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New Estimation Method for Flutter or Divergence Boundary

from Random Responses at Subecritical Speeds*

Yuji MATsuzAkI** and Yasukatsu ANDO**

ABSTRACT

The present paper describes a new technique for estimating the flutter or
divergence boundary from responses due to turbulence at subcritical speeds.
The boundary can be predicted without estimating or measuring the dampings
and frequencies of the aeroelastic modes. The sampled time response is
modeled by the mixed autoregressive moving average process. The orders
and coefficients of both autoregressive and moving average parts of the process
are determined with the aid of Akaike’s estimation procedure. The stability
boundary is estimated by using Jury’s stability determinants which are ex-
pressed in terms of the autoregressive coefficients alone. The modal fre-
quencies and dampings are also evaluated from the coefficients. The technique
proposed has been applied with success to signals from a cantilever wing
model tested in a low supersonic flow. Comparison between the actual and
estimated flutter boundaries shows that an accurate estimation can be made
from data obtained in a narrow range of the dynamic pressure which is
sufficiently below the boundary.

s =

HROBEHERLIEDROBIECHTEYTHZ L/, #7727 V7 1+ hATIgH
MTOGHDOENT L - THHIEI NS END 75 » 2RAME, HHVLEA 1~
= VARFEYHETAHLVWHEYRE TS, ERLLALERR, HCEREBEY
EBBRTELELLETEL, HOHBRE IUOBHFEAREOKRE & FELRMOHEE
ErACTRETS. BRAEOCHTIACEBER TERIRS Jury OLETIIR
YRCTITS. AFEY, YFHOoBEE 7 7 » s RBRBW LAV TT - HROR
ERERCHAL, BREL O THEVEHED T — 24 bHBERL 77 v 2 RAEOH
ELHELZ EXPELMTL L.

Conventional methods for flight flutter
testing consist of estimating frequencies

I. INTRODUCTION

Flutter prediction and clearance are very
important problems in the design and de-
velopment of aircraft. Since no analytical
prediction can be done with sufficient con-
fidence, it is imperative to verify the flutter
clearance both in wind tunnel and in actual
flight test. Continuous efforts have been
paid in developing accurate, rapid and low
cost procedures for forecasting the flutter
boundary.!-3

* Received, February 25, 1981.
** First Airframe Division.

and dampings of the aeroelastic modes
against the flight speed, and determining
the flutter speed mainly with the aid of
extrapolation of the damping at subcritical
speeds. Since the damping characteristics
often change abruptly near the flutter
boundary, it is necessary to evaluate them
up to speeds which are very close to the
boundary. Additionally, dampings are much
more difficult to estimate accurately than
frequencies. In order to avoid resorting
to the damping alone, Zimmerman and
Weissenburger* proposed a stability para-
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meter, called as Flutter Margin, which 1s
related to one of the Routh-Hurwitz criteria
and shows a more monotonous behavior
than damping. This parameter is evaluated
from both frequencies and dampings of the
two modes. In flight testing, impulsive or
harmonic excitation is often used to drive
the aeroelastic modes of interest so that
the modal response should become large
relative to random components caused by
turbulence. Usually such an onboard ex-
citation system is costly. For dynamic
simulation models tested in wind tunnel,
the size or weight of an exciting device is
often inadmissible.
procedure is time consuming.

An approach which requires no onboard
forcing system has recently received wide-
spread attention. The approach is based
on analysis of the random response induced
by inflight or wind tunnel turbulence, and
is classified into two categories: one utilizing
classical stochastic theories and the other
employing modern system identification
techniques.

The power spectral density (PSD) method
is a useful tool to estimate the frequency
and damping of the vibration modes from
noise contaminated data. If the PSD of
noise inputs is available, then an accurate
estimation can be obtained. However, the
PSD of turbulence is not usually measured
in the flutter testings. In addition, it is
difficult to separate the dampings of two
modes if their frequencies are closely spaced.
This would be the case when the flight
speed is close to the flutter boundary.
Another method consists of calculating an
ensemble average of segments of the re-
sponse history, and fitting a decay curve
to it. The ensemble average is equivalent
to the characteristic response function,
provided that the turbulence is uncorre-
lated. From the fitted decay curve the
frequency and damping of the aeroelastic
mode are determined. In the United States,
this method has widely been applied to
flight flutter test’-” as well as to wind
tunnel tests.®* When the frequencies of
the modes are relatively close, analytical
difficulties are encountered.?

