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Considerations on Basis for Vortex-Lattice Method*

By Teruo ICHIKAWA**

ABSTRACT

An ideal lattice arrangement of the vortex-lattice method for rectangular wings
is obtained by applying Stark’s quadrature formula for a Cauchy integral to the inte-
gral equation of the lifting-surface theory. The relation between the circulation of
a lattice vortex and the corresponding local lift is thereby clearly defined, and the
spanwise distribution of the induced drag is shown to be calculated accurately.
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NOMENCLATURE

A aspect ratio

c chord length

Cp: total induced drag coefficient

Cpi induced drag coefficient per unit span

Cr  total lift coefficient

Cr'  lift coefficient per unit span

D; total induced drag

D induced drag per unit span

D,p drag component of normal force (per
unit span)

K rACpi/C1? (vortex drag factor)

M number of chordwise discretization

N number of spanwise discretization

s semispan

S leading edge suction (per unit span)

U main stream velocity

w upwash on wing surface

X.. overall centre of pressure

X..' section centre of pressure

o angle of attack

7 local circulation (difference between
streamwise velocity components of up-
per and lower surfaces)

!

r circulation of lattice vortex
AC, pressure difference coefficient
P density of air

1. INTRODUCTION

The vortex-lattice method based on the so

* Received July 23, 1980.
** Pirst Airframe Division.

called 1/4-3/4 rule for calculating steady sub-
sonic lift distributions of lifting surfaces™ has
not only been successfully extended to cases
of oscillating surfaces*® but also been applied
to various complex configurations, which proves
its great versatility®. Further studies, how-
ever, appear to be desirable with regard to the
basis for the method. It is indeed remarkable
that the simple 1/4-3/4 rule gives the correct
lift and moment in the two-dimensional equal-
ly spaced panel arrangement™®. This rule
seems, however, to give no rigorous basis for
the relation between the circulation of the lat-
tice vortex and the local lift. The usually
assumed relation results in errors in the local
lift immediate to the leading and trailing edges
no matter how fine the discretization may
be*®, This is in fact the reason why the lead-
ing-edge suction cannot be predicted by the
equidistant vortex-lattice method”®.

A solution for this problem was given by
Lan who proposed a non-equidistant lattice
arrangement by the aid of a mechanical quad-
rature for a singular integral of Cauchy
type'®. However, his lattice arrangement, in
which control points are located also at the
trailing edge, has little resemblence to the
conventional lattice of 1/4-3/4 type. An ar-
rangement showing more resemblence to the
conventional one had practically been given by
Stark earlier'”, but unfortunately his contri-
bution does not seem to have been moticed in
connection with the vortex-lattice method,
probably because this was shown only as an
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example of his general quadrature formula for
Cauchy integrals.

The purpose of the present paper is to show
an ideal lattice arrangement for rectangular
wings on the basis of Stark’s quadrature for-
mula. This arrangement enables us to define
a clear relation between the local lift and the
circulation of the lattice vortex. It is also
shown that the leading edge suction and there-
fore the spanwise distribution of the induced
drag can be computed accurately by this ar-
rangement.

2. TWO-DIMENSIONAL WING

In Ref. 11, a formula of the form

N A6) L a;WENfEs)

5—1 E—x; Te— BT ]§1 §—u; (L)

has been proved to be exactly valid for an
arbitrary weight function W(z) when f(z) is
a polynomial of degree <2I. Eq. (1) is used,
in the following, with two weight functions

VA—-2)/0+x) and 1/vi—a! For W(z)=
v(A—x)/1+x),
_ 2aV1-—¢p
T2+l
L 2j—1)=
gi= cos “or (2)
2ir .
Ti;= —cos 311 =101
and for W(x)=1/v1—=?,
_avViI—§2
aj;= 1 -
_ @i—Dr
£ = —cos ol (3)
Zi= —COS i;— Ti=10) -1

A great advantage of Eq. (1) is that the
weights a; and abscissas §; are identical with
those of the Gaussian quadrature formula for
the same weight function

| Wei@ia=SaWwepie) (4

The integral equation for two-dimensional

thin wings is of the form
)

