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The Free Vibration Equations, Natural Frequencies and*
Modal Characteristics of Closed Circular
Cylindrical Shells

By Tatsuzo KOGA**and Keiji KOMATSU***

ABSTRACT

The relative accuracies of some of the representative classical theories of thin shells are ex-
amined by way of the order-of-magnitude comparison of terms involved in the governing equations
for the free vibrations of a circular cylindrical shell. Due consideration is made of the boundary
conditions. It will be shown in the end that alli the well-known classical theories yield valid solu-
tions accurate enough when taking into consideration of the errors inherent in the Kirchhoff-Love
hypothesis. A first approximation, consistent with the order-of-magnitude estimate, leads to a
system of free vibration and boundary constraining equations, This system is simple in form yet
accurate enough for practical purposes. The approximation enables us to gain a good, qualitative
estimate of the forms of the characteristic solutions. The accuracy of the Donnell-type approxi-
mation is also investigated. A detailed account of the historical developments of the subject has
been given in order to justify our motivation in dealing with this seemingly, most thoroughly
investigated topic.
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NOTATIONS

Parameters and constants

h
R
2L
2%

P
f
1]
k

80‘)

QURTETIYH

wall-thickness of shell
radius of circular cylindrical shell
length of cylindrical shell

nondimensional form of 2L; 28 = 2L/R

mass density

frequency of vibration measured in Hz

time factor;pt2 =(1-v?) pRzlE
geometric parameter;

4x* = 12(1-v?)}(R/h)?
geometric parameter; 8 = h?/12R?
frequency parameter;

w? =(1-v¥)(27Rf)? p/E
Q= w?
Young’s modulus
Poisson’s ratio
extensional rigidity; K = Eh/(1-»?)
bending rigidity; D = Eh®/12(1-»?)
shear modulus; G =E/2(1+»)

Coordinates and differential operators

- D M

)
()
O

axial coordinate

nondimensional form of x;y = x/R
circumferential coordinate

the time

nondimensional form of t; T = t/u
differential operator;( )' = 8( )/dy
differential operator; ( }' = 9( )/a0
differential operator; ( )* =9( )/oT

p2( ) differential operator;F3()=()" + ()"
L() differential operator defined in Eq. (19)
Lo( ) first-approximation form of L( ) defined

in Eq. (43)

Vibration and stress

circumferential wave
number

representative wave length
axial and circumferential
wave lengths, respectively
frequency parameter
corresponding to the
lowest thickness-shear
vibration of an infinite
plate given in Eq. (34)
tentatively set upper
bound of frequency

21,82, Q3

Uy, Ug, Wz

B

Ny, Ng, Nxg, Ngx

Qx, Qo
My, Mg, Myg, Mgx
Sx: TXO

N.M,S§,Q

Wi, Ui, Vi, By,
N, Mj, 8, Q; ]

£, 1y
62; 72

eiv ”11 Po? qo

parameter; w,; = 0(1)
three roots of A4 (2)=0
midsurface displacement
components
nondimensional form of
Uy, Uy, Wy, Tespectively
midsurface strain
components

changes in curvature of
midsurface

torsions of midsurface
(relative and absolute,
respectively)

rigid-body rotation about
the normal to midsurface
lateral rotation of the
generator; f=w'

stress resultants

lateral shear resultants
stress couples

lateral and tangential com-
ponents of the equivalent
edge shear, respectively
nondimensional form of
Ny, My, Sy and Tyy,
respectively

coefficients of eigenfunc-
tion expansions of w, u,
v,B,N,M, S and Q,
respectively

real coefficients deduced
from W; in Eqgs. (91)
theory indicators
eigenvalues

P = (p;)?

a value of P at which F(P)
becomes minimum

real and imaginary parts,
respectively, of pj
(i=1,2,3,4)

real and imaginary parts,
respectively, of p;
(i=5,6,7,8)

real quantities of order of
magnitude unity intro-
duced in Eqs. (79)

Coefficients of equations

Gj, Hj, Kj

coefficients in Eqgs.

This document is provided by JAXA.



The Free Vibration Equations, Natural Frequencies and Modal Characteristics of Closed Circular Cylindrical Shells 3

L

fi, 8

33 Ojjs C4j> djj
nj, mj, $j, 4j
0.0 0 0
ajj, bjj, ¢jj» dij»
00 000
Lj, nj, mj, sj, qj

wi Uy By Y,
4, nj, mj, Oj

Miscellaneous
F(P)

Im()

(160 1p, 0 1y

(12)-(14)

coefficients in Eq. (19)
coefficients in Eqgs. (18)
coefficients in Eq. (20)
coefficients in Eqgs. (21)

leading terms in the
polynomial expressions
of ajj, bij, Cij» Clij, L;, nj,
mj, s; and q;, respectively
modified form of aiQ as
given in Eqgs. (40)
coefficients in Eq. (51)
common denominators in
the coefficients given in
Eqs. (87)

coefficients of the
boundary constraining
equations, Egs. (92)

function defining the

auxiliary equation as
F(P)=0in Eq. (51)

to indicate the imaginary

part of ()

to indicate the flexural,

in-plane, and rotatory

inertial components,

respectively

coefficients matrix of the

boundary constraining

equations

column matrix of the

coefficients Wi given in
Eq. (95)

to ingicate the transpose

of { Wy}

unit of imaginary number;
i=(-1%

1. INTRODUCTION

The present paper is concerned with the

theoretical analysis of the free vibrations of a
thin elastic circular cylindrical shell. The shell
is assumed to be circumferentially closed and
to poses two axial circular edges formed by
parallel plane cross sections normal to the axis

of the shell. This is a classical topic of mechan-
ics of shells. It may be no exaggeration to state
that the theory of thin shells finds here its very
origin, Let us first explore the historical back-
ground of the developments.

Historical Development

It was about one hundred years ago that the
analysis on the subject was first undertaken by
Lord Rayleigh, born John William Strutt. In his
famous treatise on “The Theory of Sound”
[1] published in 1877, he has developed a
formula for calculating the natural frequencies
of an infinitely long circular cylindrical shell
assuming that the midsurface of the shell is
inextensional and the mode of vibration cylin-
drical. As anticipated from the assumption of
cylindrical mode, his result is applicable for the
in-plane vibrations of a circular ring. Indeed, he
has shown that his result is identical in form to
that derived by R. Hoppe for a ring in a memoir
published in Crelle, Bd, 63, 1871. In 1881,
Lord Rayleigh presented a paper {2], in which
he has developed an inextensional theory of
vibrations for shells of revolution and applied
it for shells of spherical, cylindrical and conical
shape. His primary interest in the paper seems
to have been in the calculation of the natural
frequencies of a spherical shell, particularly of
a hemi-spherical one, as a model for a church
bell, because a substantial part of the paper is
covered by the analysis on that subject,

A.E. H. Love has developed a general theory
of thin shells in a paper [3] presented in 1888
(received January 19, read February 9, 1888).
In this paper, Love critisizes the inexactness of
Lord Rayleigh’s inextensional theory in that
it leads to expressions for the displacements
which cannot satisfy the boundary conditions
at a free edge. He argues that the equations
imposing the condition of inextensibility are
in the most general case a system of the third
order, while the boundary conditions are four
in number, so that these equations are not in
general of a sufficiently high order to admit of
solutions which shall satisfy the boundary con-
ditions at a free edge. He has explicitly shown
that this is the case for a spherical shell. In the
development of the general theory, he has
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shown that the strain energy expression consists
of two terms; one is proportional to the thick-
ness h depending on the membrane stretching,
and the other proportional to h3 depending on
the flexural bending. Needless to say, the in-
extensional theory of Lord Rayleigh takes no
account of the term depending on the mem-
brane stretching. Love dissents from Lord
Rayleigh’s reasoning for the omission of that
term depending on the membrane stretching.
He argues that the term proportional to h® is
small in comparison with the term proportional
to h, and that the former instead of the latter
should be omitted in the limiting case of h = 0.
He has thus formulated an extensional theory
and applied it for spherical and cylindrical
shells.

Lord Rayleigh immediately responded to
Love’s criticism in a paper [4] presented in the
same year (received December 1, read Decem-
ber 13, 1888). His argument focuses on the
justification of his omission of the strain energy
depending on the membrane stretching. He
states that it is a general mechanical principle
that, if displacements be produced in a system
by forces, the resulting deformation is deter-
mined by the condition that the potential en-
ergy of deformation shall be as small as possi-
ble, and that the large potential energy which
would accompany any stretching of the mid-
surface is the very reason why such stretching
will not occur. He has also given an explanation
to the inexactness of his inextensional theory
with regard to the violation of the boundary
conditions at free edges through an example of
a long circular cylindrical shell subjected to a
pair of concentrated normal forces at the ex-
tremities of one diameter of the central section.
As the thickness reduces, the deformation as-
sumes more and more the character of pure
bending such that every normal cross section
deforms into an identical configuration. If the
thickness remains small but finite, a point will
at last be attained when the energy can be made
least by a sensible local stretching of the mid-
surface such as will dispense with the uniform
bending otherwise necessary over so great a
length. Thus, he has indicated the possibility
of the existence of the so-called edge-zone

solutions.

The second edition of ‘“The Theory of
Sound” was published in 1894. All the correc-
tions of importance and new matter added to
the first edition are clearly indicated. A new
chapter is interpolated, devoted to shells. Al-
though calculations of the natural frequencies
for spherical and cylindrical shells are presented
with the aid of both the inextensional and ex-
tensional theories, he seems to have remained
an advocate of the inextensional theory. He
notes that any extension that may occur must
be limited to a region of infinitely small area
and affects neither the types nor the frequen-
cies of vibration. The first edition of Love’s
famous treatise on ‘“The Mathematical Theory
of Elasticity” [5] was published in 1892 (vol-
ume 1) and 1893 (volume 2). The fourth edi-
tion was published in 1927, whose American
printing in 1959 is the one available to the
present authors at the present time. Some .of
the important new additions and revisions in
the third and fourth editions are indicated. But,
as Love notes that the first edition was almost
entirely re-written in the second edition pub-
lished in 1906, it is impossible for us to see
from the book available how the material has
evolved from the original volumes. In any
event, Love has presented for the first time a
general method of solution of the free vibration
problems of circular cylindrical shells. But he
has made no attempt to solve any specific prob-
lem except for those extreme cases of purely
extensional and inextensional vibrations. The
fact that the calculations by the inextensional
theory were incorporated in the new editions
seems to imply a change in his attitude toward
Lord Rayleigh’s insistence on the inextensional
theory. He seems to have contented himself
by noting that the extensional strain, which is
necessary in order to secure the satisfaction of
the boundary conditions, is practically confined
to so narrow a region near the edge that its
effect in altering the total amount of the poten-
tial energy, and therefore the periods of vibra-
tion, is negligible and the greater part of the
shell vibrates according to Lord Rayleigh’s
type.

In 1934, W. Fliigge published a book “Statik
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und Dynamik der Schalen’ {6], a highly rec-
ognized classic devoted to mechanics of shells.
He has developed a general theory of shells,
which is nowadays most commonly known
as Fliigge’s theory, and applied it to the free
vibrations of a circular cylindrical shell. He has
suggested a general method of solution. The
method may be summarized as follows: Give
the general solutions for the displacement com-
ponents u, v and w in the form
u=UePYcosnfsinwT
v=VePYsinnfsinwT
w=WePYcosnfsinwT
where U, V and W are the indeterminate coeffi-
cients, y and 6 the axial and circumferential
coordinates, respectively, T the time, n the cir-
cumferential wave number, p the characteristic
value which determines the axial characteristic
mode and w the natural frequency. The auxil-
iary equation deduced from the equations of
motion is an algebraic equation of the fourth
degree in p® and n® and of the third degree in
w?. Thus, if n and w are assumed, eight values
of p may be determined. Once p, n and w, as
well as the thickness-to-radius ratio and the
material constants, are known, the character-
istic equation resulting from eight boundary
conditions may be solved for the length of the
shell 28. It will yield infinite number of discrete
solutions for £. The minimum of them deter-
mines the length of the cylinder which vibrates
at w in a mode characterized by 2n of the axial
nodal lines with no circumferential node. As
he states: ‘‘Die zahlenmassige Durchfihrung
dieser Rechnung ist sehr miihsam und steht
noch aus.”, calculation by this general method
is a very difficult task and he himself has not
attempted it. Instead, he has chosen a special
case where the edges of the cylinder are simply
supported so that the boundary conditions are
given by
w=v=N=M=0; y=1{¢
N and M being the axial stress resultant and
couple. Now, the displacement components u,
v and w are expressed in trigonometric func-
tions in y, @ and T, and they satisfy the bound-
ary conditions exactly. He then gave a numeri-
cal example and has calculated three roots of
w for the auxiliary equation. Comparing the

amplitude ratios of the displacement compo-
nents for each w, he has shown that the free
vibrations corresponding to the lowest, inter-
mediate and highest values of w are predomi-
nantly in lateral, axial and circumferential
motion, respectively. Since the free vibrations
predominantly in lateral motion are the most
important in engineering practice, and since his
numerical result shows the lowest value of w
is very small, he has made an approximation
neglecting in the auxiliary equation the cubic
and quadratic terms in w?, and deduced a
simple formula applicable for the lowest natural
frequencies.

It has become clear by now that an eigen-
value problem of a shell is generally governed
by an eighth order partial differential equation
and they require solution of an eighth order
characteristic determinant resulting from eight
homogeneous boundary conditions. This poses
a tremendous difficulty in analysis, and conse-
guently, as noted by Fliigge, analyses in those
early days couldn’t go beyond outlining general
methods of solution and applying them for
some extremely limited cases. A complete solu-
tion with mathematical rigour and generality
becomes feasible only after the development
of high speed digital computers. It should be
emphasized, however, that much of the funda-
mentals of the shell theory and its solution
technique were laid down in those early days.