Recent progress in modern system iden-

In addition, the test

tification techniques which rely heavily on
the use of the high speed digital computers
is remarkable. In the aeronautical field,
such an approach has often been used to
extract the aircraft stability and control
derivatives from flight test or wind tunnel
test data.’®* To the authors’ knowledge,
a paper by Onoda!'* is the first work to
apply an identification technique to esti-
mation of the response characteristics of
a flutter model. His analysis is based on
Akaike’s procedure!®* of predictor identifi-
cation. The stochastic process is given by
an autoregressive (AR) model, in which
the current value of the process is expressed
as a finite, linear combination of its previous
values puls a random shock. The finite
order of the model is determined by Aka-
ike's final prediction error (FPE) criterion.
According to Onoda’s numerical result, the
estimated orders of the model were about
40 to 60. It is well known!® that an auto-
regressive moving average (AR-MA) model,
which consists of a linear weighted sum
of the shocks (the moving average part)
as well as the AR part, may achieve a
parsimonous representation. That is, a
small number of the orders of AR and MA
parts often suffice for the best fit to an
actual time series.

As for the AR-MA model, Akaike and
his coworkers presented in Ref. 17 an auto-
matic fitting procedure which determines
the orders and coefficients of the model
for a stationary Gaussian process by mini-
mizing a certain quantity known as Aka-
ike’s Information Criterion (AIC). The
concept of the procedure is presented in
Ref. 18. The usefulness of Akaike’s mini-
mum AIC method has been shown in several
problems. Application of the procedure
appears to be quite effective also to sub-
critical flutter testings.

In the present paper, we will present a
novel technique for predicting the flutter
or divergence boundary, which is primarily
on a basis of Akaike’s procedure and Jury’s
stability criterion'® for a linear discrete-
time system. The significance of Jury’s
criterion is that the values of its parameters
change in a monotonous manner like the
Flutter Margin. The aeroelastic responses
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due to wind tunnel turbulence on subcriti-
cal conditions are presented by the AR-MA
process. In this technique, the stability
boundary can be predicted by using only
the AR coefficients of the process without
measuring or estimating the dampings and
frequencies of the aeroelastic modes. In
order to demonstrate its effectiveness, the
proposed technique is applied to responses
of a cantilever wing model which was tested
in the Transonic Blowdown Wind Tunnel
for Flutter Testing at National Aerospace
Laboratory (NAL). The arrangement of
this paper is as follows: Section 2 presents
a description of the theoretical background
of the estimation technique. Section 3
describes the model used and test procedure.
Section 4 gives data analysis, results and
discussions.

II. THEORETICAL BACKGROUND

The response J(f) of a wing excited by
air turbulence on a constant flow condition
is sampled at a given interval T to obtain
a finite discrete time series {y(T), y2T),
oo, y(NT)}. y(nT) will be simply written
as y(n). {y(n)} is assumed to be governed
by the mixed autoregressive moving average
time series model'®:

2J -1

52 byt m)= 35 almyx(n+m)
(1)

where 5(0)+0 and 5(2J)=1. The order 2J,
the MA coefficients {a(m)}, and AR coef-
ficients {b(m+1)}, m=0,1, -+, 2J—1, are un-
known integer and real numbers to be
estimated. A time series {x(n)}, n=1,2, .,
N, represents a noise process to which the
system is subjected. The process {x(n)} is
assumed to be a Gaussian independent
random sequence with zero mean and an
unknown variance ¢?:

E{x(m)}=0 and FE{x(m)x(n)}=0%0mn
(2)

where dm. 1s the Kronecker delta.

With the sampled data {y(n)}, n=1,2, «--,
N, the unknown quantities, J, {b(m)}, {a(m)}
and ¢® can be estimated with the aid of
an automatic fitting procedure for the

AR-MA model given in Ref. 17. Reference
18 presents details of the concept of Aka-
ike’s minimum AIC approach. A set of
numerical values of the parameters which
minimizes AIC is selected as the best choice.
In our problem, AIC is given as

[AIC]= —21log .L+8J (3)

where L is a likelihood function of a
Gaussian process {x(n)}:

Li{y(m}, n=1, .-+, N: J, @, {a(m)},
{b(m+1)}, m=0, +--, 2J—1]

1 exp [—— 1 ﬁ!{x(n)}ﬁ] (4)

= (¥ 2r0)Y 207 £

Appling the z-transform!® to Eq. (1), we

obtain

2.7 m—1
Z_]o b(m)zm [Y(z) - Z;] y(J’)Z“f]
2J -1 ' m—1
= 3 atmzn| X@ - 5 sz | (5)
m= j:
where Y(z) and X(z) are, respectively, the
z-transforms of y(n) and x(n), i.e.,

