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A Study on Numerical Method for Evaluating Spanwise
Integral in Subsonic Lifting-Surface Theory*

By Teruo ICHIKAWA**

ABSTRACT

Two disputable points in the spanwise integral in the NLR method are
discussed. The first point is the coincidence of each collocation section with
one of the spanwise integration points. This makes necessary the evaluation
of the regularized influence functions at the coincident points, which is very
time consuming except in cases of steady wings. The second point is the
relatively small, but undesirable, sharp variation of the regularized influence
functions near the collocation sections, which is the cause of the necessity
of taking a large number of spanwise integration points. Two proposals for
coping with these difficulties are made. We call these proposals Method 1
and Method 2. Their effects are examined by computing the downwash at
the surface of a steady rectangular wing subjected to a simple wing loading.
It is shown that Method 1, which avoids the coincidence, makes it possible,
with no losses in accuracy, to greatly reduce the computing time in cases
of oscillating wings. Further, it is shown that remarkable improvement in
convergence with repect to the number of spanwise integration points is ob-
tained by Method 2 which distributes the spanwise integration points densely
only near the collocation sections.
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NOMENCLATURE 4 aspect ratio
Aq(p,v) coefficient, Eq. (25)
a positive integer controlling num- b,r coefficient, Eq. (31)
ber of spanwise integration points b(n.) coefficient for rectangular wing,
Ari coefficient, Eq. (33) Egs. (62) and (67)
Qrz coefficient, Eq. (39) B..(p,v) coefficient, Eqs (30), (32), (38), and
ar’ coefficient, Eq. (46) (45)
‘ B(,7.) coefficient for rectangular wing,
* Received February 13, 1981 Egs. (61), (69), (70), and (71)
** Pirst Airframe Division c chord of rectangular wing
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c(y) local chord
C.r coefficient, Eq. (31)

Cy(x,7) coefficient of logarithmic singu-
larity in influence function

C¢) coefficient of logarithmic singu-
larity in influenice function for
rectangular wing

d., coefficient, Eq. (31)

d(z.) coefficient for rectangular wing,
Eqgs. (63) and (68)

f(x) continuous function

[-R(6) Multhopp’s interpolation coefli-

cient, Eq. (2)
Fy(x,7;7) influence function, Eq. (24)
F(¢,5.—7) influence function for rectangu-
lar wing, Eq. (54)

F.(p) transforming function

F,%(p) transforming function of the first
kind, Egs. (72) and (73)

F,®(p) transforming function of the
second kind, Egs. (74) and (75)

g:5(0) interpolation coefficient, Eqgs. (6)
and (8)

h zero or positive integer control-

ling 6 in Eq. (48)
K(x,y; x',y) kernel function
I(x',¥')  wing loading (lift per unit area)
as a fraction of dynamic pressure
Lagrangian interpolation coeffi-
cient, Eq. (A3)
number of collocation sections
Mach number of stream
number of chordwise loading
functions or collocation points
p integer denoting chordwise posi-
tion of collocation point
orthogonal polynomial of degree
R satisfying Eq. (A4)
Py (x,7;7") modified influence function, Eq.
(27)
P, n,—7) modified influence function for
rectangular wing, Eq. (65)

1-B(x)

223

Pr(x)

q integer denoting chordwise load-
1ng function
r integer denoting Muthopp’s ab-

scissa for interpolating spanwise
loading functions

R, (x,7n;7') regularized influence function,
Eq. (28)

R(,7.—7) regularized influence function
for rectangular wing, Eq. (58)

s semispan of wing

W(x) weight function

x,y;x’, ¥ rectangular coordinates in plane
of wing

xr zero of polynomial pg(x)

xi(¥), x:(¥") coordinates of leading and
trailing edges, respectively

Xp, coordinate of collocation point,
Eq. (22)

X, Xo; Y Egs. (37

y. =87,

a(x, y) downwash angle (downwash as a
fraction of stream velocity)

Ap, :a(xpv’ ¥.)

B =(1— M3y

I'o(n") spanwise loading function

') spanwise loading function for
rectangular wing

Lyr =1(n,)

0 zero or positive real number con-

trolling interval of ¢ in Fig. 2
7 =yls

7 =y'ls

Nr =— cos b,

M =— cos b,

7 =— cosf,

/8 =— cos @,

M =— cos .,

& =arccos (—7')

é, Multhopp’s abscissa (angular co-
ordinate) for interpolating span-
wise loading functions, Eq. (19)

é, angular coordinate of spanwise
integration point, Eq. (34)

8, angular coordinate of spanwise
integration point, Eq. (40)

g, angular coordinate of control
section, Eq. (20)

6., angular coordinate of spanwise
integration point, Eq. (47)

A integer denoting panwise inte-
gration point

A number of spanwise integration
points, Eq. (34)

A number of spanwise integration
points, Eq. (41)

Ay number of spanwise integration
points, Eq. (48)

) integer denoting collocation sec-
tion

3 Egs. (50)

é Eq. (51)

¢ Eq. (17); for rectangular wing,
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Eq. (61)

ép angular coordinate of chordwise
position of collocation point, Eq.
(22)

© angular variable in Fig. 2

®2 Eq. (47)

(0] Eq. (43)

(D; Eq. (47)

¥.(¢) chordwise loading function

¥ () chordwise loading function for

rectangular wing

1. INTRODUCTION

Among a variety of methods for solving
the integral equation of the subsonic lift-
ing-surface theory, Multhopp’s method! and
its improved versions seem to occupy im-
portant positions. P.T. Hsu® extended the
Multhopp concept of optimum collocation
points, and gave a new quadrature formula
for the spanwise integral. Garner and Fox?
used a larger number of spanwise inte-
gration points than that of collocation
sections, and treated the logarithmic sin-
gularity of the influence function using the
Mangler and Spencer method*. Zandbergen,
Labrujere and Wouters® applied the Mult-
hopp interpolation formula both to the
spanwise loading function and to the re-
gularized influence function separately,
using their own mtehod for treating the
logarithmic singularity. It is rather sur-
prising that the concept of regularized
influence function had been suggested ear-
lier by Multhopp (Appendix V in Ref. 1),
Of the above methods, Refs. 1 and 5 are
for steady wings and Refs. 2 and 3 are for
oscillating wings. Lehrian and Garner?®
extended the method of Ref. 5 (NLR method)
to oscillating wings. Furthermore, Garner
and his collaborators made a series of
studies’® to compare and appraise various
methods.

This paper considers the spanwise inte-
gration in the NLR method, and proposes
further improvements upon this. Although
the numerical examples presented are con-
fined to cases of the steady wing, the
proposed methods should be applicable to
those of the oscillating wing.

2. INTERPOLATION AND
QUADRATURE
FORMULAE

As a preliminary, two interpolation for-
mulae and the related quadrature formulae
are given. One of the interpolation formu-
lae has been known.

