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The Method of Weighted Residuals in The Time Domain

Applied to Nonlinear Vibrations*

Tetsuhiko UEDA and Yuji MATSUZAKI™

ABSTRACT

A method to solve nonlinear differential equations, governing periodic motion, is presented.

The approximation is based on the method of weighted residuals. As an example problem, non-

linear vibrations of an infinitely long cylinder are examined, and their frequencies are calculated,

using various types of assumed solutions and weighting functions. The numerical results show that

the Galerkin type of finite element procedure gives a good approximation.
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1. INTRODUCTION

it is seldom to find an exact solution to non-
linear differential equations which govern oscil-
latory phenomena in physical and engineering
fields. We must usually be satisfied with ap-
proximate solutions of certain accuracy in solv-
ing these equations. The method of weighted
residuals (1, 2), abbreviated by MWR, is a
general method to solve such nonlinear dif-
ferential equations. Above all, it is relatively
simple and easy to be applied. We may obtain
solutions possessing any desired accuracy by
using a computer-oriented approach, which is
based on the finite element method and iter-
ation procedure.

Application of MWR to the time domain is
straight-forward. Here, we shall briefly describe
MWR in the time domain. Consider the equa-

* 25 January, 1979
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tion,

LX) =F, (1)
where X=Xx(t) and f=f(t) are defined over a
certain closed time interval T,and 2 is a non-
linear operator. The solution x must satisfy
prescribed initial and terminal conditions.

Let
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be an approximation of the ith unknown con-
tained in Eq. (1). The residual,

7 ®O=2,&0f,, (n=1,-M) 3)
would not vanish unless the assumed solution is
exact. In Eq. (3), the subscript m corresponds
to the mth equation of Eq. (1). We require that
the approximate solution should satisfy Eq. (1)
in some average sense. The unknown coeffi-
cients c{- of the trial functions are determined
so that the residuals vanish in a weighted aver-
age over the interval T.
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Lo, OW @de=0,(n=1,2-,Nm)(@4)
or
Bl = frn =0, (5)
where
P (c) = [ B YW Dt (6)
=/, f,OW at, (7)

and W;(t) denotes a weighting function.

The coefficients c{- are uniquely determined
when the condition,

M M
g; JG) = §1 N,

is satisfied.

Provided that the integrals on the right
hands of Egs. (6) and (7) exist, any function
can generally be used as the weighting function
although upon an appropriate choice depends
the accuracy of the results. Paritcular choices
for weighting functions are equivalent to well-
established methods, for example, the col-
location method, Galerkin’s approach, etc.

When the oscillatory system undergoes a
periodic motion, the interval T may be assigned
for one period or its fraction. It should be
noted, however, that in nonlinear systems the
period of oscillation depends on the amplitude,
and consequently that the interval T itself is
an unknown quantity.

As an example problem to illustrate the
powerfulness of MWR, we shall treat nonlinear
oscillation of an infinitely long cylinder. Large
amplitude vibration of thin shells of revolution
has been an important subject for the last
fifteen years because of its interesting nonlinear
characteristics. There still remain unresolved
problems (3, 4). Constrained and extensional
vibrations of the cylinder are here examined by
using several types of trial and weighting func-
tions.

2. EQUATION OF NONLINEAR
OSCILLATION

When the radial displacement of an infinitely

long cylinder (See Figure.)is assumed in the
form of

w(y, t)=Acos %’—PB(Q, (8)

the modal equations are given as (5)
2
d’a

“‘——+a+12a(b+——)~0
dr®

9.1

2
ei—b+ 12(p+2-) =0,
dr?

where

9.2)
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e= (£ ),

= uniform thlckness,

= radius of the cylinder,
Young’s modulus,

= Poisson’s ratio,

= density of the material,

= circumferential wave number.
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The conditions specifying the motion w(y,t) are

d
da _8b_ 9 ot r=0, (10.)
a=2L_ 0 a  e=z, (02

where 7 denotes a quarter period.

