow over a blunt body, the essential
difference of a three-dimensional flow derives
from the lateral component of a flow velocity
and the main effect of this cross flow emerges
phenomenally as an adverse pressure gradient
in the circumferential direction which would
induce the three-dimensional separation of a
boundary layer over a leeward surface.

Up to this time, there has been no analytical
method to solve a rotational, nonconical in-
viscid flow in three-dimensions. Hence, the
three-dimensional FEulerian egquations were
solved numerically and the solutions were com-
pared with the experimental results. As for
the numerical methods, there have been pro-
posed a number of methods, but the method
for this problem has not completely been estab-
lished yet. In the following section, a short
review of these methods and a brief explana-
tion for the method applied in this paper are
presented.

3.1. Method of Numerical Analysis
3.1.1.

Since the angle of attack is chosen moderate
in this paper, the subsonic flow behind a de-
tached bow wave is restricted within an axi-
symmetric flow over a spherical nose and, there-
fore, the entire three-dimensional flow over a
cone surface becomes supersonic. The methods
for an axisymmetric flow of subsonic and low-
supersonic speeds over a sphere have been well
established; namely, the inverse method*®:*®
and the characteristics method**-*. The solu-
tions on a spherical nose can be used as the
initial values required for the three-dimen-
sional Eulerian equations governing the three-
dimensional supersonic flow over a part of a
sphere and a cone surface.

Concerning the direct numerical method to
solve the three-dimensional Eulerian equations
as an initial value problem, the finite difference
method (noncharacteristic) and the charac-
teristics method can be applicable. The later
method, however, becomes too complicated in
arithmetic formulations to apply for a three-
dimensional flow and extensive works have
been focused on the former method. Depending
on the treatment of basic equations and shock
wave, the finite difference methods can be clas-
sified into following categories; time-dependent
method and steady method; shock capturing
method and sharp shock method. Also depend-
ing on a finite difference formulation, methods
are divided into two types of 2nd-order and
3rd-order accuracy. As for the 2nd-order

Review of Numerical Methods
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scheme, typical methods are the implicit method
by Babenko et al‘®, the single stage integra-
tion of Lax-Bendroff type by Moretti et al.??,
and the double stages integration of predictor-
corrector type by Barnwell®” and MacCor-
mack®”. By applying a noncentered difference
scheme in contrast with the centered one in
other methods, MacCormack’s method becomes
simple in formulation, fast and accurate in
computation. In regard to MacCormack’s
method, MacCormack applied his scheme at
first to an unsteady two-dimensional Navier-
Stokes equation solved by a time dependent
method. The applications of MacCormack’s
scheme to three-dimensional steady FEulerian
equations have been done by Thomas et al.’®,
Kutler et al.®® and Moretti et al.**. Thomas
et al. solved the case without any embedded
shock by the sharp shock method. Kutler et al.
and Moretti et al. solved the cases with em-
bedded shock in a shock layer by the shock
capturing method and the sharp shock method,
respectively. Concerning the boundary condi-
tion on the body surface which is most im-
portant‘® for the successful application of the
numerical integration scheme, many methods
have been proposed. In the predictor-corrector
type integration, a two step formula would be
applied for the boundary condition which is
physically a simple slip condition on a wall.
In the above cases of Thomas, Kutler, and
Moretti, the boundary condition schemes of
Thomas’ method, Abbett’s method and Barn-
well’s method were applied, respectively. As
the results, Kutler et al. and Moretti et al.
obtained stable solutions, Thomas et al., how-
ever, have a numerical oscillations after a
curvature discontinuity of the wall.

In this paper after these reviewing, the fol-
lowing couple of the methods was employed;
MacCormack’s 2nd-order noncentered predic-
tor-corrector method applied as a steady method
together with a sharp shock treatment and
Abbett’s method for a wall boundary condi-
tions.

3.1.2. 3-D Steady Eulerian Equations

The axisymmetric flow of subsonic and low-
supersonic speed over a spherical nose were
solved by the well known inverse method and
characteristics method. In the inverse method,
the two-dimensional Eulerian equations of
elliptic type are solved as an initial value
problem by assuming an appropriate shock
shape to fit a given body shape iteratively.
These solutions provided initial values for the

two-dimensional Eulerian equations of hyper-
bolic type in a streamline direction which can
be solved by the characteristics method. From
these solutions on a sphere, the initial values
for the three-dimensional Eulerian equations
of hyperbolic type in the cone axis direction
were obtained.

The Eulerian equations can be described in
vector form as

Continuity: 7-917:0 3.1)
Momentum: p(I7~V)T7+Vp=O 3.2)
Energy: ﬁ-(?p—a’?p):o 3.3)

where eq. (3-3) is introduced from dS=0 along
a streamline in a shock layer and then this
form cannot treat an embedded shock wave in
a flow field by a shock capturing way.

By normalizing and stretching the cylin-
drical coordinates (r, ¢, z), the transformed
coordinates (X, Y,Z) are defined as

x=1(7)
ng(%) 3.4)
Z==z

where f and g are single valued functions in-
creasing monotonically

from fO)=g(0)=0
to fQ)=g(1)=1

The basic equations in X, Y, Z coordinates
can be described as

3.5)

oH 8H -
(r7pus) oz +[A1 X +[BJ Y +E=0 (3.6)
where
» patuuy
_le] L |ewu
H= U |, E:p —77“3 ’ ?zil;—a’ 3.7
Us Tu U
Us adu us

and coefficient matrices [A] and [B] are shown
in APPENDIX A.

If the axial velocity us is supersonic entirely
over the region considered, eq. (3-5) becomes
hyperboliec type and can be solved as an initial
value problem in Z direction. In general, u;<a
and wi<a and then eq. (3-5) is elliptic type
in X, Y directions. Therefore, the solutions in
X—Y phase plane are marched down in Z
direction with satisfying the conditions on the
surrounding boundaries of X=0, 1 and Y=0, 1
starting from the initial plane where the axial
velocity is supersonic.

This document is provided by JAXA.



12 TECHNICAL REPORT OF NATIONAL

Since the detailed method to solve these
hyperbolic equations is given in Ref. (56), only
the outline is described subsequently.

MacCormack’s 2nd-order predictor-corrector
scheme is given as
Predictor:

ﬁul,j,k=ﬁi‘j.k_[A]i,j.k(ﬁt,jﬂ,k_ﬁi,j,k)ﬁl
—[Bli,j,x(Hs, jx1— Hy,j,0)hs—Ei 5 x4Z
3.8)

Corrector:
s 1 —_ = ~ =
Hiu,j,k:E{Hi,j,k+Hi+1,j,k—[A]i+l,j,k(Hﬂl,j,k

—Hiry, 501,00 — (Blisy, j el g
—ﬁin,j,k-l)}—lz-—Eul,j,kAZ}
3.9

where 6H/0X and 9H/3Y are approximated by
forward and backward finite differences in
predictor and corrector, respectively.