ZI=Y@) =33z
o~ (6)
Zxl=X(2)= }_;o x(j)z~7

Hence, the transfer function is given by

2J -1

H(z)= 2, a(m)z™

m=0

3 bmyem,  (T)

whence we obtain the characteristic equa-
tion:

2J
ZO b{m)zm=0 (8)
Let us now discuss briefly the stability
of a linear discrete-time system.!®* Like in
the continuous-time case, the system 1is
defined to be stable if to all bounded inputs
there always correspond bounded outputs.
This is satisfied if and only if all the sin-
gularities of the transfer function lie inside
the unit circle. Since the numerator of
Eq. (7) is regular, the present system is
stable as long as
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lzm|<1 for m=1,--.,2J (9)

where z.’s are the roots of the characteristic
equation given by Eq. (8). For actual esti-
mation of the stability, Jury’s determinant
method,’ which is similar to the Routh-
Hurwitz criterion for the continuous system,
is suitable. For the characteristic poly-
nomial which is presented by
G@@)= Y, c(m)z==0 (10)

m=0

with n being an even number and c(n)>0,
the stability conditions'® are as follows:

G1)>0, G(-1D>0 (1)
Ft(m)ZIXm*iYm*I>O
for m=1,3,---,n—-1 (12)

where X, ¥ and Y,.* are (n—1)xX(n—1)
matrices defined by

Xn—l*:
(em) e ..o @) e@ )
0 Xas*c(n) c(n—1)---c(4) c(@3)
0 cn) - -c(5)§ c(4)
_9_,,.'_,'_f,.'__t_f..'..';.'__.,‘?.__‘E(_’?_.)_z en=1)
LD seerecieiietioniincrennnnns c(n)
(13.1)
cn—2) e(n—3) --- c(1) ¢(0)
Yn_l*: C(Tl—g) .......... c(O) {?
c(b) O «vvevaceneanans 0 J
(13.2)
Xnoi-a* and  Yooin* are (n—1-—2k)

X (n—1—2k) matrices which are obtained
by deleting the first & rows and columns
and the last ® rows and columns from
X..1* and Y...*, respectively. They are
called inners of X, ,* and Y,.,* respec-
tively. F*(m) are the determinants of
matrices [Xn*+Yn*]. ~
Hence, the stability boundary can be
defined as the lowest flow speed for which

at least_one of Eqs. (11) and (12) is violated.

In other words, the boundary is, for ex-
ample, the minimum flow speed at which

G(1)=0, G(—1)=0, or F*(m)=0
for m=1,8,---,n—1 (14)

To predict such a speed, we will evaluate
the stability parameters, G(1), G(—1), and
F=(m) at several subcritical speeds, plot
the stability parameters against the flow
speed, and fit a curve to points of each
stability parameter. Intersecting points of
the curves with the flow speed coordinate
would represent the speeds at which Egs.
(14) are satisfied.

Next, let us describe the calculation of
on and 7, with the use of the estimated
AR coefficients, and the relation between
Jury’s and Routh-Hurwitz’s stability crite-
ria. We assume here that the response
characteristics are expressible in terms of
an oscillatory motion of a viscously damped
J-degree-of-freedom system whose response
y(t) is given by

J

¥®)= D, {Am exp (smt)+ Bm exp (Snt)}

m=1

(15)

In Eq. (15), 5= is the complex conjugate of
Sm, and

sz{—ﬂm‘}'i(l—vma)”ﬂ}wm (16)

where o, and 7. represent, respectively,
the frequency and damping ratio of the
m-th mode. If 7,2<1, then Eq. (16) reduces
to

sm:(_’vm"'i)wm (17)
Hence, we have
on=Imag (sn) (18.1)

nm=—Real (sn)/Imag (sn) (18.2)

The characteristic equation of this cor-
responding system, represented by

27
D Cns?? m=0, Co=1, 19
m=0
possesses J pairs of complex conjugate
roots, sm and §», for m=1,2,.--,J. That

is, Eq. (19) is rewritten as

[J'_[ (s—8m)(s—38m)=0 (20)
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There is a relationship between the z- and
s-variables which is given by'?

z=exp (sT) (21)

Using Eq. (21), we may calculate s, and
Sm since zp’s and Z.,’s for m=1,2, ---,J,
are evaluated numerically from Eq. (8)
where b(m)’s have been estimated. Then,
substituting s» and 5. into Egs. (18) or
(16), we obtain wn and 7m.