In the fifties, high speed digital computers
began to influence on every item of human
activities let alone scientific and technological
research. But their developments had not yet
reached a stage of maturity being enjoyed by
the researchers in the sixties and thereafter.
Much of the research effort in the fifties, there-
fore, was focused on the development of ap-
proximate methods of solution of the general
theory to cope with the growing technological
demands. R.N. Arnold and G.B. Warburton
{7, 8] have calculated the natural frequencies
for circular cylindrical shells of finite length,
which are either simply supported or rigidly
clamped at both edges. In analysis, they used
the strain-displacement relations of the Love-
Timoshenko theory, Timoshenko’s version of
Love’s first approximation, to express the
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strain energy and the kinetic energy in terms of
the displacements and then derived Lagrange’s
equations assuming the displacement compo-
nents such as to satisfy the boundary condi-
tions. An equivalent wavelength factor was
introduced to make estimation of the natural
frequencies for cylinders with solidly built or
flanged edges as seen in practice. They also
performed an experiment and compared the
results with the theoretical predictions. In the
experiment, the modal characteristics were
determined by detecting the sound intensity
variations by a stethoscope. M. L. Baron and
H. H. Bleich[9] have calculated the natural
frequencies of an infinitely long circular cylin-
drical shell. The shell is first assumed as mem-
brane without bending rigidity, and the bending
effects are incorporated subsequently according
to Rayleigh’s principle for the eigenvalues. Y-Y.
Yu[10] wused the approximate equations of
the Donnell-type to calculate the natural fre-
quencies of a circular cylindrical shell of finite
length which were either simply supported or
rigidly clamped at both edges, or simply sup-
ported at one edge and rigidly clamped at the
other. Assuming that the shell is comparatively
long and it vibrates in a mode characterized by
a fairly small number of longitudinal waves and
a large number of circumferential waves, he has
derived a simple formula for calculating the
natural frequencies. He has also derived the
characteristic equations in simple form, which
have turned out to be identical to those of the
lateral vibrations of an elastic beam, The
Donnell-type of approximation was also used
by K. Heki[11]. Although he didn’t specifical-
ly refer to Donnell’ work, it is apparent from
the fundamental assumptions in his analysis
that the approximation is the same as the one
here referred to as the Donnell-type. A detailed
investigation on the characteristic values for
both the circumferentially closed and open
shells has led to the following conclusions:
(1) The approximation yields accurate solu-
tions for the natural frequencies unless the
frequencies are very high and the shell is ex-
tremely long. (2) The edge-zone bending solu-
tions which decay out rapidly as the distance
from the edges increases do not have significant

influence on the natural frequencies. (3) The
frequencies are determined mostly by the glob-
al solutions which vary gradually over the entire
surface of the shell, and they are significantly
influenced by the in-plane boundary condi-
tions. His work seems to have been left relative-
ly unknown without receiving worldwide recog-
nition in spite of the importance of his con-
clusions. In particular, the importance of his
findings concerning the influence of the in-
plane boundary conditions should not have
been overlooked.

The traditional approximate analysis has
been carried over even to the present computer
age. V. I. Weingarten(12] has made an analysis
on a circular cylindrical shell which is rigidly
clamped at -one edge and completely free at the
other, and performed an experiment on butt
welded steel test specimens detecting the reso-
nance characteristics by a microphone. J. D.
Watkins and R. R. Clary[13] carried out an
experiment on spotwelded stainless steel  test
specimens with the free-free and the clamped-
free edges. J. L. Sewall and E. C. Naumann[14]}
performed an analytical and experimental study
on the free vibrations of unstiffened and
stringer-stiffened circular cylindrical shells. The
unstiffened test specimens were fabricated from
aluminum-alloy sheet. Four sets of boundary
conditions were investigated; they were (1) the
free-free, (2) the simply supported-simply
supported, (3) the clamped-free, and (4) the
clamped-clamped edges. In Refs.[12, 13, 14],
the experimental results have been compared
with those determined analytically in one way
of approximation or another proposed by
earlier researchers. R. W. Nau and J. G. Sim-
monds[15] have derived a simple formula for
the low natural frequencies of a clamped-
clamped cylindrical shell by the asymptotic
method.

In the meantime, a great progress was ob-
served in the development of high speed digital
computers with regard to their memory capac-
ity, efficiency as well as availability. Research-
ers in the late fifties and thereafter were able
to perform extensive numerical calculations
taking account of all possible combinations of
boundary conditions and the complicated ef-

This document is provided by JAXA.



The Free Vibration Equations, Natural Frequencies and Modal Characteristics of Closed Circular Cylindrical Shells

fects of various factors and parameters. Among
the overwhelming volume of literatures, we
shall here make reference only to a limited
number of those concerned with the classical
problem of plain homogeneous circular cylin-
drical shells. B.L. Smith and E.E. Haft[16]) and
D.F. Vronay and B.L. Smith{17} have calcu-
lated the natural frequencies for a shell with
rigidly clamped edges. Though they claim that
they have solved exactly the equations derived
by Fligge and decoupled by Yu, they have
actually worked out with the Donnell-type
equations. Their numerical solutions may there-
fore be regarded as the exact solutions to the
Donnell-type equations. A.E. Armenakas{18]
has calculated the natural frequencies of a
simply supported circular cylindrical shell by
the Fliigge and the Donnell-type equations and
established the range of validity of these equa-
tions by a numerical comparison of the results
with those obtained by J.E. Greenspon[19]
and D.C. Gazis[20] on the basis of the theory
of clasticity. He has derived a simple formula
for the lowest natural frequencies. Both Green-
spon’s and Gazis’: papers published in 1958
are also typical examples of the computer-age
products. Greenspon has calculated the natural
frequencies of the flexural vibrations of a hol-
low circular cylinder of finite length. He treated
the cylinder as a three dimensional body assum-
ing that the thickness-bounding surfaces were
traction free and the normal cross sectional sur-
face of the axial edges were to remain circular
such that w = v = 0 be satisfied, The resultant
forces and moments acting on the edges have
been evaluated and found to be zero except for
the case of n = 1. Numerical calculations were
performed for n = 1 and 2 and the results have
been compared with those of the Timoshenko
beam theory (n = 1) and those obtained by
Arnold and Warburton (n = 2). Gazis has in-
vestigated the plane-strain free vibrations of a
thick-walled hollow cylinder of infinite length
in the framework of the theory of elasticity.
The thickness-bounding surfaces are assumed
traction free. He has shown that the extensional
and shear modes can exist uncoupled in the
axisymmetric vibrations and derived approxi-
mate expressions of the frequencies for these

modes, which tend to the simple thickness-
stretch and thickness-shear modes of an infinite
plate as the thickness-to-radius ratio approaches
zero. He has also deduced an equation for the
frequencies of the classical extensional vibra-
tions in cylindrical modes from the analysis of
the unsymmetric vibrations. A transition from
the shell vibrations to the Pochhammer vibra-
tions of a solid cylinder has been established on
the basis of the results of the analysis and the
numerical computations covering the entire
range of the thickness-to-radius ratio. C.B.
Sharma and D.J. Johns{21] have calculated
with the aid of the Fligge theory the natural
frequencies of a finite cylindrical shell whose
edges are either rigidly clamped and force free
or rigidly clamped and ring-stiffened. A com-
parison of the results with those obtained by
the Love-Timoshenko theory indicates there
exists no significant difference between the two
theories.

A series of papers{22, 23] published by K.
Forsberg, a former student of Professor Fligge
at Stanford University, present thus far most
extensive and rigorous numerical solutions tak-
ing account of all possible combinations of
boundary conditions. His solutions are exact
in the sense that no approximation has been
introduced beyond those underlying the basic
equations formulated by Fliigge. The numerical
calculations were performed in a broad range of
the geometric parameters; i.e., the length-to-
radius and the radius-to-thickness ratios. In
general, there are sixteen possible sets of homo-
geneous boundary conditions at each edge
consisting of appropriate combinations of the
following four pairs:

lateral displacement

or shear; w=0o0rS=0
axial rotation or moment; f=0orM=0
axial displacement or

normal force; u=0o0rN=0
circumferential displace-

ment or shear; v=0o0orQ=0

Most of the previous investigators had been
concerned only with three typical boundary
conditions loosely defined as the simply sup-
ported, the rigidly clamped and the force free
boundary conditions specified by
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simply supported;

rigidly clamped;

force free; S=M=N=Q=0

Forsberg has investigated all sixteen cases and
presented the results for ten representative
cases including those specified with different
conditions at different edges. One of the most
important conclusions of his analysis on the
breathing vibrations (n > 2) is that the effect
of the axial constraint is significant even for
very long shells and for all values of the radius-
to-thickness ratio, so that the minimum fre-
quencies may differ by more than 50 per cent
depending on whether u = 0 or N = 0 at both
edges. As to the axisymmetric (n = 0) and the
beam-like bending (n = 1) vibrations, it has
been shown that the vibration characteristics
are governed primarily by the membrane be-
havor and they are strongly influenced by those
in-plane boundary conditions involving u and
vor Nand Q.

Since the development of a first complete
linear theory of shells by Love in 1888, a great
progress has been made in the development of
the general theory of thin shells along with the
aforementioned developments in the analysis of
the free vibrations of circular cylindrical shells.
Literatures are already almost superfluous, and
a number of different theories have been pro-
posed by many authors. Most of these theories
are based on the Kirchhoff-Love hypothesis and
they are nowadays commonly known as the
classical theories. To name some, they are the
Love[3], the Fliigge[6], the Novozhilov[24],
the Koiter[25], the Sanders[26], the Love-
Reissner{27], the Love-Timoshenko[28], and
the Vlasov[29] theories. Here, the Love-
Reissner and the Love-Timoshenko theories
mean, respectively, Reissner’s and Timo-
shenko’s versions of Love’s first approxima-
tion theory. There also exist various simplified
theories specifically designed for practical ap-
plications for particular shell configurations.
Probably, the best known of them is the Don-
nell{30] theory for circular cylindrical shells.

The accuracies and the ranges of validity of
the classical theories have been investigated by
many researchers, most thoroughly for static
deformations and stresses. It is now well-known

that a first approximation theory consistent
with the Kirchhoff-Love hypothesis should be
such that the strain energy expression consists of
two terms; one is due to the membrane stretch-
ing and the other to the flexural bending. Most
of the well-known classical theories such as
those of Refs.[3, 6] and [24] through [29] are
actually consistent first approximation theories
in this regard. Aslong as a theory is formulated
on the basis of the Kirchhoff-Love hypothesis,
its accuracy cannot surpass that of Love’s
theory even if it is seemingly more accurate
because of retention of higher order terms in its
equations. An exposition of the state of art as
well as additional references on this subject can
be found in a previous paper of one of the
present authors{31]. Much less attention has
been paid to the accuracy and the consistency
of the general theories of shells when they are
applied for the dynamic problems. As far as the
consistency check and the global error estimate
of solutions are concemed, it appears more or
less straightforward to follow the same ap-
proach as in the static theories by adding the
kinetic energy terms to the energy expression.
A pointwise local error estimate of solutions,
however, is an extremely difficult task, indeed
almost impossible at the present time, if it is
dealt with in the framework of the general
theory. It has been done mostly by comparing
the numerical values of the solutions obtained
by some particular shell theories with those
obtained by a seemingly more accurate theory
for a particular boundary value problem. Ex-
amples of this for the free vibrations of circular
cylindrical shells may be seen in Refs.[18, 22}
and Ref.[21]; the formers are concerned with
the comparison of the Donnell and the Fliigge
theories, and the latter the Love-Timoshenko
and the Fliigge theories. The relative accuracies
of the theories may also be examined analyti-
cally (or qualitatively) by comparing the terms
involved in the governing equations or in the
characteristic equations. This approach has
been employed by P.M. Naghdi and J.G. Berry
[32], K. Heki[11], and A.W. Leissa[33]. None
of their papers gives detailed considerations on
the boundary conditions, except that Heki has
pointed out the important effect of the in-plane
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boundary conditions on the natural frequencies
and Leissa has examined the characteristic
equations for shells with simply supported
edges derived from a number of different theo-
ries. The reader is urged to refer to Leissa’s
report for a detailed account of the state of art
and a complete list of literatures on the subject
of the vibrations of shells by 1973,

A great effort has also been being made to
develop higher order shell theories as well as to
establish a rational foundation of the theory of
shells upon the theory of elasticity. The previ-
ously cited papers of Greenspon and Gazis are
typical examples of the work in this direction,
and they have provided a rational mean for the
comparison of the shell theory with the elastic-
ity theory. To make a complete list of litera-
tures on them is out of the scope of the present
paper. We only cite a few of them which deal
with dynamics of circular cylindrical shells.
They include the papers of P.M. Naghdi and
R.M. Cooper[34], T.C. Lin and G.W. Morgan
[35}, G. Herrmann and I. Mirsky{36], and
I. Mirsky and G. Herrmann{37]. A notable
feature of these papers is that the transverse
shear and the rotatory inertia are incorporated
in their approximate shell theories deduced
from the theory of elasticity just as those in-
corporated in the Timoshenko beam theory
[38] and in the Mindlin plate theory[39].

Present Paper

The purpose of the present paper is twofold:
We shall on one hand seek for a system of con-
sistent first approximation equations as simple
in form as possible for the free vibrations of a
circular cylindrical shell within the framework
of the classical theory based on the Kirchhoff-
Love hypothesis. We shall on the other hand try
to establish analytically (or qualitatively) the
relative accuracies of some of the representative
classical theories by comparing terms involved
in the governing equations. As far as the second
part of the purpose is concerned, the present
paper belongs to the class represented by the
papers of Naghdi and Berry[32], Heki[11],
and Leissa{33]. It should be noted, however,
that the emphasis in the present paper is placed
on the influence of boundary conditions on the

accuracies of solutions, which has not been
discussed thoroughly in those earlier papers.

A first approximation is achieved neglecting
small terms of order of magnitude of the funda-
mental errors inherent to the Kirchhoff-Love
hypothesis. For this, use is made of the well-
established fact that the classical shell theory
is valid in the ranges (see for instance F.I.
Niordson’s report[40]).

h/Rp, + (h/Ap)? << 1
h being the thickness of the shell, Ry, the mini-
mum radius of curvature, and Ay, the minimum
wave length of deformation. We can also well
anticipate, as noted by A. Kalnins[41], that the
free vibration spectrum predicted by the clas-
sical shell theory is accurate only for the fre-
quencies well below the minimum frequency of
all the thickness-mode vibrations obtained by
Gazis[20]. We thus tentatively set an upper
limit to the frequencies. Small terms in the
equations are neglecied by an appropriate
order-of-magnitude comparison. We assume
that the difference from one theory to another
is mainly attributed to the difference in the
expressions of their constitutive equations. We
shall only be concerned with the vibrations in
the so-called breathing mode characterized by
n>2.