In the sharp shock method, the boundary
conditions on a shock wave (X=1) are given
from conservation equations of mass flow,
momentum, energy and tangent velocity on a
shock wave surface as follows;

ory 1 [u <u Uz ar,>
az - u3ec3—'Veo1;2 8 1ee T& a¢

Ugeo 075 \2
+an~/ (u;w— re 34 ) + (Us?—Von?)

jeles il

(3.10)
P(p—p=)
Ven=af ——20 3.11
Pes(p—pe) ©-1)
r—1>
o (r+1)p+(r+1
£ = (8.12)
e 7—1 +(T+1)
P71
U1 =%U100+ b1
e by s
=t "5 (3.13)

ors
0z

U3 =Ngco— b]

These four conservation equations are supple-
mented by predictor-corrector for pressure to
close the relations.

In the Abbett’s method for the boundary con-
ditions on a wall, the predictor (3-8) is ap-
plied first at X=0. The predicted velocity

I7¢+1, 7,% is rotated to flow along a wall by as-
suming isentropic waves fictitiously; the rota-
tion angle 44 is

AEROSPACE LABORATORY TR-494T

Ae:sin-l(L;‘—'i'-&ﬂ) (3.14)
[ Visa, g%
Pressure after the waves is
~ M3
’Ptu,;,k:Pm.j,k[l (Tﬁ )45’
(3.15)

+yM? {W} Agz]

Density and velocity are given from conserva-
tion equations of entropy and energy along a
wall as

Di+1,1,k )‘/’
Pinitial

2 (--]
Vi+l,j = ‘\/sz'l' T ( P . Di+1,4,% )
Pi+1,1,k

Pt+1,j,k:PlnltIa1( 3.16)

Uy {+1,j.k=V1:+1.j,k(u1 z‘+1,j,k—bz)/b3
bg a”'b

Uz 441,7,6= Vis1,4,% (uz £+1,9, "+Tb—_—)/b‘°‘

3
wsinsa=Voss(dsastbszy) /by
3.17)

The boundary conditions in Y direction are
given by symmetry conditions at Y=0 and 1
as follows;

dp  9p 0wy dus
Y 9Y  aY &Y

=0

3.1
ous du, ag @.18)
Y — a¢ od

For applying eqs. (3-8) and (3-9), a step
size Z should be determined from a stability
condition for a numerical scheme. However,
no rigorous limit has yet been established for
a three-dimensional nonlinear partial differen-
tial equations. Therefore, in this paper the
simultaneous applications of the amplification
matrix method*” have been made for two-
dimensional linearized homogeneous equations
in Z—X and Z-Y phase planes.

The two-dimensional linearized homogeneous
forms corresponding to the basic equations
(3-5) are

u2:0,

aH

+[C'l aX 3.19)
oH
27 +[D]_—=0 (3.20)

After applying MacCormack’s scheme for these
equations, H is expressed by Fourier expansion
form in X and Y. Then the amplification
matrix for these finite difference equations is
easily obtained. Applying the von Neuman’s
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stability condition‘”, the stable step size Z is
determined from this amplification matrix as
follows;

for eq. (3.19), BZ<AX /¢ 3.21)
for eq. (3.20), 4Z2<d4Y /2p 3.22)

Characteristics equations for [C] and [D]
are

det \[C]~lc[1])=0} (3.23)
det ([D]—2p[ID=0

These provide eigenvalues i¢ and ip as

3012_?%(“1_55 %‘% +usg‘) 3.24)
lcs=g_£+%[us<u1§£‘+—t—’%)

W ST )

3.25)

2m=—ul-;—’:—’%% (3.26)

Ion= it Vituhg  @.2D

Here, ic; and ip are corresponding to the
streamline directions in X—Z and Y—Z phase
planes, respectively, since the angle between a
streamline and Z axis in each phase plane is
given as

V-4
fxz=tan-1 u,f
_ 1/ of w 8f if_)_
—u3<ular+ - a¢+uaaz =01
‘7‘79 1 uy 9g
—tan-1 B R A
Oy z=tan ” w7 g D

Then, 2¢; and ip; which are the solutions of
characteristics equations should be charac-
teristics directions of 1st and 2nd families for
eqs. (3-19) and (3-20). Therefore, either
value of 1¢; for 1st and 2nd families, d¢m, is
always greater than Zg; for a streamline, and
Apm is greater than 1p;.

The minimum value of 4Z given by eqs.
(3-21) and (3-22) is obtained by applying the
following equation at all mesh point in X—-Y
phase plane;

Azm=(AX/ACm’AYﬂDm)minxmum
For the three-dimensional nonlinear equa-
tion, the stable step size is given by the sub-
stantial fraction of 4Z, as
2Z=K-4Z (3.28)
where K=0.9 is selected for the present calcu-
lation.

This stability condition shows that the finite
difference step cannot exceed the characteris-
tics line at each point.

The same results as eq. (3-24) ~(3-27) were
obtained by Kutler et al.®® where they used an
enthalpy conservation equation as an energy
equation in order to apply a shock capturing
method.

3.2. Inviscid Flow Solutions

Numerical computations were conducted for
the conditions as follows;
Flow conditions of

M.=11, 10.0
r=14
a=0°, §°, 10°, 15°

Numerical mesh (equally spaced) of

AX=1/24 : dr={(r,—1p)/24
4Y =1/24 : dp=n/24

3.2.1.

The shock wave patterns calculated at a=0°,
5°, 10°, 15° in M~=7.1 are shown on a sym-
metric plane of ¢=0° 180° in Fig. 3b where
length is normalized by Rn. Compared experi-
mental results are for two different nose radii
in order to investigate the local Reynolds num-
ber effect.

The numeriecal solutions agree quite well with
experimental results at any angle of attack
and no effect of the nose radius can be seen.
In the same figure, the shock wave angles for
a sharp cone at a=0°, 5°, and 10° in Mo=T7
calculated numerically by Babenko et al.*® are
presented. For a=0°, the effect of the nose
bluntness is still obviously seen. The results
for a blunt cone at a=5° and 10° in the wind-
ward side agree with the shock wave angle
for a sharp cone in the region of z/Rn<15,
since the streamlines passed through the bow
shock wave have concentrated into a thin en-
tropy layer near the wall rapidly. The results
for a=5° and 10° in the leeward side have not
shown a conical behavior yet, since the stream-
lines passed a strong shock spread widely in
the shock layer which make the fiow behave
nonconically. The flow field on the most lee-
ward plane of a sharp cone has essentially
different properties with the flow field of a
blunt cone, since a vortical singularity should
be considered on the plane. However, for the
small angle of attack as a<10°, this singu-
larity is still on the wall*® and its effect will
be small. Babenko et al. did not calculate the
large attack angle case of «/6.>1 and, there-

Shock wave and shock layer
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Fig. 8a. Pitot and Static Pressure; z/Rn=3.4

fore, they did not obtain a vortical singularity
lifted off the surface.

In Fig. 8, the static and pitot pressure dis-
tributions in a shock layer are shown compared
with Cleary’s experimental data‘*® measured
normal to the surface at two different axial
stations of 2/Rn=3.4 and 14.7 at M.=10.6.

As for the static pressure profiles, the agree-
ment between numerical and experimental
results is quite good except for the most wind-
ward results (¢§=0°) where a thick boundary
layer developed on a spherical nose may affect
the static pressure in experiments as to be
discussed in the next subsection.

As for the pitot pressure profile, the agree-
ment between numerical and experimental
results is quite good at the upstream station
and fairly good at the downstream station. A
very thin entropy layer can be seen near the
wall as a steap pitot pressure gradient in a
windward side of the downstream station
where the streamlines passed through a strong
bow shock wave around a stagnation point
concentrate near the wall.