= 5

wiz)=— 5§ 1€ q (5)

where w is the upwash on the wing surface

and y the local circulation. If Eq. (1) with

the weight function v (1—z)/(1+=) is applied

to Eq. (5), we have

w(xn)"_w Z

TC y=1 Tp— ev

n=1(1)N (6)

where
x ———cos—z—nx—
" 2N +1 .
§,=—cos @=Dr ‘)
t 2N +1
_ TCY 1—&’7’(&)
F”——__—_ZN«H (8)

and c is the chord length. If the following kth-
order moment M, is considered, and if Eq. (4)
with the weight function vV(1—x)/(14#) and
further Eq. (8) are used, then we have

Mk=pU(-;—)hl Sll shy(e)de
=p U(—;—)k yé exT, (9)

where p is the density of air and U the velocity
of main stream. Egs. (6) and (9) are nothing
but the equations of vortex-lattice method,
where I', represents the circulation of the lat-
tice vortex. It should be noted that, for the
simplest case of N=1, Egs. (7) give &;=—1/2
and x,=1/2 which correspond to the 1/4 and
3/4 chord points respectively. One may there-
fore regard this vortex-lattice discretization
rather than the ordinary equally spaced panel
discretization as a genuine generalization of
the 3/4 chordpoint formula of Pistolesi. The
above was suggested by Stark rather modest-
ly'. Eq. (8) defines the relation between the
circulation of the lattice vortex and the local
circulation, while there is no such clear rela-
tion in the equidistant discretization.

It will be instructive to consider here the
equidistant discretization from the standpoint
of the quadrature formula. We use for this
purpose a transformation by which ¢, and =,
in Egs. (7) are transformed into 1/4 and 3/4
chord points respectively in equally spaced
panels. The leading and trailing edges must
of course be unchanged by the transformation.
If we denote this transformation by

z*=f(x) (10)
then
2i—1 .
f)=ar= ;N i=1(1)2N
f()==zo*=—1 (11)
f@an 1) =Tn*=1
where
1T
— i = 2
i cos SN 1 i=0(1)2N +1 (12)

We can construct such a transformation for
example using the Lagrangian interpolation as
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3N +1
f2)= Zlo " Fy(z)x* 13)
i=
the dashes in ;" denoting the inclusion of a
factor 1/2 for :=0 and 2N+1. The interpola-
tion coefficients F'i(x) are given by

—{—1)*sin 8 sin N +1)8

Fi(=cosb)= (2N +1Xcos 8—cos 8;)
in
6;= N1 (14)
Let Eq. (5) be rewritten as
T B G ()
and let Eq. (10) be applied, then
1t ey a—E Y,
wer=—5 § ot e 0%
(16)

Since we may assume that (%)= v({1—£%J1 +&*)
X(a polynimial of &*), and since 1/v1+&*=~
1/(VF(—1)V1+E) for £€——1 and vVI1—§f*=
VF(A)V1—¢ for £¢-1, it may be said that y(£¥)=
VA—=8)/T+8xX(a regular function of &) if the
conditions f(—1)x0 and f'(1)x0 are assumed
to be satisfied. (x—8&)/{f(x)—f(5)} may have no
poles and f/(§) is a polynomial of £, We may
therefore apply approximately Eq. (1) with
the weight function v(Q—x)/(1+x) to Eq. (16).
Then we have

1 N r(EVI=E3f(E)
*)— —
w(xn )* 2N+1 uz;l xn*“‘ey*
am
where

4n—1

Tp¥=f(xn)=—1+ .
2N (18)

gr=a(E)=—1 +3;;,3

Comparing Eq. (17) with the equation of the

equidistant vortex-lattice method
1 r»

N
wEH)=—— 3 —
( n ) TC v§1 xR ¥—8.*

(19)

we obtain the relation between the circulation
of the lattice vortex I'.* and the local circula-
tion

o FEVI=E fEIES
L 2N +1
The kth-order moment is obtained by using
Egs. (4) and (20) as

(20)

k+1 1
M=pU(3) S_l EENFE)dE
C \k d

which has the same form as Eq (9). Eq. (21),

however, holds only approximately, while Eq.
(9) is a rigorous expression as long as w(zx)
is a polynomial and N is sufficiently large.