Let a function F(f) be defined in the
interval [0, 7], and let F(0)=F(z)=0. Then
the following interpolation formula has been
given by Multhopp:!-°

FO= L FONO) (1)

where
£,5(6) = (—=1) sinf,sin (R+1)8
T (R4 1)(cos 8, —cos 6)
2 R
= Rii Y. sin sf, sin sf (2)
s=1
ra
O = R+1 (3)

The interpolation coefficients f,7(8) satisfy
the conditions

er(ar) =1
fR(0,)=0

The abscissae @, are zeros of sin (R+1)8 in
the interval [0, #].

Let us consider, next, interpolation co-
efficients g.%(f) corresponding to abscissae

. (4)

7 _ @r—-Hr

61 2R r:1:2)"':R (5)

which are zeros of cos Rf in the interval
[0,2]. By the same idea as that Multhopp
adopted to de:ive f,®(f), we have

g:%(6)
cos RO
- (cos 6—cos 8,) [d(cos R8)/d(cos 6)}e-3,
:L—l)’ sin f, cos R6 (6)
R(cos 0,—cos )

Eq. (6) has been constructed so as to satisfy
the conditions

g,R(H,): 1

g:%(0,)=0 pﬂ:r} (1)
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By regarding the interpolation coefficients
g:%(f) as even functions in the interval
[—n,n], and through a similar procedure
used by Multhopp to obtain the Fourier
expansions of f,%(#), we have the following
finite cosine series as the Fourier expan-
sions of g,B(f):

R-1

grR(6)=3<l+ Z_} cossf, cossf) (8)
R\2 5

It can be seen from Egs. (7) and (8) that
the coeflicients g,.%(@) are suitable for inter-
polating a function F(#) which is defined
in the interval [0, #] and satisfies the con-
dition F'(0)=F'(x)=0 where F'(f) means
dF(6)/df, so that

FO)= 3, Fee 0 (9

In the following, we shall need the quad-
rature formula for integrals of the type

1= J G(O)do (10)
with
G(6)=G(6) sin 6 a1)

where G(0)=G(z)=0 and therefore G'(0)=
G'(r)=0. First, let us apply the interpola-
tion formula, Eq. (1), to the function G(6).
Then we have the first quadrature formula

1 Lid ) —
~ R rg(—-l) sin 6,G(0,)
XJ‘ sin (R+1)8 sin 0d0
o cosb,—cosl
n R
"R 29 2

We can see that Eq. (12) is nothing but
the simple trapezoidal rule since G(0)=
G(r)=0.

Secondly, the application of the inter-
polation formula, Eq. (9), to the function
G(6) leads to the second quadrature formula

R
Izl > (—1) sin 8,G@,)
R 3

x cos Ré
XL cos 0, —cos @ db
r B _
=R r; G@,) (13)

This formula may be called “‘rectangular
rule” in comparison with the trapezoidal
rule.

It will be instructive to consider the
relation between these formulae and the
quadrature formulae of Gaussian type for
integrals of the form

J= J.l W(x)f (x)dx (14)

where W(x) is a weight function. It is
shown in Appendix A that, by the sub-
stitution of x=—cosf, Eqs. (12) and (13)
reduce to the quadrature formulae of
Gaussian type with the weight functions
Wx)=1—-x»"* and W(x)=(1—x2)"1* re-
spectively. The quadrature formulae of
Gaussian type are exact when the function
f(x) is a polynomial of degree not in excess
of 2R—1.1" Therefore, Eqs. (12) and (13)
hold exact when G(6)/sin 6 and G(f), respec-
tively, are polynomials in (—cos ) of de-
grees not in excess of 2R—1.

3. NLR METHOD

The integral equation of the subsonic
steady lifting-surface theory is written in
the form

a(x, y)
1 s ze(y’)
- L j [ I, YK (x, y; ¥, y)dx'dy
87 J_sJziyn
(15)

where a is the downwash angle (the down-
wash as a fraction of stream velocity), 1
the wing loading (the lift per unit area)
as a fraction of stream dynamic pressure,
s the semispan, and x; and x; the coordi-
nates of leading and trailing edges respec-
tively. Since the kernel K has a singularity
of the form (y—y')-* Mangler’s principal
value!'1® must be taken in the integral with
respect to y'.

In order to solve Eq. (15) for the unknown
function [, the latter is approximated by
a superposition of known chordwise loading
functions 7 ,(¢) as

1, V)~ BIOWE)  (8)
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where ¢’ is a chordwise angular variable
whose relation with x’ is given by

x=xly)+ge(y)i-cos$) (7

¢ is the cord length, and #'=3’/s. The co-
efficients I'y(3") in Eq. (16) are unknown.
By putting 7'=—cos #' and by applying Eq.
(1) to the functions Iy, Eq. (16) becomes

1, =y B £ Turfem0)
(18)
where

_ rmw
T m+1

9r=—cos b,, 6, (19)
Corresponding to the approximation by
Eq. (18), Eq. (15) is made be satisfied only at
a finite number of points. These points are
the so called Multhopp collocation points,
whose positions are defined by the m sections

n.=y/s=—cosb, }

v (20)
02 = 2 v o
= (v=1,2,+:--,m)

and by the N points on each sections

%, =51(3) 5 ¢(3)(1 ~ c05 65)

2
onp (22)

¢P=m (p:1!27""N)

Substituting Eq. (18) into Eq. (15), trans-
forming the integration variables from x’
and y’' to ¢’ and ¢’ respectively, and further
substituting the coordinates of collocation
points, we have

1 N m
a(xpw yb):__é; Z] ZIFQ(’?T)
g=1lr=

X j{me(gl)Fq(xpn 77,\«; 77,) Sin 6’ dﬂ’

0 G. =7
v=1,2+---,m;p=1,2,+++,N)
(23)

where the functions F, are called influence
functions and are given by

1 <
Folx,n;7)=-— . L (y—y)*

X K(x,y; x', y)¥($") sin ¢'d ¢’
(24)

mx N equations given by Eq. (23) with the
mx N collocation points (x,,, y,) constitute
a system of linear simultaneous algebraic
equations for mx N unknowns ['y(3,). . If
we write as a(Xp., Y,)=ap,, I ¢(n:)=1"¢r, and

1
Ap(p,v)=——-—

2n
X.[' frm(al)Fq(xpvs 771«; 7/) Sin 0l dﬁ'
0 (771' - 77,)2

(25)
then Eq. (23) becomes

N m
&py = qu TZ.;AW(P; g (26)

Zandbergen et al. of NLR® (National
Aerospace Laboratory, The Netherlands)
presented an improved method for evalua-
ting the integral in Eq. (25). Let us derive
the resultant expressions for the coefficients
Ag(p,v) by this NLR method in a somewhat
simpler way. Since the influence functions
F, contain logarithmic singularities,! the
lowest-order terms of them are removed as