Very near the wall, pitot probe data shift

INVISCID FLOW PROFILES

~——— 3DIM INVISCID
FLOW SOLUTION (Mw =100)

XsRn =0 © Cp Piror }Emh}EMTﬂO.G)
- X Cp STATIC

A XsRn P =150°

s 4.0]
fL.JLL w4

2.8

_ane 2.47
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20 1.61
:g 1.2
: .81
2 4
) 0

0

3
J.2.3
Z/Rn=147 Cps

Fig. 8b. Pitot and Static Pressure; 2/RBn=14.7

toward zero, but numerical results do not.
This is obviously due to a boundary layer effect
which increases entropy of a flow there. How-
ever, the widely shifted layer up to xs/Rn~1.0
at $=180° of the downstream station will not
be due to a boundary layer, but due to a weak
cross flow shock wave embedded in a shock
layer near the wall which can be surmised
from Fig. 10d of the cross flow Mach number

contours. Figs. 9¢c,d and 10c,d show calcu-
—_M—

Mw:7_1

X =15

Z/IRn=5
PFig. 9a. M Number Contour; M=17.1, z/Rn=5
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—_—Mp——
Mw =10.0
x =15
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Fig. 10d. M¢ Number
z/Rn=15

Contour;

M=10.0,

lated Mach number and cross flow Mach num-
ber contours in X—Y plane at 2/Rn=>5.0 and
15.0 in M»=10.0. Though at z/Rn=5.0, a cross
flow becomes supersonic only in a very narrow
region, the region of supersonic eross flow at
z/RBn=15.0 widely spreads up to $~165° near
the wall where a cross flow is decelerated to
subsonic speed with so large Mach number
gradient that a weak embedded shock wave
could be induced in an actual flow; in the
present numerical solutions, an embedded shock
wave cannot be obtained due to the isentropic
assumption along a streamline. The supersonic
cross flow region expands over one-forth of the
shock layer at z/Rn=15 which corresponds
approximately to the region of shifted pitot
probe data (z:/Rn—1.0) at ¢=180°.

3.2.2. Surface Pressure and Surface
Streamline

Fig. 11 shows a surface pressure distribu-
tion on a hemisphere and along the most wind-
ward generator of the connected cone with
8.=15° at several angles of attack. Numerical
solutions are compared with the present ex-
perimental results and with Cleary’s results.
The Reynolds number based on a nose diameter
d are 6,3X10* and 5.3X10° in the present and
in the Cleary’s case, respectively.

The agreement of numerical solution with
experimental results is quite good except for
the Cleary’s case in ¢>60°. In order to check
the boundary layer interaction effect, the lami-

NUMERICAL SOLUTION
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EXPERIMENT
© PRESENT
Mo =71
O CLEARY
Mozlé Recd=53x10°
'\ —-— NEWTONIAN PRESSURE

Rewd=6.3 x10°

INVERSE

CONE _cx =18

— U

INITE S S5

S A Y
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s/Rn

024 _CHARACIERISTICS

—

20 22 24

Fig. 11. Surface Pressure on Sphere

nar boundary layer equations with the simi-
larity assumption are solved for Cleary’s con-
ditions by using the numerical pressure solu-
tions and isentropic condition along the outer
edge of boundary layer. Attaching the dis-
placement thickness of the obtained boundary
layer to the surface of sphere, an inviscid flow
was recalculated and the resulted surface
pressure was shown by a dotted line in the
same figure. As seen from this figure, the in-
teraction effect with a laminar boundary layer
is very small. Consequently, the discrepancy
with Cleary’s data may imply a transition to
turbulent boundary layer around 6~80° (s/
Rn=1.05), though the local Reynolds number
of 2.8X10° at this point is a little smaller as
the transition Reynolds number which is about
the order of 10° for a smooth surface in this
conditions.

In Pig. 5, the numerical results of pressure
distribution on a cone surface along generators
at angles of attack of a=0°, 5°, 10°, 15° at
Mo,=17.1 are shown compared with the present
and Cleary’s experimental results which in-
clude the four different nose radii. The numeri-
cal solutions agree well with experimental
results for any angle of attack and for any
nose radius. Also in Fig. 5, the results for a
sharp cone calculated by Babenko et al.*®
numerically are shown for a=0°, §°, and 10°.
The comparison of both results for a sharp
cone and a blunt cone shows the almost exact
agreement except for ¢=180° at a=10°. For
a<10°, the remarkable effect of a vortical
singularity cannot be seen in the pressure dis-
tributions as in the shock shape, since the
attack angle is small. The results compared
with the Cleary’s data in the windward side
near the sphere-cone junction show a little
discrepancy which can be explained by the
reduced curvature of a sphere due to the thick
displacement on it as mentioned above which
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affects the overexpansion-recompression pro-
cess on a cone surface caused by a curvature
discontinuity at the junction. The agreement
of the solutions with the data for different nose
radii on the leeward surface implies that the
boundary layer thickness on the surface is not
so thick as to affect the pressure distribution,
even if the wide separation is taking place as
shown experimentally in pictures of oil flow
visualization of Fig. 4.
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Fig. 12d. O0il Streaks for Different En

In Fig. 6, solutions of circumferential pres-
sure distribution on a cone are shown at several
axial stations. The agreement with experi-
mental results is quite good. For the case of
a=15°, the separation points obtained from
the picture of oil flow visualization are indi-
cated. These points are locating at a little over
the minimum pressure point in circumferen-
tial distribution. Here, it can be seen that the
numerical solutions as well as experimental
data show a pressure peak at ¢=180° clearly.
This adverse pressure increase is correspond-
ing to the decrease of cross flow Mach number
from supersonic to subsonic as shown in Figs.
10a, b. Since the gradient of decreasing M, is
smaller than the case of M.=10 in Fig. 10d,
the presence of an embedded shock wave is not
clear at M.="7.1.

In Fig. 12, numerical solutions of velocity
vectors of an inviscid flow over a cone surface
are shown comparing with oil streaks on a
surface. At any angle of attack, inviscid
velocity vectors have almost the same direc-
tions as the oil streaks in the region of ¢=0°~
120°. In the region of $>120°, both directions
of inviscid flow velocity vectors and oil streaks
become disagreed even in the case of a=5°
where no separation takes place. This discre-
pancy in the directions exhibits a twist of a
flow direction across a boundary layer and
occurance of the secondary flow.

In Fig. 12¢, also shown are isobaric lines
drawn from the numerical solutions. It can
be seen clearly that the separation line is run-
ning approximately in parallel with the trough
of isobaric line and that a flow separates a
little after it experiences an adverse pressure
gradient in the direction normal to the trough.
From this relative location of a separation
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line and a trough, the separation criterion for
three-dimensional boundary layer can be drawn

as
vV
ee=(e5%;), =0

where the subscript p denotes the normal com-
ponent to the trough of isobaric lines. Obvi-
ously, this criterion can cover the case of two-
dimensional separation.