The present paper proceeds as follows: In
Section 2, the basic equations including the
boundary conditions, the kinematic relations,
the equations of motion, and the constitutive
equations are presented. A unique feature in
this section is that a set of the constitutive
equations is written in such a way that it can
easily be specified for any one of those formu-
lated in the Fligge[6], the Koiter[25], the
Novozhilov[24], the Naghdi[42], and the
Love-Reissner[27] theories by introducing spe-
cial parameters here referred to as the theory
indicators. In Section 3, the equations of mo-
tion are reduced to a single eighth order differ-
ential equation in terms of the lateral displace-
ment and its derivatives, which is here referred
to as the free vibration equation. Also, those
quantities to be prescribed as boundary condi-
tions at the axial edges are expressed only in
terms of the lateral displacement and its deriva-
tives. They are called supplemental equations.
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In Section 4, an order-of-magnitude estimate
is made for the eigenvalues as well as for the
geometric parameters in consistence with the
fundamental assumptions underlying the clas-
sical theory. On the basis of this order-of-mag-
nitude estimate, in Section 5, the free vibration
equation and the supplemental equations are
simplified. The order-of-magnitude estimate for
the eigenvalues is more advanced in Section 6
for relatively low frequencies. Substitution of
an assumed form of the eigenfunction into the
free vibration equation yields an algebraic equa-
tion to be satisfied by the eigenvalues, which is
here referred to as the auxiliary equation in
order to distinguish it from the characteristic
equations resulting from the boundary condi-
tions. The specific forms of the solutions of
the auxiliary equation are determined within
certain ranges of the frequency, the circumfer-
ential wave number and the thickness-to-radius
ratio. They are then written out explicitly for
very low frequencies to yield a simple formula
for calculating the natural frequencies. In Sec-
tion 7, the supplemental equations are written
in terms of the eigenvalues and the indetermi-
nate coefficients of the eigenfunction. Specify-
ing homogeneous boundary conditions at the
axial edges, we obtain four pairs of homoge-
neous linear equations for the indeterminate
coefficients, which are here referred to as the
boundary constraining equations. They are sim-
plified by an appropriate order-of-magnitude
comparison. As an example, the characteristic
determinant is calculated for the simply sup-
ported edges. The equation obtained by setting
the characteristic determinant equal to zero is
here referred to as the characteristic equation.
In Section 8, a brief explanation is given on the
method of numerical calculations to be per-
formed for the verification of the approximate
equations derived in the preceding sections. In
Section 9, the accuracy of the Donnell-type
approximation is examined.

2. BASIC EQUATIONS

Let us consider a thin-walled circular cylin-
drical shell made of a linearly-elastic, homoge-
neous and isotropic material with Young’s

modulus E, Poisson’s ratio v and the mass
density p . Let the wall-thickness, the radius
and the length of the shell be denoted by h, R
and 2L, respectively. Let the coordinates x and
@ be chosen on the midsurface, such that the x
measures the axial distance along the generator
from the center of the cylinder and the 6 the
circumferential angular extent with R@ being
the arc length. The shell geometries, the coordi-
nate system, and the positive direction of the
components of the displacements, the forces
and the moments are depicted in Fig. 1.

The infinitesimal displacement components
Uy, Uy and w, are defined in the directions of
the base vectors tangent to the x and 8 coordi-
nates and along the outward normal to the mid-
surface, respectively. Then, the strains €y, €,
and 7y, the changes in curvature Ky and kg,
the relative torsion 7 , and the rotation about -
the normal w, are related to the displacement
components by

€y = Buy /0%
eg=(dup/3g+w) /R

T = 0/ Px+ (9, /99) /R
K, =-3%, [ox*

k9 = (dug /20 - 3%, /30%) /R*
2Rt = 3dug /0x - (du, /20)/R - 40w, /0x30
20, = dug /9x - (aux/ao)/R

Here, the torsion 7 is referred to as the relative
torsion in order to distinguish it from the tor-
sion 7, defined by

w=°t-w /R (2)
which may be specifically referred to as the
absolute torsion.

The expressions of the constitutive equa-
tions differ slightly from one theory to another.
But those based on the Kirchhoff-Love hy-
pothesis can most often be written formally
for circular cylindrical shells as

N, =K(¢, + veg + SE\Rx,)

Ng =K((1+0E;)¢g + ve, — 6E;Reg]

N, =Gh((1+38Ey/4) 7,9 + OE,R7/2)

Ngy, =Gh((1+30E;/4)1, 9 ~ E¢R7 /2] (3)

1
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M =D(x_+vg+Dye /R)
M= D(xg+v&_-D,ey/R)
Mg =(Gh/12)(r-D,& /R+D,7,4/2R)
Mg, = (Gh/12)(=-Dg /R-Dy7, 6 /2R)

Here, Ny, Ny, Nxg and Ngy are the stress re-
sultants, and My, My, Myy and My the stress
couples. The elastic constants K, D and G are
given by

K=Eh /(1-v?)
D=Eh%12(1-v%) (4)
G=E/2(1+v)

The geometric parameter 0 is defined by
8=h%/12R’? (5)

The parameters E,, E,, E3, E4, Es, Eg, Dy, Ds,
D3 and D4 are quantities at most of order of
magnitude unity and their specific values differ
with different theories. If their values are speci-
fied as in Table 1, Eqgs. (3) become identical, or
at least equivalent, to those constitutive equa-
tions formulated in the Fligge[6], the Naghdi
[42], the Koiter[25], the Novozhilov[24], and
the Love-Reissner[27] theories. For brevity, we
shall refer to these parameters as the theory
indicators.

If the effect of the rotatory inertia about the
normal to the midsurface is neglected, the equa-
tions of motion for the free vibrations of the
circular cylindrical shell are given by

RON, /dx+0Np, /96 = phR(8"u, /3t* ]
dNg/36 +RIN, 6/9x+Qg = th[azug/atgjp
RIQ, /9x+8Qq/00 -Ng = phR(0%w,/0t*); (¢
RIM, /Ox+3Mg, /90 -RQ,=-6phR*(9°w,/0x01%),
Mg /36 +ROM, 6/9x-RQg

=00 hR* [ Pug /0t —33wz/303t2]r

Where t is the time, and Q, and Qg are the
lateral shear resultants.

The right-hand members of Eqgs. (6) repre-
sent the inertial components. They are desig-
nated by the square brackets attached with the

subscripts f, p and r to indicate the lateral, in-
plane and rotatory inertial components, respec-
tively. It will be shown in the supsequent analy-
sis that the rotatory inertial components are
always negligible within the framework of the
first approximation shell theory.

In Egs. (1) and (6), the terms to be neg-
lected in the Donnell approximation are desig-
nated by underline. The accuracy and limita-
tion of the Donnell approximation will be
examined in Section 9.

The boundary conditions for free vibrations
of the circumferentially /closed circular cylin-
drical shell are prescribed at the axial edges x =
L and —L as proper combinations of the follow-
ing four pairs of the homogeneous equations:

w,=00rSx=0

B=00rMy=0

=z
uy = 0 or Ny =0 at x = *L )]
ue =0or TXO =0
where {8 is the axial rotation defined by
p=dw, /ox (8)

ans Sy and Tyg are the equivalent edge shears
defined by

Sy =QX+( ang /38)/R
Txe =Nx0+Mx0/R

The following nondimensional quantities
and operators are introduced to present the
subsequent analysis in nondimensional form:

(9)

u=u,/R, v=y,/R, w=w, /R,
N=N,/K , M=RM, /D, $=8,/K, Q=Tyy/K,
y=x/R, T=t/w, £=L/R, (10)
()=d()/ay, (Y=0()/30, ()*=a()/oT,
PO)=() +()"
where

p’=(1-v)pR*/E (11)

3. GOVERNING EQUATIONS AND
EIGENFUNCTIONS

The number of the equations of motion is
reduced from five to three by eliminating from
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them the lateral shear resultants Qx and Qg.
The three equations are then written in terms
of the displacement components with the aid
of Eqgs. (1) and (3). The result may be written
in nondimensional form as

Glu“+G2u' '+G3v"+G4w"' +G5w'" +Gsw'

—EuJ;* =0 12)
HIV"+H2V”+H3u'.+H4W".+H5W". +H6W.
(I +(8)) v+ 3w T=0 (13)

I leo ! e soe .
KIU +K2u +K3U+K4V +K5V +K6V

-P'w-K,w -Kgw- [v'];* - [w/5]¥*
+(P2wIT =0 (14)

where the coefficients G;, H; and K; are con-
stants involving », §, E; and D;, whose explicit
expressions are given in Appendix A.

Let us multiply Eqs. (12) and (13) with Hj
and Gj, respectively, and differentiate them
simultaneously with respect toy and 0 to write
them in the form

Ln fite

G,(Hzu ") +G2(H3U")" +H3(G3V"" +Gew

+G5W"“.+G6W”.>— [Hslll-];*=0 (15)

H(Gav' )" + Hy(Gev' ) +G(Hpu' +Hpw'
+Hew' S +How ') - (0 + (8 )Gy O™
+Gy(0w I+ =0 (16)

Also, from Eqs. (12) and (13), we have
Gev' =G +Ggu +Gw +Ggw + Gew'){\ﬂ’]';*
Hau =~(Hyv +Hyv +Hw +Hw +Hgw) (17)
H(1)+ (83, ) v™* - (0w )™

Substituting H3u’* and G3 v’ from Egs. (17),
we eliminate u from Eq. (15) and v from Eq.
(16). We can thus decouple u and v from Egs.
(15) and (16). The result may be written in the
form

Lu= """+ fow'" " fow! ::+f4w" .

+fgw! 4t R fgw ! (18)

Lv :ng"“.'*' gzw"'"+gsw"'+g4w”'+g5wm

1 - ¥k

e odkk «Jok .
+ BW + 8w + g W + gW =

where L( ) is a differential operator defined by

LO)=Ly( )"+ Ly )" +Lg( )
T L) ML B (19)

The coefficients f;, g; and L; in Egs. (18) and
(19) are constants, whose explicit expressions
in terms of H; and G; are given in Appendix A.

Let the differential operator L( ) be applied
to Eq. (14) and the terms in it with Lu and Lv
be substituted from Egs. (18). Then, we can
eliminate u and v to have an eighth order dif-
ferential equation for w. The result may be
written in the form

aslwllfflfll+a82wllllll * .+333W"” b +384W" “.+385W neee

+aelwilllll+a62w""' * +assw||" +364\V."+a41 Wllll

+a42W”"+a43W::

+( bW +bggw"" +b63W”:: +bey w:::
+b W 4w +bygw + bW +bagw )**
+(c41“?"'4c42w""+c43w: :+c21W"+022W“+C00W)**

Hdgyw"+ dggw "+ dogw ) T =0 (20)

where the coefficients ajj, bij’ Cjj and dij are
constants, whose explicit expressions in terms
of K, f;, g; and L; are given in Appendix A.

Let us now derive the differential equations
for N, M, S, and Q, similar to Eqgs. (18) for u
and v, to relate each of these quantities to w,
so that the boundary conditions may be given
in the form of boundary constraining equations
written only in terms of w. The right-hand
members of Egs. (3) for N, and M, are written
in terms of the displacement components with
the aid of Eqs. (1). The differential operator
L () is applied to these equations and the terms
in them with Lu and Lv are substituted from
Eqs. (18) to eliminate u and v. As to S and Q,
we first eliminate Q4 from Egs. (9) for S, by
substituting it from the fourth of Egs. (6).
The right hand members of Eqs. (9) can now be
expressed in terms of the displacement compo-
nents with the aid of Egs. (1) and (3). Again,
the differential operator L( ) is applied to these
equations and u and v are eliminated substitut-
ing Lu and Lv from Egs. (18). As a result, we
have the following nondimensional expressions:
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LN=nw"" "+nmw'"’ +n3w::;+n4w” "+n5w::
+(ngw"+ " ngr +ngw'+ngw
+(n,w'' 0w +nggw )

LM?nlW”"""'mzw"”"+n§W”::'hn!W:::+m5w"”+msw”"
Fmpw +(mgw"rmgw! "4 m g “+my w'! @n

Fmygw )+ g+ muwu)ﬁ

. csn '
— HIHIN] {IH e neee | I e
LS=gyw"" Hsgw " Hsgw | s W Hsw tsgw

e :‘-Slowl "+SH“{,H I

+sw' +(sgw””'+sgw
+512w' YRE (Slswm‘FSMW'”)ﬁ'}'st'

Lqulw”'”.+q2W”'m+q3W'::'+q4W""+q5wlm

+(qﬁwlll‘+q7wl"'+q8wl' D**‘*‘QQW'.::

where the coefficients nj, m;, s; and q; are con-
stants, whose explicit expressions in terms of
f;, gj and L; are given in Appendix A.

In what follows, we shall refer to Eq. (20) as
the free vibration equation and to Egs. (18) and
(21) as the supplemental equations. These equa-
tions are exact in the sense that no approxima-
tion has been made throughout the entire proc-
ess of the derivation starting from the basic
equations formulated in the preceding section.
It should be noted here that the exact expres-
sions of the coefficients of these equations
given in Appendix A can be arranged in the
form of polynomials in 6 if they are written out
full in terms of v, 6, E; and D;. This indicates
that a good approximation may be achieved for
these equations by neglecting the higher order
terms in 8 in the polynomial expressions of
their coefficients if § is assumed very small in
comparison with unity.

It can be shown that the use of the basic
equations formulated in the Sanders theory
results in the free vibration equation and the
supplemental equations which are identical to
Eqs. (20),(18) and (21) specialized for the
Koiter theory. Thus, in what follows, we shall
refer to the theory associated with these equa-
tions as the Koiter-Sanders theory.

The homogeneous systems of the free vibra-
tion equation and the boundary conditions
with due consideration of the supplemental

equations constitute eigenvalue problems for w.
In these eigenvalue problems, w may be given
in the form

w~§w Pyy 6 sin®T 22
=2 ; € 1" cos nf sin 22)

1
Here, W; are the indeterminate coefficients, n
the circumferential wave number, p; the eigen-
values characterizing the axial wave pattern,
and w the frequency parameter defined by

o= (1-+*)(27Rf)’p/E (23)

f being the frequency measured in Hz,

The supplemental equations imply that all
the dependent variables may also be expressed
in the form similar to Eq. (23), such that

8

(u, B,N,M,8) = 3 (U;, B,,N;, M, S; DeP ¥
1=1

cos ng sinwT (24)

8
(v,Q) Z.ZI(Vi,Qi) &Y sin ng sino T
1:

where the coefficients Uj, B;, Nj, M;, S, Vj and
Q; are related with W; by homogeneous linear
relations yet to be determined.

4. ORDER-OF-MAGNITUDE
ESTIMATE

It is well-known that the basic equations
formulated in the classical shell theories on the
basis of the Kirchhoff-Love hypothesis contain
errors of order of magnitude

h/R + (h/\)?

A being a representative wave length of vibra-
tion mode (see, for instance, Niordson{40]).
Accordingly, as long as we are concerned with
the classical shell theories, we may assume
h/R <1

and

(25)

(h/2, )21, (h/3)*<K1 (26)

where Ay and Ay are the axial and circumfer-
ential wave lengths, respectively.