Py(x,n;9)=Fox, ;7
— Cy(x, )’ —7)* log | 7' —7]|

27
Further the regularized influence functions
Ro(x,7;7)
sin ¢’ ,
= M{PQ(x’ 73 0)— Po(x, 1, 7)

— (@' )P (x,7; 7)}
(28)

are introduced, where P,(x,7;7) means
[0Py(x, n;7))/oy'],-~,. Although the term
“regularized influence function” seems to
be known together with the NLR method,
it would be of some interest to note that
its concept was suggested originally by
Multhopp' as stated in the introduction
and also that P.T. Hsu? derived his ingen-
ious integration techinique using a similar
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concept.*
By substituthng Egs. (27) and (28) into
Eq. (25), we have

Aqf(p: V):qu(p, V)+vaPq<wa 77»; 77»)
+cerq’(xpn 7]»; 77‘/)
+d.,Co(xp., 1.) (29)

where the coefficients B,.(p,v), b.,, ¢.r, and
d,, are defined by

1 x
Burp, )= =5 [ @R ni 100

(30)
=— "“_[ (@) sin g’ 0’
bur = vy
< f,m(@)sinf
vr— — g o Tdﬂ
) ’ L 3D
dl«T _— E

X f'fm 0" log 7.7 | sin 6'd0’
0

In the first and second integrals in Egs.
(31), Mangler’s and Cauchy’s principal
values, respectively, must be taken. Ana-
lytic forms for the coefficients b.,, ¢,r, and
d,, have been given in Refs. 5 and 6.**
As to the integral in Eq. (30), its inte-
grand is seen to be of the same ature as
that in Eq. (10). Therefore the application
of the quadrature formula of Eq. (12) yields

Y
By (p,v)= ;aerq(xpw 7i7)  (32)

where

I L2k (),
ar; = —‘m (33)

* The integrand of the first integral on the
right-hand side of his Eq. (5.17) becomes a
similar form to Eq. (28) above by the substi-
tution of his Egs. (5.15) and (5.16). Williams!?
used an expression exactly of the same form
as Eq. (28) to derive Hsu’s integration for-
mula.

** The coefficients b,,, ¢,,, and d., correspond,
respectively, to p.r, ¢.r, and 7., in Ref. 6 and
to —eun sin 0,/(2sin 8.), —C.n/2, and —s,,/2 in
Ref. 5. Incidentally the coefficients b,, are
essentially equivalent to the Multhopp co-
efficients b.,.

in
7,=—cos @,, 01—-—m"} (34)

A=a(m+1)—1

a being a positive integer.*

Eqgs. (29) to (34) are essentially the same
as the corresponding results of the NLR
method. However, the above derivation of
Eq. (32) is not only simpler than the NLR
method but also enables us to make some
discussion about accuracy. By the con-
sideration given at the end of the last
section, it is possible to say that Eq. (32)
holds exact provided that the functions
f-(0)Ry(xp,, 7.; 7)/sin® & are polynomials in
7’=-cos® of degree not in excess of
24—1. Since the functions f,™(6")/sin 6’ are
seen to be polynomials of degree m—1 from
Egs. (A.9) and (A.3) in Appendix A, Eq. (32)
holds exact provided that the functions
R,(xp,, 1.5 7")/sin " are polynomials of degree -
not in excess of

@24-1)—(m—-1)=Qa+1)(m+1)—1

4. DISPUTABLE POINTS

Comparisons of the NLR method with
the method of Ref. 3 (NPL method) seem
to show that the former is somewhat
superior to the latter.®® An extension of
the NLR method to the case of oscillating
wings was made by Lehrian and Garner®
as stated in the introduction. However,
there may still be pointed out at least the
following two disputable points.

Point 1: In the regularized influence
functions Ry (xp.,7.;7:) in Eq. (32), there
will occur the coincidences 7,=7, for certain
values of 2 and v. Comparing Eq (20) with
Eq. (34), we see that these will occur when
A=av and that there will always be such
values of 4 and v. At these coincident
points, the values of Ry (x,.,7.;7,) cannot
be obtained from Eq. (28), but instead
should be computed by

Rq(xpw 77v; 77')
1. '
= -5811’1 0y[agpq(xpv’ ’71«; 7,)/37] 2]9' =%y (35)

* The coefficients a,; correspond to k;: in Ref.
6 and to —7.1/[2(4+1)] in Ref. 5.

This document is provided by JAXA.



A Study on Spanwise Integral in Subsonic Lifting-Surface Theory

It has been pointed out in Ref. 6 that a
vast computing time is needed to obtain
the values of 3*P,/97* in the case of oscil-
lating wings, although in the case of steady
wings there are no special difficulties about
this.®

Point 2: Garner and Miller® computed
the downwash « for steady rectangular
wings by specifying the wing loading [
According to them, the convergence in
a(x,y) by the NPL method with respect
to the parameter a in Eq. (34) deteriorates
unlimitedly as the point (x,y) approaches
the leading or the trailing edges. This
seems to be especially serious near the
leading edge. Also in the NLR method,
circumstances seem to be more or less simi-
lar. In computing the values of Ay (p,v)
of Eq. (25), therefore, there will occur the
situation that making the number of chord-
wise collocation points N large must be
accompanied with making the parameter a
also large, since as the number N becomes
large the collocation points corresponding
to p=1 and p=N approach the leading and
the trailing edges respectively.!* It has
been suggested in Ref. 6 that the parameters
N, m, and a should be selected to satisfy
the relation a(m+1)>@2N—-4)(1+24) in
order to obtain about three-figure accuracy
in the generalized forces, A being the aspect
ratio. For example, for A=8 and N=5, we
have the number of spanwise integration
points A=a(m+1)—1>101 according to this
criterion. Since a considerable time will
be consumed to compute values of the
regularized influence functions especially
in the case of oscillating wings, as small
a number of spanwise integration points as
possible will be requested.

The reason why the convergence in the
downwash « deteriorates near the leading
and the trailing edges may be attributed
to the fact that the effect of removing the
logarithmic singularities from the influence
functions by Eq. (27) will diminish in these
areas.!* In the case of steady wings, the
influence functions F,(x, 7;7") are expanded,
when {p—7%'| is small, as?

FQ(x’ 75 77,)
= Q(x9 n; 77)+01Y2+(12Y4+ oo

+%log Y(~ Y? Zg:,: .
+—§ Zﬁo‘; ¢'=¢_'") (36)
where
onﬁl%g—’l,()il)—z-;—(l—cosgé’)
Y:’Q———S'C?y_,)’fl SINEY)
%(1—cos¢):x—_cgf)—ylzx

and 8=(1—-M?)'2, M being the Mach num-
ber. The last term of Eq. (27) has been
taken from the lowest-order term obtained
by expanding the term containing Y?logY
in Eq. (36) with respect to ' in the neigh-
bourhood of 7'=7. As will be shown in
Appendix B, however, the region of Y where
Eq. (36) converges becomes smaller and
smaller as x approaches x(y) or x.(y").