(3.31)

IV. THEORETICAL ANALYSIS OF
THREE-DIMENSIONAL BOUNDARY
LAYER AND HEAT TRANSFER

In this chapter, the three-dimensional boun-
dary layer equations are analyzed and heat
transfer distributions are obtained over a blunt
cone at an angle of attack with special atten-
tions on the leeward region. The outer edge
conditions are given by the inviscid flow solu-
tions.

4.1. Basic Equations

The three-dimensional boundary layer equa-
tions in a curvilinear coordinate system (zx,
22, 23) are written as

Continuity-
(thu)+ (hxpv)+ (hzthW) 0 «.1)
% Momentum:
U Ju v du Ou uv_ oh
O hy 9w s 9 % T hahe 0z @
pv? Bhy iﬁp_{_a(_ai) '
h]hz 89:1 h]_ aml ax;., 8:2:3
x: Momentum:
w v v v ov uv dhg
hl 8:1;1 +ph— aﬁig +P’UJ 6x3 +ph1hz 3:::1 (4 3)
_pur 8h 1 dp 3( av> ’
h1hz 3902— hg axz 69::3 Faxs
Energy:
w 8H v OH  oH
phl 6x1 hg ax e 8x3

__i[y BH+(1_ 1 ou +1}31}
T dxg L Pr ox Pr )#(u axs) axs>]
4.4)

where s is the length measured normal to the
surface and hence h;=1.

Now, consider the inviscid streamline co-
ordinate system as curvilinear coordinate sys-
tem where x, is the coordinate taken along a
inviseid flow streamline at the outer edge of
boundary layer and then z, becomes a coordi-
nate normal to x and tangent to the wall.
Consequently, v becomes the secondary flow

across a boundary layer against the inviscid
streamline; in this chapter, v is called a cross
flow velocity.

The cross flow in a boundary layer occures
along a curved invisecid streamline on the
boundary layer edge (this is called “inviscid
surface streamline” in the subsequent section)
in order to balance a centrifugal force with a
pressure gradient in lateral direction. The eq.
(4-3) on the boundary layer edge gives

op
hy 8x,
Since the lateral pressure gradient of right
hand side is considered invariable across a
boundary layer, the lateral curvature of stream-
line % should become larger near the wall.
Hence, a cross flow v is induced.

As seen in Fig. 12, a cross flow velocity com-
ponent becomes remarkable in the leeward side
of ¢>120°, since the inviscid flow rolled up
toward the leeward meridian plane should
curve on a lee-surface to flow in parallel with
a generator. However, in the windward and
sideward region of ¢#<120°, a cross flow com-
ponent is small, since the cuvature . is small
and viscosity delays the conduection of the
curvature effect.

4.5)

Pe‘feuez—

4.2, Small Cross Flow Approximation
4.2.1. Axisymmetric Analogy

The basic equations (4-1)—(4-4) can be sim-
plified by the small cross flow approximation
which will be applicable in the windward and
sideward region as mentioned in the previous
section.

Neglecting all terms which are invelving »
and its derivative, eqs. (4-1)-(4-4) are writ-
ten in the streamline coordinate system as

1

—icthun%@w):o «.6)
3

3 ou ap 0 Ju
Yo TP a0 T n T o (" 8:1:3) @D
aH oH

a u aH 1 ou

:—EE[PT 2 +(1—?7)'Fu'éx—3] (4.8)
where 2 is the length measured along an invised

1 2 _ 2

hy 8%, oz’
As obviously seen?, these egs. (4-6)-(4-8)
are exactly the same as axisymmetric boundary
layer equations over a body of revolution with
radius 7(x) =h.. Using this axisymmetric ana-
logy, heat transfer to a surface can be obtained
by applying the well known correlation equa-

surface streamline «; and then —
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tion presented by Lees‘” for an axisymmetric
blunt body with a local similarity assumption
as

. P Y VRn
Gw Pst Ve

q.w st = 1 ( dus) S p ue °
2 7
J Voa dg st ps‘ Vm dw

where r should be replaced by h. for the
present case and (du./df), is given by Lees as

(&) =V g ()

(4.10)

For applying eq. (4-9), the numerical solu-
tion of the external inviscid flow can be used
to give p, u., k3 and an inviscid surface stream-
line geometry. Instead of determining a
streamline geometry and ks numerically, the
Newtonian approximation method proposed by
DeJarnette'” was employed where the direc-
tion of an inviscid flow was determined by
Newtonian flow concept. By this method, the
geometry of an inviscid surface streamline and
h: can be given analytically from a vector
analysis (as shown in APPENDIX B in de-
tail) as

().

“.9)

¢‘; (sin28.,/2tana)

=(cos b,) —;:—é— (—S;%‘l—%i-) sint 4,
(4.11)
B, (22

) sin? ¢;+(cos ¢; cos a+tan b, sin a)?

v sin? 8+ (cos ¢ cos a+tan 4, sin a)?
where the cylindrical coordinate (134, ¢, z) on
a cone surface provides the streamline geo-
metry starting from a point of ¢=¢ at the
sphere-cone junction.

Using egs. (4-11), (4-12) together with
numerical solutions for » and u., eq. (4.9)
was calculated for a=5°, 10° and 15°. For the
case of a=20°, the inviscid flow solutions could
not be obtained, since the condition 7=wus*—a?
>0 is not satisfied at the initial data plane
located at the sphere-cone junction for the
three-dimensional finite difference calculation.
This is the limitation of the present theoretical
approach and this limitation is originally de-
rived from the difficulty of solving the three-
dimensional subsonic flow field which will ex-
pand over the cone surface at the larger angle
of attack. Hence, for the case of a=20°, the

modified Newtonian pressure distribution com-
bined with an isentropic flow assumption along
the boundary layer edge are used to give p/ps
and #./V« in the following form as introduced
by Lees;

y 4
y

v g (E) ] @

where 87, is the angle between a free stream
direction and a normal direction to the wall
and is given by

(11 19, 41
-=(1 )0 Ot 2t A13)

Vm'i . - A
v =sgin &, cos a—cos b, sin a« cos ¢
o0

(4.1b)

The region where the right hand side of eq.
(4-15) becomes negative means an unwetted
surface in the leeward side of a cone. This
boundary is given by

cos rn=—

tané, )

=nr—cos™!
¢wct t an a

In the unwetted region of ¢>¢,u, flow was
assumed to have values at d=dy:.

4.2.2. Heat Transfer Solutions

In Fig. 7, the calculated heat transfer dis-
tributions by eq. (4-9) are shown compared
with experimental results for different a, Rn,
M. and Re-. For any conditions, the calcu-
lated values agree quite well with experimental
results in the region of $<120° where the
small cross flow approximation is ensured. The
nose bluntness effect is well exhibited for a=
10° and 15° owing to the accurate edge condi-
tions given by the inviscid flow solutions. How-
ever, in the region of ¢>120° where a cross
flow component is not negligible, results by eq.
(4-9) do not agree with experimental results.
Especially along the most leeward generator
of $=180°, the small cross flow approximation
theory gives a different trend from experimen-
tal distributions. For the case of a=10° where
a separation occures only in the very small
region as shown by an oil flow visualization,
eq. (4-9) gives much larger values than the
experimental data. At a higher angle of at-
tack, the calculated values are also larger than
the experimental values in an unseparated
region, while in a separated region the experi-
mental values increase remarkably and the
predicted values by eq. (4-9) become much
smaller on the contrally; at «=20°, the calcu-
lated value becomes one-fifth of the experimen-
tal values at its worst.
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Of course, this discrepancy is due to the
small cross flow approximation and the remark-
able heat transfer increase along the most lee-
ward generator must be explained by a fully
three-dimensional analysis,

The good agreement with eq. (4-9) in the
region of ¢<120° has proved the applicability
of the local similarity along the each stream-
line as predicted by experimental observation
in chapter II.