The assumption of Eq. (25) immediately
gives

6 K1 (27)

This implies that the coefficients in the free
vibration equation and in the supplemental
equations may be given as a first approximation
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by the leading terms in their polynomial expres-
sions in 8.
Since A4 is given by

20 =27xR/n (28)
we have
(x5/3)(b/4y)? = on® (29)

Thus, the second of the assumptions of Egs.
(26) imposes a limitation on n such that

6n? << 1 (30)

On the other hand, the first of the assump-
tions of Egs. (26) is concerned with the eigen-
values p;. As shown by the first author of the
present paper in his earlier paper[31]) on the
static problems, four out of eight eigenvalues
p; (i = 1, 2, 3, 4) represent the solutions for the
global deformations which vary gradually over
the entire surface of the shell, whereas the re-
maining four represent those for the edge-zone
deformations which occur in the narrow edge-
zones and decay out rapidly as the distance
from the edges increases. It is more or less ob-
vious that the global solutions exist in the free
vibration problems. The representative axial
wave length, A, of the vibration mode is de-
termined by p; for the global solutions, such
that

Im(pi)=27rR/2X a1

where Im( ) indicates the imaginary part of p;.
This gives

8 Im(p;) I*= (x/3)(n/A)* (32)
According to the first of the assumptions of
Eqs. (26), the right-hand member of Eq. (32)
should be a very small quantity in comparison
with unity. Since the real and the imaginary
parts of p; are of the same order of magnitude,

the following holds for p; for the global solu-
tions:

5l p <1 (33)

It has also been shown in the static analysis that
p; for the edge-zone solutions are of order of
magnitude of (R/h)*2, so that & | p?| are of
order of magnitude of h/R. Consequently, the
order-of-magnitude relation of Eq. (33) holds
for all p; under the assumptions of Egs. (25)
and (26), if the edge-zone solutions similar to
those in the static problems exist in the free

vibration problems. The existence of the edge-
zone solutions in the free vibration problems
will be proved in Section 6.

Gazis[20] has shown by an exact three-
dimensional analysis on the plane-strain vibra-
tions of hollow elastic cylinders that the simple
thickness-shear mode occurs at the lowest fre-
quency of all the thickness-modes, which coin-
cides asymptotically as h/R = 0 with the fre-
quency wg of an infinite plate;

o =((1-v )/2]’/2:rR/h (34)

In general, the thickness-modes do not appear
by themselves but coupled with other modes.
As noted by Kalnins[41], therefore, the free
vibration spectrum predicted by the classical
shell theories based on the Kirchhoff-Love
hypothesis is accurate only for frequencies well
below wg. An upper bound of the frequency
parameter w may be arbitrarily set for our pur-
pose as wy, such that

o, =(h/R) o (35)
This gives
olo, o,=0(1) (36)

In other words, the range of the frequency
parameter we are concerned with is specified by
w=0(1) at most 37

5. FIRST APPROXIMATION

A first approximation to the free vibration
equation, Eq. (20), and the supplemental equa-
tions, Eqgs. (18) and (21), may be established by
neglecting higher order terms in the order-of-
magnitude comparison consistent with the
fundamental assumptions presented in the
preceding section.

First, the coefficients of the exact form of
these equations given in Appendix A are writ-
ten out explicitly in terms of », 8, E; and D;,
and they are arranged in the form of poly-
nomials in 6. As a first approximation to these
coefficients, only the leading terms in the poly-
nomial expressions may be retained neglecting
the higher order terms in 8 in accordance with
Eq. (27); ie., 6 << 1. The leading terms of
these coefficients are designated by the super-
script O such as ag for ajj and their explicit
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expressions are given in Appendix B.

Second, some of the terms in the exact equa-
tions drop as a result of an order-of-magnitude
comparison in accordance with Eqgs. (30) and
(33); ie., 5n® << 1 and 8 | pﬂ << 1. For in-
stance, dw and 6w or

rerste $E870 0

as well as 0w’ may
be omitted in comparison with w”’*’, Further-
more, Eq. (37) for w allows us to neglect terms
such as Sw¥ in comparison with w**

As a result of these approximations, the free
vibration equation reduces to

5(Vaw+a23w“::+2w:::+afzw""+W::)+(1_,,2)wnu
4 ey
+{P w3 - ((3+20)w'+w ")}

oy u‘ﬂ}
2

W:lftf:o (38)

[lu

Without loss of generality, terms of order of
magnitude of the errors involved in the present
approximation may be added to or subtracted
from the resulting approximate equations.
Thus, it is admissible to write Eq. (38) in the
form

v (V +1) w+4k w”"+a6w +a42w
Hop W) - LB+ 2v)wew ) )70
3- 2 e
—{E-l—_‘:'ngjp’f *E-l"_—ijp} /0

B 50 (39)

where
0
a.=a, -6
~63 gs (40)
849 8497 2
and 4k* is a geometric parameter defined by

4! =12(1-v3 (R/h)’
=(1-v") /s

The supplemental equations reduce to

(41)

ee 2V Wk
Lou=-vw"' 4w+ w ]p
.
w]p
214
L,N=(1-v Hw" +5\naw +nw) EVVWJ +[ w)

Lyv=-(2+)w" -w '+ ["2—
H
P

L M=~ V‘(w"+ vw') +m0w””+m0w"" —vw
n 1] 2 ok (42)
V A+ vw )+m11 tiSw ]p
—_ I A
5 [w'+VW ]p |
L,S=- piaw" ! H2)w' )+ sow”'” +s0W" ! ':*-sow'"

+Hr'w', +E >y W) 7w s

sl N - B, s 2P W
e w J*’f*
L,Q=-(1-v")w"" +5(qw +q5“f D,
+{(1H)w" ];*
where
LO=rOC2rO +Z O @)

The supplemental equations, Egs. (42), can
be simplified further if an appropriate use is
made of the free vibration equation, Eq. (38) or
(39). Take for instance the first of Egs. (42)
and apply it with 87 8() to have

578 —__ 5 8 lll+ 6 8 1o
Lou=-v(3p7 w)"'+ (07 w) (44)

2v 8k
+1 0 w]p

Then, § 78w in the first and second terms of
the right-hand members of Eq. (44) is substi-
tuted from Eq. (38). The result is

B Lga = B (S ! 2 g1 1)
H(1-pP) i ]-[5(ag3w'“::’+2w' i
+322W”';:+W';::)+(1—v2)w”""']
+v{[V‘w”'jf—[(3+2,,)wun|+w,,,..)p}**
P (i e )

_y{[ 72 "']p ; [1 - nnj }ﬁ
+{[:13::V2w'ﬁ£p f —[1 vwni }ﬁ
2y
& - w o
+-—— 5[7 ']** (45)

The term with 8 [F3w’] S* is negligible in com-
parison with the terms with [F4w"'}§* ¢ and
[V4w"']?*in the right-hand members of Eq.
(45). Thus, the term in the right-hand members
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of Eq. (44) designated by underline is negligi-
ble, and the dynamic term due to the inplane
inertia in the supplemental equation for u
drops. In a similar manner, some of the terms
in the right-hand members of Eqs. (42) may be
neglected. As a result, the supplemental equa-
tions are now simplified to

Lou=-vw' +w' "
Lyv = ~(2+0)w" —w ™"
LON: (I—D2)W”" +5(ngwitt+ ngwﬂ) _Eypzwjg*

2v . H
+['1T, W]p
LM=-p* " +vw ) +miw™ v
s (46)
LoS=- 7w +(2-¥)w' I+ spw™ + 50w
LOQ:_<1_y2)wnl- +6(qgw,::.+qgwl...)

+{(1+v )w'" ]";

It should be noted here that none of Egs.
(38), (39) and (46) contains the terms desig-
nated by [ },. This indicates that the rotatory
inertia can always be neglected within the accu-
racy of the first approximation shell theory.

The coefficients a%,'ﬁij, n‘i, m‘]-), s‘i), and q(i)
in Eqgs. (38), (39) and (46) are quantities of
order of magnitude unity, whose specific values
differ with different theories as indicated in
Appendix B. It is readily recognized that these
coefficients are present only accompanied with
the static terms; those terms with spatial deriva-
tives only. Since the static equations are to be
deduced from the dynamic equations as a limit-
ing case of w —> 0, the static terms involved in
Eqgs. (38), (39) and (46) must coincide with
those in the static equations derived through
a purely static analysis. It has been shown in
the first author’s earlier paper[31] that those
terms with these coefficients are always negligi-
ble in the static equations, Instead of repeating
the same tedious work for a rigorous proof as
that presented in the earlier paper, the follow-
ing reasonings may be provided to ensure the
omission of these terms: The terms with these
coefficients as well as the terms with [w];*
and [w"];* in Eqgs. (46) will become important
only in a special case where p; take very small

values while n takes relatively large values. The
state of stress and deformation in this case is
nearly the same as that of the unsymmetric
cylindrical mode, or in other words, the unsym-
metric in-plane mode of a ring, which is nearly
independent of y. Thus, both N and Q are near-
ly identically equal to zero. Also, the terms
with ag. , Eio . m(; , s(i) are negligible in com-
parison with other terms involving higher order
derivatives with respect to 6 in the respective
equations.

Finally, the free vibration equation and the
supplemental equations are simplified to yield
the following system of equations: Free vibra-
tion equation;

7472 +1) w4k
Hr'w), - (BH2nyw+w "3 } /0

3- 2 =
AGS P W e - v, )/

+[—1—-%y w]fff /=0 47)
Supplemental equations;
Lyu=-vw"' +w'"’
Lov=-(2+)w"" -w™"
LN=(1-»")w"" - (vp W (48)

LM=-Pw"+ vw') -vw
LoS=-F*{w" +(2-v)w'"")
LeQ=-1-v )w""

The system of Eqs. (47) and (48) constitute
a first approximation to the governing equa-
tions for the free vibration of the circumfer-
entially closed circular cylindrical shells. It may

now be stated, since none of those coefficients
which are affected by the differences of the
theories is present in the governing equations,
that the use of any of those classical shell theo-
ries will yield valid solutions accurate enough
within the errors inherent to the Kirchhoff-
Love hypothesis.
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6. SOLUTION FORMS OF p;

Substitution of w from Eq. (22) to Eq. (47)
yields the auxiliary equation for the present
eigenvalue problems. If we write for simplicity

P=p (49)
and

Q=0

(50)
the auxiliary equation reads

F(P) =AP'+AP*+A,P+A P +A, =0 (51)
where
A, =0
A, =-28(2n"-1)
Ay =-2+1-1%+38(6n' ~6n"+1)

A= -%}SQ 2 (2n’+3+20)Q-26r%(2n*-3r2+1)(52)

-2 8, 3-v 32, 2
A4——1_V.Q +(1_yn +1_y).Q

2

PP+t -2+ D

Let us examine the functional behavior of
F(P) to get a good estimate of the solution
forms of p;. The second derivative of F(P) is
calculated as

d°F/aP?=12A ((P+A /4A,)°
+ (A, -3A%/8A,) /64A,)

After the substitution of Ay, Ay and A, from
Egs. (52), the second term in the square
brackets on the right-hand side of Eq. (53)
reads

(A,-3A2 /8A,)/6A,=(1-v*-3/2-0) /65 (54)

(53)

Thus, within the accuracy of the present ap-
proximation, we have

d°F/dP* >0 (55)
for

2<1-y" (56)
The upper bound of §2 is very close to

2=1 (57)

which corresponds to the natural frequency
of the circular cylindrical shell in an axisym-
metric cylindrical mode, or of a ring in an
axisymmetric inplane mode. As a matter of
fact, if we set ()' = 0 and ()" = 0 in Eq. (47),

we have
B e
EW]p + Ew3p’f =0 (58)

This readily gives w? = 1 as a nontrivial solu-
tion.

Since the vibration in the axisymmetric cy-
lindrical mode induces high inplane stretching,
it occurs only at a very high frequency. For
most of the problems of practical importance,
therefore, we may restrict our attention to the
frequency spectrum specified by Eq. (56).

The functional behavior of F(P) is such that
it monotonically decreases as P increases from
—o to a point where it takes its minimal value
and then it increases as P exceeds that point. If
A4 <0, F(P) = 0 has one positive and one nega-
tive real roots. If A4 > 0, on the other hand,
it has either no real root or only two negative
or positive real roots depending on the signs of
the minimal value of F(P,) and of P, at which
F(P) becomes minimal. The sign of P, depends
on that of Aj.

Let us now examine the behavior of A4 as
a function of 1. Let the three roots of A, (f2)
= 0 be designated by £2;, £, and §23. Then, the
following relations hold:

Q+2,+9, = (3-v)n%/2+1
0,2,+2,0,+2.0 = 1-v)n’(*+1)/2
2,9,0,=(1-v) dn’(n’-1)*/2

(59)

These indicate that one of the roots, say £,
must be of order of magnitude §n* and the re-
maining ones, £, and $23, of order of magni-
tude n?. Thus, the first two of Eqs. (59) reduce
to

Q2+, = (3-v)n" /2+1
2,9, = (1-v)n’ (n®+1) /2

The roots £2, and {23 are readily obtained
from Eqs. (60). These are subsequently used to
determine £2; from the third of Egs. (59). The
result is

(60)
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2, =0’ (- 1)¥(’+1)

Q,=(1-v)n7/2 61)
2, =n’+1

For n =0, Eqs. (61) give
2,=2,=0, Q=1 (62)

The value of A4(§2) is positive within the range
of the frequency parameter specified in Eq.
(56). We now have
Az >0 forn=0
Forn=1, Eqgs. (61) give

(63)

2,=0, 2,=010-v)/2, 2,=2 (64)
Since

(1-v)/2 < 1- (65)
we have

A, >0; (1-v)/2<0<1-
A,<0; 0<R<(1-v)/2

As noted before, in the cases where A3 > 0,
there exist either no real root or only two nega-
tive or positive real roots of P for F(P) = 0. This
means that all the roots of p; are either real,
purely imaginary or complex. This form of
solutions is completely different from that in
the cases of n > 2 where it will be proved sub-
sequently that A4 < 0 holds. These two differ-
ent cases, therefore, has to be dealt with sepa-
rately. In the present paper, we shall restrict
our attention to the cases of n > 2 leaving de-
tailed analyses on the cases of n =0 and 1 to
separate papers to follow.

For n > 2, we have

1-v" <0, <9,

so that
A<0; 2 <<=
A>0; 0<0<Q,

forn=1 (66)

(67)

} forn>2 (68)

It can be shown easily that £2; corresponds to
the lowest natural frequency of the flexural
vibration of the cylindrical shell in the cylin-
drical mode, or of the flexural in-plane vibra-
tion of a ring. As a matter of fact, if we set ()’
= 0 in Eq. (47), the free-vibration equation for
the cylindrical mode reads

« )"+1]2W:: + {szzjf_ ™ ]p }‘*/6

3-v .. 2 =
AGS v L -G wRlT/e
+ i wi /6=0 (69)

For the lowest natural frequency, we may as-
sume w? << 1 to reduce Eq. (69) to the form

Q( )"+1]2W::+{[w::]f—[w"]p}"/(’:() (70)
This immediately gives
o*=8n"(n" - 1)/’ +1) (71)

which coincides with £2, given in Egs. (61).