5. DEVICES FOR IMPROVEMENT

Let us consider here some possible de-
vices for improvement to cope with the
two points discussed in the last section.

A device for point 1: In Ref. 1, Multhopp
simply borrowed the coordinates of the
collocation sections, 7, from his method
for solving the lifting-line equation,’® in
which there was not shown so much es-
sentiality to define the coordinates 7, by
Eq. (20). That these coordinates are opti-
mum 1n a sense was shown first by Hsu?
and later by Davies.!® However, since it
may be possible to select a different weight
function in deriving optimum coordinates
of the collocation sections, we can see that
the coordinates 7, defined by Eq. (20) are
not the only optimum ones. Similary, since
the coordinates of spanwise integration
points depend on a quadrature formula ap-
plied, the coordinates 7, defined by Eq. (34)
are also not the only optimum ones. It
may therefore be possible to find optimum
collocation sections and spanwise integra-
tion points so that the coincidences 7,=7,
do not occur for any values of v and A.

Let us retain here the collocation sections
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defined by Eq. (20), and apply the quadra-
ture formula of Eq. (13) instead of Eq. (12)
to Eq. (30). Then we have

A1
By (p,v)= azx ariRo(xp,, 9.3 72) (38)

@)

Ara= 2, (39)
_ - - 24—
7= -—cos b, 1——‘(—‘2% (40)

If we choose, as the number of spanwise
integration points,

Ai=a(m+1) (41)

then the angular coordinates 6, do not
coincide with 6, defined by Eq. (20) for any
values of v and 4, since

0:=22—1)x/[2a(m+1)]

There will not, therefore, occur- the coin-
cidences 7,=7, for any values of v and A.*
Incidentally, when a=1, Eq. (40) gives the
same spanwise integration points as those
of Hsu.?

A device for point 2: In Fig. 1 are shown
variations of the regularized influence func-
tion with ¢=1 for a rectangular wing of
aspect ratio 6 in incompressible flow in the
form Ri(x, 0;7)/[Ri(x,0;0)sin @], where
cot (¢’/2) has been chosen as the chordwise
loading function ¥,(¢). Since the curves
are symmetric about the line »'=0, only
left or right halves of them have been
plotted. We can see that the regularized
influence function Ri(x,7;7") shows rela-
tively small but undesirable sharp variations
in the vicinity of »'=7(=0) when x—x; or
x,—x is small. This is clearly the immediate
cause, in the NLR method, of the necssity
of making the number of integration points
A larger than the number of abscissae m

* The same spanwise integration points as
those given by Egs. (40) and (41) were used
by Davies!®* who showed the occurence of
the same sort of cancellation as that in Hsu’s
method. This part of the present work was
done in 1976 independently of Davies’. The
above cancellation was proved also by the
present author.

for interpolating the spanwise loading func-
tions I’; by introducing the parameter a to
evaluate the itnegral of Eq. (30). A more
remote cause may be attributed to the dimi-
nution of the effect of removing the loga-
rithmic singularities from the influence
functions near the leading and the trailing
edges as explained in the last section.

It is not economical to densely distribute
the integration points over the whole span
of a wing to cope with this difficulty, since
the regularized influence functions show
the sharp variations only in the vicinity
of 7’=y. For the purpose of distributing
the integration points densely only in the
vicinity of »'=7, let us apply the idea of
the method of arbitrary collocation points*
proposed by Kondo'” and extended by Ha-
naoka.’®* We introduce monotonously in-
creasing differentiable functions F,(p) de-
fined in the interval [—J, #+4J], where 6>0.
As shown in Fig. 2, the functions F.,(p)
satisfy

F,(—9d)=0
F.(6.)=0, (42)
F(r+0)==x

and have small derivatives F,'(¢) near ¢=6,,
although F.(¢)>0 by the definition. If we
transform the integration variable of the
integral in Eq. (30) from & to @ by the
transformations

6'=F.(p)
o= (7:-{7;25)@_5 } (43)
then we have
Bu(py=—"22
X[ @Rt 1 DF )0

(44)

* This method was originally devised in con-
nection with the lifting-line theory to dis-
tribute the collocation and integration points
densely over such regions as near the control-
surface edge where the circulation varies
sharply.
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If the integrand of the integral in Eq. (44)
is denoted by G(®), we can apply the inter-
polation of Eq. (9) to it, since dG/d@® van-
ishes at ®=0 and @=n. In other words,
the quadrature fomula of Eq. (13) can be
applied to Eq. (44) which becomes

Az
By (p,v)= 121 arRo(xp., 2.3 u2) (45)

where
= () im0k o) 8)
an-——(-z—ﬂ/l—?“ r va) L1, P2
and
Na=—cos b,
0v1=Fv(SD))
¢1=(ﬂ+25>¢z—5 ! (47
n
_(22=1)=
2= 24,

The distribution of the integration points
whose coordinates are 7., should be dense
near 7 =y, since we have made F,(¢) small
near ¢=0,. Let us further set

_ hn
- m+1 } (48)
Ay=a(m+1+2h)
where a is a positive integer as in the NLR
method, and £ is zero or a positive integer.
Then there will not occur the situations
¢;=0, for any values of v and 21, since
0:=(221—2ah—1)r/[2a(m+1)]. This, in other
words, means from Eqs. (42) and (47) that
we are free from the coincidences 7,;=7, for
any values of v and 2 (There may, however,
occur the other kind of coincidences 6,;,=
0,). We can thus retain simultaneously

the condition of the device for the point
1.

6. RECTANGULAR WINGS
SUPPORTING SIMPLE
LOADINGS

Lehrian and Garner,*®® investigated con-
vergence characteristics of the NPL and
NLR methods by computing the downwash
at the surface of rectangular wings sub-

jected to simple wing loadings. In order
to make a similar investigation, we reduce
here the equations discussed above for
evaluating the downwash to those for steady
rectangular wings in incompressible flow
subjected to simple loadings.

In this case, we can put x(y)=0 and
x(y)=c, ¢ being the chord length. The
kernel K(x,y;x’,y’) is given by

K(x,y;x,y)
_ 1 [1+ x—x' ]
 (=y) {(x—x' P +(y—y)Ppn
(49)
It will be convenient to put
=X g= (50)
c
and
1
3 :E(l—cos &)
(51)

/__1_ _ 7
&= 2(1 cos ¢')

The wing loading I(x’, ¥") is assumed to
be of the following form consisting of a
single term instead of Eq. (16) as

1, y)="2rogwe) 62

where A =2s/c is the aspect ratio. Eq. (23)
then reduces to

I'(F¢, p,—7) sin ¢’

dag’
(n.—7n)?