Substitution of s»’s and 5»’s into Eq. (20)
and comparison of Eq. (19) with Eq. (20)
determine the coefficients {Cn} in Eq. (19).
Therefore, the stability boundary of the
aeroelastic system can be examined also
with the aid of the Routh-Hurwitz criterion
in the same way as for Jury’s determinant
method. The stability conditions for the
characteristic equation presented by Eq.
(19) are as follows?:

Cn>0 for m=0,1, ---,2J
and (22)
Dn>0 for m=1,2,.-.,2J

where

(23)

In each determinant, all C’s with negative
subscripts or with subscripts greater than
2J are to be replaced by zero. It is well
known that the condition defined by

Cz.] =0 (24)

determines the boundary for static insta-
bility or divergence. On the other hand,
the critical condition for aperiodicity in
the z-plane is given by®

G(1)=0 (25)
or
G(0)=c(0)=0 (26)

However, only Eq. (25) governs the static
instability.

III. MODEL AND TEST
PROCEDURE

In order to obtain the data to which the
proposed technique is applied, a test was
conducted by using a cantilever wing model
in the transonic blowdown tunnel at NAL
which has the 0.6 0.6 m test section. The
wing used had a length of 137 mm normal
to the flow direction, angle of sweep of 45°,
aspect ratio of 4, taper ratio of 0.657, and
the airfoil was NACA65A004. The re-
sponses to wind tunnel turbulence were
measured through a pair of strain gauges
which were glued at the same positions
on the upper and lower surfaces of the
wing. In vibration test, several other
gauges were also used in order to find a
combination of gauge’s position and orien-
tation which would ensure a simultaneous
measurement of aeroelastic modal responses
associated with the first three natural
modes. Fig. 1 shows the wing configuration,

WING SECTION NACA65A-004
mode | f (Hz)

1 8039

2 3365 A= 45°

3 14182

4 18052

D strain gauge

VYA A A |

NL 137

Fig. 1 Wing configuration, strain gauge’s
location and the first four natural fre-
quencies, Nodal line: 2nd mode (---~- )y
3rd mode (— - ——-)
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strain gauge position, the first four natural
frequencies and nodal lines of the second
and third modes. The nodal line of the
first mode was located at the clamped edge
of the model.

With the Mach number being fixed at
M=1.17, the measurement of the response
was made at twelve dynamic pressures
above @=0.5kg/cm?, which was the mini-
mum pressure attainable at this Mach
number. At each dynamic pressure the
signals of the response were recorded for
about 10 seconds on a FM magnetic re-
corder. The critical dynamic pressure, @,
at which flutter started to occur actually
in the test was 0.97 kg/cm?. Fig. 2 illus-
trates a typical example of strain gauge
signal y(t) at 78% of Q;.

e
0.01sec

Fig. 2 A typical strain guage signal at
Q=78% Q;

IV. DATA ANALYSIS
AND RESULTS

Before discrete time series {y(n)} were
generated by sampling the signals, they
were narrowed by a band pass filter to the
frequency range of interest. Two ranges
of frequency were used: one included the

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-667T

first two natural frequencies but excluded
the third and higher ones, and the other
contained the first three alone. Let us
describe both cases separately.

1). Two-Mode Analysis

The upper and lower frequencies of the
filter were set to 70 and 350 Hz, respectively,
since the first two natural frequencies were
80.9 and 336.5 Hz. After a preliminary ex-
amination was made for a number of com-
binations of values of sampled interval T,
number of data points N and the maximum
lag of covariance ZAp.y, used in Akaike’s
procedure, the data analysis was carried out
with T=200 usec, N=20,000 and A,y =200.
This means that 4 seconds’ response was
analyzed at each dynamic pressure. For
all the signals, the estimated order of the
AR part by Akaike’s minimum AIC pro-
cedure is fourth. That is, the system which
corresponds to the signals filtering has two
degrees of freedom. The estimated values
of the AR coefficients and stability para-
meters* G(1), G(—1), F+=(3) at twelve dy-
namic pressures are, respectively, given on
Tables 1 and 2.

It is seen that, among the stability para-
meters, F-(3) predicts the stability bounda-
ry. Since G(1) is not considered to become
negative for a pressure range which is
above and close to the highest dynamic

* Since F*(1)=1+b(0), they are not tabulated.

Table 1 Estimated values {§(m)} of the characteristic polynomial,
Eq. (8), with b(d)=1

Q(kg/cm?) Q/Q,° 6(3) 6(2) b(1) 5(0)
0.53 0.55 —3.738 5.360  —3.49% 0.8755
0.53 0.55 —3.742 5.373 —8.510 0.8815
0.59 0.61 —3.737 5.361 —3.499 0.8781
0.64 0.66 —38.755 5.403 —3.530 0.8851
0.67 0.69 —38.752 5.393 —3.519 0. 8809
0.75 0.77 —3.740 5.373 —3.512 0.8828
0.76 0.78 —3.736 5. 360 —3.498 0.8779
0.80 0.82 —3.734 5.342 —3.467 0.8625
0.83 0.86 —3.767 5. 443 —3.572 0. 8999
0.84 0.87 —3.749 5.393 —3.523 0.8835
0.86 0.89 —3.766 5. 447 —3.582 0. 9053
0.90 0.93 —3.783 5.494 —3.625 0.9183

a) @y: Actual flutter boundary (0.97 kg/cm?)
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Table 2 Jury’s stability parameters?