The flexural vibration in the cylindrical
mode induces little inplane stretching. It is
therefore well anticipated that £2; is the lowest
possible of all the natural frequencies of the cir-
cular cylindrical shell for n > 2. We may now
state, therefore, that the entire range of the
frequency parameter we are concerned with is
covered by

on’(m’-1)%(*+1)<e<1-* (72)
and that we always have
A, <0 for n>2 (73)

It now becomes clear that the auxiliary equa-
tion, Eq. (51), has one positive and one nega-
tive real roots and a pair of complex conjugate
roots of P. Thus, the eight eigenvalues p; take
the form

PyR=%¢,  R.p=Ti7
Pg» P> Pys Pe=F (6,1 i %)
where &, , 7, , §; and 7 are all real, and
is unit of imaginary number; i = (——l)%.
If the use is made of Egs. (74), the auxiliary
equation, Eq. (51), can be written in the form

(74)

5(P-6) (P+72)(P-(E3-75) +i2€,2,)

(P-(&-np) -i26,7,0=0 (75)

Rewriting the left-hand side of Eq. (75) in
the form of a quartic equation in P and compar-
ing its coefficients with those of Eq. (51), we
have
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(€ -nh+2(6 -7 =2(2n"-1)
G HIGEL SR R (GRS
=1-v2-Q+8(6n'-6n+1)
50280 (&2 - D)~ (8- ) (€242
=- f—j &+ (2n"+3+20) 2- 52n2(2n4—31?-£17)6
ol el enyt = 1 A 3
+f(*+ 1) 02 - én'n’-2nf+1)

Let us temporarily assume that the frequen-
cy is so small that

K1 (78)

Then, an examination of Eqgs. (76) reveals that

ff , 7}?, 5; and 17: are given in the form

ff =9 1/2n4q(2) + 5n3?1

2 172 4 2 3>
1'—‘—‘5 nq +5n7}

Y 0

! (79)
€= 01T,

- 6-1/2 2

2 ~
My Py + 7,

where qq, po, ?1 , '7\7'1 , Ez and 77'2 are quan-
tities of order of magnitude unity. These indi-
cate that 51 and 7, are of order of magni-
tide n?/k, whereas §, and 7, of order of
magnitude k, so that

=0(n”/k); i=1,2,3,4
=0(k) ; i=5,67,8

Since k is proportional to (R/h)% which
takes large values for thin shells, Eqs. (80) in-
dicate that the eigenvalues p,, p,, p3 and pg4 re-

present the global solutions, whereas ps, ps,
p, and pg the edge-zone solutions. Thus, the

| p, | (80)

existence of the edge-zone solutions similar to
those in the static deformation problems has
been proved.

It is of practical interest to investigate an
extreme case where the natural frequencies
assume low values in the vicinity of the lower
bound of the frequency spectrum specified in
Egs. (72) and the thickness-to-radius ratio takes
very small values, such that

2=0(én")

R (81)
Accordingly, we have from Eqgs. (79)

==t (82)

2 __ .2 _ s-172 2
2 =7 =0 ""p,

Also, from the second of Eqs. {(76), we have

po = (1-v")/4 (83)
These lead to

§2=7,=k (84)
and

Ps, Pes P, Py =tk (1£ i) (85)

which coincide with those obtained in the static
analysis in Ref.[31].

The values of qo remains as yet undeter-
mined. If we use the notation 51 instead of
Qo, the fourth of Eqs. (76) leads to a simple
formula for calculating §2;

Q=1 & +on' M’ -D* Y’ (n’+1)  (86)

Once &, is known, { is calculated easily with
the aid of Eq. (86). This simple formula is iden-
tical in form to that derived by Nau and Sim-
monds[15] by the asymptotic method.

7. BOUNDARY CONDITIONS

The coefficients Uj, By, Nj, Mj, S, Vjand Q;
in Eqgs. (24) are expressed only in terms of W;
with the aid of the supplemental equations,
Egs. (48), and the equation defining 8, Eq. (8).
As a result, we have

R

B =W

N, =-0(1-)pin’ +u(p} - )P IW, /4
Mi=-E(p?—n2)2(pf-”n2)+”n4JWi/°‘fi (87)
Si=-pi(pf—n2)2Epf”(2*”)n23“§/°7fi
V;=nl(2+¥)p; ~n"IW, /£,

Q;=(1-v")np; W, /Z,

where
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2.2, 3-v, 2 2,2 2 4
-n") +1—_;,(pi-n Jo+ = w

2
2z =(p" =

1 1

(88)

Assuming that the homogeneous boundary
conditions hold independent of @ and T, we
have the following four pairs of the boundary
constraining equations at y = +4:

8
% 2 22, 2 2. +P (89a)

S=0;j;pl(pi~n Y(p;«2-¥)n Je" iLWj=0
l:
8

rﬂ=0;2‘]%pi e+plLWl =0
l:

_ ,ZB‘ 2 22,2 . 2 4, +P.£ _(89b)

(M=0;. I[(Pi'n)(Pi"”n)"‘”n Je Vi Wi—O

i=

8

[[u= 0;.21pi(vp§+n2)e+pil’wi =0
l:
8

'N=0;_Z‘l[(lwz)p?nz“'(p?-n:z)wz] (89¢)
1=
&P, - 0
8
v=0; 2'((2+)p; -n'de it W = 0
y (89d)

8
Q=0; 2'p; ¢ifw =0
i=1 1 1

A set of additional four pairs of the boundary
constraining equations at y = —£ is obtained by
replacing +£ in Eqs. (89) by —£.

Here, the denominators £; in Eqgs. (87) have
been multiplied on all the corresponding i-th
members in the boundary constraining equa-
tions, so that the membersinw=0and §=0
contain £; as multipliers, whereas the denomi-
nators in the remaining equations drop. This
manipulation is admissible because we are con-
cerned with the solutions of the homogeneous
linear systems with eight equations with eight
unknown W;.

It may be more convenient to write Egs.
(89) in terms of real variables instead of the
complex variables p; and Wj. If use is made of
Egs. (74), the right-hand members of Eq. (22)
can be written only in terms of the real varia-
bles §, , »,, €, and 7, ,such that

§

A~ A _f [ ~ .
w=(We o +W,e ‘y+“§cos 7,y+W,sin 2y

~

+We gcosﬂzy"*'wee 2y31n7]2y

+\T/7e_ezycos172y+\7V;e—62ysin7)2y)cos ¥ sineT
(%0)

where the coefficients W; are real and related
with W; by

1:“’”“[2=“’72’%=W3+m’m= i(“@_“&)
=Wt W, W= i (W, - W), Wo=W, +W,,

. 1)
= E(W, -Wp)

Similarly, the boundary constraining equa-
tions, Egs. (89), can be rewritten in terms of
the real variables, such that

w=0;, J#W =

i=1 11

s (92a)
S=0; 2&W =

i=1 1 1

8 lad
=0 ; 2 BW.=0

=1 1 1

8 (92b)
M=0; 2AW=0

=1 11

8 R
u=0;: 2UW =0

=1 11

8 (92¢)
N=0; 2AW.=0

=1 11

8 P
v=0; 21/.W} =

i=1 1

8 (92d)
Q=0; JOW =

i::l 1

The explicit expressions of the real coeffi-
cients Z{/l ’Jéi’“ei’ J‘i’ui’ﬂi’ Ifi and Oi are given
in Appendix C. These expressions have been
determined by writing the left-hand members
of Eqs. (89) intermsof §, , 7, , §,, 7, and
W; and rearranging the resulting equations in
such a way that the multiplying factors upon
¢1€2£ in the coefficients associated with the
edge-zone solutions become of order of magni-
tude unity in the case where €2 takes very small
values in comparison with unity. Since it has
been shown in Egs. (74) that &, and 7, are
of order of magnitude (n?/k), whereas £, and
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1, of order of magnitude k, in that particular
case, some of those coefficients associated with
the global solutions are very small divided by
large quantities of higher order in k, so that the
boundary constraining equations containing
these small coefficients may play only an insig-
nificant role in the calculations of the charac-
teristic equations. It is also due to these small
coefficients that we encounter difficulties in
numerical computations resulting in numerical
overflow.

These will become more evident if we con-
sider such an extreme case as specified by Eqgs.
(81). An approximation consistent with Egs.
(81) with due consideration of Eqs. (82) and
(84) drastically simplifies the expressions of the
coefficients of the boundary constraining equa-
tions. The result is given in Appendix D. This
makes it much easier to calculate the charac-
teristic determinants. Let us examine, for in-
stance, a case where the boundary conditions
are prescribed at both edges by

w=M=N=v=0,; y=12{ (93)
The boundary constraining equations read in
matrix form

{cHw} =0 94)
where
{a;]} = {etéltﬁll > eleltﬁ;z ) ﬁ;:% ) % ’
etkzﬁ%, etmﬁfs, e;kéﬁ}v» e:LkZWs}T (95)
{c}=
'
i —4—}1}.(1,1, cosé £, L sinf L), l

(coskZ, tsink£, coskl, tsinks)
6
%(1,1, cosé £, L siné L),
(Fsink£, cosk£, tsinkf, —coskl)

n2 £ 2 - .
2t (~n—) (1,1, ~cos& £, Tsinf L),
(Fsinks, coskl, sinks, —cosks)
2(2+v)K?
| (¥sinkZ, cosk£, Tsinkf, —cosk£) J

(1,1, cosé 2, *siné L),

(96)

Here, {Wi }T indicates transpose of { Wi} .
The + and — signs should be assigned depending
on the edges +£ and —&, so that each row of the
matrix { C} actually consists of two for the
+£ and —% edges. The matrices on the third and
fourth rows on the fifth through eighth col-
umns of { C} cancel out by subtracting from
them the corresponding matrices on the seco-
nd row. Since ( €,/n) is of order of magnitude
(n/k), the smallest factor involved in {C}
is n®/8k® on the first four matrices on the
second row. These small matrices are negligible
in comparison with the corresponding ones on
the third and fourth rows when the formers are
subtracted from the latters. Consequently,
within the accuracy of the present approxima-
tion, the matrix { C} can be reduced to

{c}=

r

| 2200

_4n_]:4 (1,1, cosé £, ¥sinf L),
(coske, *sink£, coskl, Tsinkl) | -
—;—;—:(1,1, cos§, £, *sinf 2),
(¥sink£, cosk£, tsink£, -coskZ)
zlzg (%)2(1,1, -cosé, £, Tsiné£),(0,0,0,0)

2
D__(1,1,co86 £, ¥sinf,£),(0,0,0,0) |(97)

It can be proved easily that the determinant
of the coefficients matrix of the matrix equa-
tion, Eq. (94), is given only by the non-zero
matrices on the third and fourth rows of { C} .
Thus, the characteristic equation is given by

eél‘&, 551/’, - cosé £,
éelt, eel!’, - cos§ £,
eel‘é, 5615, cosf £,
5611’, eelz, cos§ £,

A simple calculation yields

sin2§,£=0
which gives

£, =mn/2¢

-sinf £
sin€ £
=0 (9%
sinf £
- sin€, £
(99)
(100)

The natural frequencies can easily be calcu-
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lated with the aid of Eq. (86) substituting for
&, from Eq. (100). It is well anticipated from
the assumptions underlying these equations
that the frequencies thus calculated are accu-
rate only for small values of m and large values
of £ and n. For a given vale of £, therefore, m
must be as small as possible, that is m = 1, to
get a good approximation. The characteristic
equation (99) is identical in form to that of a
beam simply supported at both edges. This in-
dicates that the axial modal characteristics of
a circular cylindrical shell may be determined
by supposing a beam along the generator,

8. NUMERICAL CALCULATIONS

Numerical calculations are performed to
compare numerically the solutions of the exact
equations of various theories and those of the
approximate equations and to check the results
of the preceding analysis.

Numerical calculations of the solutions of
the eigenvalue problems constituted by the
characteristic equation and the auxiliary equa-
tion may be performed by a number of differ-
ent ways including the use of a library com-
puter code. Here, we shall present a brief
account of our method of calculations which
makes extensive use of the developments in the
preceding sections. Among other things, the
eigenvalues p; are given in the form of Egs.
(87), so that calculations are performed on real
variables only. Thus, the difficulty arising from
dealing with complex variables is avoided. For
simplicity, the numerical procedures are dem-
onstrated for the system of the approximate
equations derived in Section 5. The same pro-
cedures can be applied to the exact equations
of Section 4. Throughout the present calcula-
tion, the value of v is assumed as

v=03 (101)

The calculations proceed as follows: A set of
the values of the geometric parameters k and £
is given. An integer value of n is assigned. The
value of w is assumed intuitively as an initial
guess. The coefficients A; of the auxiliary equa-
tion are calculated with the aid of Eqgs. (52).

Then, the auxiliary equation, Eq. (51), is
solved for p by Ferrari’s method. The eigen-

values p; are determined taking the square roots
of p. It turns out that the p; thus determined
always fall into the form given by Egs. (74),
confirming our theoretical prediction, The
values of €, , 7, , §, and 7%, are thus de-
termined. The values of the coefficients of the
boundary constraining equations, Zl/i,dzil,ﬁi,
J(i, U, ‘Afi’ ¥, and Oi’ are calculated by the
formulae presented in Appendix C.

We now specify the boundary conditions.
For a specified set of the boundary conditions,
the determinant of the coefficients matrix of
the boundary constraining equations is calcu-
lated. If the determinant is zero within a pre-
scribed error, the initial values of w, £, , 7, ,

§, and 7, are registered as the solutions of
that eigenvalue problem. If the determinant is
not small enough to be regarded zero, we make
an appropriate modification on the initial value
of w and follow the same procedure to calcu-
late the determinant using the modified value
of w as a new initial value. The iterative proce-
dure is repeated until the determinant becomes
zero with the prescribed accuracy. Thus, the
solutions for w, §, , #, , § and 7, are
determined.

The calculations are performed for each
integer value of n ranging from 1 to 10 and
for various values of £ and k. Here, the cases of
n = 1 are included in the numerical calculations
for the sake of future reference to see if the

- validity of the form of p; given in Eqgs. (74) is

violated as the theoretical prediction indicates
its possibility.

Essentially the same procedure is used to
determine the solutions for the exact systems
of the equations. Of course, the expressions of
the coefficients of the auxiliary equations and
the boundary constraining equations are much
more involved than those of the first approxi-
mation equations. But the calculations of their
numerical values can be carried out without
difficulty by the digital computer if use is made
of the formulae presented in Appendix A. In
these calculations, however, we must first spec-
ify the values of the theory indicators E; and
Dj. Here, they are specified as in Table 1, so
that the exact solutions of the Fligge, the
Koiter-Sanders, the Novozhilov, and the Love-
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Reissner theories are obtained.