4.3. Three-Dimensional Analysis along the
Most Leeward Generator

4.3.1.

The boundary layer equations along the most
leeward generator are characterized by the
symmetry conditions of v=0 and ép/dy=0H /3y
=0du/dy=0w/dy=0, where y denotes z; coordi-
nate along the most leeward generator.
Though a cross flow velocity v itself is zero
on y=0, its lateral derivative dv/dy is finite as
shown by

( v ) L vdy)—v(—4dy) _ v(dy)
oy Jy=0 24y 4y
since v(—dy)=-—v(dy), where a cross flow
velocity at y=dy, v(dy), is finite as seen in
an oil flow visualization and then v(dy)/dy be-
comes large especially in a separated region.
Therefore, the term dv/3y plays an important
role in a three-dimensional analysis along y=
0, and the neglect of this term in the small cross
flow approximation method violates the con-
tinuity equation severely which should cause
a considerable effect on heat transfer calcula-
tion.

Applying symmetry conditions, basic equa-
tions (4-1)—(4-4) become

Similar Transformation

9 v 9
o et (lepw) =0 (4.16)

ou du  9p ] ou

i(a_v)+ 9 (ﬂ)u_i d*p
Poa\ay) " oz \oy )~ hs oy?

b d av g v/ 8hy v (4.18)
+ o o) e 70 e o)
oH oH ] 1 ou
pu ax Tow o0xs = dxs {(1_ Pr ),uu L2 4.19
ﬂ -_a—Ii ( . )
+—IT’)’— 8.’1:3}

where eq. (4-18) was introduced by differen-
ciating z.-Momentum eq. (4-3) with respect to
9, since all terms in eq. (4-3) become zero

on ¥=0. As v is the normal component to the
inviscid streamline at the boundary layer edge,
v at the boundary layer edge is always zero
and then also 9v/dy is zero at the edge. There-
fore, the boundary conditions for these equa-
tions are

7]:0; u:v:wzav/ay:(), H:cpTw
N—00; U=1ue, v=0v/0y=0, H:cpTe_*_%uez

Hence, the governing equations (4-16)-(4-19)
are solved independently of the boundary layer
solutions outside of this most leeward genera-
tor where the informations of the outside field
are taken into only from the inviscid flow con-
dition of a%*p/oy’.

Now, egs. (4-16)-(4-19) are transformed
by Lees—Levy’s parabolic type similar trans-
formation equation modified by streamline co-
ordinate system. The parabolic type transfor-
mation was suggested by the results of Fan-
nelop*® and Lin and Rubin?” as mentioned in
chapter I.

The transformation equations are

§= S (owttwtehs¥)dx
(4-20)

_ uehz

7= V3E Spdzs
The continuity equation (4-16) is automatical-
ly satisfied by introducing a fanction ¢ which
is defined as

oy
thu_— axs

av 4.21)

v
g+ { 50 dmi=—2L
Integrate the first equation of eq. (4-21) and
$=+2& S u/u.dn=+26 f is obtained where

o _u
an B Ue
the form for w. Now, equations (4.16)~(4.19)
are transformed as

(Cfy 'i)v+(f+l83Q)fﬂ*+.él(9_fv2)
z%(fvfrif_fffw)

(CQW?)’7+U+ ‘BsQ)Qw—Bz(g—fv?)
— (BB 1Qr—Bs@n?=2(f1Qre—feQrr)

(a0t F+ Q)90 +A—G)2CPr—1)f 1 fo}s
=28(f 9 —fegr) (4.24)

1 9v H .
” a—y, g= . and subscripts 7 and

Then the second equation provides

4.22)

4.23)

where Q,=

§ mean their partial derivatives.
Boundary layer edge parameters are defined
as
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2% du, _e. 1 ¥p
b= w26 B1=5s PR
_x 1 _p,.
Bs= e (08/0z) Be=Fs 9z (4.25)
he B B

ﬁl': Ge » 33: Ge
Boundary conditions are

f=fH=Q=Qy=0, g=gu
frmg=1, Q,=0 | @

In the boundary layer edge parameters de-
fined in eq. (4-25), Bs includes the most im-
portant physical property which relates the
cross flow to heat transfer as seen in eq. (4-
23). Since B: is proportional to the curvature
of a surface pressure profile in y direction at
=0, there are relations as

7=0;

}—o0;

d*p .
ay >0: B3>0

pressure bottom at y=0:

ai
pressure peak at y=0: ay’: <0: B3<0

As mentioned previously, this parameter, 8,
brings the information outside of the sym-
metry plane into the solutions.

The heat transfer is expressed in the trans-
formed coordinate as

o)~ Brvi 3
3:!73 w_ P’l"‘\/ze ¢ av w

éw:kw(

At the forward stagnation point of £—0, the
flow is axisymmetric and ¢y is given by Lees*®

as
.1 du, g
Just= Pr szmuw( dz )st Hut( an )w:t

Therefore, the normalized heat transfer by a
stagnation value is written by

. ( P )ueh,x/l—fﬁ
qw Dse

AL
A, S
4.27)

where a linear viscosity law was assumed and
a entropy swallowing effect was neglected. In
order to obtain ¢w/¢»s along y=0, egs. (4-22)—
(4-24) are to be solved to give gyo distribu-
tion for the given boundary layer edge parame-
ters along y=0 from inviscid flow solutions.

4.3.2. Energy Integral Equation

Integrating the energy equation (4-24) with
respect to 7 from »=0 to p—co, heat transfer
can be expressed after some arithmetic mani-
purations as

éww(égy)w: V/fz—félg( V2_$6f)+.839Q (4. 28)

by using boundary conditions of f(0)=f,(0)=Q(0)
=Q,(0)=0, fy(©)=g(0)=1, and Qu(c)=0. In
eq. (4.28), 6, is an usual streamise energy
thickness in two-dimensions and 8¢ is a new
concept of a cross flow energy thickness defined
as

6= 1:0-g)ar
4.29)

6= @101

In this definition, @, is proportional to v» at
y=dy which is negative in an unseparated
region. In the separated region, the cross flow
velocity is reverse which means the positive
v(dy). This cross flow reversal is caused by
the inviscid flow conditions which are conducted
from the boundary layer edge to the wall and,
hence, if v{dy) becomes positive near the wall,
the cross flow reversal should dominate across
the boundary layer. Therefore, the cross flow
energy thickness term Bs6¢ in eq. (4-28) be-
comes positive in the separated region which is
generally negative in an unseparated region.
Combining 6, and 6, the three-dimensional

energyy thickness along y=0 can be defined as
ou 1 2
9=S 1—g)dz j 9
Pell,y (1-g)dz+ Pettehs pelte dy

ov
: { 2 1-g) dws} dz

Then, heat transfer can be deseribed by
—d
G052(Cgnyo= V% 7 (hapeu )

which is the same form for a two-dimensional
flow as given by Beckwith®®.