3. CONSTRAINED VIBRATION

If the shell is constrained to vibrate with no
radial displacement at the node of cos4y, that
is, B(t)=0, then a set of Eq. (9) reduces to (5)

dza (1 1)

dr?
where §=3. When §=3(1-»%)/4, Eq. (11) cor-
responds to Eq. (10) of Ref. 5. It is noted that
Eq. (11) agrees with the equation governing the
motion of a mass on a cubic spring.

+a+5a—-0
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3.1 Approximation using harmonic functions
Two-term solution: We first assume a solution
satisfying Eqgs. (10),

a*za{(l—C)cosar+Cc05301} , (12)
where 2=n{27).The asterisk for an approxima-
tion will be omitted hereafter since no confu-
sion would take place. The weighting functions
are selected to correspond to the trial function,
i.e.

W{ = cosf27t, and W% = cos3nrT.

The time interval of the integration can be
taken as [0, 7 ]. Substituting Eq. (12) into Eq.
(11), multiplying the left hand side of Eq.(11)
by wl or W2 and integrating from O to 7, we

1 1
obtain
o’=1+3p(1-C+2L") (13.1)
9la’= c+—}1ﬁ(1+3C—9C“’) , (13.2)
where 8=6a . (14)
Elimination of 22 from Egs. (13) yields
4680° — 18807+ (A#B+22)C—B=0 . (15)

For a specific value of §, { is numerically solved
by Egq. (15). Substituting these values of {
and f into Eq. (13.1), we can evaluate the
square of nonlinear frequency Q2.

One-term solution: When the trial function is

(16)

that is,{=0 in Eq.(12), we obtain a simple rela-
tion between the frequency and the amplitude
from Eq. (13.1).

2 3
Q 1+4ﬁ.

a=a cosQit,

(17)

It should be noted that, when 6=3, Eq. (17)
agrees with Eq. (9) of Ref. 5 where Evensen
employed the method of harmonic balance
(MHB) with the same assumed solution of Eq.
(16). Since both results are equivalent, we con-
clude that in this example MHB corresponds to
MWR in which the weighting function is set to
have the same form as the trial function.

3.2 Approximation by the finite element
method

The time interval is divided into p small
elements with a length of 4k=Tk+] - 7k.

Choosing the Hermitian polynomials for the
trial function in each element, we apply the
finite element method to determine the un-
known nodal values of the function.

First, we shall confine ourselves to the k-th
element. Let us introduce a local time coordi-
nate defined by

£ = (r-7x)/dk, (18)
i.e. £=0 at =7k, and ¢=1 at =7k +1.
The solution is assumed in the form of
a(K)(x) =g k)y(k), (19)
where
u®_ (utk y2k ylk+1 2ty (20)
(k)
2= [%1x Pok Pix1 Pasrd s 21
$r= 1-367+26°
(A _op?2 3
Sok= (§—2&*+¢& )dk , 22)

Pik+1= 367~ 253,
Pok+1= (_$2+53)Ak .

The superscript (k) indicates that the quantity
is associated with the k-th element. The un-
knowns usK for s=1 and 2 are related to the
values of the solution and its slope at 7=7k;

ulk=g (k)(0) =g(k-1)(1), (23.1)
uzk_1 da(k)(f)l 1 da(k_l)(5)|
4, a¢ '€=0 4, d4¢ '¢=1
(23.2)

Let the residual and the weight for the k-th
element be denoted by r(k) and w(k), respec-
tively, where

w®_(g...... 0 w1k pak wik#l 2ktlg o)’
2(k-1)-1 2(Pk)-1
24)
Then, Eq. (4) are rewritten as
Sa 19,9 - o 25)
24 r w ,

where
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4, flr(k)w(k) gE=- 4 Q2 fR, 00, ), (0
0 n2
Mthk)uck,) 26
%5 (k)
D7 Slo® 42— e, (27)
k 0 d$2

(k) 1 (k) (k) 78
K —Akfo w e gé (28)

(k) _ 1 (k) (k) (k). 2 (k) 29
K, =4/ w Yo as. (29)

WsK (s=1 and 2) should be assigned with respect
to usk. If Wsk takes the same shape as has the
trial function corresponding to usk, then Eq.
(25) becomes Galerkin’s approach. It should be
noted that W21 and W1pt! vanish in Eq. (24)
since the corresponding u2l and ulptl are
constrained because of the conditions given by
Eqs. (10).

