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Comparison of Accuracies of Solutions of Linear Shell The-
ories for Closed Circular Cylinders Under Edgewise Loading*

Tatsuzo KOGA and Shuji ENDO **

ABSTRACT

The accuracies of the solutions of the classical linear shell theories are compared for static
boundary value problems of edgewise-loaded, circumferentially-closed circular cylindrical shells.
Empbhasis is placed on the influence of the boundary conditions on the accuracies of the particu-
lar solutions. It will be shown that the solutions are obtained accurately within the errors inherent
to the Kirchhoff-Love hypothesis for any of those well-known classical theories including the
Fliigge, the Koiter-Sanders, the Novozhilov, and the Love-Reissner theories. Koiter’s conclusions
on the accuracy of the equations of the general theory of thin shells are thus reconfirmed. In due
course of the analysis, discussions will be made on some of the important characteristics of the so-
lutions as well as on the accuracy of Donnell’s approximation.
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b o N
2L length of the cylindrical sheli
NOTATIONS 21 nondimensional form of
2L; 21=2L/R
Geometric and material constants x geometric parameter;
h wall-thickness of the shell 4k* =12(1 —v*)(R/h)?
R radius of the circular cylindrical & geometric parameter; & = h?/12R?
shell E Young’s modulus
v Poisson’s ratio
K extensional rigidity;

* Received September 13, 1978. 3
** First Airframe Division K =Enr/(1-v%)
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D bending rigidity;
D=En3[12(1 -v?)
G shear modulus; G=E/2(1 +v)

Coordinates and differential operators

X axial coordinate

y nondimensional form of x; y =x/R
6 circumferential coordinate

@) differential operator; ( )" = 9( )/86
Yy differential operator; ( )’ = a( )/oy
72() differential operator;

vi()=( )"+ ()"

L() differential operator defined in Eq.
(13)
P(),P() complex conjugate differential ope-

rators defined in Eq. (26)

Deformation and stress

n integer variable representing the
circumferential wave number

A representative wave length of defor-
mation

Ao circumferential wave length of de-
formation

Ux, Ug, Wy midsurface displacement compo-
nents

u, v, w nondimensional forms of uy, ug and
wz, respectively

€x,€0,Yx0 midsurface strain components

Kx,Ko changes in curvature of the midsur-
face

T torsion of the midsurface

W rigid-body rotation about the nor-
mal to the midsurface

B lateral rotation of the generator;
B=w'

Ny, Ng, Nxg stress resultants

v )

Ox, Qo lateral shear resultants

My, Mg, Mxg stress couples

Mox )

Sx, Txe lateral and tangential components,
respectively, of the equivalent edge
shear

NMS, 0O nondimensional forms of Ny, My,
Sy and Txg, respectively

Wi, Ui, Vi, Bi coefficients of eigenfunctions ex-

Ni, M;, Si, Qi ) pansions of w, u, v, B, N, M, S and

Q, respectively

We, Ue, Ve, Pe prescribed edge values of w, u, v, B,

Ne, Mo, Se, Qe ) N, M, S and Q, respectively

E;, D; theory indicators in the constitutive
equations

Di eigenvalues

&.m real and imaginary parts, respective-
ly, of the eigenvalues for the global
solutions

£,m real and imaginary parts, respective-

ly, of the eigenvalues for the edge-
zone solutions

Coefficients of equations

L; coefficients in the differential ope-
rator L( )

G;, H;, K; coefficients in Eqs. (10)

i 8i coefficients in Eqgs. (11) and (12)

ajj coefficients in Eq. (14)

nj, mj, qi, Si coefficients in Eqgs. (15), (16),(17)
and (18)

leading terms in polynomial expres-
sions of aj;, f;, &, ni, mj, $; and q;,
respectively, whose specific values
differ with different theories

o
alol'!f?:gi ’n? )
mf, s}, af

aij modified forms of af} as defined in
Eqgs. (23)
A B C complex coefficients in the charac-

teristic equation

Real, imaginary, and complex variables

i unit of imaginary number;
i=Cn'~

Do real parameter defined in Eq. (73);
Ao =n?)2k?

Z arbitrary complex variable

XY real variables; Z=X+1iY

a absolute value of

Z; a=(X* +Y*)2

real variables;
B*—4AC=X,+1iY,

og absolute value of (Xo + i Yy)
X1.Yi

XO’ YO

real variables;

[-B + (B* —440)'?) 24
=X7+iY]

real variables;

[-B - (B* -4A40)?) /24
=X7+iY;

X, Y,
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ay absolute value of (X7 +#Y7)

ay absolute value of (X7 +iY7)

a, real variable defined in Eq. (67)
AXo[n*] real variables defined in Egs. (43),
AYo[n®] ) whose predominant factor is n*
AXT[n*) ) real variables defined in Egs. (53),
AYT[n*] whose predominant factor is n*

AF [n*) ) real variables defined in Egs. (48),
AG[n®] whose predominant factors are n*

and n®, respectively

1. INTRODUCTION

The theory of thin shells is intrinsically approxi-
mate. There always exist in the shell theory errors
and limitations due to the approximate deductions of
the equations from the theory of elasticity. The
accuracy and limitation of the shell theory depends
on the hypotheses and criteria underlying the approx-
imation. A first complete linear shell theory was
formulated by Love [1] as early as in 1888. Love
postulated the so<alled Kirchhoff-Love hypothesis,
which may be reinterpreted as follows:

1) The shell is thin.

2) The normal to the undeformed midsurface
remains normal and its length remains the same
after deformation.

3) The thicknesswise normal stresses are negligible.
He then derived the equations known as Love’s first
approximation and showed that the strain energy
expression consisted of the terms representing the
strain energies due to membrane stretching and lateral
bending. The consistency of the approximation of the
to the Kirchhoff-Love
hypothesis had remained uncertain until Koiter [2]
proved in 1959 that it was actually so, and that the
additional terms in the strain energy expression were

strain energy expression

due to the thicknesswise stresses added for the
improvement of Kirchhoff-Love’s hypothesis. The
strain energy expression has since been widely used as
a rational means to check the consistency as well as
the accuracy of the shell theory. Thus, the so-called
classical theories formulated in different forms by
various authors including Fliigge {3], Novozhilov
[4], Reissner [S], Koiter [2], and Sanders [6] have
been proved to be consistent first approximations
within the in Kirchhoff-Love’s
hypothesis. It is now well understood that the

errors involved

accuracy of a shell theory cannot be improved
beyond Love’s first approximation unless Kirchhoff-
Love’s hypothesis is disregarded in the formulation.

A number of attempts have been being made to
formulating accurate consistent shell theories, linear
through
directly or indirectly from the theory of elasticity.

or nonlinear, rigorous approximations
There, the error estimation is a central feature, and
researchers have encountered difficulties in achieveing
their goals with mathematical rigor and generality.
A breakthrough came when John [7] made a rigorous
pointwise error estimate for the shell interior equa-
tions. Danielson [8], Koiter and Simmonds [9], and
many others followed the passage paved by John to
bring up a better understanding on the relationship
between the shell theory and elasticity. It should be
noted here that John’s rigorous analysis has proved
that the state of stresses in shells is approximately in
plane stress under the assumption of smallness of
strains, and that the third of the Kirchhoff-Love
hypothesis is a natural consequence of the funda-
mental assumption of linear elasticity. Several sets of
simplest possible consistent nonlinear equations have
been proposed. Perhaps, Danielson is the first to have
derived such equations. Success of Danielson’s
attempt may be attributed to the fact that a properly
defined set of stress resultants and changes in
curvature was chosen as dependent variables. As
stated by Danielson himself, however, this fact limits
the applicability of his equations to such problems
that the boundary conditions are prescribed in terms
of the changes of curvature and the stress resultants.
Abé [10] and the first author [11} of the present
paper, therefore, urged the necessity of the formula-
tion in terms of the displacements from the practical
point of view.