If the local similarity is assumed, eq. (4-28)
becomes

(C9)0=6,+88¢ (4.30)

If the small cross flow together with the local
similarity is assumed, eq. (4-28) is

(Cgw=86; (4.31)

Therefore, the cross flow term pBsB¢ is con-
sidered as a correction term for the value given
by the small cross flow approximation method.

Now, in order to investigate the cross flow
effect on heat transfer, the behavior of the
cross flow energy thickness term B8q is ob-
served qualitatively. For this purpose, egs.
(4-22)-(4-24) were solved numerically with
the local similarity assumption as described in
detail in the subsequent section. This similar
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solutions provide significant relations of

Q,<0 and v(y)<0 if ﬁg>0} 4.39)
Q,>0 and v(y)>0 if B;<0 !

throughout a boundary layer as shown in Fig.
13 where examples of boundary layer profiles
of f,,Q,, and g are presented. This relation
shows that once a pressure peak appears at
¥y=0 in a pressure profile in y direction, in
other words, once flow experiences an adverse
pressure gradient near y=0, the cross flow
velocity component becomes reverse which
resulted in a cross flow separation.
From the definition of By,

1 ov
8o={ @, —g)dr=| a0y
_{ vdy)
={ 2 A=)
where 1—g>0 for p=0~oco. Therefore, from

the relation (4-32), the cross flow energy thick-
ness term has the relation of

BiBg<0 if .32>0}
B:Bo>0 if B3<0

Consequently, it can be said qualitatively that
in an unseparated upstream region, the cross
flow correction term is negative and then heat
transfer becomes smaller than the value given
by small cross flow approximation method, but
that in a separated downstream region, the
correction term is positive and hence heat
transfer becomes larger than the value by the
small cross flow theory. This features agree
with the experimental heat transfer distribu-
tion as seen in Fig. 7.

The physical explanation for this heat trans-
fer increase in a separated region can be pro-
vided by the discussions of the three-dimen-
sional displacement thickness of the boundary
layer along y=0. Applying the equivalent
source method presented by Lighthill®® in
general three-dimensional flow, the three-
dimensional displacement thickness of a com-
pressible boundary layer along ¥=0 can be
obtained as follows; the out flow at the boun-
dary layer edge is given by integrating con-
tinuity equation (4-16) as

4.33)

9
hapewe=———(hapeUteirs)
dx

2 L]
+ax{theue S (1- o )dxs (4.3)

eWe
v
—SS piy—dx dxg}
where the first term in the right hand side is
the out flow existing in a curved inviscid flow,

while the second term is an additional out flow
caused by the boundary layer displacement.
Now, the effect of the boundary layer on the
external inviscid flow is replaced by a source
distribution on the surface between stream-
lines of y=0 and y=4y. The source strength
m is given by eq. (4-34) as

_1 e __pu )
m= hy 0x [theues (1 Pelle dzs

— S Sp—g%d:cdxs]

The new fluid emitted from the sources is
assumed to fill the cross section with the area
of &*hydy by the mass flow rate of pcu.. Since
the total mass emitted in #=0~x should pass
d*hedy, then

S mhydy dz=p.us*h:dy

Therefore, the three-dimensional displacement
thickness of the compressible boundary layer
along y=0 can be described as

Fr=3,%43g* (4.35)
where
‘/2—5‘ Pe )
*__ e
l’f - pguehz S ( p f? dv
1 V2
*_ __ s
JQ B peutehy S haf: Sde?dE

do* is named a cross flow displacement thick-
ness and is considered as the cross flow cor-
rection term for the displacement thickness
given by the small cross flow approximation
theory.

From the relation (4-32), the eross flow dis-
placement thickness has the relation of

5Q*>0 if Ba>0
8¢*<0 in the region of f<0

Concluding from these qualitative investiga-
tions, the heat transfer increase along the most
leeward generator in a separated region can
be explained physically as follows; in an up-
stream region without separation, fluid in a
boundary layer is forced to flow toward the
symmetric plane as a cross flow by a favorable
pressure gradient and the piling up of mass
flow at y=0 makes the displacement thickness
thicker and hence heat transfer becomes small.
However, when fluid experiences an adverse
pressure gradient in a downstream region cor-
responding to a large cross flow Mach number
gradient from supersonic to subsonic in a
shock layer, the cross flow velocity component
in a boundary layer becomes reverse and the

} (4.36)

This document is provided by JAXA.



Lee-Surface Heating over Yawed Blunt Cone

reverse cross flow in the resulted separated
region makes the displacement thickness thin-
ner and hence heat transfer becomes large.

Although the heat transfer increase along
the symmetric plane has been explained by the
cross flow reversal in this section, this pheno-
mena also may be recognized as the reattach-
ment of the separated flow. However, in the
present cases, the reattachment may be so weak
that the impinging effect of the separated
shear flow may be negligible which should in-
duce a strong interaction with the external
inviscid flow.

The analysis along the symmetric plane pro-
vides the cross flow reversal for the negative
Bs, but it does not immediately mean the occur-
ance of the recirculating flow of the free vortex
layer type, though the reverse cross flow should
always occure in the separated flow region. In
order to obtain the exact condition for the
occurance of the separated flow, the investiga-
tion of the fully three-dimensional flow over
the lee-surface should be required.

4.3.3. Locally Similar Solution along y=0

The three-dimensional boundary layer equa-
tions along the most leeward generator have
been solved numerically with the assumption of
local similarity. The similar forms of egs. (4-
22)-(4-24) are

frnn +(f+B8:Q)fn +51(Q—fr,3)=0

Quna +(f+ﬁaQ)Qw"B!(g‘fv’)
—(B1+B80f Q7 —B:Q4*=0

G+ Pr(f+83Q)97 + 20— G YPr—1)-(f1f97), =0
4.39

4.37)

4.38)

where Rubesin constant C is assumed to be
unity and Pr is assumed constant.

Eqs. (4-37)-(4-39) are solved numerically
by the quasi-linearization method as described
briefly here. This is an extension of the method
employed in two-dimensional cases by Werle®®
and Inouye et al.®’®.

The true solutions of f, @, g are expressed
by trial solutions of f, @, 7 and error terms
4f,4Q,4g as

f=f+4f
Q=0+4Q
g=g+4g

Substituting these into egs. (4-37)-(4-39) and
neglecting quadratic error terms, equations are
linearized as

Fl,+(F+8Q)F1, 2 F1. F1=— G+ F1?)
Q1,,+(F+8:Q)QL,— {(Ai+ B)F1+28,01}- Q1
=f(§—F19)— Q1

gor+ Prf+8:Q)9,=201—G,)-(1—Pr)-(F1-F1,),
(4.40)

where F1=f,, Q1=0Q, and then f and Q can
be obtained by f=SF1dr} and Q:SQwr;.

