ISSN 0389-4010 UDC 621.454.022.5: 621.454.2: 531.24

航空宇宙技術研究所報告

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY

TR-679

小型溝構造液水冷却燃焼器の研究(1) (液水独立冷却および再生冷却燃焼実験)

八 柳 信 之 新 野 正 之 熊 川 彰 長 五 味 広 美 鈴 木 昭 夫 坂 本 博 佐々木 正 樹 十 亀 英 司

1981年8月

航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

目 次

概	要	ž		2
第]	章	まえ	えがき	3
第2	2章	試験	検装置	3
2	2. 1	供記	式燃焼器	3
	2. 1	. 1	噴射器設計諸元	3
	2. 1	. 2	小型溝構造燃焼室設計諸元	3
2	2. 2	推進	韭薬および冷却液供給系 」	15
	2. 2	. 1	推進薬供給系	16
	2. 2	. 2	冷却液供給系	16
	2. 2	. 3	再生冷却時の推進薬供給系	17
第3	章	試影	食方法 ····································	19
3	3. 1	予備	請試験	19
	3. 1	. 1	L N ₂ , L H ₂ によるコールドフロー試験	19
	3. 1	. 2	無冷却燃焼室によるコールドフロー試験および短秒時燃焼試験	20
3	. 2	試駁	検方法および制御	21
3	3. 3	計	測	23
第 4	章	試駁	6 結果	29
4	. 1	燃发	性能試験結果	29
	4. 1	. 1	定常性能	29
	4. 1	. 2	振動燃焼について	38
	4. 1	. 3	点火器試験結果	10
4	. 2	冷去	D特性試験結果 ······ 4	10
	4. 2	. 1	LH₂独立冷却燃焼試験 ····································	10
	4. 2	. 2	再生冷却燃焼試験	16
第 5	章	試験	\$結果の解析	55
5	. 1	燃焦	性能	55
	5. 1.	1	噴射形式,混合比,水素噴射温度による C^* 効率への影響	55
	5. 1.	2	LO ₂ ランタンクのGN ₂ 加圧による影響	6
	5. 1.	3	考 察	57
5	. 2	冷却]特性 ······6	90
	5. 2	1	冷却系データの解析 ····································	Ю
	5. 2	2	設計値との比較	5
	5. 2.	3	既存熱設計式との比較	0'
	5. 2	4	振動解析	'9
第 6	章	供試	C体の切断検査	6
6	. 1	燃焼	窒形状変化	6
6	. 2	内外	· 筒の接合状況および冷却通路の表面状態8	6
6	. 3	熱電	対取付状況9	1

第	7	章	結	論	•••••	••••	••••	• • • •	• • • • •		••••	••••	•••••	• • • • • •	•••••	•••••	 	•••••	93
付		録	C*, I	sp 1C	対す	る補	ÎE	•••	••••	••••		•••••	•••••	•••••	•••••	•••••	 •••••	•••••	95

小型溝構造液水冷却燃焼器の研究(1)*

(液水独立冷却および再生冷却燃焼実験)

八柳信之** 新野正之** 熊川彰長** 五味広美** 鈴木昭夫** 坂本 博** 佐々木正樹** 十亀英司***

A Study of Liquid Hydrogen Cooled LO₂/LH₂ Rocket
Combustor with Slotted Wall Liner

Nobuyuki YATSUYANAGI, Masayuki NIINO, Akinaga KUMAKAWA, Hiromi GOMI, Akio SUZUKI, Hiroshi SAKAMOTO, Masaki SASAKI and Eiji SOGAME

ABSTRACT

An experimental investigation of the combustion and the heat transfer characteristics of a liquid oxygen-liquid hydrogen rocket combustor was conducted.

The liquid hydrogen cooled chamber with a slotted wall liner made of OFHC copper for coolant passage was designed for use at a thrust level of 300 kgf with a nominal combustion chamber pressure of 35 atm.

In order to obtain the liquid hydrogen cooling characteristics at near- and supercritical conditions, the combustion experiments were performed using both the independent cooling method and the regenerative cooling methods. And to obtain data on the combustion performance of coaxial type injectors, the number of injector elements, the oxidant-fuel ratios and the hydrogen injection temperature were varied over a wide range.