Qkg/em?’)  G(1) G(-1) F*(3) F-(3)
0.53 0.2827x10-%2  14.46 0.8167x10-'  0.2274%x 104
0.53 0.2784 14.50 0.8022 0.2193
0.59 0.3273 14.48 0.8260 0.1785
0.64 0. 3010 14.57 0.7109 0.1143
0.67 0. 3070 14.55 0.7060 0.1200
0.75 0. 4092 14.51 0.7453 0.1067
0.76 0.3970 14. 47 0.7870 0.1173
0.80 0. 3502 14.41 0.7305 0.1006
0.83 0. 3898 14.68 0.5727 0.04464
0.84 0. 4008 14.55 0.6450 0.05792
0.86 0.4544 14.70 0.5588 0.02313
0.90 0. 4225 14.82 0.4466 0.02095

a) F*+(1)=1x+b(0) are not given.

pressure, we may conclude that the insta-
bility observed should not be of divergence
type. The values of the determinant F-(3)
are plotted by circles against the dynamic
pressure in Fig. 3. The least squares method
is used to fit a straight line to the circles
given only at the lowest seven dynamic
pressures, that is, at 55 to 78% of @,. The
part of extrapolation is indicated by a
broken line. In this case, the estimated
critical dynamic pressure @, which is given
by the intersecting point of the broken
line with the horizontal coordinate is 97.49%
of ;. For comparison, the measured criti-
cal dynamic pressure is shown by a mark,
X, on the coordinate. Agreement between
the actual flutter boundary and estimated
one is quite good even though the esti-

X FLUTTER °
2.0 ONSET \Q\
[ ]
w -
o
'w V-0or \°
‘\
\
Ay
[+]
- °\\
°%
. ' A 1 \\xl
0 0.4 0.8 1.2
Q (kg/cmz)

Fig. 8 F-(8) and estimation of flutter bound-
ary: straight-line fitting to the lowest seven
dynamic pressures

mation was made by using the data in a
pressure range which was far from the
boundary.

In order to examine the change in ac-
curacy of the estimation with increasing
data points, the first row in Table 3 pre-
sents the values of the estimated-to-actual
pressure ratio (%) which were calculated
by changing the number of the points, K,
from six to twelve. The estimation was
repeated by adding, each time, one point
at the pressure which is next to the highest
pressure in the previox/:\s set of the points.
The estimated values @, coincide with the
measured value @, very well, if at least
seven points in the lower pressure range
are used. As an aid in judging how the
line fits the stability parameter F-(3), we
present at the second row of Table 3 the
normalized standard deviation, which is
defined by

sD.=[ 35 (ri -1y | 00
@

In Eq. (27), f(j) and f.(j) denote, respective-
ly, F-(3) at the j-th dynamic pressure and
the corresponding value which is calculated
from a fitted line. Satisfactory fits to
straight lines were obtained.

Figures 4a and 4b illustrate the fre-
quencies f» and dampings 7. of the aero-
elastic modes which were evaluated by
using the AR coefficients. The results as-
sociated with the first and second modes
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Table 3 Comparison of estimated flutter boundaries (Qy/Q,) and normalized
standard deviations (S.D.) of the straight-line fitting

No. of data, K 6 7 8 9 10 11 12
Q/Q, range (from 0.55) ~0.77 ~0.78 ~0.82 ~(. 86 ~0.87 ~0.89 ~0.93
Jury® Qs/Qs (%) 91 97 101 98 98 97 97
S.D. (%) 8.2 9.4 9.3 9.3 8.8 8.8 8.4
Routh- Qs/Qs 91 97 102 98 98 97 97
Hurwitz®  S.D. 8.4 9.6 9.6 9.6 9.1 9.1 8.7
Flutter  Q,/Qy 94 99 99 99 99 99 100
Margin®  S.D. 7.6 8.2 7.7 7.2 6.9 6.7 6.8

a) F-(3), b) D;, ¢) Ds™

are indicated by circles and triangles, re-
spectively. For comparison, the frequencies
of the first two modes obtained from the
vibration test in still air are given at =0

in Fig. 4a. It should be noted that they
.
300+ ;
4 2 |
L by B
ada |
(v
200+ | Z
= °0°o (@]
T ® | &
: i o o° fi : E
3
100 + | 2
L]
I
|
I
L 1 i I Lt
0 0.4 0.8 1.2
Q (kg/cm?)
Fig. 4a Estimated frequencies vs. dynamic
pressure
0.2
A
X FLUTTER
n | ONSET Lask 2 a
03721 4 re
a :7]2
0:AF g ° a
(-]
°, ® ©
o 0
o
A i ' A xl
0 0.4 0.8 1.2
Q (kg /cm?)