The relation between the local circulation
and the circulation of the lattice vortex is
usually assumed as

78M)=WN/ol'* (22)
The ratio of 7(£,*) obtained from Eq. (20) to
7e(6%) is
ré*) _ 2N +1
76.%) T Nrv1—E3f(¢)
Eq. (23) gives an approximate correction fac-
tor for the local circulation (or the local lift)
obtained by the equidistant vortex-lattice
method, and notably it does not depend on
w{(x). Values of the correction factor for the
case of N=10 are shown in Table 1 in which
they are compared with DeYoung’s result®
obtained by solving Eq. (19) for w(x)=1.

3. RECTANGULAR WING

The integral equation for a rectangular wing
is written as

(23)

1 £ Lt e/
w(z, ¥)=— 1 f_l R
V(=8 +ANy—7)*
x{1+ — }aear 20

where A is the aspect ratio. If Eq. (1) with
the weight functions v{(1—z)/(1+z) and 1/
v1—2x* is applied to the integrations with
respect to & and 7, respectively, in Eq. (24),
we have

—_ n RSV Pt
o )= AM+1EN+DA #Z-—-:l Ym—Yp
A’ .
X ‘?1 7.6, PR V1I—E3
VMg, £ —
>:{ 1+~ (#n—§)+ AXYm—7) }
mﬁ—ey
n=1A)N, m=1(1)M (25)
where
£, = —COS 2nn
n= 0 2N+1
SN C- 2t 0,3
§,=—cos oNT1 o
— mrn
Ym=—COS M+1
— _cos 2=
Nu=—CO0S8 M1 1)

and 7,(§,, 7,) means 9r/nfe=¢,, 1=,

We can construct the corresponding vortex-
lattice model by locating each discretized
bound-vortex on a segment connecting adja-
cent two integration points in the spanwise
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direction such as points (¢,, 17, and (£, 5u41)
as shown in Fig.1, and by putting control

points at (%, Yym). The equation of this model
is

w(Ln, ym)=E,,=1 &
X[ 1 {1+\/(xﬂ_evy'i'Az(ym_’?ﬂn)a}

Ym—p+1 Tn—E&,

1 {1 V@ F A Y7 H
— +

ym"’?# mﬂ—fv

@0
where s is the semispan and I',, is the circula-
tion of a horseshoe vortex whose bound vortex
is located between points (¢., 7,) and (&, 7a41)-
By introducing I"vo=1"s, »+1=0, Eq. (27) can be
rewritten in the form

1 M+1 1

’w(:t,,, ym)—_zr; FZ:I Ym— Dy yz (['v_n Fv,y—l)
—_ 3 F]
{1+ NV(zn—&s )u:‘; (Ym—72)? } @8)
Comparing Eq. (28) with Eq. (25), we have
va “Pn a-1
_____L\/lfgz’\/ﬁ 13
b (M+1)(2N+1) v 7)# TV vy 7’!‘)
29
or
nic -
= arren+1 Y
SRS CETINCHE N (30)

In order to see the relation between I',, and
the local circulation r(§, ») more clearly, we
may assume that the latter is of the form

16, N=a.,(§)sinrg (r=1,2,.:-) 31)

where =—cos¢. Then the sum in Eq. (30)
becomes

Tﬁ(ev; 771)

r@1—1)r
2M+1)

Zp', Vizg .t
=1

=ra, (&) f} cos
A=1

1 . Tum
=3 mr(&)(sm M1 )
M+1 ryn

a,(¢,) sin —}\E:f

_M+1 _ ur )
= r(y, cos Ml (32)

where we have used the approximation sin
{ra/[2AM + D =ra/[AM +1)] for lor large M. We
then have

. rr
sin _——_——_2(M+1)

xeV1—=82 1, ¥p)
2N +1

—cos [pr/(M+1)].