There are two aspects in the error estimation for
the shell theory; the error estimation for the approx-
imate two-dimensional equations, and that for the
solutions of these equations. The general results
presented in Refs. [7] through [9] are concerned with
the error estimation for the nonlinear shell equations.
The error estimation for the solutions, on the other
hand, has been done mostly on case-to-case basis,
specifying the shell configurations and the boundary
conditions. There, a particular boundary value
problem for a particular shell configuration was
solved by a particular shell theory, and the resulting
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numerical values of the solutions were compared with
those of the elasticity solutions if available or of a
seemingly more accurate shell theory solutions.
A slightly more general analysis was made by Hoff
[12] examining the pointwise errors for the interior
solutions of Donnell’s equations [13] by calculating
and comparing the eigenvalues characteristic to
Donnell’s and Fliigge’s equations. In the terminol-
ogies used in Ref. [9], this may be described as a
sort of an intrinsic error estimate for the general
solutions of the interior equations. A complete
general arguement on the error estimation for the
solutions of the shell theory had been left open until
Koiter [14] and Simmonds [15] gave estimates for
the global errors in the sense of mean square root.
1deally, we still need to achieve precise estimates with
general validity for the pointwise errors, which
unfortunately seems out of reach at present.

The present paper is concerned with the com-
parison of accuracies of the solutions of the classical
linear shell theories for various boundary value
problems of circular cylindrical shells. This is
primarily an extension of Hoff’s work in that the
solutions are assumed in eigenfunctions expansion.
But it deals not only with the general solutions for
the interior equations as in Hoff’s work but also with
the particular solutions placing emphasis on the
influence of the boundary conditions. Thus, in the
terminologies used in Ref. [9], it may be described as
a comparison of accuracies based on the intrinsic
pointwise error estimates for the solutions. It will be
proved in the end that the differences between the
solutions of different theories are of order of
magnitude of the errors involved in Kirchhoff-Love’s
hypothesis. Thus, Koiter’s conclusion on the con-
sistency of the classical theories drawn from the error
estimates for the equations on the strain energy
criterion will be reconfirmed.

The circular cylindrical shells are assumed to be
circumferentially closed and subjected to external
static loads only at their axial edges formed by the
plane cross sections normal to the axis of the
cylinder. The beam-like
characterized by n =1, n being the circumferential
wave number, as well as the axisymmetric deforma-

bending deformations

tions with 7= 0 are excluded in the present analysis
leaving detailed expositions of them to a separate
paper to follow. In Section 2, the basic equations for

small deformations of elastic circular cylindrical
shells are formulated on Kirchhoff-Love’s hypothesis.
A unique feature in these equations is that the set of
the constitutive equations is formulated in such a
form that it can easily be reduced to any of those
formulated in the well-known theories. The use of
this form of the constitutive equations enables us
to compare the accuracies of different theories on a
unified basis. In Section 3, the governing equations
are written only in terms of the lateral displacement.
Thus, the equilibrium equations are reduced to a
single differential equation of the eighth order.
Those quantities to be prescribed as boundary condi-
tions at the axial edges are also written in terms of
the lateral displacement. A first approximation to
these equations is achieved neglecting small terms
of order of magnitude of the errors involved in
Kirchhoff-Love’s hypothesis. In Section 4, the eighth
order differential equation is reduced to a pair of
complex conjugate differential equations of the
fourth order. In Section 5, the general solution of the
homogeneous governing equation is obtained by way
of eigenfunctions expansion. The reduction of the
order of the governing differential equation from
eighth to fourth makes it possible to derive the
eigenvalues in closed form. The closed form solutions
are simplified to yield the explicit expressions valid
for deformations with relatively small values of n
for which a noticeable difference is most likely to
occur between the solutions obtained by different
theories. In Section 6, the boundary constraining
equations are presented in the form of eigenfunctions
expansion. For all the proper combinations of the
boundary conditions, the order-of-magnitude com-
parison is made among the coefficients matrices of
the inhomogeneous linear systems. The accuracy of
the Donnell theory will be indicated in due course of
the analysis.

After the complete manuscript of this paper was
submitted to the editorial committee of the National
Aerospace Laboratory, the present authors were
informed by Professor K. Heki of Faculty of
Engineering of Osaka City University that he had
derived explicit forms of the eigenvalues for various
shell theories in his earlier paper [32] published in
1954. A review has brought us to
acknowledging the importance of his paper in that

September

the comparison of accuracies of the shell theories by
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way of the comparison of the eigenvalues had been
attempted one year earlier than a similar attempt
of Hoff [12] whose paper appeared in September
1955. His paper seems to have been left relatively
unknown without receiving worldwide recognition.
This may be attributed to the fact that the paper was
written in Japanese so that its circulation has been
limited to the domestic audience mainly in the
architectural society.

2. BASIC EQUATIONS

Let us consider a thin-walled circular cylindrical
shell made of a linearly elastic, homogeneous and
isotropic material with Young’s modulus E and
Poisson’s ratio v. Let the thickness of the shell be h,
the radius R and the length 2L. The coordinates x
and 6 are so chosen on the midsurface of the shell
that x measures the axial distance along the generator
from the central, normal cross section and 6 the
circumferential angular extent with R6 being the arc

length. The displacement components u,, ug and
wz, the stress resultants Ny, Ny, Nxg, Nox, Ox and
Qg , and the stress couples My, Mgy, My g and Mgy are
defined on the midsurface. The positive directions of
these quantities as well as the shell geometry and the
coordinates system are depicted in Fig. 1.

EDGE
SECTION

Fig. 1 Shell Geometries, Coordinates System, and

Positive Directions of Basic Quantities

For infinitesimal displacements, the midsurface
strains €x, €9 and yxg, the changes in curvature x,
and kg, the relative torsion 7, and the rigid-body
rotation «w, about the outward normal to the
midsurface are related with the midsurface displace-
ment components by

€x = OUx/Ox

€9 = (Oug /06 + w;)[R

Txg = Oug/0x + (dux/[36)/R

Kx == 0%w,/0x? €))
kg = (0ug/30 — 0*w,/30%)/R?

2R7 = 30ug/0x — (Ouy[30)/R— 40%w,/0x08

2wp = 0ug/0x — (duy/36)/R

Here, 7 is referred to as the relative torsion so as to
distinguish it from a torsion defined by 7 —w,/R,
which may be referred to as the absolute torsion.

Let it be assumed that the shell is subjected to the
external loads only at its cross sectional edges.
That is to say that neither surface traction nor con-
centrated load is applied on the thickness-bounding
surface. Then, the equilibrium equations are given by
the following six homogeneous equations:

RON,/0x + 0Ngx /06 =0

ONg/00 + RONg/0x + Q5 =0

ROM,/3x + 3M/36 — RO, = 0 )
aMy/36 + ROM.p/3x — RQp =0

RQx/0x +304/36 — Ny = 0

Mgx + R(Ngx —Nxg)=0

The constitutive equations formulated in the shell
theory based on Kirchhoff-Love’s hypothesis can
most often be written formally as

Ny =K(ex + veg + 8E 1 Rky)

Nog =K [(1 +8E;)eq +vex —8E Rky]
Nxg =Gh [ (1 +8E3/4)yxe + 8E4RT/2]
Nox =Gh [ (1 +38E5/4) vx9 —8E¢RT/2]

(3)
My =D(kx tvkg + D €x/R)
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Mg =D(kg +vkx —Dye€g/R)
Myxo = (Gh3 [12) (1 =~ Dsw/R + D3yx¢/2R)
Mgx =(Gh*/12) (1 = D4wn/R —D37xa/2R)
where K, D and G are the elastic constants given by
K =Eh{(1—v?)
D=ER?*[12(1 —v?) 4)
G=E/2(1 +v)
and & is a geometric parameter defined by
& =h*/12R? (5)

The parameters £i(i =1,2,...,6)and Dj(j = 1,2, 3,
4) are quantities of order of magnitude unity, whose
specific values differ with different theories. We shall
refer to these parameters as the theory indicators.
If E; and Dj are specified in accordance with Table 1,
Egs. (3) become identical, or at least equivalent, to
those constitutive equations formulated in the
Fliugge [3], the Naghdi [16], the Koiter [2], the
Novozhilov [4], and the Love-Reissner [S] theories.
Here, Reissner’s version of Love’s first approximation
is referred to as the Love-Reissner theory.