Summing up the left hand side of Eq. (25),
we obtain

(-AD+K+8Ky)y=0 (30)
where
PR P
72
u=(u” u12 2 u2Pu2P+1)T (31.1,2)

u2l and ulP*l are excluded from u by the
constraint conditions at the boundaries. For a
specific value of 8, Eq. (30) can be treated as an
eigen-value problem. We can solve Eq. (30) for
A by an iterative procedure,

D-1(K+6Kyq-1)ug=*quq, (32)

where the matrix KNq_1 is formed by using the
eignevector which is obtained in the (q-1)st
step. It should be noted here that the magni-
tude of the vector u must be kept constant, for
instance, ul 1=3 since the period of oscillation
depends on the amplitude. By using the solu-
tion u thus obtained, we may start an iteration
for the next B which deviates from the pre-
vious value of § by a small increment.

We shall go into details about the case where
the interval [0, 7 ] is consists of a single ele-

ment, that is, p=1. Letting the weighting func-
tions be W}=l and W%= 1-£, we may obtain

4 1,1, .48 83 151

T =3l At a0 Y 10 taaoT ),
(33.1)

40 7 109 | 29

S9=50t 307 +BCag0 537 o T,
(33.2)

where

7=-u®A", and B =0{a@)=3(u")’

In this case, we need not use the iterative proce-
dure of Egs. (32). Instead, elimination of Q7
yields

4y* +318y> +(2028+308)* +(18168+2464)y
- 2838p- 4620=0. (34)

Eq. (34) can numerically be solved to obtain y
for specified values of . When =0, it is obvious
that the exact solution of £ is unity. In this
case, we obtain from Egs. (33)

v*+8y-15=0. (35
Eq. (35) gives 0.9962 to 2.

Finally, we solve the problem with the aid of
Galerkin’s approach, that is, by employing the
Hermitian polynomials as the weighting func-
tion. The numerical results with equally spaced
elements for p=1 to 4 are presented in Table I,
where Sexact is calculated from the exact solu-
tion to Eq. (11) represented by

a=a en(Y1+8 r, «/2(—1%) .

In Eq. (36), cn denotes Jacobi’s elliptic func-
tion.

(36)

4. EXTENSIONAL VIBRATION

In the case of extensional vibration, it is
necessary to solve Egs. (9) simultaneously.

4.1 Approximation using harmonic functions
The trial functions to Eqs. (9) shall be taken
the same as in Ref. 5:

a =acosr, 37.1)
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b=bg+bycos2ar. (37.2)

We choose the weighting functions cos{27 for
Eq. (9.1) and unity and cos2€27 for Eq. (9.2),
i.e.

1, and W2 = cos2Q2r.

wl= cosfit, w! = 5

1 2
Then, Eq. (4) furnishes

1—02+1230+632+%52=0, (38.1)
- 3 -2
128+ 5 a =0, (38.2)
2~ — , 3 -3
—46a"by+ 128,15 0 =0, (38.3)

Elimination of bg and b from Egs. (38) yields

a'=2e(12+4e+ 36— /(12-+4e+35)°-192¢),
(39)

where § = £a”

It is noted that Eqgs. (38) coincide with the cor-
responding equations of Ref. 5 and Eq. (39)
agrees with Evensen’s amplitude-frequency rela-
tionship as & becomes small compared with
unity. Therefore, we may conclude that MWR
employed in this section is equivalent to MHB
of Ref. 5. The trial functions represented by
Egs. (37) correspond merely to the one-term
solution of the constrained vibration, i.e. Eq.
(16). It is very tedious, however, to derive and
solve the governing nonlinear equations with
respect to the unknown coefficients of the
higher-term solution since the number of co-
efficients involved increases rapidly.