Iy~

(33)

where y,= It is seen from
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Egs. (26) that 2,<¥.<7ui1. Eq. (33) means
that the relation between the circulation of
discretized vortex and the true local circula-
tion for a rectangular wing is quite similar to
that for a two-dimensional wing, Eq. (8), pro-
vided that I',. is the converged solution of Eq.
(27).

Convergence of the total lift and moments
will be better than that of the local circulation.
Consider a general form of moment

Mp,
pU(c/z)p+lsq+1

=[" [ ermrte, mazar

Mpq:

=g} el rrmf’— 34
1

By applying Eq. (4) with the weight functions

v(1—2)/(1+x) and 1/v1—2* to the integra-

tions with respect to § and 7, respectively, in

Eg. (34), and by using Eq (29), we have

27 2
= —_——— 1, —
My, (‘I+1)0 v§l ;tz+: e

= (g+1)c v§1 pg S patt

1=, (35)

or

MpquU( ) 87+1 E Z &P, p41)U(Ppe1—

v=1lpu=1

1) o p
(36)

where 3., ;11 lies between 7, and 7,31, and is
defined by

,7#+1q+1__77ﬂq+1

(77# w1)i= (‘1+1)(")p+1—'7p)

(04 + 7T 1+ - -

+77p?p+1q-1+77p+1q) 37
Eq. (36) states that the total moment of any
order is given by simply applying the law of
Kutta-Joukowski to the discretized bound vor-
tices. This is a generalization of Eq. (9) for
the two-dimensional case. It is to be noted
that Eq. (29) instead of Eq. (33) has been
used in deriving Eq. (86). This is the reason
why the convergence of general moments is
thought to be better than that of the local
circulation.

It will be of some interest to consider the
lift of a rectangular flat-plate wing predicted
by the simplest vortex lattice, that is, a single
horseshoe vortex. With w (%, ¥1) =—Ua, a be-
ing the angle of attack, Eq. (27) with N=M=1

1
“g+lc

gives I';;.  The lift-curve slope is then obtained
from Eq. (36) as
A
Co=trviar @9
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Eq. (388) is erroneous when the aspect ratio 4
is large, but it gives the correct value (x/2)A
when A approaches zero.

The control points (%, ¥m) and the integra-
tion points (&, 7,) given by Egs. (26) are not
new; in fact, (Zna, Yym) are the same as the so-
called optimum control points which have been
widely used since Multhopp'**¥, while (§., 7,)
are the same as those employed by P. T. Hsu'?,
although the previous derivations were based
on different standpoints.

In the two-dimensional case, Eq. (8) holds
exactly as long as w(x) is a polynomial whose
degree does not exceed 2N; that is, solving
Eq. (6) with respect to I'., we can find exact
values of 7(£) from Edq. (8). In the case of
rectangular wing, on the other hand, Eq. (33)
is by no means exact due not only to the ap-
proximation introduced to the sine term in
Eq. (32) but also to the fact that there is a
square-root term in Eq. (24) to which Eq. (1)
cannot be applied exactly. Convergence of the
solution will still be guaranteed in Eq. (33)
because the square root can be approximated
by a polynomial to any accuracy; that is, if
Eq. (27) is solved with respect to I',, and then
values of 7(¢, ¥.) are found from Eq. (33),
they will unlimitedly approach to the exact
values as N and M become large. In this sense,
the above vortex-lattice model may be said to
be an ideal one. We can see, however, that the
ideal arrangement is not defined uniquely. For
example, the chordwise arrangement of the
present model may be replaced by Lan’s one!®
without losing accuracy. Further, we may use
a spanwise arrangement by Borja and Brak-
hage'® who applied their quadrature formula
to Eq. (24). Although they did not give any
consideration about the vortex-lattice method,
it is clear from the above discussion that this
can be constructed from their method. Accord-
ing to their quadrature formula, two kinds of
spanwise arrangements are possible, one of
which is the same as that of the present model
where the lattice does not extend to the wing
tip. The other is such that the lattice does
extend to the tip. In this arrangement, ¥m and
7. in Eq. (26) should be replaced by

Ym==—COS m—1)r
2M 39)

and in Eq. (25), a factor 1/2 should be in-
cluded when g=1 and g=M-+1 in the summa-
tion with respect to g. By similar considera-

tions to the above, we have the same relation
as Eq. (83) but, in this case, ¥, should be re-
placed by y.=—cos[(2u—1)x/(2M)].