E, £, Ey Es Es E¢ D, D, D3 D,
Fligge 1 1 1 1 1 1 1 1 1 O
Naghdi 1 0 111 1 1 1 1 O
Koiter 0 0 01 001 0 0 O O
Novezhilov 0 0 2 2 0 0 0 1 -1 O
Love-Reissner{ 0 0 0 0 0O 0 0 O 0 1

Table 1 Values of Theory Indicators £; and D;

The sixth of Egs. (2) is concerned with the balance
of moment about the normal to the midsurface. This
is a redundant relation, because the left-hand side
vanishes identically if the use is made of the integral
form of the definition of the stress resultants and
couples in terms of the stresses. It should be noted
here that the constitutive equations of the Love-
Reissner theory fail to fulfil this identity require-
ment. As a matter of fact, if the use is made of Egs.
(3), the left-hand side of the sixth of Eqgs. (2) can be
written in terms of yxe, 7 and w, as

Mgx + R(Nox —Nxg) = GhRS{[1 ~ (Eq + E¢)/2] Rt

~Dywp + (3Es — Ey = 2D3)1xg/4 ) ©)

Specifying the values of E; and Dj as given in Table 1,
we see that the coefficients of the right-hand
members of Eq. (6) vanish identically for all the
theories but the Love-Reissner. For the Love-Reissner
theory, Eq. (6) reads

ng +R(Nex—Nxe)=GhR6(Rr—w,,) (7)

The residual moment on the right-hand side of Eq.
(7) is proportional to the absolute torsion 7 — wn/R.
Thus, the Love-Reissner theory may encounter
undesirable situation when the deformations are
characterized by large torsion of the midsurface.
The magnitude of the errors in the solutions due to
this shortcoming of the Love-Reissner theory are yet
to be examined.

The following nondimensional quantities and
operators are introduced to present the subsequent
developments in nondimensional form:

u=ux/R, v=ug/R, w=w;/R, y=x/R, I1=LJR
N=Ny/K, M=RM,/D, S=58,/8K, Q=Txg/K (8)
()Y =0()ay, () =a()o8, V*()=()'+()"

where Sy and Txg are the equivalent edge-shears
defined by

Sx = Qx +(0Mxq/08)/R

&)
Txo =Nxg +Mxo/R

3. GOVERNING EQUATIONS

In this section, the equilibrium equations (2) are
reduced to a single eighth order differential equation
for w, and the basic quantities to be prescribed as
boundary conditions are expressed only in terms of
w.

The lateral shears Q) and Qg are eliminated from
the first five of Egs. (2). This reduces the number
of equilibrium equations from five to three. These
three equations are written in terms of the displace-
ment components with the aid of Egs. (1) and (3).
The result may be written in the form
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Gu"+Gu "+ G320 +Gaw”" "+ Gsw' -+ Ggw' =0
Hlvll +H22)..+H3ul-+H4wtl. +H5w-.-+H6w-=O
K" +Kyu" +Kyu' +Kv'" +Kev +Kev |

-Viw—Ksw —Kgw=0 (10)

where the coefficients G;, H; and K; are constants
whose explicit expressions in terms of v, 8, E;, and
Djare given in Appendix A.

The first of Eqgs. (10) gives " in terms of the
derivatives of u and w. This is substituted into the
second of Egs. (10) after differentiating it once for
each with respect to yand @ to eliminate v. It results
in a differential equation for ¥ and w. In a similar
manner, u can be eliminated from the first two of
Eqgs. (10) and a differential equation for v and w is
obtained. The result may be written in the form

Lu =f1wuu:+f2wnr..+f3w,:: +f4wu'+fs“’"”

(11)

Lv=glwlllll+g2wll..- +g3w::u+g4wl1- +gsw-.-

(12)
where L( ) is a linear differential operator defined by
LO)=Li() "+ Ly ()" +La()" (13)

The explicit expressions of the coefficients f;, g; and
L;in terms of G; and H; are given in Appendix A.

The differential operator L( ) is applied to the
third of Eqgs. (10) and the terms in it with L« and Lv
are substituted from Eqgs. (11) and (12) to eliminate
u and v. As a result, a single eighth order differential
equation for w is derived, which may be written
formally as

IR YY)

ag w tag,w "+033W”““+084W”.”

+aBSW““+a6lW” " ”+562W““"+063w””

Fagw g W AW+ agw =0
(14)

where g;; are constant coefficients whose explicit
expressions in terms of f;, g;, K; and L; are presented
in Appendix A.

Equation (14) is the governing equation for small
deformations of circular cylindrical shells subjected

to the edgewise loading. This equation is exact in the
sense that no approximation has been made through-

out the entire process of derivation starting from the
basic equations, Egs. (1), (2) and (3).

The governing equation is to be solved under a
proper set of the boundary conditions. In the present
paper, we shall deal only with those circumferentially
closed shells whose midsurface boundary lines consist
of the two cross sectional circles at y = * [, Thus,
the boundary conditions are prescribed only at
y =t [, and the quantities to be prescribed consist of
appropriate combinations of the following four pairs:

(i) wor S, (i) w or M,

(iii) u or N, (iv) v or Q.

If use is made of the third of Egs. (2), Qx can be
eliminated from the equation defining S. Thus, S
is given in terms of the derivatives of My, Mys and
Mo x. All the physical quantities, ¥, M, 0 and S, can
now be expressed in terms of u, v and w with the aid
of Eqgs. (1) and (3). The differential operator L( ) is
applied to these equations and the terms in them with
Lu and Lv are substituted from Egs. (11) and (12).
Then, LN, LM, LQ and LS are given only in terms of
w. The result may be written in the form

IN=m W "+ W + naw'  + ngw' T+ ngw'’
(15)
LM=miw” " " +muaw" " "+ myw" " + maw* "
+msw” " mew' "+ maw (16)
LO=qw" " +qaw" " +Gaw  F gew”
tgsw' (17)
LS =5,w" " sy w” A syw gy
+s5w””’+sﬁw""'+s—,w’:: (18)

where n;, my, q; and s; are constant coefficients whose
explicit expressions in terms of f;, g; and L; are given
in Appendix A. We shall refer to Egs. (15) — (i8)
together with Egs. (11) and (12) as the supplemental
equations. Once the boundary conditions are pre-
scribed, the supplemental equations impose the
boundary constraining conditions on w.

The exact expressions of the coefficients presented
in Appendix A can be arranged in the form of poly-
nomials in 8 if they are written explicitly in terms of
v, 8, Ej and D;. For thin shells, therefore, a first

approximation may be achieved by taking only the
leading terms in these polynomial expressions. The
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leading terms are designated by the superscript o,
such as a}} for a;j, and their explicit expressions are
given in Appendix B.

It is well-known that the followings hold under
Kirchhoff-Love’s hypothesis:

h/R<<1 and (B/A)? < 1 (19)

where X is the wave length of deformation. The first
of these immediately gives

§ <K 1 (20)

A first approximation of the governing and the
supplemental equations consistent to the Kirchhoff-
Love hypothesis may be achieved, therefore, by
replacing the coefficients with their leading terms in
the polynomial expressions.

The governing equation, Eq. (14), thus reduces to

VEw 42w+ (1 =pw” 5 +w*

0 L irirn i e
+adw + adyw +alw' " +a%w’ =0

1))

where the coefficients a$,, 2%, a2 and a3, depend
on the theory indicators E; and Dj, so that their
values differ with different theories. Since the terms
of order of magnitude & are neglected in Eq. (21), it
is admissible to add to or subtract from Eq. (21)
terms of order of magnitude & in order to write it
in a convenient form. Here, a term w” ” is added
to the left-hand members of Eq. (21) to write it in
the form

VHVE 4 1P w +aktw

e 1100

+§6‘w +’a_62wl;lr.-+a63wlr..+Edzwrr--=0
(22)
where

- -0 _ -0
agy =ag ~ 2, dgy; =ag; — 6

(23)
de3 1023_6, a4 =agz -2
and
a4k’ =120 = v*)R/h)? = (1 —v*)[6 (24)

It is noted that Eq. (22) becomes identical to
Morley’s [17] equation, if the terms with the
coefficients a;; are neglected.