Some of the results of the numerical calcula-
tions of the natural frequencies w are presented
in Tables 2a through 4c¢. Tables 2, 3 and 4 are
the results for shells with the clamped-clamped,
the simply supported-simply supported, and
the clamped-free edges, respectively. In these
tables, the boundary conditions are designated
for simplicity by C1, S1 and FR, such that

Cl: clampededge;,w=f=u=v=0

S1: simply supported edge;
w=M=N=v=0

FR: freeedge;S=M=N=Q=0

Three values have been selected for k;ie., k =
5, 10 and 50, to cover the entire range of h/R
of practical importance. A simple calculation
with v = 0.3 gives

k=5; h/R =0.06609, R/h=15.1307
k=10; h/R=0.01653, R/h=60.5228
k=50; h/R=0.00066, R/h=1513.07

The results are presented for n = 2, 4 and 6,
though the calculations were actually perform-
ed for integer values ranging from n = 1 through
10.

In these tables, Fliigge, Naghdi, K-S, Novoz-
hilov, and L-R indicates the solutions of the
exact systems of equations for the Fliigge, the
Naghdi, the Koiter-Sanders, the Novozhilov,
and the Love-Reissner theories, respectively.
No significant difference is observed among
these solutions. Thus, the numerical results
confirm the theoretical predictions about the
accuracies of these classical theories.

The results designated by “lst. approx.”
theory are the solutions of the system of the
first approximation equations, Egs. (47) and
(48), derived in the present paper. They are
fairly in good agreement with the exact solu-
tions of the classical theories. A general trend
in the first approximation solutions is that the
agreement with the exact solutions becomes
closer as k, n and £ increase. The agreement is
best in the case of S1-S1 and worst in C1-FR.

But, even in the case of D1-FR, the errors re-
lative to the exact solutions of the Fliigge
theory are less than 4 per cent or the value of
h/R, except for the case of 20 = 2.0 and n =2
where the relative errors as much as 15 per cent

are observed. It may be stated, therefore, that
the present approximation does not yield accu-
rate solutions for short shells less than 28 = 2.0
with free edges vibrating with n = 2, Otherwise,
it will provide valid solutions accurate enough
for practical purpose.

The solutions of the system of equations of
the Donnell-type approximation, Egs. (107)
and (108), are designated as ‘“‘Donnell” in the
tables. They generally confirm the theoretical
predictions in that the accuracy is increasingly
lowered as n decreases and { increases and as
the boundary conditions are prescribed more
and more by the physical quantities. Thus, the
agreement of the solutions with the exact solu-
tions of the classical theories is best in the case
of C1-C1 and worst in C1-FR.

9. DONNELL-TYPE APPROXIMATION

In the Donnell-type approximation, the
kinematic relations and the equations of mo-
tion are given by Egs. (1) and (6) neglecting the
terms in them designated by underline, and the
constitutive equations are specified to those of
the Love-Reissner theory. Starting out from
these approximate basic equations and follow-
ing the order-of-magnitude comparison proce-
dures set in Section S, we derive the following
system of equations: Free fibration equation;

78w+4k4w””+{[74w]f—[(3+2v)w”+w"]p}*75

-{c

+[‘i—?; w]p:’ﬁf/é =0

3-v 2 2 H
l-vp ij,f _E_l—— w]p} /5

v

(102)
Supplemental equations;
Lou=-vw''+w!"
Lou = -(2+U)w”' -w
L0N= (1*”2)w”"
LOM=—V4(W”+ vw') (103)

L,S= -7 +(2-v)w'")

L,Q=- (1-v ")
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Obviously, the omission of the term with
dug/ox in r of Egs. (1) is a consequence of
the omission of the term with dug/d6 in k4. It
also becomes clear from the process of deriva-
tion of Eqs. (102) and (103) that the omission
of Qg in Egs. (6) is consistent with the order-
of-magnitude arguments for the omission of du,/
00 in k4. Therefore, if one assumes that the
term with Ouy/06 is negligible in Ky, all the
other terms designated by underline in Eqgs.
(1) and (6) become negligible as a logical con-
sequence of the assumption,

The kinematic relation for k4 given in Eqgs.
(1) is rewritten in nondimensional form as

Reg=v -w"’ (104)

Let us apply Lo() to Eq. (104) and substitute
LoV from Eqgs. (103). Then, we have

.o 4
RL,kg=-(2+)w" -w -pPw"

3-v .2 a2 w..ﬁ
1-v 1-v (105)

The terms designated by underline in the right-
hand members of Eq. (105) are negligible if
either i p; I for the global solutions or n? is
much greater than unity. In other words, the
Donnell-type approximation is valid for the
vibrations characterized by a large number of
waves. It may suffice for our purpose to state
that the Donnell-type approximation is a con-
sistent approximation under the assumption
that

n?>>1 (106)

Accordingly, Eqs. (102) and (103) can be
simplified further to yield the free vibration
equation and the supplemental equations con-
sistent with Donnell’s approximation.
Free vibration equation:

A 50

Supplemental equations:

(107)
4 .

Fu=-vw'"+w'"

V4v=—(2+ﬂ)wn‘ _W...

V4N= (l_yz)w"..

PM=-F (W'+ vw ")

P's=-p'w" +(2-v)w' ")

Flo=- (1-5 )" (108)

Equation (107) may be regarded as Don-
nell’s equation for free vibrations. The dynamic
term in this equation is designated by [ ¢
and is only of the second order in timewise
derivative. This indicates that Donnell’s equa-
tion is valid for flexural vibrations character-
ized by a large number of waves.

If we write out the auxiliary equation, it
takes the same form as Eq. (51), wherein A;
now read

Ay=0
A= -84n°

Ay=1-"-0+d6n" (109)

A= 2n’(Q - 62n*)

A, =-n'(2- én")
Following the same arguments given in
Section 6, we find that A4 < 0 and that p; take

the form of Egs. (74) if 2 is in the range speci-
fied by

nf<n<1-? (110)

Comparing Eq. (110) with Eq. (72), we see that
Donnell’s equation fails to provide valid solu-
tions in the form of Eqs. (74) if £ is as low as

on’(n’ - 1)/ (n®+1)<0Q<n’ atn

This indicates that the validity of Donnell’s
equation becomes deteriorated as the vibration
mode comes closer to an unsymmetric cylin-
drical mode,

As long as §) remains in the range of Eq.
(110), p; take the form of Egs. (74) and all the
subsequent development through Egs. (86) in
Section 6 hold for the solutions of Donnell’s
equation, provided that the terms of order of
magnitude of 1/n? be neglected in comparison
with unity. In particular, if we restrict our at-
tention to the case where 2 takes a very small
value, such that Egs. (81) hold; Q= 0(6n*)
and §'2n? << 1, we have from Eq. (86)

2=1r((1-vH)¢+ o) (112)
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This formula is accurate only when n takes very
large values, and its errors increase as n takes on
smaller values.

In this particular case, the boundary con-
straining equations are identical in form to Eqgs.
(92) with the coefficients given in Appendix D.
Suppose we have a correct value of w for a
particular boundary value problem. We then
solve Eq. (112) for &,. The value of £, thus
determined is used to calculate the determinant
of the coefficients matrix for that particular
boundary conditions. The result may not be
zero. The magnitude of the residual depends on
the errors involved in §; as well as the bounda-
ry conditions. Comparing the small factors
n/k and £,/n in the coefficients matrix, we
may anticipate it most likely, as in the static
boundary value problems, that the errors in
the determinants is the greatest when the
boundary conditions are prescribed entirely by
the physical quantities and the smallest when
they are prescribed entirely by the geometric
quantities. This is a reasonable guess because
we have shown that the validity of Donnell’s
equation is deteriorated for unsymmetric
cylindrical modes which occur only when the
both edges are free. However, since we are
dealing with the homogeneous boundary
conditions in contrast with the inhomogeneous
ones in the static boundary value problems, the
factor £, /n may drop out as a common multi-
plier and may not have a significant influence
on the calculations of the determinants. At the
present time, therefore, we may only state that
the solutions in Donnell’s approximation be-
come increasingly inaccurate as n takes on
smaller values and £ larger values. The influence
of £ is due to the fact that the coefficients ma-
trices of the boundary constraining equations
contain terms with exp (£, %).

10. CONCLUSION

Some of the important conclusions of the
present analysis may be summarized as follows:
1. The classical shell theories including the
Flugge, the Koiter-Sanders, the Novozhilov, and
the Love-Reissner theories provide valid solu-
tions for the free vibration problems charac-

terized by n > 2 of circumferentially closed
circular cylindrical shells. The solutions are
accurate within the errors inherent to the
Kirchhoff-Love hypothesis.

2. A first approximation consistent to the
order-of-magnitude estimate of the errors in-
volved in the Kirchhoff-Love hypothesis yields
the following system of equations:

Free vibration equation;

V4(72+ 1)%w + 41wt
+ {07, - (320w ) JY6

- {[%ngjp’f *[—1% w]p 1B/

2 _
Tl w I /e=0
Supplemental equations;

Lou=- v 4wt

e

Loyv=- (2+v)w" -w’
2

LN=(1-v)w"" ~(»7 wi

4 LR ..

LOM: -V (W”-I— vw ) - Yy

L,S=-7 [w"+(2-v)w'")

L@=- (1-¥)w!""
with

Ly )= 7'O)- (g P OL + 555 >Jft

3. Among the three inertial components, the
lateral component plays the most important
role and is unavoidable in the analysis in gener-
al within the framework of the clasical shell
theory. The inplane inertial component gives a
significant contribution to the free vibration
characteristics when the vibration occurs either
at a very high frequency or with a small number
of the circumferential waves. On the other
hand, the rotatory inertial component have no
significant influence on the vibration charac-
teristics, and that it can be disregarded entirely
in the analysis.

4. We write the eigenfunction for w such
that

w= -S;Wi eP1Y cos nf sin@T
l:
Then, the eigenvalues p; are given in the form
pl,p2=i"fl, p3,p4:ti771

Ps, Pg» P7y Py = F (€, T i 7,)
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provided that the frequency parameter w re-
mains in the range specified by

on*(n’- DY(n*+ D<@ <1 -0

The upper bound of the specified frequency

spectrum is very close to

w2=1

which corresponds to the natural frequency
of the circular cylindrical shell in the axisym-
metric cylindrical mode. The lower bound

@' =dn"(n-1)/(n"+1)
corresponds to the lowest natural frequencies
in unsymmetric cylindrical modes.

5. For w? << 1, the leading terms in &, and
n; are inversely proportional to k, whereas
those in §; and 7, proportional to it, indicating
that the formers represent the global solutions
while the latters the edge-zone solutions. Thus,
the existence of the edge-zone solutions in the
free vibration problems has been proved just
as in the static boundary value problems.

In cases where w? = 0 (6n%) and §/%n?
<< 1, a drastic simplification is achieved for
the governing equations and the solutions are
obtained in a simple form, such that

£ =7 =k
and

o' =[(1-v") &} +on' (n*- 1) YA'(nP+1)
where &, is to be determined from the charac-
teristic equation.

6. The Donnell-type approximation is a con-
sistent first approximation within the errors
inherent to the Kirchhoff-Love hypothesis for

vibrations with large number of waves; namely,
for

n>>1
The Donnell-type approximation leads to the

following system of equations:
Free vibration equation (Donnell’s equations);

pw + Ak V*wj}‘*/a =0
Supplemental equations;

Plu=-vul 4w

V4v =-(2+v)w" -w'"

V4N= (1-v5)w""

V4M= - 74 (w"+ vw')

74S=— V4 W'+ (2-v)w'")
V4Q=— (1—y2)w""

7. Donnell’s equation is valid for flexural
vibrations with large number of waves in which
only the lateral inertial component plays an .
important role, and it gives only one natural
frequency for one particular vibration mode.
The validity of Donnell’s equation deteriorates
as the frequency goes down to the range

Sn’(n’ - 1Y/ (n"+ 1)<’ < on*
indicating that Donnell’s equation fails to pro-
vide accurate solutions, even for those flexural
vibration modes characterized by large number
of waves, if they are nearly in unsymmetric
cylindrical modes.

8. If the Donnell-type approximation is ap-
plied for the problems characterized by small
number of wéves, the errors in the solutions
increase as n decreases, the length-to-radius
ratio increases, and the boundary conditions are
prescribed more and more by the physical
quantitites.
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K, =(1-»)(-1+D,+(D,-D,)/23/2

K, =-v/d

K, = (3-v)/2+(1-¥)((D,-D,)/2-D,)/2
K 1

K

s =1-D, (A.3)
6 :”1/5'(E2' E})
K, =D,+E,
Kq :1/5 + B,
f,:
t,=-H,G,

t, =H,G, -H,G; - H,G,
f, =H,G, - HyG,
f,=-H;Gq

fy =HeGy ~H,G

£ = () + (3,6,

f; =0G, 3, + 080Gy +G,J,

(A.4)
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APPENDIX A. EXACT EXPRESSIONS OF THE COEFFICIENTS

G ¢ fg = (1 + (8], )G,

G =1 g; :

G, = (1-v)(1+8 (3E,+E,)/4 ) /2 g, =GH,; - G H,

Gy = (1+v)/2+3(1-v) 8(E,-E,)/8 D g, =G H, - GH, - G,H,

G, =-0E, g; =~ G,H;

G, =0(1-v)E,/2 g, =GgH; - G,H,

G, =V gs =~ G,Hg (A.5)
H, : g = [Hﬂp - 0(G, I,

H,=(1-v){1+6((E, + 3E,)/2+3+D,-D,)/2}/2 g = (HyJ - 9(G,J,

H,=1+6 (1+E,-E, -D,) gs = (HeJ,

Hy=(1+v)/2+8(1-»)((E4~E,)/2+D,+D,~1)/4 g =(9],

H,=-3(1+(1-v)E,/2) a2 Lj:

H,=-0(1-E) L, =H,G,

H,=1+8(E,- D) L, =H,G, + H,G, - H,G,
5 ke =HaC (A.6)

L, =-(H, +G,] - 4G,),
LB = —[Hg + ngp - 5EG2)I’
Ly =0, + @) |

ag, = Kf, - L;

agy = K fy T Kyf; +Kg - Ly - 2L,

8g3 = K f3+ Kpfy + K gy + Kygy~Lg—2L,- L,
agy = Kpfg + K g+ Kogy— 2Lg ~ L,
= Kygg~ Ly

ag, = K f, +Kf (A7)
agp = Kifg+ KM, +Kyf, +Kog,+Keg, - K/ L,
ags = Kyfy +Kgfy+K g+ Kig, +Kegy - K Ly
agy = Kigyt Kegy ~ K7L

a; = Kgfy, ~KgL,

3y, = Kyfy+Keg,~ Kglyy

ay3 = Kggy~ Kgly
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= K,fg- L+ (L],