1 x
afg, 7?u): *‘-2?[0
(53)

where the chordwise coordinate ¢ is left un-
specified. The influence function F(, 7, —7')
is given by

FE,n.—7)

1(* §-¢&
R .[o [1 * {§ =&+ (A2 — 7)1/ ]
X ¥(¢') sin ¢'d¢’ (54)

Removing the logarithmic singularity, we
get
P(E: Uv—vl):F($7 7]»_77,) :

— G ~n.) log |7'=7.| (55)
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The coefficient C(¢) can be determined from
the term containing Y?log Y in Eq. (36)
by making use of Eq. (37) as

A? ) d¥ ("
rsing /] d¢’

From Eq. (564), the influence function
F(¢,7n—7) is seen to be an even function
in 7'—7,, and so is P(, 7, —7') from Eq. (55).
Therefore

(56)

c<e)=—(

$'=9

aP(¢, m ") ’ —0 57

The regularized influence function then
reduces to

P¢,5.—7)-PE, 0)}S-n Py

R€ 1= T

(58)
where P(£, 0) is obtained from Eqs. (54) and
(55) as

PE 0=F¢ 0== V@) singay 69

Insertion of Eqgs. (65) and (58) to Eq. (53)
yields

a(§, 7.)=B¢, n.)+b®)PE, 0)+d(1.)C(E)
(60)

where

B, %)= - —21; [ renre n.-mae 6

1 [ (7}’) sin 0’

and
1 (- .
dr)= o j 1) logl7.—7sin 030" (6)

In the numerical examples presented in
the next section, /'(3") and ¥(¢’) are specified
as

I'=1A—9*)"2=sin @ (64)

and

¥(¢)=cot (_q_;’_) (65)

Then the integrals in Egs. (69), (62), and
(63) are evaluated analytically as

PEO=2(+sing)  (66)

1
b(p.)= 0} (67

and
d(p)= -é-(z log 2—cos 26,)  (68)

where we have referred to p. 42 of Ref. 1
and Appendix I of Ref. 4 in deriving Egs.
(67) and (68) respectively.

The evaluation of B(, n,) depends on the
methods discussed above.

First, if the quadrature formula of Eq.
(12) 1s applied to Eq. (61) with Eq. (64), we
get the evaluation by the NLR method as

B¢, 7.)= Z (sin 0)R(E, 7. —72)

2(/1 +1) =
(69)

Secondly, the application of the quadra-
ture formula of Eq. (13) leads to the eval-
uation by the method proposed as the device
for point 1 as

Ay —
B, 7.) = — 51,— 3 GinTIRE, 7.~7) (70

Let us call this method “Method 1.

Finally, transforming the integration
variable from & to @ by Eqs. (43), and ap-
plying Eq. (13), we have the evaluation by
the method proposed as the device for
point 2 as

B¢, n)= ~ 2a(m + 2D 2 Z sin 6,,
X R(f, Uv"?»))F»/(‘P») (71)

where we have also used the relations of
Egs. (48). We shall call this method
“Method 2”.

The transforming functions F.(p) tested
in the examples are of the following two
kinds. The first kind is defined by
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_— b4
6~ 0o 0<p<o)
F,0(p)= ‘ _:9 y (72)
0v+‘n—_é—' 0.<p<m)

in which & has been set equal to zero. The
derivatives of F,"V(p) are given by

7 0<p<b,)
F,M(p)= ’ (73)
2(p—40.)
S )

The second kind is defined by

gy_w (-8<p<b,)
F.o(g) = @,+0)3
, 6,+ E=@=0) 4 o cris)
g (r+6—86,)3 e
(74)

The derivatives of F,®(yp) are given by

30,6, — o) (—8<p<b,)
Fuv(g) = 0,4 90)°
g 3(n—0.)(p—0.)?
(t+0—6,)3 b.<p<n+d)
(75)

7. NUMERICAL EXAMPLES
AND DISCUSSIONS

The downwash angle at the surface of a
steady rectangular wing of aspect ratio 6
in incompressible flow has been computed
by following the various schemes defined in
the last section. The wing loading I(x’, ')
has been specified as

I(x', y)= :1{—1— sin 8’ cot (%) (76)

The influence function F(¢, 5,—7"), Eq. (54),
has been evaluated by making use of the
method of Ref. 3. Since |5 —n.| can take
very small values in Method 2, it has been
necessary to evaluate the influence function
in double precision to obtain accurate
values of the regularized influence function,
Eq. (58), for small values of |5, —#,,|. Some
values of the regularized influence function
for »,=0 are given in Table 1 in the form
R, —7){R(, 0)sin &'}, This table corre-

sponds to Fig. 1. The values of R(¢,0)
have been obtained from?®

R(,0)= (%}){-"3/2(1 _g)-1n

[3os0

(T

The computed downwash angles « by the
various methods are presented in Tables 2
to 5 with various numbers of spanwise
integration points 4, and for various values
of & and some values of %,. These a for
some values of & and 7, are plotted against
A in Figs. 3 to 5.

The results of Method 1 for 7,=0 are
given in Table 2. Convergence of a with
respect to 4 for £=0.5 is seen to be fairly
good, that is, convergence down to four
decimal places has been achieved with
A=47. Convergence for £=0.05, however,
is rather poor, which is clearly due to the
reason explained in Sections 4 and 5.

The results for £=0.05 and 0.15 in Table
2 are compared with those by the NLR
method in Figs. 3(a) to (b). The results
of the latter method have been taken from
Ref. 20 and contain those with 4 both even
and odd. We can see that the results of
Method 1 agree very well with those of
the NLR method with 4 even. This will
be attributed to approximately the same
distributions of spanwise integration points
near 7,=0 in the both methods in which
no integration point is located at 7 =0.
In the NLR method with 4 odd, on the
other hand, there is located an integratibn
point at 7, =0. It should be noted that, in
the original NLR method, only cases with
A odd are possible when the centre section
is one of the collocation sections, because,
then, the number of collocation sections m
is odd and therefore A=a(m+41)—1 is also
odd.

The results of Method 2 for 7,=0 using
the transforming functions of the first kind
F,™M(p) are shown in Table 3. Only slight
improvement in convergence near the lead-
ing and trailing edges is observed compared
with the results of Method 1. It may be
instructive to note that the slopes of
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F,M(p) are discontinuous at ¢=4,.

In Tables 4(a) to (c), the results of Method
2 using the transforming functions of the
second kind F,‘®(p) with 6=0 are presented
for 7,=0, 0.5, and 0.965926 (4, =6r/12, arf12,
and 117/12). Improvement in convergence
for ,=0 and 0.5 is remarkable. Especially,
for 7.=0, convergence down to five or six
decimal places has been achieved with 41=47
over the greater part of the chord, that is,
at least from £=0.05 to £=0.95. For 7,=
0.965926, however, we hardly observe any
improvement by this method.

The results for £€=0.05 and 7,=0 and
0.965926 by Method 1, Method 2 using
F.,"(p), and Method 2 using F,?®(p) with
0=0 are compared in Figs. 4(a) and (b).
We can see rather adverse effects of these
F.(¢) for ,=0.965926. This may be thought
natural if we notice that both F,®/(p) and
F,®'(¢) with =0 make sharp variations
when 7, is lecated near the wing tips,
p==1.