Similarly, the first approximation to the supple-
mental equations is achieved. The result is

v4u=_un:+w:..+6(fll)wu ”‘+fgW” :..+fgw:::)
V4v=—(2+v)w"'—w"'

+ S(gtl)wu ree +g(2)wu... +ggw:: ‘)

v4N= (l —- Vz)W""
+6m3w+ndwr A ndw T + nlw)
(25)
V4O =—(1 -
Bl g g g

VEM ==V +rw )+ miw" " + mow" —pw*

VS =-Viw +(2-vw')

+s(s)wu vy Sgw” ron +sgwl.:

where the coefficients /2, g?, n?, q?, m? and s?
depend on the theory indicators £j and Dj, so that
their values differ with different theories.

4. REDUCTION OF THE 8TH ORDER
DIFFERENTIAL EQUATION TO
THE 4TH ORDER

Let a complex differential operator P( ) be de-
fined by

P()=V3(WV2+1)()
+ i {2K2() 4 [@ea( )"+ Ta( )" + Tga( )
+d4( )] /4k2} (26)

where i is unit of imaginary number. Let the complex
conjugate to P( ) be denoted by P( ). Then, a simul-
taneous application of P( )} and P( ) upon w results
in

PPw=V4%(V? +1)2w+4k%w""

TAGW A AW T TaW' T+ Ty
+8[@hw T+ 2T AW
+(a% + 2ag ag3 W Wity 2552563“’“:::
+AEW T 2T T W T+ 2y T W

+ 28 3Taqw "+ Tow ] [4(1 - 07) 27

The terms in the square blackets multiplied by § are
negligible within the errors of the present approxima-
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tion. The right-hand side of Eq. (27) thus becomes
identical to the left-hand side of Eq. (22). Con-
sequently, the governing equation, Eq. (21) or (22),
can be written as a first approximation in the form

PPw =0 (28)

Since P( ) and f( ) are complex conjugate to each
other, the solution of Eq. (28) is given as the sum of
the solution of either Pw = 0 or Pw = 0 and its
conjugate. Thus, we only need to solve either one of
these equations. Take, for instance, Pw = 0. Then, the
governing equation reads

VHV2 + Dw+ i 2K w" + (@w" "+ Tw'"™

+ TgyW + dgyw)/4k2] =0 (29)
The order of the differential equation is thus reduced
from the eighth to the fourth, which substantially
eases the solution of the governing equation.

The reduction of the order of the governing
differential equations has been a subject of shell
research since 1912 when H. Reissner [18] derived
for the axisymmetric deformations of spherical shells
a set of two simultaneous differential equations of
the second order in terms of a stress function and the
meridional rotation. A number of researchers have
worked out the analyses aiming at this goal in various
ways for various shell configurations. Their analyses
may be divided into the following three groups
depending on the modes of approach:

1) The governing differential equation of the
eighth order is reduced to a set of two simultaneous
differential equations of the fourth order in terms of
a displacement function and a stress function.
Reissner’s analysis on the axisymmetric deforma-
tions of spherical shells belongs to this group.
Meissner [19] extended Reissner’s analysis to be
valid for the axisymmetric deformations of general
shells of revolution. Both Reissner’s and Meissner’s
analyses are well-known classical examples of the
attempts to reducing the order of the governing
differential equations, though their reductions are
. from the fourth to the second due to the limitations
of their analyses to the axisymmetric deformations.
More recently, Wan [20], Simmonds [21], and
[22] followed the same
approach to work out on the differential equations

Latta and Simmonds

for more general deformations of shells with various
midsurface configurations.

2) A
introduced combining a displacement function and a

complex displacement-stress function is

stress function in the form of a complex variable.
The governing equation of the eighth order can be
reduced to a single complex differential equation of
the fourth order in terms of the complex displace-
ment-stress function. One can find some of the
analyses belonging to this group in the literatures
authored by Novozhilov [4], Ichino and Takahashi
[23], and Simmonds [24] .

3) The eighth order differential equation is decom-
posed into a pair of complex conjugate differential
equations of the fourth order. The approach followed
in the present paper belongs to this group. Cheng
[25] has shown that such a decomposition is possible
for the Fliigge theory for circular cylindrical shells.
The decomposition of the differential equation also
implies that, when the dependent variables are
expanded into eigenfunctions, the characteristic
equation of the eighth degree can be decomposed
into a pair of complex conjugate algebraic equations
of the fourth degree, and that the eigenvalues are
calculated in closed form. Mizoguchi [26] has shown
that the characteristic equation for circular cylindri-
cal shells can be decomposed within the theory
developed by himself and in essence identical to the
Novozhilov theory. Similarly, Koga and Toda [27]
has achieved the decomposition of the characteristic
equations for various shell theories for circular
cylindrical shells. The most important feature in the
simplicity in form of Donnell’s and Morley’s
equations lies in the fact that they can easily be
decomposed into a pair of complex conjugate
differential equations of the fourth order. As a matter
of fact, we have

Viwti2k*w" =0 (30)
for Donnell’s equation, and
V3V + Dwi2k*w" =0 31

for Morley’s equation, so that their characteristic
equations can also be decomposed and the eigen-
values be calculated in closed form.

The result of the present analysis, Eq. (29),
indicates that such a decomposition of the governing
differential equation for circular cylindrical shells
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can be achieved for all the classical theories including
the Fliigge, the Koiter-Sanders, the Novozhilov, and
the Love-Reissner theories, and that the eigenvalues
can be calculated in closed form.

5. EIGENVALUES FOR n >2

Let it be assumed that the quantities to be pre-
scribed as boundary conditions at the edges y = £/
are continuous along the circumference, so that the
functional representations of these quantities can be
expanded into the Fourier series in 8. Then, the n-th
Fourier component of w may be given in the form of
eigenfunctions expansion;

8
w=J W; e cos no (32)
i=1
where W; are the as yet unknown coefficients and p;
the eigenvalues. The summation is carried over from
i=1 to 8, because there exist eight eigenvalues,
pi(i=1, 2, ..., 8), for the eighth order governing
differential equation, Eq. (22).
Let the circumferential wave length of the n-th

Fourier component of deformation be denoted by
Ag . Then, we have

Xe =2nR/n (33)
which gives
(/e )? = (3/n%) 6n*
= [3(1 =v*)/n?] n* J4k* (34)

It follows from the second of the fundamental
assumptions, Egs. (19), that the range of n is limited

by

8n? < 1 (or, equivalently, n® /4k* << 1) (35)

Substitution from Eq. (32) to Eq. (29) yields the
characteristic equation in the form of a quartic
algebraic equation for p;

Ap} +Bp} +C=0 (36)
where

A=1+igg [4K?

B=1-2n%+i(2k* — ag;n*[4Kk?) &)

C =n2(n2 - l) + i (363’12 - E42 )nz /4k2

It can be shown easily that, for # = 1, C vanishes
identically except for the Love-Reissner theory.
When C = 0, Eq. (36) has vanishing double roots,
p,-2 = 0, so that wis represented not in the exponen-
tial function as given in Eq. (32) but in a polynomial
function in y. A special consideration is needed,
therefore, for dealing with the case of n= 1. Similar-
ly, it is readily seen that C= 0 for n = 0. But, since
() = 0 in this case, we must restore our analysis
to the basic equations specified for the axisymmetric
deformations and derive a governing differential
equation of the fourth order. In the present paper, we
shall deal only with those cases characterized by
n > 2 leaving detailed analyses for n=0and 1 to a
separate paper to follow.