4. INDUCED DRAG

The spanwise distribution of the induced
drag is expressed as the difference between
the drag component of the mormal force and
the leading-edge suction’®. The drag compo-
nent of the normal force per unit span at
Ya=—cos [pr/(M+1)] is

oc (!
Duty=—5 | 16, vowie, vt o)

Applying the quadrature formula Eq. (4) for
the weight function W(x)=v(1—=z)/(1+=z) to
Eq. (40), and using Eq. (33) we obtain

N
D”(y,)=—p ‘§1 va‘u)(fva y!’) (41)

It will be more convenient to express Dlp(y,)
in terms of upwash values at control points
w(xn, ¥p) instead of the values at points on the
bound vortices w(f,, ¥»). This is accomplished
by an interpolation. The appropriate Lagran-
gian interpolation formula is

N
w(§, y)=”}=31 W(Zn, Y)gn() 42)

where
gn(—cos &)
__ —(—1)"sin (6,/2) sin 8, sin (N +1/2)¢’
(N +1/2Xcos ' —cos 8,,) sin (6//2) 43)
__ 2nr
n— 2N+1 )
Substitution of Eq. (42) into Eq. (41) gives

Zp=—CoSs I,

N N
Dsyp)y=—0p El Iy ”{:l w(xn, Yu)ga(&) (44)

where
€)= (—=1)"*" sin (6,/2) sin 0,
InS= (N ¥1/2)cos 8,'— cos 6, sin (6,'/2)
(@v—Dr_ (45)
O/ =T &, =-—cos b/
2N +1

The leading-edge suction per unit span at
Y» is given by'®

S(yp)— hm [r(f, yIP1+8) (46)

To express 7(§, ¥4) in terms of I, an inter-
polation is again essential. The appropriate
Lagrangian interpolation formula in this case
is

I e vo= £ /e uih® @

or
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N
7¢, yu)= El (P PIE) (48)
where
f{—cos @)
_cot(8/2) -
= ot (0,2 1 XC0s6)

—(—1)*(1—cos 8,) cos (6,//2) cos (N +1/2)¢
(N+1/2)cos & —cos 6,') sin (¢'/2)

49)

Substituting Eq. (48) into Eq. (46) and using
Eq. (33), we have

N 8’12
Swa=lim " % 1, y)ful—cos Msin |
8’ ~0 v=1

e[ (—1r 6.1 50

~ dre {El(_ Y'L'sy cosec 2} (50)
Now that Dsp(y.) and S(y,) have been known,
the induced drag per unit span at ¥, is given
by

Di(y)=Dsp(yu)—S¥) (51)

Eq. (50) can be put into another form if we
realize the fact that in two-dimensional wings
the leading-edge suction just offsets the drag
component of the normal force. Referring to
Eq. (6), we have “the two-dimensional upwash
due to I',,”

1 % T,

TC y=1 wn'—fv

W(&n, Yu)=— (52

Replacing w(xn, yx) in Eq. (44) by "I)(xm Vo)
we have an alternative form of S(y,)

N N N
Swi=fy EETAnE 00

1 &n—E2

When the form of Eq. (53) for S(¥.) is used,
Eq. (51) becomes

N N
Di(y)=—p §1 r,, nZ:JI gx(§»)

1 N I
X {W(xnr yl‘) +;;Eq lgl w‘n’{i‘e—l—} (54)

We can show that the two expressions for
S(y,) are actually identical. Consider the term

N
E_Jlgn(&)/(ﬂ?n—fz) in Eq. (53). When £%¢,, it can
be shown that

gn(§») — 1
:cn—f Ev_e
% {gn(&) " (—1)" sin (¢//2)

sin (6,//2) sin (N +1/2)6'