The purpose of expanding the interval
of ¢ by introducing ¢ as in Egs. (42) is to
cure this difficulty. The results of Method
2 using F.?(p) with 6==x/12, 2z/12, and
3n/12 for 1,=0.965926 are given in Tables
5 (a) to (c). Improved convergence by the
Iintroduction of & is clearly seen. If we
take into account the fact that the down-
wash angle for the present wing loading
becomes —oo at the leading tip corner,? the
results for £=0.05 are thought to be satis-
factory. The results for £=0.05 are com-
pared with those of Method 1 in Fig. 5.
Convergence with 6=2r/12 (h=2 in Egs.
(48)) is seen to be the best in the present
example.

In the final table, Table 6, the results of
Method 2 using F,*®(p) with 6=22/12 and
with 4=47 are given for various values of
¢ and 7. Some of the results obtained by
Ray and Miller® are also shown for com-
parison. We can see that the present re-
sults for 7,=0 and 0.5 agree with those by
Ray and Miller down to at least five decimal
places.

8. CONCLUSIONS

Two disputable points in the spanwise

integration in the NLR method have been
discussed, and devices for improvement to
cope with these points have been proposed.
The downwash at the surface of a steady
rectangular wing in incompressible flow
subjected to a simple wing loading has been
computed to examine effectiveness of the
proposed devices, that is, Method 1 and
Method 2. The following conclusions can
be deduced from the numerical results.

(1) In Method 1, the values of the re-
gularized influence functions at the coinci-
dent spanwise coordinates Ry(xp,, 7.; 7.) need
not be computed. Convergence character-
istics of the computed downwash angles
with respect to the number of spanwise
integration points 4 by Method 1 are nearly
the same as those by the NLR method with
A even. Thus, Method 1 makes it possible
to reduce largely the computing time in
cases of the oscillating wing with no losses
in accuracy.

(2) Improvement 1in convergence by
Method 2 using the transforming functions
of the first kind F,"(¢) compared with
Method 1 is only slight.

(3) Remarkable improvement in conver-
gence is obtained by Method 2 using the
transforming functions of the second kind
F.®(p) with 6=0 except for 7, near the
wing tips. The adverse effects at 7, near
the wing tips are cured by expanding the
region of ¢ by 26.

(4) The downwash angles for 7,=0 and
0.5 computed by Method 2 using F.®(p)
with 6=27/12 and with 4=47 agree with
those by Ray and Miller down to at least
five decimal places.
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Appendix A

QUADRATURE FORMULAE OF
GAUSSIAN TYPE

The quadrature formula of Gaussian type
for the integral

J= f W(x)f (x)dx (A1)

with the weight function W(x) is obtained
by applying the Lagrangian interpolation
formulat?

)~ Z Fenl () (A2)

to the function f(x). The interpolation co-
efficients or the interpolation polynomials
I,R(x) are given by

rean_ PrR(X)
LA(x)= (x—x,)pr'(x,) (A3)

where pr(x) is an orthogonal polynomial of
degree R satisfying the orthogonality con-
ditions

i
I W(x)pr(x)x*dx=0
-1
k=0,12,.--,R—-1 (A4)

The abscissae x, are the zeros of the poly-
nomial pgr(x). If we put x=-—cosf, Eqgs.
(A1) and (A4) reduce respectively to

J= f 0 W(— cos 0)f(—cos 8) sin 6d6 (A5)
and

J"r W{(—cos )pr(—cos #) sin (k+1)8d6=0
0
£=0,1,2, .-, R—1 (A6)

Let us choose here the two functions
(1—x?%)'? and (1—x?)"1/2 as the weight func-
tion W(x), and consider relations between
the Gaussian type formulae for these weight
functions and the quadrature formulae
discussed in Section 2.

We first put W(x)=(Q1—x?)"2=sinf. In
this case, a polynomial of degree R in
x= —cos @ satisfying Eq. (A6) is given by

sin (R+1)¢

sin d (A7)

Pr(x)=

whose zeros are x,= —cos 6., §, being given
by Eq. (3). Making use of

<[ L] _CReD
Pr(¥r)= sin@ df ls-s,  sin?0;
(A8)

and comparing Eq. (A3) with Eq. (2), we
can see that

Sin 0r W(xr)

L) = sin 0 f70)= W(x)

f7(0) (A9)

If we substitute for [,8(x) from Eq. (A9)
into Eq. (A2), we get

W) ()= }f W)f (), 50)  (A10)

We can see that Eq. (Al0) is essentially
the same interpolation formula as Eq. (1).
The quadrature formula Eq._(12) obtained
by applying Eq. (1) to G(6) in Eq. (10) must,
therefore, be identical with that obtained
by applying Eq. (A10) to W(x)f(x) in Eq.
(A5). In other words, Eq. (12) is nothing
but a quadrature formula of Gaussian type
for the weight function W(x)=(1—x2)/2,
Secondly, let us put W(x)=(1—x?%)"12=
1/sinf. We can choose, in this case,

pr(x)=cos R0 (A11)

as a polynomial of degree R satisfying Eg.
(A6). Zeros of px(x) are x,=—cosf,, 0
being given by Eq. (5). Making use of

—1YR
PR’(xr) = (_sul]—)y:— (A12)

and comparing Eq. (A3) with Eq. (6), we
see that

1. R(x)=g*(0) (A13)
Eq. (A2) then becomes
R
f)= 2 fGe"0) (A1)
which is the same interpolation formula as

Eq. (9). The quadrature formula Eq. (13)
obtained by applying Eq. (9) to G(f) in
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Eq. (10) must, therefore, be identical with
that obtained by applying Eq. (Al4) to
W(x)f(x)sin=f(x) in Eq. (A5), that is,
with a quadrature formula of Gaussian type
for the weight function W(x)=(1—x?)"12%

Appendix B

LOGARITHMIC SINGULARITIES
OF INFLUENCE FUNCTIONS

The influence functions Fy(x, 7;%’) in the
case of steady wings can be expanded,
when Y is small, as

Fo(x,7;7)=Fqo(x,7;7)

2 d¥, }
+;{Aowq(¢)+A, ]
(BD)
where
Ap=1-2X—-{1—-X)24+ Y173 \

+(X2+ Y12
A =(1/2){1—-X)*+ X%}
— /M- XA Xy +Yp
+X{X*+ Y}/ (B2)
+(Y?/2)[log|1-X
+{(1-X)*+ Y2}/2|
+log| X+(X*+ Y*)/?|
—2log| Y] /

Eq. (36) has been derived by expanding
the terms containing square roots in the
coefficients A, A1, -+ with respect to Y3.
It will, therefore, be necessary to note the
following two points in connection with
the convergence of Eq. (36).