For n> 2, formal solution of Eq. (36) is a trivial
matter. It immediately gives

p;=t{[-Bt(B*-44C)'2] /24" (38)

The right-hand members of Eq. (38) are calculated
with the aid of the following formulae for the square
root of complex variables: Let a complex variable Z

be denoted by
Z=X+iY (39)

where X and Y are real. Let the absolute value of Z
be denoted by a, so that

a=(X?+Y?)~ (40)
Then, the square root of Z is calculated by
a+X\1P a—-X\ 12
VALET: ( ) +i ( ) (41)
2 2

where the + and — signs should be assigned depending
on Y>> 0and Y <0, respectively.

Let us first apply the above formulae for calculat-
ing the square root of B2 —4 ACby writing

B —4AC=X,+iY,
Direct substitution of A4, B and C from Egs. (37)

gives

Xo = 1 + Eﬁznz _4k‘ +AX0 [rl‘]/k4
(42)
Yo ==k [4(2n* - 1)+ AY, [n*]/k*]
with

AX, [”4] = [(@e1@e3 — 522/4)"4 - 5610—42"2]/4
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AYo[nt] =(dg + @ — G )nt (43)

+(dez/2 — gy — Ty )n?

Here, the notations AX,[n*] and AY,[n*] are
used to indicate that the largest terms in them are
proportional to n*, and that AX,[n*]/k* and
AYy[n*])/k* are small quantities in comparison with
unity except for relatively large values of n.

The absolute value of X, + i Y, is calculated as

ap = (X3 + Y3
=4k* {1+ [2(2n® - 1)* — (Geun® + 1)] /2k*
+ [(@en® +1)?/8 = BX, + (202 — 1) AY,] [2k®
+(AYo)?[16k" ) V2 (44)

where the terms of order of magnitude (n?/4%*)* in
the square root have been neglected.

Let it be assumed that
2n?fk*)? <1 (45)

Then, the square root on the right-hand side of Eq.
(44) can be expanded into an infinite series, which
may be truncated neglecting small terms of order of
magnitude (4% /k*)?. As a result, we have

ao =4k* {1+ [2(2n% - 1)? = (@en® +1)] J4K*

+[=(@2r = 1)*/2+ (@gn® + 1)2n* —1)*/2

—AXo +(2n° —1)AY,] /4k® ) (46)
It follows that

+X,\ /2
(aﬂ 0) =(2n2_1){1+AF[H4]/4k4]l/2

2 @7)

oy —Xo\ /2
( 0 2 0) =2k2{1+ [2n* ~1)* = (@ean® +1)]
/4k* + AG [n®]/8k® } '
with
AF[R*] ==(2n* —1)? +agn® +1+2AY,/(2n%-1)

AG[n®) =—(2n* = 1)* /2 + (@en® +1)(2n* - 1)* )2
-20X, + (27 - 1) AY,
(48)

Here, the notations AF[n*] and AG[n®] are used
to indicate that the largest terms in them are
proportional to n* and n®, respectively, and that

AF[n*}/k* and AG[n®]/k® are small quantities in
comparison with unity under the assumption stated
in Eq. (49).

Again, the square roots in the right-hand members
of Eqgs. (47) can be expanded into infinite series.
The result may be written within the accuracy of the
present approximation in the form

1/2
(a"; X") =(2n*- 1) [1 + AF/8Kk*— (AF)?/128K°]

(QO_XO
2

12
) =2k? [1 +[(2n*=1)*~ (de;n* + 1)} /8k*
+{AG - [(2n*= 17— @an?+ 1)12/8 )} N164°)

(49)

With these results available, we can calculate the
square root of B*~4AC as

a + Xo\ 2 [ —Xo\V?
(32—4AC)‘/2=—(—°;—9) +i( °2 °) (50)

We now proceed to calculating the square root of
[-B = (B*-44C)?]/24 by writing

— 2 _ 1/2 = .
[FB+B* -440)* 1 24=XT +i Y 51)

[-B-(B? —44C)? )24 =XT +i YT

The left-hand members of Egs. (51) may be
written out explicitly with the aid of Egs. (37), (49)
and (50). After an appropriate approximation, we
have

X1 =[(2n*-1)* 3¢, — a4, — 2(2n* ~1)AF[n*] ) /32k*
YV=n*(? -1) [1+AY] [n*)/k%] J2K?
(52)
X1—=(?ﬂz— 1 _E61/2) [1 +AX:[”4]/k4 ]
Y7 =-2k* + [2agn® —2ag,(2n* —1) - 4n?
+4n?] /8k?
where
AY ') ={AG[r®] - [(2n% 1) —(Geun*+1)]?/8
+ 3 (20— 1) AF[n*]/4 ) [8n* (n* - 1)
(53)
AXT[n*] = [@dq@dean® 2+ (2% —1) AF [n*]

— a6 (2n* — 1)? )2+ 44 (agyn* +1)/2)
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/16(2n* —1 - ag, [2)

Proceeding as before, we can calculate the absolute
values of X1 + i Y} and Xy +1Y]. The results are

af = [(X7)? + (Y1) 1
=t - ) {1+{aY] %] + [ - 17,
~2(2n* — 1) AF[n*] — gy ) 2[256n% (n?— 1)? }
/k‘} J2K?

a; = [(X 1)+ (Y7)* P

(54)

=2k* {1+ [6n* —6n? + 1 - Gn® + 72, /4] /8K*)

It follows then that

cﬁin+ 1/2_ no 112
( 2 ) A
1
x { - RO 1) @an -0 ) |
(55)
a; + X7\
(—2—) =k{li(2n2-l—56,/2)/4k2}

If the terms of order of magnitude 1/2k* are
neglected in accordance with the fundamental
assumptions, Eqgs. (19), Egs. (55) are simplified to

a*{iXT)m_ n? 1R n?
( : = (-1i) [11—]

2k
ap + X7\ n®
s ek 4
2 2k?
We thus obtain the explicit expressions for Eqs.

(38) by the formula given in Eq. (41). If the complex
conjugates are added, the complete eight eigenvalues

(56)

p;j are given in the form

P1,D2,P3,.Pa =t (§; tin,)

(57)
Ps,De,P7.Ps =% (52 £imy)
with
n? n?
=— (-1 0+ —
n? n?
=— (-1 a-—
™ 2k( ) 2k2)
2 (58)

n
&L =k(1+ %)

m=k(1- 5;)
A similar result has been obtained by Gol’denweizer
(28] by the method of asymptotic integration.
For a number of problems of practical importance,
n takes relatively small values so that the following
holds:
2tk L1 (59)
In this case, we have the simplest form of the eigen-
values as
2
n
f.m = (1-1/n?)'7
(60)

22,172 =k

The numerical values of &, n,, § and 7, are
calculated with the aid of Egs. (58) and (60) for
various values of n and k. The results are compared
in Table 2 with the rigorous numerical solutions
obtained from the exact form of the governing
equation, Eq. (14), specified for the Fligge theory.
A satisfactory agreement is observed between the
exact and the approximate solutions in the range of
n/k specified by Eq. (59). In Table 2 are also included
the solutions for » = 1 to show the approximate
formulae, Eqs. (58) and (60), are valid even for that
special case.