2]
(55)
where §=—cos¢. Using the obvious relation

N
ng 2(&)=1, we obtain
n=

N
5 g-&)
n=1 &n—E&2
1 gy 8in(6)/2)
_Je—a -t e
1 (66)
2(1—cos 6,7

where the limiting value has been taken when
A=y, Eq. (66) can further be converted into
a single equation:

i gn(‘fv)
nz=“1 xn—El
=[2{(—1)* sin (8."/2)+(—1)* sin (0.'/2)}
X (—1)’ sin (6,//2)) ! 67

Since v and i are interchangeable in Eq. (53),
S(y,.) is expressed also by the following added
mean

4 N N
S(y)= ore §“§1 Iy lap

¥ gal§) X ga€a)
><{'rzz=:l Tn—§1 n=1 mn—ev}
If Eq. (57) is substituted into Eg. (58), we
find that the resulting equation is exactly the
same as Eq. (50).

(58)

5. NUMERICAL EXAMPLE

In order to see accuracy of the lift and in-
duced drag distribution to be obtained by the
present lattice arrangement, computations were
carried out on a rectangular flatplate wing of
aspect ratio 2. The results are compared with
those of a lifting-surface theory'” in Tables 2
to 6. In Table 2 are shown chordwise distri-
butions of the local lift coefficient for unit
angle of attack 4C,/a at various spanwise loca-
tions. Since values of the local lift are com-
puted only at points §=§,, an interpolation of
the form of Eq. (48) was used to obtain values
at points in the table. Tables 3 to 5 show,
respectively, spanwise variations of the lift
coefficient per unit span referred to the total
lift coefficient C1’/Cz, of the section centre of
pressure Xq, and of the induced drag coeffi-
cient per unit span referred to the square of
the total lift coefficient Cps//Cr2 Finally in
Table 6 are shown the total lift coefficient Cr,
the total moment coefficient Cpr, the overall
centre of pressure X, and the vortex drag
factor K=rACpi/C1?, Cp; being the total in-
duced drag coefficient. The total induced drag
was obtained by the equation

Di=s 3. (ra—1D{W) 59

which is a simple sum and is not based on the
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Gaussian quadrature formula.

Throughout Tables 2 to 6, the results of the
present vortex-lattice method correspond very
well with those of the BAC lifting-surface
theory. In Table 2, the effect of increasing N
from 4 to 6 while maintaining M=15 is some-
what observed near the wing tip, whereas that
of increasing M from 15 to 31 while maintain-
ing N=4 is small. The same is true in Tables
4 and 5, but not in Table 3. Further, as for
the overall values in Table 6, the former effect
is seen to be reflected only in K. In CL, Cn,
and X,. and in Table 3, this effect may have
been averaged out by integration.

6. CONCLUDING REMARKS

It has been shown that the ideal lattice ar-
rangements of the vortex-lattice method for
rectangular wings are obtained by applying
the quadrature formulas for the Cauchy inte-
gral to the integral equation of the lifting-
surface theory, and that the relation between
the circulation of the lattice vortex and the
local lift is thereby clearly defined. As a
natural consequence of this, the spanwise dis-
tribution of the induced drag has been com-
puted accurately.

In the ordinary vortex-lattice method, the
basis is found fundamentally in the equally
spaced panel arrangement, although fairly
flexible panel arrangements seem to be used in
actual applications. According to the discus-
sions in this paper, the lattice arrangement of
the equally spaced panel can be though to be
a deformation of the ideal arrangement. Al-
though the former still have a small part of
the advantages of the latter, most of the
reasons of the inaccuracy in the latter are
attributed to this deformation.

It may be difficult to give bases for more
general planforms as well as for the rectangu-
lar wing. Favourable results may, however,
be obtained in practical applications by using
lattice arrangements as similar as possible to
the ideal arrangement for the rectangular
wing.
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Table 1. #(5.*)/7.6*), N=10

v Ref. 6 Eg. (23)
1 1.128 1.1283
2 1.009 1.0078
3 1.008 1.0018
4 1.001 1. 0006
5 1,000 1.0002
6 1.000 0.9999
7 0.999 0.9993
8 0.998 0.9990
9 0.995 0.9965
10 0.977 0.9779