= K, +Kyfo+ K gLy 2L, +(Lyt Ly gy,
= K2fv+K4g7+ngs"2L5"L4+ELs+Lz"gzjr
= Kyg;~ Lg+(Lg - gsjr

= K g+ Kqfy - [Ll/"]f

= Kyfg+Kyf; + K, g5+ Kegs - K7 Ly

(A.8)

- [Lz/ajf—' [ng
Kige+ Kegy ~ Ky Lig - [Ls/"]f' ':gs]r

- sts - Ks L,

Kegy~ KgL

- Lg+ (L3,

K,g,~ 2Lg+(Ly+L, - gg).
Kygy~ Lo+ (L - 8'7]3-

- (L,/%);

Kggp ~ K,Lg— (Ly/8); - (gg),
- K4Lg

(A.9)

(A.10)

fo+vg ~ 0L,
f3+vg,~ OE, Ly
Vg,

fotve,* vL2
vgyt uL3

fo- OE,L,

= f,+vgg- 5E1L5

(A.11)
vg7

fgt+ vL,

n = vgg+ vl

n,, = - 0E,L,
N, = Vg
ny = vLg

m, = Df, -L,

my = Dif,+vg - Ly- vl
my = Dyfy+ vg,- Ly= v,
m, = vgg~ VL

my = Dyf,

mg = D f,+vg,

m, = vg, (A.12)
mg = Difg- L,

my = Df,+vgg- Ly~ vL,

my, = vg;~ VL,

m,; = Difg
m, = Vgg
my = - Lg

my, = vgy~ YLg

s, = Dif, - L,

sy = Dify+ K fy +Kigy - Ly~ (2-9)L,

s = Dyfg+Kf,+K g, ~Ly-(2-v) L,

s, = K fy+Kgs~ (2-v)L,

sy = Dif,

s¢ = Df+KI,+K.g,

s; = Ky +Kgg

sg = Difg- L+ (L3, (A.13)
sy = Dif,+K.fg+K;ge~ Ly~ (2L, +(L,3,
510 = K, tKig, = (2-9) L+ (LgJ,

s;; = Dyfy

Sy = st8+ ths
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s;3= ~Let (L], 95 = Kyfs+ K 85 (A.14)
S = thg— (2—:4)L6+[L5]r Qg = Kuf6+Kvg6+ JIQVL4
S15 = [Lejr q; = K, +K g, + %Ls
where qg = Iglf8+Kvg8
=-(1-v)/2+(1-v)(D,~D,+2D, )/4 9 = K,gy+ 0K L,
K, = (3-v)/2+(1-v)(D,~D,-2D,)/4 where
q; : K, = (1-»){1+8(~1+D,+D,
q; :I&lfl'*-&gl"rﬂgyl‘l + (Ea—EJ/Z]/Z\}/Z
q; =K f, + K g+ 0K L, K, = (1_”){1+5[3+D2_D4
qs =K, f3+K g, + 0K Ly + (E4+3E,)/2)/2}/2
qq =Kuf4+Kvg4 K,w= - (1*“)(2 +E4)/2
APPENDIX B. LEADING TERMS OF THE COEFFICIENTS
~_1-v o - 4 2(3 V)
alj 2 alJ 042_[1_yjp+[ ] p,r ( )
B.3
0 0 0 0 0 .
= =1 = =4 =6 0
agy=agg— 1, agg=ag,— 13, agg ;= 022 [5(1 v)] f.p
agl= w(E,+D,) 0
0 co0= CGTi5y’
agy=5+v+(1-v) ((2+»)E, - vE, )
~ 1-v o
+(14+v)(D, - D) - 2D,)/2 dij = =72 4y
0 0 0 2
agy= 7+v=v (E;+D)+ (1-v)(E,+E¢-2D,)/2 dgy=dgp= - El—v]p,l‘ (B.4)
ag,=2 (B.1) o_ . 2 ‘
. d00= G501yt p
341:(1_” )/8 L ~1-v Lo
ai’zz3+u—v(El+Dl)+(1—v)(E4+E6~D4)/2 ! o 20 ! o
) Li=L=1, Li=2
a;s=1 o o 3oy . (B.5)
~ 1-v _ o0 L4=L5—'”[1_u]p, LG_EI U]p
bl - T T T a5 b. .
J 2 1] ~ V0
f. - ——1o.
0 0 i 2 i
b1 bey= - {[1 -vp [1] } ~0 0 0 0 0 0
fi=0f;, f,=0f,, f;=0f;
b0 = 0 = 0,0 0,0 i 0
82~ Dos (B.2) ?4= fy, ?5=f5’ ?6=5f6
0 _ 0 .
= = 3 = [} ~
o=l ” o W TRV
g = -[(3"'2”)/5] bgf —[1/5);) where
~_1=v o | 0
©ij 2 %ij - f,=E,
o_ 0o _ . 2 3-v 0 1+v 2 1+v 1-v
ca=ca= G5 Oy f3="Toy *To5E1 5 By~ 5 Fy
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fy=-T0 + 1o E, - E, (B.6)
fo=-v, fy=1

0o _ 2

fo=- i BJ,

o_ - 1+v 0o_ o 2v
f7—E1—er+EE6]p fs—‘:l—v]P
~1v=o,
& "2 Ej -

~0 0 ~0 0
g1=5g1, gz_agzy gszaga
~0

0 ~0_ 5
8¢ 84 gg"gs, gs_ gs

~0 0 ~0 0 ~0
Z =0gy, Te=gs, E¢=10g

where

0 2 1+v

glz_i__y_l_y E1+E4

0 3-v 2 1-v 1+v
&= 101t g B3 Eq

0

gs=1-E,

0 0

g,=-(2+v>, g5=-1 (B.7)
ge=" G5 J—E 71 (B,

I

- (), - 7501 - B,

0 2
Jpr B =TS

~1-v ~
- 2 n.

_ 0 ~0_s0 ~0
ni= dn) , Ny=0n), Tg=ong, ny=n,

_ _ .0 _ 50 ~0_ 50
No=10ny, ne=ny, ny=0n,, Tg=0n,

~0_ 0 ~0 0 5 °_s
Ng=ng, Ny (T Nyg, nn" nurnxz n12

~0__ 0
Ny3= Ny

where

=—1+vEl~ (E +Eq)

0

ny =720~ 24 vE, - (20)E,)

no=ng=v(1—E ), °=1—v2,

3-

ng= [El]
=5 B+ vE, - Eg), (B.8)

ny =(1), - (55 - 3

n=mpg=-0)  ny=-G5E,)

1-v p
0 2v 0 2v
N = l:1-1.4:'p,r , Ny = [l—u Jp
~ 1-» 0
i~ T2 ™
0 _ 0 _ 0_
m=-1, mz—-—-(2+v), ms-—-(l+2v)

0 0__ 0__ 0__
me=m,= -V, ms——UDI, mg=D, -v(2+v)

mi=E2) | mp= 30y
P 3.9
3- .
myy = [‘%—Dﬂ my, =G IZ”VD Jp
0 2v
mp= T-: P, m13 - —pjp
0 2y
my=- G ]p
~1v o
i 2 5
s;=-1, =-(4-v), sg=-(5-2v)
s°= - (2-v), s": )
3+D~ (D -D,)+ (1-»)D,

s =—2+v+(1—v)D4
so= By + (1),

2
=320y v 2,

(B.10)
3-v)(2-
(I}OZE( :—(f lJ)]p"'u]r

Sh= EI—ZE;D ]

NS 2 e
Slz E 1 Y

5 @,-py) - 1-»)D,3,

513 [1 ] - [1 P]p,

_ 2(2 v), _ 3-¥
— [ )]p kl_y]p’r
2
Sw [l‘V]p,r
~1-v~o,
q; 2 a; -
~0 0 ~0 0 ~0 0
qlzéql , Q2=5Q2 ’ ‘13=5QS
d,=0q, d5=0q;, qg=79q
(1] ~0 ~0 0
qr=08q;, dg=q; , do=29q,
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where -1+vE, - (E +Eg-D,) (B.11)
0

=v(1-E
q; = ¥( 1()1 Lo - @ =_[1]r+ [Z—V—E +E ]

-y +v v(1-v
= 14u- E,+ E 0 3-vp 1
2 ‘ 2 6 qY:[ujr+ (2-v+E + 5~ 5 E, LAY 2 Esjp

=-14vE, - L2 (E,+ E) qs =(1+v ]

L ry_.2 0 _

=-(1-v?) qg—l:l:lp,r"fz-i'E‘]p

APPENDIX C. COEFFICIENTS OF BOUNDARY CONSTRAINING EQUATIONS
(FIRST APPROXIMATION; y=+4+ ¢)

1 §e €2
<Wl»z"’2)=“Eﬁ(ff“n2+w2)(5f—n2+%w2)(e’£ e’

27)2

1
()= s (74 0’ - &) (940’ = 750" (eosn, L, sinnye)

B C.1)

(2, ) = eE?e[(chosvzé - Bwsinsz), (%sin’?./; + chosvzt):’

£
(H )= e ZL[(AWcosvz,L + Bwsinfj2L), (%Sinﬂg‘f/ -~ chosvzl,)]

where

1 z
A, =1- e (6= my-n'+o*) (6= 7, - n"+ 755 0")

— 2 e 2 +_3—_”.

w 252,72[ ( -n) l—v]
§e <2
(JJI,JJL)):é—‘-$1<ff-—n2)2[5f~(2—y)n2](e ' y — € : )

2742

1 .
_%37”1(”?* n®)?(72+(2-v)n") (sin7, €, - cosn, L)
v .2

§
(<, E)=e w ((AS cos £ - B sinny,2 ), (AS sin?,£ + B cos7,£ )]

(4,9 =

-§,L
(&, G)=-¢ " ((Agcos7yl + B sinn,Z ), (A sin7,2 - B cos7,£ )]

where
(G-7-n' -2’ £ 75~ (2-0)n’
UG BRI LA YO T W P G e I R e . Aty
272 27, 7, 2
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£, (&2-92-n®)? &2 -n;-(2-v)n’ &2-93-(2-v)n’

B =--101- 1+ —(5 1-—
s= 7, L prom ) 2 )+ & ~73-n")( P 1}

1 2 §L -§,L
(B, By) =&, (60" +a)(§-n"+ 75500 (=e e )

272
(.8,,.8,) —-—gvy n,(ni+ nz--wz)(ﬂz:’rnﬂ--1-'?—lJ o’ )(sin®,L, - cosn,£)

272
(5 8= o _ €.3)

iy B ) = e Ay cos7,L ~ By sin7,), (A sin7,L+ By cos7,£)]

L
(8, By)=-e" [(ApcosnL+B,sinnL), (A siny,£ - By cosnyt) ]
where

1 3-v

A =1- pr= ——~5 (-2 -n*+ ) (&-9i-n —-w>+ 2[62 7%~ n+—2—(—-—)w]
Bb=-5—2[1—4€2 ~(&2- 7 -n"+a") (&) ng—n+—w>3-~2ce"’ ;- n+2(1 53¢

272

§,L4 $.L
(ml,mz)=—ge—ggg[(ff-nz)z(ff—vnz)‘FVn‘](e Vel
272

(mg,m,)= —ge—iv—s (R +n®? (73 +vn®) - vn* I cosn L, sinn, L)

o C.4

.2
(my,mg)=¢e’ (A cos7y£ - B_sin%,£), (A sin7,L+ B cos7,£))

-¢,L
(m,,mg)=e K A cos7,L+ B _sinn L), (A sin?L-B_cosn,L) ]

where
1 (&5-7;-n%" !
= 1- 6 - +2 E
A 262772{[ e J(&2-nl-vn®) + 2(&2-92-n) - 4e.ﬂ§}
(52"712'112)2 1 2 2 2\,p2 2 3
B, =1- e - 207 (§5-7,-n")(§;-7m,-vn")
§ §L -§¢
(U, ) =—27 (40" )(-e ' , e )
2v6,7,

( ua: lé4) = d 3 (0?" nz)( - sin’?ll, cosvll,)
2v€,7, s
¢ .
(U, Ug)=¢ 2 ((%cosvzl - Bu sinn,4), (!\lsinﬂzé-F Bucosﬂzt)]
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-§.L
(U, Ug)="-¢ z [(Aucosn2L+ Busim)z!;), (Amsinv?L - BucosﬂzL)]
where

v(§2-n2)+n’

AT

2v7;§
f U($2~ 02)+n2
B =-—>(1+—2—
u 7y 2v$2
2 2y 2
1 2 y (§-n)w §4 €L
<n )n )2 [5 - ](e , € )
PR 28 12 n’
(n%+n?)e?
(ns,n4)=—2$1 [7]?+ v2 ! 3 J(cosn, £, sinn, &)
P 1-v n
£,L (C.6)
(Ng,Mg)=e " ((A cos7,&~B sin7,£), (A sinn,£+B_cos7,2))
-§,2
(n,,ng)=e [(AncosU2L+ anin7721;), (%sinﬂzl‘i - Bncosvzl;)]
where
2 2 2, 2
1 2 2 v (Eg_ /P! )w
= (&2- p2-
Al 287, 2 21,7 2
2
v [)]
B =1+ —
n 1_y2 n2
2 §L €42
__ 1 2_n 1 1
(VZ’)=-1(2+H2)( £, sin7 L)
3174 26,1, N toy/LeosT £, siny,
.