The most important feature in Egs. (58) is that the
terms with a4y, a4, @63 and a4, have disappeared
entirely as small quantities of order of magnitude
h/R and 8n*. This indicates that the differences in
the eigenvalues p; calculated with different theories
are of order of magnitude of the errors involved in
the fundamental assumptions. In other words, as far
as the eigenvalues p; are concerned, any one of those
classical theories will provide valid solutions within
the accuracy of the first approximation. Another
important feature is that £, and n, are proportional
to k, whereas &, and n, are inversely proportional to
it. Since k is a large quantity, this indicates that ps,
Pe,» D7 and pg represent the so-called edge-zone
solutions which decay out rapidly as the distance
from the edge increases, whereas p,, p,, p3 and ps
the global solutions which vary gradually over the
entire surface of the shell.
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k n Theories £, ™ £, N2
Exact 0 0 5.0852 49153
1 | Approx.1 0 0 5.1000 4.9000
Approx. 11 | 0O 0 5.0000 5.0000
Exact 0.3645 03220 54034 4.6398

2 | Approx.l 03741 03187 54000 4.6000
Approx. 1l | 0.3464 03464 5.0000 5.0000

Exact 0.9298 0.6865 59665 4.2775
3 | Approx.I 1.0013 0.6958 59000 4.1000
Approx. Il | 0.8485 0.8485 5.0000 5.0000

Exact 1.6996  1.0260 6.7356  3.9386
(4)| Approx.1 | 2.0449 1.0535 6.6000 3.4000
Approx.I1 | 1.5492 1.5492 5.0000 5.0000

Exact 0 0 10.0425 99575
1| Approx.1 | 0 0 10.0500 9.9500
Approx. 11 | 0 0 10.0000 10.0000
Exact 0.1758 0.1704 10.1952 9.8104

2 | Approx. I 0.1767 0.1697 10.2000 9.8000
Approx. 11 , 0.1732 0.1732 10.0000 10.0000

Exact 0.8227 0.7088 10.8407 9.2734
10 4 | Approx.1 0.8366 0.7126 10.8000 9.2000
Approx.1I | 0.7746 0.7746 10.0000 10.0000

Exact 19551 14102 119728 8.5722
6 | Approx.l 2.0943 14554 11.8000 8.2000
Approx. I 1.7748 1.7748 10.0000 10.0000

Exact 34910 2.0631 13.5087 79194
(8)| Approx.I 4.1909 2.1589 13.2000 6.8000
Approx. Il | 3.1749 3.1749 10.0000 10.0000

Exact 0 0 50.0085 499915
1 | Approx.1 0 0 50.0100 49.9900
Approx. 11 | O 0 50.0000 50.0000
Exact 0.0347 0.0346 50.0385 499615

2 | Approx.1 0.0347 0.0346 50.0400 49.9600
Approx.II | 0.0346 0.0346 50.0000 50.0000

Exact 0.1554 0.1544 50.1590 49.8420
4 | Approx.1 0.1554 0.1544 50.1600 49.8400
Approx.II | 0.1549 0.1549 50.0000 50.0000

Exact 0.3574 0.3524 50.3610 49.6440
6 | Approx.1 0.3575 0.3524 50.3600 49.6400
Approx. Il | 03550 0.3550 50.0000 50.0000

Exact 0.6428 0.6268 50.6463 49.3697
8 | Approx.1 0.6431 0.6269 50.6400 49.3600
Approx.II | 0.6350 0.6350 50.0000 50.0000

Exact 1.0139  0.9745 51.0174 49.0220
10 | Approx.1 1.0149 0.9751 51.0000 49.0000
Approx.II | 0.9950 09950 50.0000 50.0000

50

Table 2 Numerical Comparison of §; and n; (Exact:
from Eq. (14) for Fligge, Approx. I: from
Eqgs. (58), Approx. II: from Egs. (60),
(n): for which 2n* /k* < 1 doesn’t hold)
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We have thus far derived the eigenvalues in explicit
closed form under the assumption (2n%/k?)? << 1
and 2n%/k* << 1. On the other hand, if we assume
that

2n? kKt =0(1) 61)
so that n and k are of the same order and
nt > 1 (62)

the governing equation, Eq. (22), is simplified further
to the form

V8w +4k*w =0 (63)
The reduced fourth order differential equation
becomes

Viw+i2kw =0 (64)

Here, again, the terms with @y, , d¢,, @3 and a4, are
not present, indicating that the eigenvalues are not
affected by the differences between the theories
within the accuracy of the first approximation.

The characteristic equation resulting from the
substitution from Eq. (32) into Eq. (64) reads

pi-20* ~ik*)p}+n* =0 (65)
which gives

pi=n®—ik® ik*(1 +i2n? Jk*)P (66)

If we write

o = [1+@n* K*) )P (67)

the square root in the right-hand members of Eq. (66)
can be evaluated with the aid of Eq. (41) and,
consequently, Eq. (66) is rewritten as

ot x| [ = (2]
ECoN)

This indicates that the absolute values of p; are of

(68)

order of magnitude of k.

It is important for the subsequent developments to
notice that the following relation holds in the entire
range of n:

§ 1p} K1 (69)

Equation (63) is identical in form to Donnell’s
equation. Donnell’s equation, however, has been
derived on a more relaxed assumption than that
stated by Eq. (62), such that a characteristic deforma-
tion wave is confined in a shallow portion of the
shell, and it has frequently been applied as a
convenient tool for the approximate analyses of
deformations with relatively small values of n. Since
we may assume that Eq. (59) holds for relatively
small values of n, we can derive the explicit expres-
sions of the eigenvalues for Donnell’s equation in a
similar manner to that used in the derivation of

Eqs. (60). The result is
2

n
El)nl =—2—;
(70)
52”72 =k

Comparing Eqgs. (70) with Eqs. (60), we see that
Egs. (70) lack the factor (1 — 1/n*)Y? in ¢, and 7.
This clearly shows the well-known characteristics of
Donnell’s equation that it provides reliable results
for large values of n, whereas the results become
increasingly inaccurate as n takes on smaller values.
Since £, and 7n, are the same in both Egs. (70) and
(60), we may conclude that Donnell’s equation is
accurate enough to estimate the edge-zone solutions
for any values of .

6. BOUNDARY CONDITIONS

All the dependent variables to be prescribed as
boundary conditions are expanded into Fourier series
in 6. For each Fourier component, they may be
written in the form

8
@ BN, M S)= L (Ui By Ny My, )&
=1 (1)

cosn@

epiy sinn @

8
Q= Z Vi, @)

i=1

where U;, B;, Ni, Mi, S;, Vi and Q; are as yet un-
determined coefficients, and § is the axial rotation of

the generator defined by
B =w (72)

All the coefficients on the right-hand side of Eqs.
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(71) can be expressed in terms of W; with the aid
of Egs. (25). Let us assume for simplicity that the
values of » are limited by Eq. (45), and write

Ao =n?j2k? (73)

Then, an approximation consistent to that employed
in the derivation of Egs. (57) and (58) yields

For the global solutions (i=1, 2, 3, 4):

Ui =% (1/2k)(1 - 1/n*)' {[1- (1 +v) A)
+i[1+(1+) D]} Wi

Bi =+ (n*2k)(1 - 1/n®) 2 [(1 + Do) 2i(1-A0)] Wi

Vi=—(1n) [1FivA,] W

Ni==@*[2)A - 1n*) [+i(1 = ")) W (74)

Mi=n*(1-1/n*) [vFih,] W

Si=*(n*/2k)(1 = 1/n* )2 { [2 - v +5S/n?

~

+(3-v) Aol i[2-v+s5/n* —(3-v) Qo] } Wi
Qi =3 (1-v%) (*/4K>) (1 = 1/n* )2 [(1 - A,)
Ti(l+4A9)] Wi

For the edge-zone solutions (i = 5,6, 7, 8):

Ui =7 (1/20) [ = (140) Ao] Fi [v+ (1 +9) Ao ) W;
Bi=tk [(1+A5)2i(1-40)] W;
Vi=(n/2k*) [bo Fi(2+ V)] Wi
Ni=—([2k*) [Fi (1 -v*)] Wi (75)
Mi=—=2k*[(2-v) Do ti] W;

Si=+ 26 {[1=(1+9) Aol Fi[1+(1+) 8] ) Wi

Qi =+ (1-v")(n/2k) [(1 - Bo) Fi(1+D0)] Wi

where the order of the + and — signs follows that of
Egs. (57).

The terms with s in S; are the only terms in Egs.
(74) and (75) that are affected by the differences

between the theories. The explicit expressions of s9
given in Appendix B shows that D, is the only theory
indicator involved in it. It is anticipated, therefore,
that the solutions of the Love-Reissner theory may
deviate from those of the other theories if and only
if the boundary conditions involve S.