The following results were noted. The regenerative cooling combustion tests at the design thrust and the combustion pressure were successfully performed. The slotted wall chamber was revealed to have a sufficiently high heat transfer rate and enough cooling margin even in this small thrust level combustor.

In the independent cooling experiments, a new thermal design equation was obtained, which should be recommended as the design equation for regeneratively cooled rocket engines. As a result, many design equations previously obtained from Joule heated tube experiments proved to be not suitable for the design of slotted wall combustors.

^{*}昭和56年6月29日受付

^{**} 角田支所

^{***} 宇宙開発事業団

Observed C* efficiencies were correlated as a function of the hydrogen-oxygen injection velocity ratio and were found to be the same as the results obtained by the previous studies on the liquid oxygen-gaseous hydrogen rocket combustion performance.

概 要

「小型構構造液水冷却燃焼器の研究」は宇宙開発事業団によって進められている推力10トン級 液酸・液水エンジン,LE-5の開発に必要な基礎資料を得るための,詳細な液水冷却特性に関するデータ,及び広範な燃焼条件に対する燃焼特性を把握することを目的とするものである。昭和52年度に冷却用液水供給装置および供試燃焼器一号機の製作を行い,53年度より航空宇宙技術研究所角田支所において燃焼試験を開始した。また,これと同時に液水冷却特性の解析上不可欠となる燃焼性能,及び燃焼ガス側熱負荷の詳細なデータを得るために,多分割型環状水冷却燃焼器を用いた水冷却燃焼試験を行なった。これらの累積燃焼試験時間は約140回,4200秒におよんだ。

ところで、実際の液酸・液水エンジンでは燃焼器の冷却に用いられた液水が噴射器から燃焼室内に噴射されて、液酸と燃焼する再生冷却方式をとるのが普通である。しかし、本研究においては液水冷却特性に関して広い範囲の冷却条件でデータを得ることを目的としているため、冷却用液水の流量、供給圧力、温度等を燃焼用液水とは独立に変えられるように別系統とした"独立冷却方式"でも試験が行なえるように計画した。さらに独立冷却燃焼試験のデータを踏まえて、完全再生冷却燃焼試験の実証を行ない、設計点では冷却能力にまだ余裕のあること、特性速度効率で98%以上の値が得られることを確認した。

このように小推力、F=3KN (300 kg f)、燃焼器で再生冷却燃焼が可能になったことは、燃焼器構造が従来の管構造燃焼器とは違って、銅製の溝構造 (いわゆる Slotted wall) 燃焼室としたことによるものである。これは冷却通路となる多数の溝を長手方向に設けたもので、スペース・シャトル主エンジン(SSME)等の高圧高性能エンジンに用いられてい

る高熱負荷燃焼器と原理的に同じものであり,我国においては未経験のものである。これによって,冷却特性を明らかにするために必要な各部の温度,圧力測定が容易になるとともに,将来の高圧エンジンへの発展性をも考慮した詳細な試験データの取得が出来たものと考える。

本報告で行なう試作1号機によって得られた主な 結果を簡単に述べる。冷却特性については

① 小推力構構造液水冷却燃焼器により、設計点 (燃焼圧力 P_c =3.48 MPa, 混合比O/F=5.5) での完全再生冷却方式による燃焼が可能であり、 冷却能力としては十分な余裕のあることが分かっ た。

しかしながら,冷却条件を広範囲に変えて行なった独立冷却燃焼試験の結果から見て,

- ② 従来より提唱されている殆んど全ての設計式が 溝構造燃焼器における熱設計式としては不適当で あり、かつ設計上危険性の高いことが分った。
- ③ 試験後、供試燃焼器の切断検査を行なった結果、 溝構造燃焼器をロー付接合によって製作する本方 式には多くの問題点があり、新しい製作法の開発 が望まれる。特に各冷却流路間の抵抗値の不均一 さ、及び内筒の変形による内外筒接合部の剝離に 問題がある。

次に燃焼特性については

④ 混合比,水素噴射温度を広く変化させて特性速度効率におよぼす影響を調べた。その結果これらの効率への寄与は,著者らが以前に得た液体酸素・常温ガス水素燃焼の場合と同様に,ほぼ噴射速度比(水素噴射速度と液酸噴射速度の比)によって表わされることが分った。さらに再生冷却燃焼時に低混合比(O/F<3)で約100Hzの低周波振動燃焼を起したが,それ以外の試験範囲ではほぼ安定な燃焼が行なわれた。