Boundary conditions are

7=0: F1=Q1=0, gzgw}
If 1st and 2nd derivatives in eq. (4-40) are
approximated by 2nd order central difference
as

(4.41)

Flin—F1,
247 !

eq. (4.40) can be written as

F1i+1_2F1t+F14-1
ap ’

Fl,= Fi,,=

[AFn] ﬁn+l=D—inz
[AQn] 61n+1:D—én
[AGn} ﬁ"*‘:D——é”

(4.42)

where F'17+1, Q1n+1, gn+l gre row vectors with
components of F1,241, Q1,7+, gn+l, =2~N—1
at (n+1)th iteration number and coefficients
matrices [AF*], [AQ"], [AG"] have tridiagonal
forms as shown in APPENDIX C. Then solu-
tions of F'1, Q1, g at (n+1)th iteration can be
obtained form eq. (4.40) with known values of

[AF7], [AQ"], [AG"], DF», DQ" and DG® at
(n)th iteration until they become converged.

The similar solutions have been obtained for
widely ranged parameters of 8., B: 8:, B« and
G. with Pr=0.7 and g,=0.38. These ranges of
parameters are covering the boundary layer
edge conditions along the most leeward genera-
tor of a blunt cone at ®<20° in M.=T~10.

In Fig. 18, the similar solutions for boun-
dary layer profiles of f,, @, and g against 7
are presented for 8,=0.0, 0.02<p:<—5b.2, f=
6.0, 8.=0.0 and Ge=0.4. The profiles for @,
show the cross flow reversal throughout the
boundary layer for negative B8: and “S” charac-
ter profile does not appear for any 8.. Fig. 14
shows solutions of (@yyw)y=0 which is propor-
tional to a cross flow velocity gradient on the
wall at y=dy as

Qo= (L 2) L (i

@rowdy==2, 37 2y Joymo™ uedy( a7 )w
Hence, this figure shows the shear force rever-

sal for negative 8: which was demonstrated by
an oil flow visualization.

This document is provided by JAXA.



24 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-494T

The solutions for g,» are shown in Fig. 15,
They are correlated by following equations as
functions of B:, B: and G;

n

£~
50} L

p]=0.0 p1.=0.0
40t F7:60 Ge=04

30

20

1.0

Fig. 13a. Similar Solutions for Flow Profile;
fo~n
n Qa~ N
50 | P1 = 0,0 J‘}L = 0.0
P3= 6.0 GE: 0.4

O 0050 o1 02 03 04 05

Fig. 13b. Similar Solutions for Flow Profile;
Q17~7i

1

g~ n
50F
P1=00 [, =00
1.-0 " p3= 6_0 Ge: 0_4
30t
20t
101
05
Fig. 13c. Similar Solutions for Flow Profile;
g~7

CROSS FLOW VELOCITY GRADIENT

s Me=2.8 [31=0.05
O | 1
30/

00 . — , . N,
~50 -40 30 g5, 20 -1.0 0.0
Fig. 14. Cross Flow YVelocity Gradient on
Wall
Bs
ol & HEAT TRANSFER CORRELATION
09
06
03
T -30 _ -20 -1.0 0 P
fa
Fig. 15. Enthalpy Gradient on Wall
1 1
ng=—“—-(E—*—)LBz for >0
B B/D . 43)
™T\B+C|By ¥ P
where
B 144D
~ B+C|DIN
1
N=———10.44
W +0.445
B=-—-1.41G.4+5.04
C=—-G.+1.8
0.153
D:(——-——)—z.s 104
Bt 2.4 X
_ }ﬂl_éa_’i)
A‘( 2+ ™

a=—2.4(G,—0.75)
¢=—0.085(G.—1.56)
n=0.353(G.+1.124)
This correlation equation is fitted in solutions
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within 5% accuracy for the following ranges
of parameters;

1811<0.05, |Bl<1.0, 0.3<G.<0.4
5<Bs<100 for —b5.0<8;3<0.0 and
1<B;<25 for 0.0<B:<0.03

The ecects of 8; and B« on gy, are small within
the above ranges and neglected in this corre-
lation equation. The above applicable ranges
of parameters cover the conditions along the
most leeward generator of a blunt cone at
a<20° and this shows a narrow range of the
streamwise pressure gradient 8; which has im-
portant role in two-dimensional separation.
As seen in Fig. 15, when 8, decreases to nega-
tive value, heat transfer increases remarkably.
The behavior of the cross flow energy thick-
ness term of BsB¢ is presented in Fig. 16.

CROSS FLOW ENERGY THICKNESS

fa6a

JiE
5 Me=2,3 p] =005
15 32
46
41
109 26
21
16
1A
6
05
’ 1
0 y T T T v ~——
-50 -40 ~30 Pz -20 -10 .0

Fig. 16. Cross Flow Energy Thickness
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A=z15° Mowo=7.1
051 &
LT DRESENT EXP__
° — 16|15 4/em
X=15" Mo=71 e
054 & 5mm| o ¢
Mgoget B 0 28
LT ISTrawm 15 o o
0 . . . . -
),\\\ A=10" Moz7.1
e N CLEARY'S EXP,
o R nivet-< iy 3 Re =4x10 /em
- —~ Rn
\ =10 Me=Ti 95mm| e
051 \a\. 279 .

DS ——

0

0 5 10 15 20 25
S/Rn
Fig. 17. Most Leeward Heat Transfer Dis-

tribution

Fig. 18. Boundary Layer
along y=0

Edge Parameters

ENERGY THICKNESS
A $=0

—_——— (eppxeo)'PF
xX=15" Mo=7t

SRk

05

-0 . .
0 I

Fig. 19. Energy Thickness along y=0

The correlation equation (4-43) has been
applied to a blunt cone at angles of attack
a=10°, 15°, 20° at M==7.1 and 10. The heat
transfer distribution along the most leeward .
generator are obtained as shown in Fig. 17
compared with experimental data. Also shown
in the same figure are the results calculated by
the small cross flow theory using the pressure
distribution given both by inviscid flow solu-
tions and by Newtonian theory. As seen in
this figure, the present cross flow theory can
provide good agreement with experimental data.
The boundary layer edge parameters for these
cases are presented in Fig. 18 along y=0. The
energy thickness is obtained by integrating
the similar solutions for the corresponding
boundary layer edge parameters at each loca-
tions along y=0. Fig. 19 shows the remark-
able increase of cross flow energy thickness
term B;8¢ and the summation of 8, and B:6q¢
is shown to satisfy eq. (4-30).

These quantitative investigations comparing
with experimental data have proved the
validity of the qualitative discussions in the
previous section.

On the way of solving similar boundary layer
equations on the symmetry plane, numerical
difficulties were encountered for the large g,
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while no difficulty was encountered for small
B2 and for all negative B.. Comparing with
the results for a sharp cone by Moore'V and
Lin and Rubin®*®, a large . corresponds to a
large a without separation where Moore could
not obtain a solution and Lin and Rubin ob-
tained a thick nonsimilar boundary layer. A
negative 3: corresponds to a large « with sepa-
ration where Lin and Rubin suggested a simi-
lar boundary layer along y=0. For the present
calculation on the most leeward generator over
a blunt cone, the large B8: has not occured and
the results show the good applicability of a
similar boundary layer approximation for heat
transfer on the leeward symmetric plane.

Concluding from these investigations, the
present cross flow theory based on the local
similarity assumption can be said to provide
the reasonable results for heat transfer along
the most leeward generator at the moderate
angle of attack.

V. CONCLUSIONS

The theoretical and experimental investiga-
tions about heat transfer over a blunt cone at
angles of attack in hypersonic flow have been
conducted and the following concluding re-
marks have been drawn;

(1) A cross flow separation can occure even
on a lee-surface with a positive local angle of
attack so long as a boundary layer experiences
an adverse pressure gradient in the direction
“p” normal to the trough of isobaric lines on
the surface.