(Eysn)

r

B

I?vu

r
v

(€yonyeq)

—o—

vu

D

Fig. 1 A Lattice Horseshoe Vortex

Table 2. Chordwise Distributions of Local Lift Coefficient
for Unit Angle of Attack 4C,/a

(a) 2=0
Present Method BAC Method!?
% chord M=15 M=15 M=31 m=13

N=4 N=6 N=14 N=4 N=6
0.5 31.5492 31.5360 31.5311 31. 5251 31.5171
1.26 19.7945 19.7891 19.7826 19.7792 19.7759
2.5 13.8105 13.8097 13.8016 13.7998 13.7992
5 9.5049 9.5076 9.4980 9.4973 9.4988
10 6.3603 6.3647 6.3547 6.3550 6.3573
15 4.9073 4.9112 4.9023 4.9030 4.9047
20 4.0095 4.0124 4.0050 4.0058 4.0067
30 2.8984 2.8992 2.8945 2.8953 2.8948
40 2.2031 2.2030 2.1998 2.2004 2.1994
50 1.7095 1.7096 1.7069 1.7070 1.7064
60 1.3312 1.3316 1.3291 1.3288 1.3289
70 1.0226 1.0232 1.0209 1.0202 1.0208
80 0.7525 0.7527 0.7513 0.7504 0.7509
90 0.4867 0.4860 0.4860 0.4850 0.4849
95 0.3310 0.3299 0.3305 0.3298 0.8292
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Table 2. (continued)

(b) 7=0.3827
Present Method BAC Method!?
9, chord M=15 M=15 M=31 m=13
N=4 N=6 N=4 N=4 N=6
0.5 30.1434 30.1161 30.1232 30.1132 30. 0956
1.26 18.8898 18.8783 18.8765 18.8712 18.8639
2.5 13.1532 13.1510 13.1433 13.1408 13.13%4
5 9.0175 9.0222 9.0097 9. 0095 9.0124
10 5.9896 5.9974 5.9833 5.9847 5.9891
15 4,5892 4.5959 4. 5837 4. 5856 4.5889
20 3.7254 3.7300 3.7205 3.7225 3.7240
30 2.6623 2.6632 2.6583 2.6598 2.6587
40 2.0048 2.0041 2.0016 2.0022 2. 0005
50 1.5445 1.5439 1.5420 1.5417 1.5408
60 1.1966 1.1966 1.1947 1.1937 1.1939
70 0.9163 0.9166 0.9149 0.9136 0.9144
80 0.6734 0.6733 0.6725 0.6710 0.6716
90 0.4356 0.4346 0.4350 0.4339 0.4336
95 0.2962 0.2952 02958 0.2951 0.2945
Table 2. (continued)
(c) 7=0.70711
Present Method BAC Method!?
9% chord M=15 M=156 M=31 m=13
N= 4 N= 6 N=14 N=4 N=6
0.5 25.6985 25.6989 25.6625 25.6585 25. 6668
1.25 16.0201 16.0221 16.9986 15.9976 16. 0010
2.5 11.0607 11.0625 11.0454 11.0465 11.0469
5 7.4583 7.4600 7.4475 7.4503 7.4482
10 4.8015 4.8032 4.7940 4.7980 4.7944
15 3.5755 3.5775 3.5697 3.5737 3.5706
20 2.8295 2.8322 2.8249 2.8284 2. 8266
30 1.9413 1.9450 1.9382 1.9400 1.9413
40 1.4234 1.4270 1.4215 1.4214 1.4246
50 1.0823 1.0840 1.0812 1.0795 1.0823
60 0.8365 0.8352 0. 8360 0.8335 0.8338
70 0.6432 0.6391 0.6429 0.6402 0.6379
80 0.4748 0.4705 0.4746 0.4723 0.469%4
90 0.3064 0.3057 0.3062 0.3049 0.3049
95 0.2072 0.2089 0.2070 0.2063 0.2084
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Table 2.

(concluded)

(d) »=0.9239

Present Method

BAC Method!"