Fig. 4b Estimated damping ratios vs. dynam-
ic pressure

are not necessarily equivalent to the values
which would be measured by decreasing
the dynamic pressure down to zero while
the Mach number is fixed at M=1.17. As
has been expected, the two frequencies
approach as the dynamic pressure increases,
and they are closely spaced near the flutter
boundary. Dispersion of the estimated
frequencies is rather small.

According to the experimental result of
a wing in a low subsonic flow presented in
Ref. 22, measured values of damping spread
widely above a certain flow speed. In the
present case, the estimated values of the
damping versus the dynamic pressure are
less scattered than expected. This is con-
sidered to be because each estimation was
made in an average sense for the response
of 4 seconds. In Fig. 4b, a cross on the
coordinate represents the actual flutter
boundary where at least one of the damp-
ing ratios is expected to have vanished.
Both the damping ratios at @=0.80 kg/cm?
are remarkably high compared with others.
Let us exclude these points in the following
discussion. The damping of the first mode
represented by circles seems to decrease
with increasing dynamic pressure in the
range tested. On the other hand, as the
pressure increases, that of the second mode
given by triangles is considered to increase
gradually to the maximum value which is
attained near the pressure @=0.80 kg/cm?
(82% @), and to go down very sharply
with further increase in the pressure. This
damping ratio appears to become negative
above the critical dynamic pressure. It is
evident that an accurate prediction of the
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Table 4 Routh-Hurwitz’ determinants and Flutter Margin

Q (kg/em?) D, (1/sec) D; (1/sec?) D;(1/sec®) Di(1/sec!®) D;™ (1/sect)
0.53 0.6650x 103  0.1612x10° 0.4435x10'® 0.8472x10% (.1003< 103
0.53 0.6309 0. 1569 0.4235 0.7941 0.1063
0.59 0. 6497 0.1623 0.3468 0.7660 0.08216
0.64 0.6102 0.1375 0.2189 0.4424 0.05877
0.67 0.6338 0.1374 0.2316 0.4785 0.05763
0.75 0.6232 0.1448 0. 2058 0. 5669 0. 05298
0.76 0.6512 0.1542 0.2283 0.6117 0. 05382
0.80 0.7394 0.1460 0.2002 0.4767 0.03661
0.83 0. 5268 0.1077 0.08354 0.2169 0.03010
0.84 0.6191 0.1245 0.1114 0.3002 0.02907
0.86 0.4972 0.1041 0.04293 0.1297 0.01737
0.90 0. 4260 0.08134 0.03798 0.1059 0. 02092

parameters given by Egs. (22). As for a
parabolic extrapolation on F-(3), D; and

boundary from information of the damping
alone is a quite difficult task even though

all the data up to the highest pressure are
taken 1nto account.

Next, let us briefly examine the results
which were obtained by using the Routh-
Hurwitz criterion. In this case, the flutter
boundary was determined by extrapolation
on D;. Table 4 gives the values of the
Routh-Hurwitz determinants* as well as
those of a modified parameter D;™ which
is defined by

ng:D3/012 (28)

The modified determinant is equivalent to
the stability parameter (Flutter Margin)
which was proposed with the use of para-
bolic extrapolation in Ref. 4. It is noted
that these determinants are evaluated from
the AR coefficients. The critical pressures
estimated with the aid of the straight-line
fitting to D; and D;® are also presented
for K=6 to 12 in Table 3. As mentioned
in Section 2, D; and F'~(3) are related with
directly. Their corresponding values of the
flutter boundary and standard deviation
agree with each other. It is remarkable
that the straight-line extrapolation on D;™
predicts the flutter boundary within one
percent error for K>7. For the system
with more than two degrees of freedom,
however, there appears to be no appropriate
modification of the Routh-Hurwitz stability

* The coefficients {C,,} are not tabulated since
none of them gives the stability boundary.

Dy, it did not work as well as the straight-
line fitting.