Let us designate the prescribed values at the edges
by the subscript e. Then, the boundary condition at
one edge of the cylinder, say at y =+ /,is given by a
proper combination of the following four pairs of
equations:

w =wecosnf@ or Sly:I=Secosn0 (76a)

y=l

B |y=1 =B,cosnf or M| y=1=Me cosn @ (76b)

u | =ugcosnf or le=,=Necosn6 (76¢)

y=l

U], =vesinnd  or Qly:1=Qesinn8 (76d)

Y
The left-hand members of Eqs. (76) are written
in terms of W; with the aid of Egs. (74) and (75)
specifying y = [I. The results may be arranged in such
a way that the terms representing the edge-zone
solutions become of order of magnitude unity. Let
it be first assumed that the values of nare limited by
Eq. (59), namely, that 2n* /k? << 1. Then, the pairs
of the boundary constraining equations at y = [,
Eqgs. (76) read

a 8

Z epil W; + Z ep'lw,-=we

=1 =5 . (773)

(n* (4 (A-1n?Y P (2-v+s§/n®) T [£(1¢ 1))
i=1

p;l S Pyl
xe ' Wit L [#(1Fi)]e ' Wi=Se/2k

=5
4
(* [2k*)(1-1/n*)? T [i(lii)]epi, Wi
i=1

ki)l =gk
s

+
N e K

a . (77b)
(v n?J2k*)(1-1/n?) ) ep’IW,-

i=1

8 bl
~ T @iye " wi=M 2k
i=s

This document is provided by JAXA.



16 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-552T

4
UﬂmW”Z[Hnmf”M

1=1

8 ~ pil
tv ) [FQFd)]e " Wi=2ku,

o . (77¢)
~(1-1/n?) [ e w;
i=1
° p;l
- L (Fide ' Wi=2Nek*n*(1-1%)
i=5
4 .
~aty L w
i=1
8 il
+2+v) ¥ (Fide ' Wi=2vkn
e (77d)

4 pil
@2k (1-1n?Y? Y [F(1Fi)]e " W,
i=1

8 pil
+ § QFdle | Wi=20k/n(1-17)
i=5

Another set of pairs of the boundary constraining
equations is obtained for y = —1 by replacing +1 in
Egs. (77) with —1.

It is important to recognize that the terms with
59 in the part of the global solutions in the second of
Eqgs. (77a) are present as small quantities of order of
magnitude (n?/2k?)?, whereas all the terms involved
in Egs. (77c) are of order of magnitude unity. This
indicates that the terms with s are always negligible
in the calculations of the determinants and their
co-factors of the coefficients matrices. Let us assume,
for instance, that u, and S, are prescribed as
boundary conditions. Then, the boundary constrain-
ing equations contain the second of Eqgs. (77a) and
the first of Eqs. (77c¢). The latter is multiplied by
(n?/2k*)*(2 — v + s9/n*) and added to the former to
eliminate from it the part of the global solutions.
We thus have

8 .
[I—V(n2/2k2)2(2_v+sg/n2)] E [i(1¢i)] eP,l W,
i=s

=Se/2k3 +2k(n?[2k* Y 2—v +55/n*)ue (78)

The term (#*/2k%)?(2 — v + s9/n?) in the left-hand
members of Eq. (78) is negligible in comparison with

unity. The second term in the right-hand members is
also negligible in comparison with 2ku, on the right-
hand side of the first of Egs. (77¢c), because they
always appear in linear combination in the calcula-
tions of the inhomogeneous terms. Consequently, we
may approximate the second of Eqs. (77a) by

8 pil
Y [ Fi)e’ wi=5./2% (79)
i=§

It can easily be shown that the same is true in the
case where N, and S, are prescribed as boundary
conditions. Those terms that are affected by the
differences between the theories have thus been
completely neglected in the boundary constraining
equations as well as in the eigenvalues, in the case
where 7 is limited by Eq. (45), namely, (2r?/k*)? <<
1.

On the other hand, if 7 takes such large values that
Egs. (61) and (62) hold, namely, n*/k* = 0(1) and
n* >> 1, it can be shown with due consideration of
Eqgs. (35) and (69), that the supplemental equations,
Eqgs. (25), reduce to

v4u =—pw’ tw"
Vip=—(2+n)w—w

VAN =(1-v)w"
(80)
Vig=—(1-v)w'"

VM ==V +vw")
VS ==V W + (2=-v)w' ]

Here, again, none of those terms that are affected by
the differences between the theories is present.

It may now be stated, therefore, that the solutions
for n > 2 of the boundary value problems of
edgewise-loaded, circumferentially-closed circular
cylindrical shells are obtained accurately within the
errors involved in Kirchhoff-Love’s hypothesis for
any of those classical theories listed in Table 1,
including the Love-Reissner.

It is interesting to see how the boundary constrain-
ing equations are affected by the use of the Donnell
theory when n takes small values.

Approximation consistent to the Donnell theory

relatively

yields a set of pairs of the boundary constraining
equations similar to Egs. (77). But, now, the factor
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(1 = 1/n*)? in Eqs. (77) are replaced by unity.
The solutions of the Donnell theory thus become
increasingly less accurate as 7 takes on smaller values.
When n = 2, the factor (1 = 1/n%)"/? is calculated as
0.866 and the value becomes much smaller as its
power increases. Comparing the powers of this factor
in the coefficients matrices of all the possible
combinations of proper boundary conditions, we may
anticipate that the errors involved in the solutions
of the Donnell
greatest when the boundary conditions are prescribed

theory are most likely to be

entirely by the physical quantities, namely, S, M, N
and @, and smallest when they are prescribed
entirely by the geometric quantities, namely, by w,
B, u and v. Furthermore, since the eigenvalues p; (i=
I, 2, 3, 4) for the global solutions also contain the
factor (1 — 1/n*)"/?, the values of exp(p;l) calculated
by the Donnell theory may deviate substantially
from those calculated by other theories for large
values of /. It may therefore be stated that the
solutions of the Donnell theory become increasingly
less accurate as n takes on smaller values and !

becomes greater.

7. CONCLUSION

Some of the important conclusions of the present
analysis may be summarized as follows:

1. The classical shell theories including the Fligge,
the Koiter-Sanders, the Novozhilov, and the Love-
Reissner theories, yield valid solutions for small
deformations characterized by n> 2 of the edgewise-
loaded, circumferentially-closed circular cylindrical
shells. The relative deviation in the numerical values
of the solutions from one theory to another is of
order of magnitude of the errors inherent to the
Kirchhoff-Love hypothesis.

2. Since none of those coefficients which depend
on the theory indicators E; and Dy is present at the
final stage of the approximation in both the eigen-
values and the boundary constraining equations, all
the terms with those coefficients may be neglected
at arbitrary stages of the developments. We can thus
derive the simplest expressions of the constitutive
equations, the governing equations, and the supple-
mental equations as follows:

(a) Constitutive equations;

Nx =K(ex +vep), No =K(ep +vex)
Nyg =Ngx =Gh Yxg
M, =D(kx +vkg), Mg =D(kg +vKy)

Myg =Moy = (Gh*[12) T
Except for 7 in place of (7 — w,/R) in My, and
Mg x, these are identical to the constitutive equations
of the Love-Reissner theory.

{b) Governing equation;
VEVE+ 1D)?w+dak*w =0

This is the well-known Morley equation. It is
nowadays often referred to as the Morley-Koiter
equation, because Koiter {29] has proved the
consistency of Morley’s approximation.

(¢) Supplemental equations;

ez tee

Viu=—vw" +w
Vir=—Q+v)w"" —w
VAN=(1-v¥)w'
V4Q=—(1-p*)w" "

VM ==V3(w" +vw)—vw

S=—-w'"=Q2-vyw'"

3. If wis given in the form
8
p;y
w= E Wie' cosné
i=1

and if rz is assumed such that
ri/k*)Y K1,

the eigenvalues p; are calculated by
pi=*(%, xim); i=1,2,3,4
pi=%(% tin); i=5,6,7,8

with

£ = (n?12k)(1 - 1/n*)' (1 + n? j2k%)

m = (n*/2k)(1 = 1/n?) (1 —n? j2k?)
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£, =k(1 +n?/2k%)
n =k(1—n*[2k?)
If » is assumed much smaller, so that
Mkt K1,
we have the simplest expressions of the eigenvalues
£ = m = (22001 - 1/n?)”
& =m =k

It should be noted that the absolute values of the
eigenvalues for the edge-zone solutions (i=5,6,7, 8)
are proportional to k, whereas those for the global
solutions (i = 1, 2, 3, 4) are inversely proportional to
it.