% chord M=15 M=15 M=31 m=13
N= 4 N= 6 N=4 N=4 N=6
0.5 16. 4681 17.3203 16.3999 16.5395  17.2606
1.25 10.1594 10. 5463 10.1192 10.1966  10.5097
2.5 6.8926 7.0114 6.8674 6.9101 6.9872
5 4.4888 4.4110 4.4752 | 4.4904 4.3966
10 2.7002 2.5408 2.6954 2. 6904 2.5349
15 1.8870 1.7689 1.8861 1.8739 1.7574
20 1.4113 1.3396 1.4122 1.3983 1.3404
30 0.8924 0.9108 0.8945 0.8835 0.9128
40 | 0.6358 0.6799 0.6377 0.6323 0.6708
50 , 0.4940 0.5180 0.4951 |  0.4945 0.5177
60 | 0.4018 0.3950 0.4022 | 0.4041 0.3942
70 ‘ 0.3254 0.3034 0.3253 |  0.3267 0.3028
8 | 0.2461  0.232%5  0.2459 |  0.2444  0.2320
90 | 0.1537 0.1593 0.1537 0.1487 0.1580
95 { . 0.0933 0.1074

0.0988

0.1093

0.0989

Table 3. Lift Coefficient per Unit Span Referred to

0.1951
0.3827
0. 5556
0.7071
0.8315
0.9239

0.9808

M=15
N= 4
1.2561
1.2349
1.1710
1.06843
0.9153
0.72711
g 0.5054
' 0.2592

Present Method

M=15
N=§6
1.2560
1.2348
1.1710
1.0643
0.9154
0.7272
0. 5055
0.2593

M=31
N= 4

1.2548
1.2336
1.1697
1.0629
0.9141
0.7261
0.5046
0.2588

Total Lift Coefficient Cp//Cr

|
|
]

BAC Method®
m=13
N=4 N=6

1.2543 1.2543
1.2331 1.2330
1.1692 1.1692
1.0626 1.06256
0.9137 0.9137
0.7257 0.72567
0.5044 0.5044
0.2686 0.2587
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Table 4. Section Centre of Pressure X,

Present Method

BAC Method™

7 M=15 M=15 M=31 m=13
N= 4 N=6 N= 4 N=4 N=6
0 ! 0.2201 0.2200 0.2200 0.2199 0.2199
0.1951 K 0.2188 0.2188 0.2187 0.2187 0.2187
0.3827 i 0.2151 0.2150 0.2150 0.2149 0.2149
0. 5556 i 0.2087 0.2086 0.2087 0.2085 0.2085
0.7071 0.1997 0.1995 0.1998 0.1996 0.1996
0.8315 0.1889 0.1885 0.1891 0.1886 0.1886
0.9239 ; 0.1781 0.1769 0.1784 0.1773 0.1770
0.9808 ‘} 0.1701 0.1674 0.1706 0.1685 0.1674
Table 5 Induced Drag Coefficient per Unit Span Referred to
Square of Total Lift Coefficient Cp;/C 2
Present Method BAC Method!”
7 M=15 M=15 M=31 m=13
N= 4 N=6 N= 4 N=4 N=6
0 0.1850 0.1853 0.1848 0.1848 0.1850
0.1951 0.1834 0.1838 0.1832 0.1832 0.1835
0.3827 0.1782 0.1789 0.1781 0.1781 0.1786
0.5556 0.1686 0.1695 0.1685 0.1686 0.1693
0.7071 0.1540 0.1540 0.1541 0.1541 0.1539
0.8315 0.1358 0.1312 0.1361 0.1353 0.1315
0.9239 0.1144 0.1030 0.1148 0.1131 0.1033
0.9808 0.0781 0.0705 0.0782 0.0770 0.0701
Table 6. Overall Values
Present Method BAC Method”
M=15 M=15 M=31 m=13
N= 4 N= 6 N= 4 N=4 N=6
Cy, 2.4735 2.4741 2.4736 2.4744 2.4744
—~Cn 0.5185 0.5182 0.5185 0.5182 0.5181
Xae 0.2096 0.2095 0.2096 0.2094 0.2094
K 1.0108 1.0033

1.0107 1.0028 1.0119
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