第1章 まえがき

小型溝構造液水冷却燃焼器の研究は宇宙開発事業 団によって進められている推力10トン級液酸・液水 エンジン、LE-5の開発に必要な基礎資料を得るた めの詳細な液水冷却特性に関するデータ,及び広範 な燃焼条件に対する燃焼特性を把握することを目的 とするものである。供試燃焼器は従来の管構造燃焼 器とは異なって将来への発展性も考慮し、SSMEと 同種の溝構造燃焼器とした。このことによって、冷 却性能解析上不可欠とされる冷却用液水の燃焼室長 手方向温度変化、圧力変化の測定及び燃焼室壁温分 布等の測定が容易になった。更に水冷却燃焼器を用 いた広範な燃焼条件のもとで得られる熱流東分布の 測定と合せて、液水冷却特性の詳細を明らかにしよ うとするものである。これらのデータはLE-5に関 連した基礎資料としてのみならず、将来型の高圧高 熱負荷燃焼器の基本設計資料としても有用なものと 考える。また燃焼特性に関しても広い試験範囲に対 して適用出来る燃焼モデルを提案し、解析を試みた。

第2章 試験装置

2.1 供試燃焼器

2.1.1 噴射器設計諸元

噴射器は昭和52年度NASDA委託研究「液酸/液 水開発基礎試験の燃焼器基礎試験」^(2,1) に用いられ たものと基本的に同一設計である。すなわち、エレ メント当りの推進薬流量および噴射列間の影響をみ るために、8エレメントのものと、18エレメントの ものを2種類設計した。8エレメントは噴射列1列で, 18 エレメントは2列である。変更点はLO₂入口管が LO₂ドームに入った位置で邪魔板を設け、各噴口へ のLO₂流量の均一化を図ったこと、および水素側ド - ム内での噴射エレメント水素入口形状を丸穴(対 称位置に2個で、この形式のものは8エレメント噴 射器および18エレメント旧型である)と、スリット 状(入口位置4ケ所で18エレメント改型噴射器)の 2種類としたことである。18エレメント改型では噴 ロリセス部での水素流れの均一性を増し、LO₂との 混合性の向上による燃焼性能の向上を狙ったもので ある。噴射器主要諸元を表2.1に,概略構造と写真

を図2.1, 2.2に示す。フェイス・プレートは多孔質板で発汗冷却(噴射水素流量の約10%)により保護されている。また外周部にフィルム・クーリング用噴口(噴射水素流量の約5~7%)が配列されている。噴口配列,噴射エレメントの詳細を図2.3, 2.4に示す。

着火は GO_2/GH_2 トーチ式点火器によって行なったが、点火器は噴射器背面に装着され、着火用トーチは噴射器の中心部から低混合比($O/F\simeq 1$)の低温燃焼ガスとなって噴出する。この点火器も噴射器と同様に昭和52年度NASDA委託研究で使用されたものと同一設計によるものである。点火器設計諸元を表2.2、構造を図2.5に示す。