4. If n is assumed such that

n* >>1 and 2n*/k* =0(1)

the absolute values of the eigenvalues p; are of order
of magnitude k for both the global and the edge-zone
solutions.

In this case, the governing equation becomes
identical to Donnell’ equation;

Vew +ak*w =0

Donnell’s equation is, therefore, a consistent first
approximation for n >> 1.
S. If Donnell’s equation is applied for the case of

Mk <K 1,

the eigenvalues are calculated as

pi=t(1+i)(n*/2k); i=1,2,3,4

pi=%(lti)k; i=5,6,7,8

The solutions of the Donnell theory become
increasingly inaccurate as n becomes smaller and
the length-to-radius ratio / greater. The errors are
greatest when the boundary conditions are
prescribed entirely by the physical quantities, and
smallest when they are prescribed entirely by the
geometric quantities. These imply that the Donnell
theory is not suited for the analyses of inextensional
deformations.

6. The following relations hold under Kirchhoff-

Love’s hypothesis:

n? <1 and §|p} << 1

These are very useful relations for achieving a con-
sistent approximation in the theory of thin circular
cylindrical shells. If we knew these relations a priori,
we could have achieved the approximations in the
preceding sections in a more straightforward manner.
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APPENDIX A. EXACT EXPRESSIONS OF

Gi:

COEFFICIENTS
G, =1
_1-v )
G, = N [l+-4— (BEs+Eg) ]
1
Gy = [10+ 22 (1-0)(EsEo) |
(A.D)
G4=_6E1
GS —%(I_V)E6
G6 =V
1-v 1) 1 3
Hy= 122 (145 G-DatDy+ 2 Bs+ S ) |
Hz =1+8(1—D1+E2 _El)
My 6
1 1
X(_1+D4+D2+ 5E3_ '2_E4)
(A2)
_ 1-v
Ho=-8[1+ 122 £,
Hg=-8(1-E,)
He =1+8(E, -Dy)
K, =D,
_1-vf_ 1 _
K, = 5 [ 14D, + 5 (D, D3)]
v
K3 —_g
1 1-v
Ke =3 [3-v-(1-0)Dst =7 0, -Dy)]
A3
Ks =1_D1 ( )
1
KG =§[_1+6(E1_E2)]
K,=D, +E,

fi

&i:

21

Ky =3 (145E3)

L;:

a,-j:

H=—HG,4

o =—H,Gs ~H,Gy4 + HiG;

3 =—H,Gs + HG, (A4)
fa =—H,Gs

fs =—H,G¢ + He Gy

g, =—H,G, +H3G,

g2 =~ HsGy —HyGy + HyG

g3 =~ HsG, (A5)
gs =—H¢G, + H3Gg

gs =~ HeG

L, =H,G,

Ly =H,G, +H,G, —H,G5 (A.6)
Ly =H,G,

ag; =K f1 —L,

agy =K1f2 +Kafy +Kagy —Ly —2L,

ags =K f3 +Kaofs + Kagy +Ksgy ~L3—2L,~L,

ags =Ky f3 + K483 +Ksgy —2L3 —L,

ags =Ksg3 —Ls

ag, =K fa +K3fy (A.7)
gy =K fs +Kafs +K3fa +Ksgsa + Kegy — KoL,

ag3 =Ko fs +Kafs + Kags + Ksga + Keg2 =KoL,

ags =Ks8s +Keg3 ~KqL3

asy =K3fs =KL,

aay =K3fs + Kega —KsL,

a43 =Kegs —Kgls
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n;:
ny =f, +vg, ~8E,L,

ny, =f3 tvg, —86E,L;

(A8)
n3 =hs =vg;
ng =fs tvgs +vL,
mj:
my =Dy f; —L;
my =D\f, +vg, —L, —vL,
ms =Df3 +vg, —L; —vL,
(A9)

Mg =M~y =VEs
ms =D fs
me =D, fs tvgs
4;-
a1 =Kufy +Kog ~8(1-9)(1+ 3 E)L,

1
q2 =Kuf> +Kyg, —8(1-v)(1+ 5 E4)L,

a5 =Kufs + Kugs ~6(1-0)(1+ 3 Eu)Ly (A10)
qa =Kufa + Kygs
gs =Kufs + Kygs

where

1w 8 1.1
Ky= 32 [1+ 5 (-14D; + Do+ 5 E3=7 Ey))

1-p ) 1 3
= [1+ 5 (3+Dy=Dy+ 5 Es+ E154)}

Ky=
(A.11)
si:
s, =D,f, —L,
s2 =D1f; +Kigy +Kof1 —L, —(2-v)L,
s3 =Di1f3 + Kigy +Ksfy —L3 —(2-v)L,
ss =Kig3 +Kofs —(2-v)L; (A.12)
ss =D\ fs
S¢ =Kiga + Ksfa + D:rfs

$7 =Kigs + Ksfs

where

Ks=(1-v) [D4—1+(D,-D3)/2] |2
(A.13)
K¢ = [3-v—(1-v)(2D4 —D, +D3)/2] |2

APPENDIX B. LEADING TERMS OF
THE COEFFICIENTS

0 .
ﬂi]'.

ag =1, a =4, a3 =6

% =4, a3 =1

agy =v(E, + D)

agp =5+v- I_Tv [2D4 - (1+v)(D, _Da‘)

~(2+v)E4 +vEg]

a2 =7 +v—(1-v)D4—vD,-VvE, (B.1)
+ 1__;5 (Es +E4)

aly =2

0 l“'V2
day 5

4l =3+v—vE, —vD, + 1%” (Es+Es—Ds)

023=1
l_
Lys 5= L
LY=1, LY=2, L=1 (B.2)
so that
L°()=V*() (B.3)
L. 1-v &
fl = 2” f?:
19=81%, f3=6r8, f3=553%
. _ (B4)
fe=-v f3=1
where
f? =E,
1+v 2 1+v 1-v
0_-_ Vv _ < — _
f2 I_V + I_V El 2 E4 2 E6
(B.5)
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L 1-v m9y=—v
g5 & ’
where
g3 =06g7, g9 =5g3, 83 =583 m® =— D
23=-(2+v), 1=-1 B ) 1 (B.11)
H > 85 md =D, —v(2+v)
where
2 1+ 4= = a;
0- < _ v ? 2 !
&1 1=y T 1-» Ev+Eq
-0 _ [¢] -0 - 0 —0 — 0
_ _ q1=564q1, q3 =6q3, q3 =843
gg:?—:_Tz—vEl+l2vE4+l—;VE6 73 =-(1-v*), 72=6¢° (B.12)
(B.7) qa V'), Qs =045
g3=1-E, where
ni_l—gl E?: q?:V(l—El)
2+ v
. . ] 48 =-(1-0)(1+ =5* Ee— 5 Eq)
nj =8ny, ny =6ny, n3 =énj (B.13)
(B.8) 1-v '
ny=1-1v*, n?=6n? qg:—1+VEl‘T(E4+Es)
where g8 =-1+vE, - 1;21) (EatEs—Dy)
1_
n?=_1+VEx_TV(E4+Es) 1-v o
55— §;
(1- ~ 2
ng =—l+v+ = 12 V)E4+ Ga)[CAL) Es
2 §9=-1, §3=—(4-»), 53=-(5-2v)
n°=v(l—E) (Bg) (Bl4)
=, $2e-(v), $2=st, B=sl, §Y=
n$ =v(1-£)) where
1_.
m; = Tyrﬁ,o s =—-vD,
mi=-1, my==(2+v), my=—(1+2) 9=- - .t
1 y M , M3 S¢ =—3+D+(1-v)D, (D2—-D3)
. B B (B.10) (B.15)
ms =-v, m¢=m¢, mg=m¢ $9 =—2+v+(1-v)Ds
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