In the above discussion, the accuracy of
the estimated flutter boundaries can be
examined by comparing the measured value.
However, as for the modal frequencies and,
especially, dampings, it was difficult to
extract reliable values from the signals by
other methods. Regarding the application
of the AR model to the signals, the orders
of the model were estimated by Akaike’s
FPE criterion'® to be more than 40 as in
Onoda’s case't. Its numerical result was
used to make the PSD estimation!®? as a
preparatory study for the AR-MA model
analysis. The Random Decrement approach
was also applied to the sampled signals to
generate oscillatory decay curves. How-
ever, the use of the least squares method
given in Ref. 24 was unsuccesful in sepa-
rating the two modes. Hence, there is no
appropriate set of data to be compared
with the estimated values of both damping
and frequency given by the present tech-
nique. In the appendix of this paper,
therefore, we shall examine the accuracy
of estimation of the damping and frequency
by using numerical models.

2). Three-Mode Analysis

In the preceeding, two aeroelastically
predominant modes are well separated from
other modes. However, this is not always
the case. Now we will examine the ap-
plicability of this flutter prediction method
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to signals which contain more than two
modes. The signals were processed by the
band pass filter with the upper and lower
frequencies being set to 70 and 450 Hz,
respectively. In addition to the first two
modes, the signals were expected to include
only the third mode. For the sampled
signals, however, Akaike’s minimum AIC
method indicated that the orders of the
best fitted AR-MA model were about 10 to
20. That is, the model represented a system
with 5 to 10 degrees of freedom. Since the
estimated orders of the model and, con-
sequently, the maximum orders of Jury’s
determinant were too large to predict the
flutter boundary efficiently, Akaike’s pro-
gram was modified such that the determina-
tion of the AR and MA coefficients was made
only for given orders without searching
for the minimum value of his information
criterion. All the analyses were carried out
with the orders of AR and MA parts being
fixed at 8 and 7, respectively, for N=20,000,
T =400 gsec and Rpy.x=200.

The stability boundary was determined
by the determinant F-(7). In Fig. 5, its
values are plotted by solid and open circles
against the dynamic pressure. The circles
in the lower half of the pressure range are
quite scattered but those in the upper half
appear to be consistent. Figs. 6a and 6b
show the frequencies and dampings, re-
spectively. In Figs. 5 and 6, the actual
flutter boundary is indicated like in Figs.
3and 4. The first three natural frequencies
are given on the ordinate in Fig. 6a. Ex-

5
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Fig. 5 F-(7) vs. dynamic pressure

amining the results of Figs. 6 carefully, it
seems to be reasonable to omit the data
at the lowest third and fourth pressures,
since the estimated frequencies or dampings
indicated by solid marks are deviated greatly
from others. If doing so, it is obvious that
Fig. 5 is still very useful in indicating the
stability margin. As for the frequencies,
two modes are estimated to exist between
about 400 and 460 Hz. Since the upper
frequency of the band pass filter is 450 Hz,
the mode of the higher frequency is con-
sidered to be a ghost or fictitious mode?®
which originates in the course of data
processing. Comparing with the results
given in Figs. 4a and 4b, agreement between
the corresponding first two frequencies is
good, but the dampings are much higher
in the three-mode analysis than the corre-
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Fig. 6b Estimated damping ratios vs. dyna-
mic pressure
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sponding ones in the two-mode analysis.
It is evident that this estimation technique
of the flutter boundary is quite effective
even for the signals which contain more
than two degrees of freedom, as is seen in
Fig. 5 where the solid circles are neglected.

Using the simple aeroelastic wing model,
we have presented a basic concept on which
the computer-oriented and practical ap-
proach of flutter prediction may be built.
Let us summarize the superior points of
the present technique over other methods.
In existing methods, estimation or measure-
ment of the modal dampings is prerequisite
for prediction of the flutter boundary. An
accurate evaluation of the dampings is,
however, the most difficult task in many
occasions. This is also true for the present
estimation procedure, as shown by com-
parison between the results of the two- and
three-mode analyses, and in the appendix.
Hence, instead of using the damping ratios,
this prediction technique determines the
flutter boundary on a basis of the auto-
regressive coefficients of the time series
model which represents the response of the
wing, since the coefficients can be estimated
more accurately than the damping ratios.
Another advantage of the technique is that
Jury’s stability determinants evaluated in
terms of the coefficients show monotonous
characteristics with increasing flow speed,
even when the signals treated contain more
than two degrees of freedom.

The flutter prediction in actual flight
testing could be done without excessive
difficulty. Further refinements in data
processing, and expansions of applicability
and reliability of the technique are being
attempted through a wind tunnel test in a
moderate supersonic flow and a flight test
at NAL.