2.1.2 小型溝構造燃焼室設計諸元

(1) 基本性能

実際のエンジンでは燃焼室の冷却方式として一般 に再生冷却方式をとっているが,本研究においては

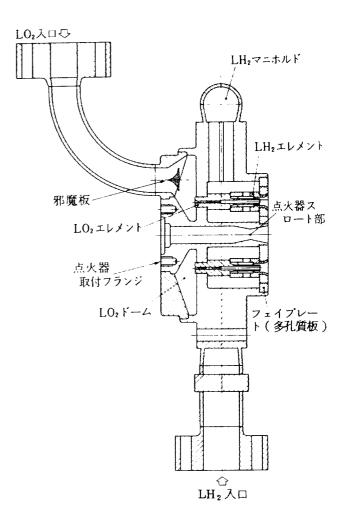


図 2.1. 噴射器構造

表 2.1 噴射器主要諸元

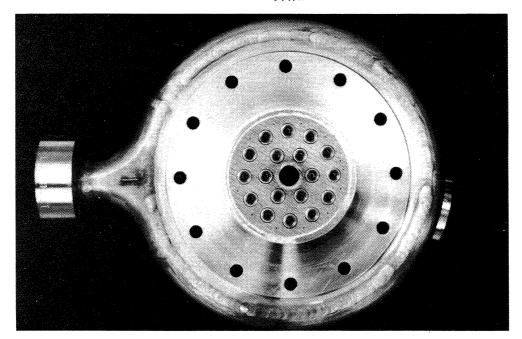

項目	単 位	8エレメント 噴 射 器	18エレメント 噴 射 器
噴射面燃焼圧 (Pc)	M Pa	3. 47	3.47
混合 比 (\dot{w}_0 / \dot{w}_f)		5. 5	5. 5
特性速度(理論値)	m/s	2332	2332
" (実効値)	m/s	2246. 6	2318. 2
特性速度効率	%	96. 3	99. 4
LO ₂ 流 量 (w ₀)	kg/s	0. 796	0. 771
水 素 流 量 (w _f)	kg/s	0. 145	0. 140
エレメント数		8	18
推力/エレメント	KN	0. 37	0. 16
LO ₂ エレメント径	mm	2.49	1. 66
LH ₂ エレメント面積	mm²	7. 6	4.6
LO ₂ 噴 射 速 度 (u ₀)	m/s	16. 8	16. 8
LH ₂ 噴射速度 (u _f)	m/s	336	252
噴射速度比 (u_f/u_0)		20	15
LO2噴口レジスタンス	s ² /cm ⁵	0. 0157	0. 0136
LH ₂ 噴口レジスタンス	s^2/cm^5	0.0031	0. 0018
LO ₂ 噴射差圧 (ΔP _{o,inj})	M Pa	0. 85	0. 70
LH ₂ 噴射差圧 (ΔP _{f,inj})	M Pa	0. 72	0. 42
LO ₂ 噴射差圧比 (ΔP _{o,inj} /P _c)		0. 248	0. 203
LH ₂ 噴射差圧比 (ΔP _{f,inj} /P _c)		0. 209	0. 123
エレメント混合比		6. 6	6. 6
燃焼室フィルム・クーリング量 (w_{fc})	kg/s	0. 0093	0.0064
同上率(w_{fc}/\dot{w}_f)	%	6. 8	4. 7
フェイス・プレート冷却流量 (w_{ffc})	kg/s	0. 0142	0. 0140
同 上 率 (w _{ffc} /w _f)	%	10	10

表 2.2 点火器設計諸元

項目	単 位	諸 元	備考
燃 焼 圧 力	M Pa	0. 87	作動範囲 0.64~0.93
混 合 比		1. 0	作動範囲0.8 ~1.5
GH₂ 流 量	g/s	4. 97	
G O ₂ "	//	4. 97	
GO2噴射面積	cm²	0. 181	
G H ₂ "	//	0.119	
点火器スロート面積	"	0. 283	