First, ¥ (¢), [d¥,/dXo]s -4, etc. in Eq. (B1)
are generally not bounded. They are the
coefficients of the Taylor expansions of the
chordwise loading functions ¥,(¢') with
respect to X, in the neighbourhood of
Xo=X. While several sets of functions are
used as ¥, (¢’), they or at least derivatives
of them become infinite at the leading and
trailing edges. We cannot avoid such in-
finity in the loading functions because the
wing loading I(x’, ') as the solution of Eq.
(15) has the singularities of the forms
{x'—x(¥)} 12 and {x,(y")—x'}’* at the lead-

ing and trailing edges respectively.!®

Secondly, for the terms containing square
roots in the coefficients Ay, A;, --- to be
expanded with respect to Y?, it is necessary
that Y?*<X? and Y?<(1-X)2.

By these two reasons, the region of Y
in which Eq. (36) converges will become
smaller and smaller as X approaches 0 or
1, that is, as x approaches x:i(y’) or x:.(y').
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Table 1. Values of Regularized Influence Function

for 7.,=0 in the form R(,—7)/{R(£,0) sin 6"}

¢ | 005 | 015 | 050 | 08 | 0.9
R(,0) | 911.23 | 121.89 ' 10.376 | 8.2049 | 23.054

v R(¢,—7)/{R(£,0) sin 6}
0.00002454 | 1.0000 | 1.0000 = 1.0000 | 1.0000 | 1.0000
0.0006627 : 1.0007 , 1.0002 | 1.0000 | 1.0001 | 1.0003
0.003068 | 1.0086 ‘ 1.0022 | 1.0006 | 1.0011 | 1.0040
0.008418 1.0279 © 1.0110 ~ 1.0061 | 1.0061 , 1.0163
0.01789 1.0217 | 1.0207 . 1.0120 , 1.0188 | 1,0288
0.03266 0.9509 | 1.0464  1.0301 | 1.0390 | 1.0165
0. 05390 0.8413 © 1.0320 | 1.0585 | 1.0572 | 0.9696
0.08274 0.7260  0.9698 | 1.0905 | 1.0592 | (.8976
0.1203 0.6184 . 0.8717 . 1.1087 | 1.0363 | 0.8124
0.1676 05213 ' 0.7578 | 1.0926 | 0.9868 | 0.7215
0.2253 | 0.4342 . 0.6422 | 1.0308 | 0.9113 | 0.628
0.2942 ' 0.3560 | 0.5317 | 0.9260 | 0.8114 | 0.5346
0.3742 . 0.2858 | 0.4201 : 0.7906 , 0.6911 | 0.4409
0.4645 ©0.2227 | 0.3354 | 0.6390 | 0.5568 | 0.3487
0.5635 | 0.1666 | 0.2513 | 0.4838 | 0.4168 | 0.2601
0.6677 L 0.1173 | 0.1771 | 0.3347 | 0.2794 | 0.1776
0.7720 . 0.0753  0.1135 @ 0.2000 | 0.1527 | 0.1040
0.8686 L 0.0412 | 0.0619  0.0864 | 0.0443 | 0.0424
0.9468 0.0162 . 0.0240  0.6013 |—0.0378 !—0.0037
0.9934 0.0023 ' 0.0030 —0.0468 |—0.0844 |—0.0296

Table 2. Downwash Angles «(¢,7,=0) Computed by Method 1

¢ | oo | 015 | 03 | o5 | 07 | 08 | 0.9
4 a(§,7,=0)

11 | 0.939073 | 0.331365 | 0.308992 | 0.318876 | 0.324795 | 0.328096 | 0.338343
23 | 0.462092 | 0.301786 | 0.314830 | 0.321764 | 0.326318 | 0.328869 | 0.331441
47 1 0.302980 | 0.309833 | 0.316957 | 0.322117 | 0.326517 | 0.329361 | 0.330650
71 | 0.290851 | 0.312214 | 0.317142 | 0.322147 | 0.326534 | 0.329429 | 0.330894
95 | 0.295923 | 0.312780 | 0.317183 | 0.322155 | 0.326539 | 0.329444 | 0.331049
119 | 0.301135 | 0.312962 | 0.317197 | 0.322157 | 0.326540 | 0.329449 | 0.331126
143 | 0.304582 | 0.313037 | 0.317203 | 0.322158 | 0.326541

0.329451 | 0. 331165
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Table 3. Downwash Angles a(¢,7.=0) Computed by Method 2
Using Transforming Functions F.%(y)

¢ 0.6 © 015 | 03 , 05 | 07 | 08 | 0.9%

A “(5,%:0)

11 | 0.180160 ' 0.297482 . 0.312306 0.320605 | 0.325637 | 0.328231 | 0.328306
23 | 0.276034 | 0.308523 : 0.316043 - 0.321768 | 0.326312 0.329141 | 0.330335
47 £ 0.301612 | 0.311979 ; 0.316920 0.322062 ' 0.326484 : 0.329376 = 0.330999
71 | 0.306406 | 0.312621 | 0.317082  0.322116 0.326516 ; 0.329419 | 0.331120
95 | 0.308085 | 0.312845 & 0.317139 . 0.322135 | 0. 326527 % 0.329435 | 0.331163
119 | 0.308862 | 0.312949 | 0.317165 § 0.322144 | 0.326532 | 0.329442 | 0.331182
143 | 0.309284 | 0.313005 | 0.317179 : 0.322149 | 0.326535 = 0.329446 | 0.331193

Table 4. Downwash Angles a(§,7.) Computed by Method 2
Using Transforming Functions F.®(¢) with 6=0
(a) 7=0 (6,=6x/12)

¢ | 005 | 015 | 03 | 05 | 07 | 0.8 | 05
4| a(¢,7,=0)

11 | 0.302414 1 0.315366 | 0.317600 | 0.322483 | 0.326805 | 0.329739 | 0.331548
23 | 0.310282 : 0.313153 | 0.317221 | 0.322168 | 0.326549 | 0.329462 | 0.331227
47 | 0.310243 | 0.313134 | 0.317212 ' 0.322160 ' 0.326542 0.329455 | 0.331218
71 | 0.310242 | 0.313134 | 0.317212 - 0.322160 0.326542 ' 0.329454 | 0.331217
95 | 0.310242 | 0.313134 | 0.317212 | 0.322167 | 0.326542 ' 0.329454  0.331217
119 | 0.310242 { 0.313134 | 0.317212 ' 0.322209 | 0.326541 | 0.329454 ' 0.331217
143 | 0.310242 | 0.313134 : 0.317212 | 0.322160 | 0.326542 | 0.329454 ¢ 0.331217

(b) 7.=0.5 (6,=8%/12)

¢, 005 | 0.15 0.3 0.5 i 0.7 0.8 | 0.9

A a(fytv:0-5)