(2) The new criterion for the three-dimen-
sional boundary layer separation is given by

(eplo=(sDo2) =0

am3

{3) The boundary layer thickness in the
separated region is proved theoretically and
experimentally not so thick as to affect the in-
viscid flow properties significantly.

(4) The new definitions of cross flow energy
thickness and cross flow displacement thickness
provide a physical explanation for the remark-
able heat transfer increase along the most lee-
ward generator in a separated boundary layer.

(5) The validity of the assumption of the
local similarity has been proved experimentally
and numerically.

(6) The locally similar solutions of the
three-dimensional boundary layer equations
show an immediate cross flow reversal after
the appearance of an adverse pressure gradi-
ent in “p” direction, although the experiments

exhibited a little after the appearance of it.

(7) The remarkable heat transfer increase
along the most leeward generator is well pre-
dicted by the present cross flow theory.

(8) The small cross flow approximation
method is shown to be satisfactory in the region
where the small secondary flow in the boundary
layer has been predicted by comparing the in-
viscid flow solutions and oil flow visualization.
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APPENDIX A

The coefficient matrices [A] and [B] in the
basic equations (8-5) of the three-dimensional
inviseid flow are given by

A AN
[Al=[Al5 + Bl -+
B2
[B1=(Bl3;

where [I] is an identity matrix and [A] and
[B] are defined as

omus2 0 pfatut 0 —platu us
pur puy  put 0 —puiUs
[Al=r| & 0 7ou; 0 0
0 0 0 Touy 0
—wug 0 —patu; 0 U Ug?
pusuzz 0 0 platus? —piaduaug
oUs fous 0 us  —pPugus
[Bl=| © 0 Tous 0 0
7 0 0 nout 0
—uuy 0 0 —patu;  piaUs?
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Matrices {C] and {D] in eqs. (3-19) and
(3-20) in the text are defined as
[C1=[A)/(r7ipus)
[D]=1B]/(r7pus)

APPENDIX B

The streamline geometry and scale factor hy
for the coordinate y are determined by New-
tonian flow method proposed by DeJarnette'®;

Sketch

in this APPENDIX B, y is taken as x: in the
text which is normal to the streamline and is
tangent to the body surface, and other symbols
are as shown in the SKETCH.

Along the streamline on a cone surface,

3¢ CAY Y] 1+kY)sindsine
rb(%)v: “é,-‘é: - c(os a+)k cos¢$ sina BD
where €; is an unit vector of the Newtonian
flow direction on a surface and €, is normal to
a surface which are given by
_ész —éw“‘(éw‘én)%n
[€w—(€c-€n)en| R
_ (és+ké,)cosa+ksinacosg)cos? b,
" cosf.Vsin3 @+ (k sin a + cos @ cos §)?
—&ésinasiné
1
€,=(e,—ke;) cos b,
k=tand,
Integrating eq. (B-1) along a streamline on
a surface from P; to P,

(B.2)
(B.3)

4‘5i (sin 38./2 tan a)
tan—

(y_,,) —coso | —2—
Rnla ¢ 5
n /s tan_¢__
2

/ gin @1. )sln‘ Ge

‘\'siné
Since é,=¢;Xén, the surface length dl in ¥
direction between two adjacent streamlines is

dl=h,dy=8,-8irsdé=Addz,y)

where
( cosa+ksinacosd )
= === = s
Vsin? é+(ksina+cos a cos ¢)?
Therefore,

h=a(35) =A%)

At P; on the junction of sphere-cone,

(B.5)

€08 $i=—(€w-€n)i=k cos b, cos a—cos &, cos é:sina
(B.6)

From the geometry of a phere in SKETCH,
(hy)isinyg=7r;sing;

. B.
(hy)i=Rnsin¥; B.7
Egs. (B-6) and (B-7) yield
(cos ¢:+k tan ) cos 6,
CoOS Y= v =
sin? @; tan? @+ (1+ & cos ¢; tan a)? cos? b,
(B.8)

Since y; is constant along the streamline start-
ing at P;, eq. (B-8) differenciated with respect
Y; gives
( 9y ) __sin?i+(ksin a+cos §; cos a)?
oy /x cos a+k sin « cos ¢;

Also differenciating eq. (B—4) with respect to
¢i1

(B.9)

¢ _ 14+ ktanacosé; sin¢é

( 3 ):_( 1+ktanacosé ( sin ¢; ) (B.10)
Substituting egs. (B-9) and (B-10) into eq.
(B—S) ]

(7). (%)

Rn \Rn/a\sing;
sin? ;4 (cos ¢; cos a+ k sin a)?
V'sin? @+ (cos ¢ cos e+ k sin a)?

(B.11)

APPENDIX C

The linearized equations (4-40) can be writ-
ten in the finite difference forms by a central
difference approximation as

AF;"-FI(_lﬂ”-}—BF;’”-Fl«;’“l

+CF‘.1:.F1“111+1:DF‘11

AQ¢"- Q1171+ BQ"- Q1!

+CQi"- Q1" 1=DQ;"
AG‘n,gi_lnn_'_BGin,gim-l
+CGi"gi"*1=DG"
for i=2~N-1
where
AF=2—4nF "+ B:Qi™)
BF "= —4(1+ 495, F1,%)
CF =24 dp(F'i" + B:Q:™)
AQn=2—An(Fi"+ Q™)
BQ»=—4—-24P(A1F 1" +28:,Q1:™)
CQ=2+An(F"+ Q™)
AG{"=2—A7)'PT(F¢"+ﬂ3Q,‘")

(C.1)
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BGr=—-4
CG*=2+47-Pr(Fi"+£:Q:™)
DFn=—247°f(gi"+ F1,)
DQi"=247*{B:(g:" — F1;7*)— BQ17*}

DGr= —44931— G )C(Pr—1)(F1,nF 3,7 + F2;n%)

F2;=(F1i"—F1;.,%)/247
F3h=(F 20—~ F2i1)/247
Boundary conditions are

F1,»=Q1;,"=0 and g,"=g, at
Fly®=gy®=1 and Qly"=0 at

Then, eq. (C-1) becomes

BFy® CFy%  eeveeneenneensenens
AF, BFgy CFyn
. AF y_s» BFpy_o"
QO ceratancniacnnsens AF y_i7
F1,n+1 DF3n
F13n+l DFan
Fly_ym4 B DF py_y»
Fly_,»+1 DF y_"CF y_,*

CFy_y"
BF "

(C.2)

and in the similar form for @1 and g.
For the tridiagonal equation (C-2), the
recurring equation can be constructed easily as

—_ DF,;" CF,;"’ n+l p—
Fil= TF, —( DF )-Flm for i=N—-2~2
(C-3)
where
?F{,’":BF,;"—AF,'"-CF,;_l"/Wi_ln
W{"’:DF("-AF{"-D—F'i_ln/ﬁg_ln
for i=3~N-2
with
:B_F’Z‘n»:Ban’ ﬁFlgn’ZDan

The similar recurring equations for @1 and g
can be obtained.

From these recurring formulas, eq. (C-2)
can be solved easily.
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