8エレメント噴射器

18エレメント噴射器

図 2.2 噴射器写真

フィルム・クーリング孔 $0.6^{\phi} \times 16$ $0.7^{\phi} \times 12$ 項口 N=8 N=18

図2.3 噴口配列

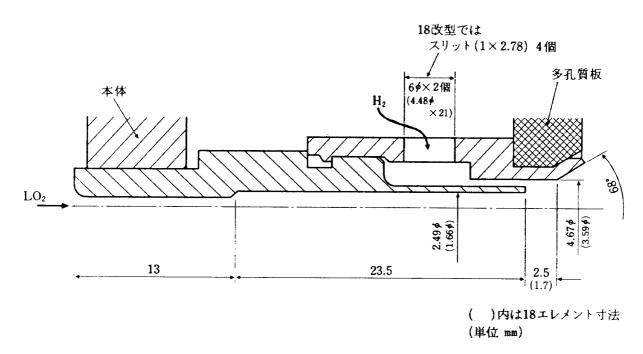


図 2.4 噴射エレメント詳細

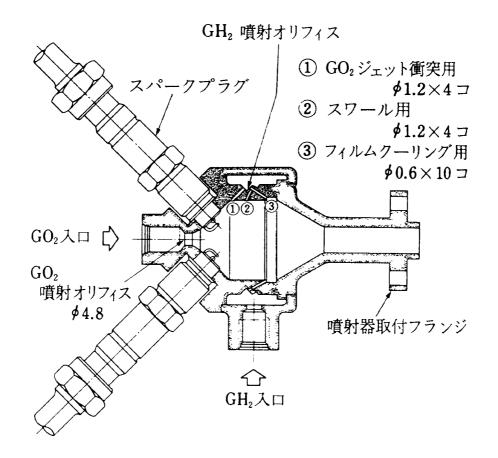


図 2.5 点火器構造図

燃焼室の冷却特性についての詳細なデータを得る目的から以下の仕様を満すよう設計、計画した。

- ① 冷却用液体水素(冷却液)は燃焼系推進薬とは独立に供給され,その流量(G_l)は再生冷却相当量($G_{rg}=0.148\,\mathrm{kg/s}$)の $1\sim3$ 倍の範囲で変えられること。
- ② 燃焼室は冷却特性を明らかにするために軸 方向および周方向の温度測定,圧力測定が容易 であること,さらに将来の高圧高性能エンジン への発展性等を考慮し米国のSSMEにおいても 採用されている銅製(無酸素銅)の溝構造燃焼 室とすること。
- ③ 試験計画の点から50回以上の燃焼試験に耐 え得る疲労強度を有すること。

(2) 設計諸元および構造

表 2.3 に主要な設計諸元を示す。図 2.6 に燃焼室組立図,図 2.7 に液温 (T_b) 測定用熱電対(T.C) および燃焼室壁温 (T_w) 測定用 T.C の取付状態を示す断面図をそれぞれ示す。また冷却通路形状および通

路底面より燃焼室表面までの肉厚分布を表 2.4 に示す。図 2.8 は燃焼室側面の写真、図 2.9 はインジェクタよりの写真、図 2.10 はノズルエンドよりの写真である。また図 2.11 はテストスタンドに組み込まれた状態での写真である。

無酸素銅 (OFHC) 製燃焼室内筒には40本の溝型流路が設けられており,この内筒と周方向に4分割されたステンレス製外筒とは銀ロー付けにより接合されている。また T_b 測定用T.Cが挿入されている流路と他の流路間の流量の不均一を防ぐため,流路の出口にオリフィスを入れ,全流路が一様の流動抵抗を持つようにした。 T_b 用T.Cは局所の混合平均温度を測定するために軸方向に10点,周方向の変化を調べるためにスロート部に4点設けた,いずれもシース径0.5mmのクロメルーコンスタンタン(CRC)T.Cを用いた。

また T_w 測定用T.Cは局所の液側熱伝達率 h_l を求めるために軸方向に10点,周方向の不均一を調べるためにスロート部に10点設けた。いずれもシース径

様 項 B 記 号 単 位 仕 溝構造 LH2冷却方式 式 型 40 チャンネル 数 燃焼室平行部径 D_{ch} mm 66 28 燃焼室スロート部径 " D_{th} 5.56 収 縮 比 ε_c 8 張 比 膨 ε_e L^* 特性長さ 73 c m $0.148 \sim 0.444$ 冷却液流量 G_{LH_2} kg/s $4.3 \sim 5.4$ M Pa 入口マニホルド圧 P_{in} 出口マニホルド圧 // 4.0 P_{out} 最高使用圧力 \boldsymbol{P} // 6.0 $0.3 \sim 1.5$ ジャケット圧損 ΔP kW/cm² 3.4 スロート部熱流束 q_{th} K 26 入口マニホルド温度 T_{in} $103 \sim 222$ 出口マニホルド温度 K T_{out} 1010 K スロート壁最大温度 T_{wg} 50 最小寿命