4.2 Finite element approximation

The procedure is essentially the same as in
Section 3.2. The trial functions in the k-th ele-
ment are put in the form of

a(K)(g) =@(K)y(k), (40.1)

b(K)(g) = (K)p(k), (40.2)
where

v(K) = (v1K y2k y1k+1 y2k+1)7 41)
and

vlk = p(k) (0) = b(k-1)(1), (42.1)

Vg
dé

vak 1 db(k)(f), _1 ,
4, df '§=0 4, §=1
(42.2)

Instead of Eq. (25), we obtain
P
1 (k). (k)
2y Ty Wy 0E=0,  (m=1,2) (43)
where the subscript m with respect to w(k) and

(k) are referred to Egs. (9.1) and (9.2), respec-
tively, and

k
4, fo lrl(k)wl( dag = —ZDI( k)u(k)*—[ka)-stg(vk)J u(k),

(44.1)
k
8/, st =260 12K 3¢ )
( (44.2)
2 (k)
®_ 1.1 (kd@® _

D, Akfo w e dé, (m=1,2) (45)
K, 0=4,/ w0 (m=12) 6)
35(k)

®)_ A lw(k){d(D v(k)} ¢®
L —_— aé, 47
KN Ako 1 dez ( )
k
109~ - 4, [f0®0® M) ae. (48)

wil wiptl w2l ang W2P*1 should vanish
since the corresponding u2l, ulp*l, v21, angd
v2p+1 are constrained because of the condi-
tions, Egs. (10).

Assembling Eqs. (44) yields

-ADju+ (K1 +eKp)u=0, (49.1)

- xeDv+ 12Kpv=3fy. (49.2)

Equations (49) can be solved by the following
iterative procedure similar to Eq. (32):

—2
q-174 gt

b = 3(-A eDy+ 121«:2)“qu

D, '(KteK, (50.1)
(50.2)

where the condition, ull=a, must be held
during the procedure.

5. NUMERICAL RESULTS AND
DISCUSSIONS

Constrained Vibration As shown in Table 1,
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the one trigonometric function provides a good
approximation for small f§ since the non-linear
effect is comparatively small. Needless to say,
the two-term assumption gives a better solu-
tion over the wide range of f. On the other
hand, the Galerkin type finite element proce-
dure is proved to be a good approximation in
the range of the calculation even when p=1.
The accuracy of the solution increases rapidly
with increase in the number of elements.

Extensional Vibration In this case converged
solutions of the finite element approach are
deemed to be exact since no exact analytic
solution is available. The weighting functions
for the finite element method are chosen to be
the same as the trial functions. The results on
p=1, 2 and 10 for f=0.1 and §/12=10"% are
shown in Table II. The convergence is very
rapid; even the two-element solution gives the
same frequency as that obtained by the ten-
element solution. In Table 111, the results calcu-
lated from Eq. (39) are compared with the
converged solutions which are obtained by the
finite element method (p=10). The agreement
between both results is excellent especially
when ¢ is small. The frequencies predicted in
Ref. 5 by Evensen are also presented. It is

obvious that Eq. (39) reduces to the relation-
ship by Evensen when s becomes infinitesimal.

6. CONCLUDING REMARKS

The method of weighted residuals in the
time domain is successfully applied to nonlinear
differential equations which govern the periodic
oscillation. The accuracy of the method, as well
as its convenience, is assured by the example
calculations on the nonlinear vibrations of an
infinitely long cylinder. The Galerkin type of
finite element procedure shows a rapid conver-
gence and gives an excellent approximation.
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infinitely long cylinder.
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