§
(Fg,Vg)=e o (A, cos7,2 - Bvsinvzt), (A, sin7,2 + B cos,£)]

2
(7, 7) = e * [(A cosnL + B sin?,2), (A sinyL - B_cos7ye)]

where

1 2 2 n2
A 2¢,7, o755
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3
WA )

(0,,0,)= (e ,-e )

)
272
3

7
(0,0 = 21 (sinn,£, - cosn,£)
26,7

(C.8)

§,L
(04, 0g) = e ((Ajcosn,l - B sinyL), (A sing,L+B cos7,L))

-§.£
(0,,0)=-¢e 2 [(chos’?zL'*“ quinvzé), (Aqsinfizt - chosﬂzl;)]

where
K 1 2 .2
—_ 1_. -
A, 52[ 267, (§5- 7,0

APPENDIX D. COEFFICIENTS OF BOUNDARY CONSTRAINING EQUATIONS
( APPROXIMATION FOR LOW FREQUENCIES; y=+¢£)

ot £ &L
W"ﬂ,”@,”@,,”ﬁ)z—qk—,(e ,e ,cosé, 2, sin L)
(Hy, %) = K€( cos ke, sinke) (D.1)
(%,W8)=€M(cos ke, sin k&)
)’ € Ee -§¢
("(311“321"‘33;“34)=_L287v7)2(_51')(e ! y —€ ! , -sinflL, COSGIL)

(B, &) = ¥4 (cos kL + sin kL), (sin k€ - cos k&) )

D.2)
(3, S, =-¥((cos kt - sin k&), (sin ke + cos k&) )
5 ¢ &t -§2
(“31:"82:“83:“84)=_'I?(_1%)(e Tome t, - siné £, cos§,£))
(B, 8) =ek’&[(cos ke - sin k), (sin k€+ cos k£)] ®.3)

(8,8, = - ¥ ((cos ke + sin kt), (sin k& - cos ke))
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[
vn 1 51L -51.& )
(m,,my,mg,m,)=—75(1-—)(e ,e , cos £, sin§ £)
8k n
(mb,ms)=~ekL(sin ke, - cos k&) (D.4)

(m,,my) = ek (sin ke, - cos k)

ns el 61L —ell, .
(U, U, U, U,)=- 2vk3(T) (e, ~-e , -sinf £, cos L)
(U, U= K4 ((cos ke + sin k&), (sin k€ - cos k&) ] (D.5)

(U, Uy)=- ¥ (cos ke - sin k&), (sin k& + cos k&)

2 ¢ £t -E2
n 1.2 1 1
<n1,n’27na’n’4)=;l;§(_n‘) (e , €

, —cos€ £, —siné L)
(nﬁ,n6)=-ek[’(sin ke, - cos k&) (D.6)
(n,, n,)=¥(sin ke, - cos k&)

n2 6]L —EIL

m , e, cos§ £, sin§ L)

(7, ¥¢)=- e (sin ke, - cos k&) (D.7)

(1/1’7/2’ Z/3’7/4)="

(7, ¥,) = ¥ (sin ke, -cos k&)

n &, &e ¢
( O]’ Ogs 03) O.!) =—2;§ (T) (e y — € : sinfll,, - COSEIL)
(O, 0g) =~ ek‘e[(cos k€ + sin k&), (sin k€ - cos k&) ] (D.8)

(0,,0,)= ¥ ((cos ke - sin ke), (sin k€& + cos k&) )
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EDGE
SECTION
(X=L)

CENTRAL
SECTION (X =0)

MIDSURFACE
ELEMENT (ABCD) M, ’ Wl Mox

Fig. 1 Shell Geometries, Coordinates, and Positive Direction of Vectors
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E, E; E{ E, Ef E; D, D, Dy D,
Fliigge 1 1 1 1 1 1 1 1 1 o
Naghdi 1 0 1 1 1 1 1 1 1 0
Koiter 0 0 0 1 0 1 0 0 0 0
Novozhilov 0 0 2 2 0 0 o0 1 =1 0
Love-Reissner 0 0 0 0 0 0 o 0 0 1
Table 1 Values of Theory Indicators E, and Dj
n
k Theory > 2 5
Flugge 6.4017 X 10”!  5.5199 x 10! 9.8501 X 10~!
Naghdi 6.4015 5. 5208 9. 8531
K-S 6. 3896 5. 5162 9. 8587
5 Novozhilov 6.3955 5. 5259 9.8689
L-R 6.4138 5. 5437 9. 8824
1st approx. 6.7894 5. 7850 10. 5894
Donnell 6.1352 5. 8195 10. 3666
Flugge 4.4855 X 10”1 1.9126 x 10! 1.3289 x 10~
Naghdi 4. 4855 1.9127 1.3291
K-S 4. 4849 1.9123 1.3290
10 Novozhilov 4.4852 1.9129 1. 3296
L-R 4. 4862 1.9140 1.3308
1st approx. 4.6682 1.9370 1.3370
Donnell 4.2408 1. 9645 1.3724
Flugge 4.2972 X 101 1.5996 X 10”1 7.1422 x 10™!
Naghdi 4.2972 1. 5996 7.1422
K-S 4. 2972 1. 5996 7.1422
50 Novozhilov 4.2972 1. 5996 7.1422
L-R 4.2972 1. 5996 7.1423
1st approx. 4.4623 1. 6201 7.1608
Donnell 4.1227 1.6360 7.2675

Table 2a Calculated Values of @;C1-Cl1, 2£=20
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n

k Theory > 1 6
Fligge 1.0342 X 1071 1.1969 x 107!  4.8724 x 107!
Naghdi 1.0343 1.1978 4.8739
K-S 1.0349 1.1998 4. 8798
5 Novozhilov 1.0359 1. 2008 4. 8805
L-R 1.0373 1. 2027 4.8797
1st approx. 1.0670 1.2284 5. 1435
Donnell 1.1948 1.4036 5. 2939
Flugge 9.0892 X 10™2  2.5576 x 10™2  3.5921 X 10”2
Naghdi 9. 0892 2.5581 3.5929
K-S 9. 0896 2.5588 3.5944
10 Novozhilov 9.0902 2.5595 3.5949
L-R 9.0910 2.5610 3. 5965
1st approx. 9.3735 2. 5655 3.6076
Donnell 10. 2538 2.7672 3. 8557
Flugge 8.8994 x 1072 1.8808 X 1072 5.6977 X 1073
Naghdi 8. 8994 1. 8808 5. 6978
K-S 8. 8994 1. 8808 5. 6978
50 Novozhilov  8.8994 1. 8808 5. 6978
L-R 8.8994 1. 8809 5. 6978
1st approx. 9.1985 1. 8831 5. 6984
Donnell 10. 0340 1.9773 5. 8441
Table 2b Calculated Values of w; C1-Cl1, 2£=5.0
Th -
k eory 2 1 6
Flugge 1.9994 X 107 83687 x 10~  4.4462 x 10~
Naghdi 2.0007 8.3726 4. 4466
K-S 2.0045 8. 3847 4. 4506
5 Novozhilov 2.0061 8. 3858 4. 4506
L-R 2.0095 8. 3867 4. 4481
1st approx. 2.0177 8.5569 4. 6791
Donnell 2.6733 10. 0420 4. 8335
Flﬁgge 1.6308 x 1072 7.1834 x 1073 2.8300 x 1072
Naghdi 1. 6309 7.1859 2.8303
K-S 1.6311 7.1902 2. 8310
10 Novozhilov 1.6312 7.1909 2.8310
L-R 1. 6315 7.1949 2.8313
lst approx. 1.6375 7.2045 2.8399
Donnell 1.9716 8. 3406 3.0716
Flugge 1.5916 X 1072 20572 x 10™®  5.2738 x 107*
Naghdi 1.5916 2. 0572 5.2738
K-S 1. 5916 2.0572 5.2739
50 Novozhilov 1.5916 2.0572 5.2739
L-R 1.5916 2.0572 5.2739
1st approx. 1.5983 2.0573 5. 2740
Donnell 1. 9081 2.1793 5. 4427

Table 2c Calculated Values of o ; C1-C1, 2£=10.0
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n

k Theory Z 1 5
Flugge 4.8260 X 1071 3.3610 x 107! 7.4732 x 107!
Naghdi 4.8261 3.3648 7.4808
K-S 4. 8201 3.3705 7.4989
5 Novozhilov 4.8257 3.3773 7.5039
L-R 4.8388 3.3904 7.5131
1st approx. 4.8891 3.4922 8.0195
Donnell 4. 4806 3.5710 7.9458
Flugge 4.2884 X 107! 1.3842x 10°!  8.5116 X 107!
Naghdi 4. 2884 1.3844 8.5158
K-S 4.2880 1.3846 8.5222
10 Novozhilov  4.2883 1.3850 8.5254
L-R 4. 2892 1. 3860 8.5352
1st approx. 4.2916 1. 3878 8. 5646
Donnell 3.9265 1.4023 8. 8502
Flugge 4.2525 X 1077 1.2523 x 10! 4.0954 X 1072
Naghdi 4.2525 1.2523 4. 0954
K-S 4.2525 1. 2523 4. 0954
50 Novozhilov  4.2525 1.2523 4.0954
L-R 4.2525 1.2523 4.0954
1st approx. 4.2525 1.2523 4. 0954
Donnell 3.8896 1. 2580 4.1506
Table 3a Calculated Values of @; S1-S81, 2£=2.0
n
k Theory 2 2 5
Fligge 6.3306 X 1072 9.9687 X 1072  4.7341 x 107!
Naghdi 6. 3360 9. 9835 4. 7360
K-S 6. 3508 10. 0158 4. 7428
5 Novozhilov 6.3563 10. 0191 4,7429
L-R 6. 3694 10. 0354 4.7418
1st approx. 6.3840 10. 2593 4.9979
Donnell 7.1225 11.7664 5.1358
Flugge 5.7928 X 1072 1.2679 x 107%  3.1079 x 107*
Naghdi 5. 7931 1. 2688 3.1089
K-S 5. 7940 1.2703 3.1109
10 Novozhilov 5. 7944 1. 2705 3.1110
L-R 5. 7952 1.2720 3.1125
1st approx. 5.7959 1.2740 3.1227
Donnell 6.2243 1.4114 3.3599
Flugge - 5.7570 X 10"2  6.8811 x 10”®  1.6083 X 107°
Naghdi 5. 7570 6. 8811 1. 6083
K-S 5. 7570 6. 8811 1.6083
50 Novozhilov 5. 7570 6. 8811 1. 6083
L-R 5. 7570 6. 8812 1.6084
1st approx. 5.7570 6. 8812 1. 6084
Donnell 6. 1646 7.2216 1.6516

Table 3b Calculated Values of w; S1-S1, 2¢=5.0

This document is provided by JAXA.



The Free Vibration Equations, Natural Frequencies and Modal Characteristics of Closed Circular Cylindrical Shells 43

k

n

Theory

2 4 6
Fligge 8.9301 x 10™®  8.1255 x 10™%  4.4303 x 107!
Naghdi 8. 9539 8.1299 4. 4309
K-S 9. 0023 8.1428 4.4349
5 Novozhilov  9.0071 8.1430 4.4349
L-R 9.0478 8.1434 4.4323
1st approx. 9.0752 8. 3101 4.6624
Donnell 13. 3884 9. 7849 4.8174
Fligge 5.9586 x 1073  5.5467 X 107®  2.7807 x 1072
Naghdi 5. 9601 5. 5493 2.7810
K-S 5. 9630 5. 5540 2.7816
10 Novozhilov 5. 9633 5. 5542 2.7816
L-R 5. 9659 5. 5577 2.7819
1st approx. 5. 9670 5. 5662 2.7904
Donnell 7.2492 6.6077 3. 0209
Flugge 5.7607 X 107% 50368 x 107*  1.4846 X 107*
Naghdi 5. 7607 5. 0368 1.4846
K-S 5. 7607 5. 0369 1.4847
50 Novozhilov 5. 7607 5. 0369 1.4847
L-R 5. 7607 5. 0369 1.4848
1st approx. 5. 7607 5. 0370 1.4848
Donnell 6. 8406 5. 3461 1.5512
Table 3c Calculated Values of ; S1- S1, 2¢£=10.0
n
k Theory 5 1 5
Flugge 1.3519 X 1071 1.2913 X 107! 4.9693 x 107}
Naghdi 1. 3525 1.2940 4.9729
K-S 1.3524 1. 2931 4.9750
5 Novozhilov 1.3537 1.2943 4.9758
L-R 1.3577 1. 3045 4. 9850
1st approx. 1.5596 1. 3810 5. 3252
Donnell 1.7527 1. 5260 5.4105
Flugge 1.1768 x 10™'  2.9578 x 10"%  3.7201 x 102
Naghdi 1.1768 2.9593 3.7224
K-S 1.1768 2.9583 3.7214
10 Novozhilov 1.1769 2.9590 3.7219
L-R 1.1771 2.9654 3.7303
1st approx 1. 3416 3. 0249 3.7776
Donnell 1.4946 3. 2598 4.0148
Flugge 1.1437 x 1071 2.2205 x 1072 6.2541 x 10°°
Naghdi 1. 1437 2. 2205 6. 2541
K-S 1.1437 2. 2205 6. 2541
50 Novozhilov 1.1437 2.2205 6. 2541
L-R 1.1437 2. 2205 6.2542
Ist approx. 1.3113 2.2528 6. 2785
Donnell 1. 4566 2.3831 6.4523

Table 4a Calculated Values of w; C1- FR, 2£=2.0
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n

k Theory 2 1 6
Flugge 1.2819 X 1072 8,0898 X 10°2  4.3813 X 107!
Naghdi 1.2851 8. 0960 4, 3820
K-S 1.2844 8. 0993 4. 3848
5 Novozhilov 1.2852 8.0999 4.3848
L-R 1. 2983 8.1160 4. 3841
1st approx. 1.3836 8.3797 4.6266
Donnell 1.9618 9.2853 4.7007
Flugge 9.6036 X 10™°  5.9836 X 10™°  2.7707 x 1072
Naghdi 9. 6056 5. 9880 2.7712
K-S 9. 6050 5. 9866 2.7711
10 Novozhilov  9.6055 5. 9869 2.7711
L-R 9. 6136 6. 0021 2.7726
1st approx. 9.9945 6.0762 2. 7896
Donnell 12. 6243 7.1172 3.0136
Flugge 9.2882 X 107  9.4723 x 10™*  2.4953 x 10™*
Naghdi 9, 2882 9.4723 2.4953
K-S 9. 2882 9.4723 2.4953
50 Novozhilov 9.2882 9.4723 2.4953
L-R 9, 2882 9. 4726 2.4956
1st approx. 9.6396 9. 5079 2.4983
Donnell 12. 0289 10. 1129 2.5931
Table 4b Calculated Values of @ ; C1- FR, 2¢=5.0
n
k Theory > 2 ;
Fllgge 3.5350 X 10~ 7.7381 X 1072  4.5373 x 107!
Naghdi 3.5471 7.7399 4.5385
K-S 3.5446 7.7438 4.5430
5 Novozhilov  3.5452 7.7439 4.5431
L-R 3. 5889 7.7454 4.5421
1st approx. 3.7770 7.9383 4. 7894
Donnell 5. 5033 8. 3226 4.9327
Flugge 9.7008 X 107*  4.3361 x 10°®  2.7133 x 102
Naghdi 9.7083 4. 3304 2.7134
K-S 9. 7059 4.3303 2.7134
10 Novozhilov 9.7064 4. 3302 2.7134
L-R 9.7345 4.3129 2.7139
1st approx. 9.9314 4. 2350 2.7257
Donnell 13.9738 5. 2632 2.8257
Flugge 7.9403 X 10™*  7.2007 X 10~°  5.6950 X 107°
Naghdi 7.9403 7.2009 5. 6952
K-S 7.9403 7.2009 5. 6951
50 Novozhilov 7.9403 7.2009 5. 6951
L-R 7.9403 7.2016 5. 6959
1st approx. 8.0399 7.2105 5. 6993
Donnell 10. 0638 7.7732 6.1143

Table 4c Calculated Values of w; C1- FR, 2£=10.0
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