表 2.3 燃焼室設計諸元

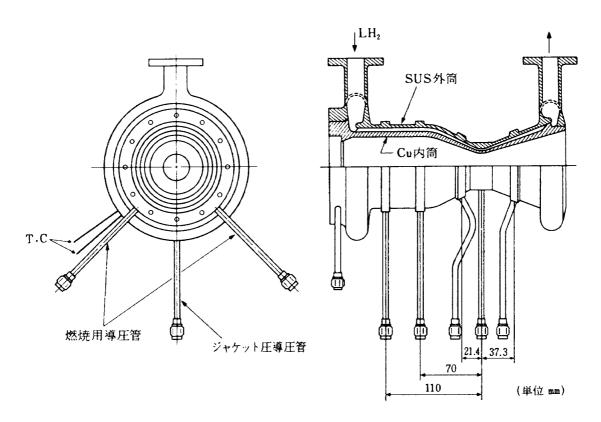


図 2.6 燃焼室組立図

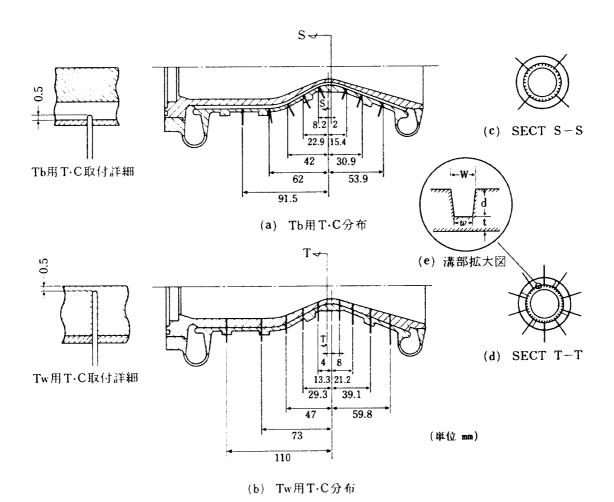


図 2.7 燃焼室断面詳細図

表 2.4 冷却通路形状および肉厚分布

記号については図 2.7 (e)を参照されたい。単位〔mm〕

距離	深さ(d)	底巾(w)	上巾(W)	肉厚(t)	距離	深さ(d)	底巾(w)	上巾(W)	肉厚(t)
-144	4. 0	1. 0	2. 0	6. 0	- 10	2. 0	1.0	1. 5	3. 0
-138	٨	Λ	٨	À	- 5	2.0	٨	1.5	3.0
-130					(スロート)	2. 0		1.5	3.0
-120					5	2.0		1. 5	3. 0
-110					10	2. 1	·.	1. 52	3. 1
-100	-				15	2. 3		1, 57	3.4
- 90					20	2. 5		1. 61	3. 6
- 80					25	2. 7		1. 67	3. 95
- 70					30	2. 9		1. 72	4. 20
- 60			· V	V	35	3. 1		1. 77	4.5
- 50	4. 0		2. 0	6. 0	40	3. 35		1.84	4.8
- 40	3.6		1. 9	5. 3	50	3.8		1. 95	5. 4
- 30	3. 1		1.77	4. 5	60	4. 2		2.05	5. 9
- 25	2.8		1. 70	4. 1	70	4.6		2. 16	6. 5
- 20	2. 5	2.5 1.62 3.8		3.8	80	5. 0		2. 26	7.1
- 15	- 15 2.3 1.0 1.58 3.4		3.4	90	5. 4	1.0	2. 35	7. 7	