11 0.271849 0.277989 0.284600 0.290833 . 0.296433 0300044 - 0.201964
23 0.274752 0.278899 0.284352 - 0.290811 | 0.296370 | 0.299949 | 0.302048
47 0.275080 0.278974 0.284380 0.290821 : 0.295375 | 0.299954 | 0.302061
71 10.275107 0.278980 0.284382 : 0.290824 | 0.296375 | 0.299954 | 0.302062
95 10.275112 0.278981 0.284382 . 0.290847 | 0.296375 | 0.299955 | 0.302062

|
119 1 0.275114 0.278981 0.284382 = 0.290826 | 0.295375 0.299955 | 0.302062
143 ©0.275114 0.278981 0.284383 , 0.290838 | 0.295375 ' 0.299955 | 0.302062
(¢) 7.=0.955926 (4,=117/12)

¢ \ 0.05 | 0.15 0.3 0.5 \ 0.7 ! 0.8 = 0.9
A [ a(¢,7,=0.935926)

11 | 0.016043 | 0.114651 | 0.151615 | 0.177945 | 0.193543 . 0.200218 | 0.201383
23 | 0.081183 | 0.122062 | 0.153322 | 0.178415 | 0.193761 l 0.200581 | 0.202737
47 10.092561 | 0.123847 | 0.153751 ' 0.178554 | 0.193838 ; 0.200692 | 0.203055
71 | 0.093261 | 0.123955 | 0.153778 | 0.178560 | 0.193843 + 0.200699 | 0.203075
95 | 0.093384 | 0.123974 | 0.153783 | 0.178561 | 0.193844 | 0.200700 | 0.203078
119 | 0.093418 | 0.123979 | 0.153784 | 0.178562 | 0.193845 | 0.200701 | 0. 203079
143 | 0.093430 | 0.123981 | 0.153785 | 0.178563 | 0.193845 j 0.200701 | 0.203079
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Table 5. Downwash Angles a(§,7,=0.965926) Computed by Method 2
Using Transforming Functions F,‘¥ (¢)
(a) é=z/12 (h=1)

¢ 0.05 0.15 0.3 0.5 0.7 0.85 0.95
4 a(§,7,=0. 965926)
13 | 0.085204 | 0.122899 | 0.153650 | 0.178597 | 0.193904 | 0.200732 | 0.202957
27 | 0.092768 | 0.123889 | 0.153768 | 0.178560 | 0.193846 | 0.200700 | 0. 203067
41 | 0.093300 | 0.123963 | 0.153782 | 0.178562 | 0.193845 | 0.200701 | 0. 203077
55 | 0.093396 | 0.123976 | 0.153784 | 0.178569 | 0.193845 | 0.200701 | 0.203079
69 | 0.093423 | 0.123980 | 0.153785 | 0.178562 | 0.193845 | 0.200701 | 0.203079
83 | 0.093433 | 0.123981 | 0.153785 | 0.178562 | 0.193846 | 0.200701 | 0.203079
97 | 0.093437 | 0.123982 | 0.153785 | 0.178562 | 0.193845 | 0.200701 | 0.203080
(b) d=2r/12 (h=2)
¢ 0.05 0.15 0.3 0.5 0.7 | 0.8 0.95
4 a($,7,=0.955926)
15 | 0.094103 | 0.124185 | 0.153922 | 0.178662 | 0.193931 | 0.200785 | 0.203172
31 | 0.093419 | 0.123987 | 0.153791 | 0.178567 | 0.193849 | 0.200705 | 0.203083
47 | 0.093436 | 0.123983 | 0.153786 | 0.178564 | 0.193846 | 0.200702 | 0.203080
63 | 0.093440 | 0.123083 | 0.153786 | 0.178562 | 0.193845 | 0.200701 | 0.203080
79 | 0.093441 | 0.123983 | 0.153785 | 0.178562 | 0.193845 | 0.200701 | 0.203080
95 | 0.093442 | 0.123983 | 0.153785 | 0.178564 | 0.193845 | 0.200701 | 0. 203080
111 | 0.093442 | 0.123983 | 0.153785 | 0.178568 | 0.193845 | 0.200701 | 0.203080
(¢) 6=3r/12 (h=3)
¢ | oos | o5 | 03 | o5 | 07 | o8 | 0%
4| (& ,7,=0.935926)
17 | 0.094770 | 0.124297 ' 0.153927 | 0.178648 | 0.193915 | 0.200773 | 0.203174
35 | 0.093502 | 0.123998 | 0.153793 | 0.178566 ' 0.193848 | 0.200705 | 0.203084
53 | 0.093453 | 0.123986 | 0.153787 | 0.178565 ' 0.193845 | 0.200702 | 0.203081
71 | 0.093446 | 0.123984 | 0.153786 | 0.178563 0.193845 | 0.200701 | 0.203080
89 | 0.093442 | 0.123983 | 0.153786 | 0.178566 | 0.193845 | 0.200701 | 0.203080
107 | 0.093443 | 0.123983 | o 153785 | 0. 17856210 193845 | 0.200701 | 0.203080
125 | 0.093443 | 0123983 | 0.135785 | 0.178562 | 0.193845 | 0.200701 | 0.203080
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Table 6. Downwash Angles «(£,7) Computed by Method 2
Using Transforming Functions F.®®(p) with §=2r/12 and

with Number of Spanwise Integration Points 4=47

n | 00 [o28819] 0.5 0707207 | 0.866025 [ 0.965926 | 0.0 | 0.5

§ ’ a(¢,7,) Present method a(&,n,) Ref. 21
0.05 | 0.310243 0.301365 | 0.275103 | 0.232290 ; 0.172950 ' 0.093436 | l

0.1 | 0.311705 0.302936 ' 0.277070 ~0.235248 | 0.178683 0.110184 , 0.311705 | 0.277074
0.15 | 0.313134 = 0.304468  0.278979 0.238097 i 0.184099  0.123983 ?

0.2 | 0.314528 | 0.305962 * 0.280834 0.240845 | 0.189203 ' 0.135516 | 0.314528 | 0.280836
0.3  0.317212 0.308834 - 0.284382 0.246039 0.198488 ' 0.153786 | 0.317212 ' 0.284383
0.4 0.319756 ; 0.311550 0.287712 0.250822 0.206593 | 0.167683 | 0.319756 | 0.287712
0.5 :0.322160  0.314110 : 0.200822 0.255194 | 0.213602 | 0.178564 | 0.322159 | 0.290822
0.6 | 0.324422 0.316512 ' 0.293710 0.259152 ' 0.219598 0.187150 = 0.324421 | 0.293710
0.7 | 0.326542 0.318755 | 0.295375 0.262702 0.224655 0.193846 | 0.326542 | 0.296375
0.8 | 0.328519 0.320840 ' 0.298817 0.265848 0.228831 . 0.198836 | 0.328519 | 0.298817
0.85 | 0.320455 0.321822 0.299955 ~0.267272 ' 0.230602 i 0.200702

0.9 10.330354 0.322765 0.301036 0.268597 ' 0.232168 0.202128 | 0.330354 = 0.301036
0.95 . 0.331218 0.323668 . 0.302062 0.269824 | 0.233531 0.203080 :
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Fig. 3. Comparison of Method 1 with NLR methods for »,=0
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