V. CONCLUDING REMARKS

A new estimation method on flutter or
divergence boundary from subcritical re-
sponses due to turbulence has been proposed.
The response is represented by the mixed
autoregressive moving average process.
The flutter prediction is based on Akaike’s
estimation procedure and Jury’s stability

criterion on the discrete-time system. Dem-
onstration of the method is presented by
using the response signals of a cantilever
wing to wind tunnel turbulence in a low
supersonic flow. Comparing with the actual
flutter boundary, we conclude that the
method proposed can predict the flutter
boundary quite accurately from the signals
which were measured in a narrow dynamic
pressure range being sufficiently below the
boundary. The method is effective even
for the signals containing more than two
aeroelastic modes.
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APPENDIX: APPLICATION OF THE
ESTIMATION TECHNIQUE TO
NUMERICAL MODELS

In the text of the present paper, the
estimation technique has been used to
determine the orders and coefficients of the
AR-MA representation and the modal fre-
quencies and dampings. Here, we examine
the accuracy of the estimation, and the
data processing to find a more effective
use of the technique for future applications,
by using numerical models of a system
with two degrees of freedom whose fre-
quencies are spaced more closely than in
the flutter model of the text.

The signals to be used for estimation is
a response of the system subjected to a
sequence of random impulsive forces. If a
unit impulse is applied at t=0 to a single
mode with frequency f; and damping ratio
7;, then its response hj(t) is expressible by

hj(t)=a; exp (—2rp;f;t) sin [22(1—7,)'/*f t]
=0 for t<0 (Al)

where a; is a constant. Hence, sampling
at an interval T, we obtain a finite discrete
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time series {h(n)}, n=0,1, ---, N—1, of the
response of the system with two degrees
of freedom:

hw= 3" a; exp (—2mp,f;nT)

x sin [22(1 — )V f;nT] (A2)
=0 for n<0

provided that the system is motionless
until the input is applied. Let us assume
that the impulses are given at a constant
interval m7, but are uncorrelated in its
magnitude with zero mean and variance
of unity. That is, if the inputs are sampled
at the same interval as for the response,
we have a sequence of the inputs {I(n)},
n=0,1,.---, N—1, where

I(n)#0 for n=km, k=0,1, ---
=0 for n+km

with E{I(n)}=0 and E{I(im)I(jm)}=4:;

(A3)

Then, the finite time series {y(n)}, n=0,
1,---,N—1, of the total response of the
system due to all the previous inputs are
witten as

)= guk)h(n—k) (A4)

The time series {y(n)} are generated for
two different combinations of f; and f;, that
is, Case I: f1=190 and f:=210 Hz, and Case
II: f1=195 and f,=205 Hz. A typical set of
other parameters used is: N=4096,a1=a:=1,
n=73=0.01, T=1msec and m=8. For the
given set of f;’s and 7;’s. the corresponding

AR coefficients {b(nr)}, n=0, - - -, 4, are deter-
mined by using Egs. (16), (21) and (8).
Before the estimation technique is applied
to the time series {y(n)}, they are processed
through digital band pass filtering to limit
their frequency range. The upper and
lower frequencies, fv and f., of the filtering
are chosen in this example such that
fr=fi—20 and fy=f2+20 Hz. Since Akaike’s
minimum AIC procedure estimates AR’s
order to be fifth for the signals given by
Eq. (A4). the modified program which has
been applied to the three-mode analysis is
used with the orders of AR and MA parts
being set to 4 and 3, respectively. Table
Al shows the frequency range (fi, fv) and
ratios of the estimated-to-true values of
the AR coefficients and modal parameters.
Agreement between the estimated and true
values of the AR coefficients are quite
good for both cases. Even though the
frequencies are spaced very closely, the
modes can be separated with considerable
accuracy.

Finally, it is recommended in a practical
application that the estimation should
consist of preliminary and main analyses.
The preliminary analysis is made on a basis
of a crude selection of the band pass range.
But the estimated frequencies f; can be
expected to be relatively accurate since
the band range has a small effect on the
estimated values of frequency unless it is
selected improperly. Hence, using the
result of the first analysis; we may choose
the frequency range more elaborately for
the second estimation.

Table A1 Ratios (%) of the estimated-to-true values of the AR
coefficients and modal parameters

Case fir fu b)) b(2)

b(0) f fa 71 72

1° 170 230 98 99
I 175 225 9% 97

100 99 102 117 79
98 9 103 142 149

a) fv and fr: upper and lower frequencies of band pass filtering, respec-

tively.

b) Case I: /=190 and f;=210 Hz, Case II: f1=195 and f;=205 Hz.
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