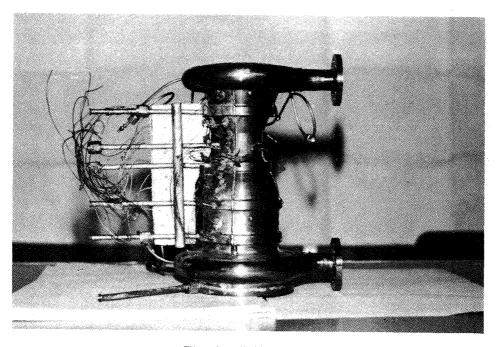


図 2.8 燃焼室側面

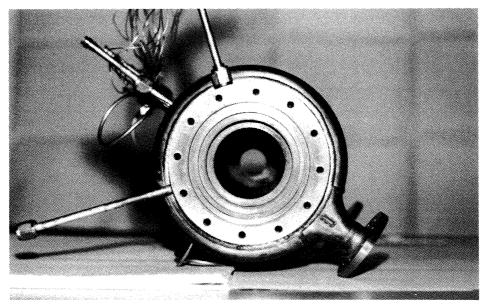


図 2.9 インジェクタ側からの写真

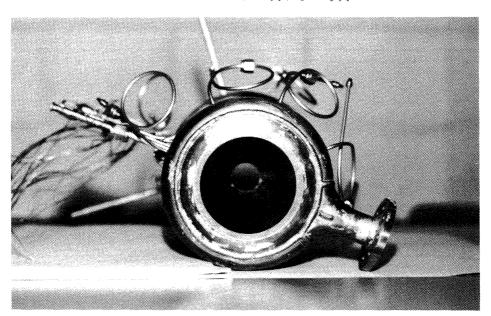


図2.10 ノズルエンドからの写真

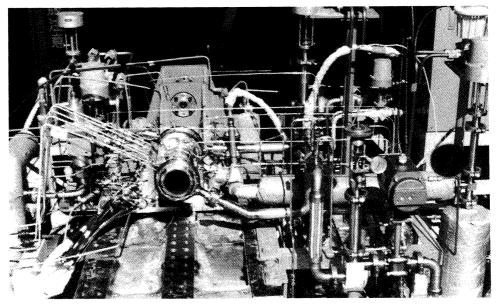


図2.11 燃焼スタンドに取付けた状態

1.0mmのT.C(CRC)でその先端が燃焼室表面から 0.5mmの位置に銀ローにより固定してある。このロー材の再溶解温度が約1170Kであるため、本供試体の最高使用温度はこれにより規定される。また圧力 測定孔は、冷却通路内の圧力分布を調べるために軸 方向に5点設けてある。取付位置は図2.7に示した。

(3) 熱設計

本供試体のように冷却通路を形成する側壁のフィン効果が無視できない場合は、単純に1次元熱伝導計算は適用できないが、2次元熱伝導計算により得られるフィン効率(グ)を導入することにより、以下に示すような1次元熱伝導問題として取扱うことが可能となり、これにより繰り返し法による軸方向の熱計算が容易に実行できることになる。

そこで図2.12に示す2次元モデルにおける熱伝導 問題を次式のような1次元熱伝導問題に近似する。

$$Q = A_{\sigma} h_{\sigma} \left(T_{ad} - \widetilde{T}_{w\sigma} \right) \tag{2.1.a}$$

$$= A_{\mathbf{g}} \phi \, \frac{\lambda_{\mathbf{m}}}{t} (\widehat{T}_{\mathbf{w}\mathbf{g}} - \widehat{T}_{\mathbf{w}\mathbf{l}})$$
 (2.1.b)

$$= A_l \, \eta_f \, h_l \, (\widehat{T_{wl}} - T_b) \tag{2.1.c}$$

ことで A_g , A_l はそれぞれ燃焼室側面積,液側面積, h_g , h_l はそれぞれ燃焼ガス側熱伝導率,液側熱伝達率, T_{ad} は断熱壁温度, ϕ は肉厚 t 内での熱流が一様でないために生ずる補正係数であるが,計算の容易さのため $\phi=1$ として扱う。 λ_m は金属の熱伝導率である。また,本燃焼器の場合, η_f は計算の容易さのため, $\varepsilon=(R/m)$

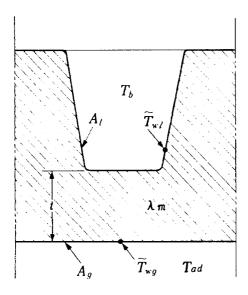


図2.12 2次元モデル

$$R_{th}$$
) 2 の関数として次式で与える。 $\eta_f = 1/(0.1474\sqrt{\epsilon}+0.8526)$ (2.2) R , R_{th} は燃焼室半径およびスロート半径である。 \widehat{T}_{wg} , \widehat{T}_{wl} はそれぞれ燃焼ガス側,液側平均壁温である。

式 (2.1.a) は燃焼ガス側から流入する熱量,式 (2.1.b) は金属を通過する熱量,式(2.1.c) は液側に流出する熱量であり,定常状態では 3 式とも等しい。

 h_g は図2.13に示すように文献 $^{(2,1)}$ で得られた水 冷却燃焼試験のデータと変形 Bartz 式

$$h_{g} = \frac{0.0225}{D_{t}^{0.2}} \left(\frac{\mu^{0.2} C_{P}}{P_{r}^{0.6}}\right)_{N.S} \left(\frac{P_{CN} g}{C^{*}}\right)^{0.8}$$

$$\left(\frac{D_{t}}{r_{\epsilon}}\right)^{0.1} \left(\frac{1}{\epsilon}\right)^{0.9} \sigma$$
(2.3)

なお、記号等の詳細は文献 $^{(2,2)}$ を参照されたい。 とほとんど一致しているので計算の簡便さから式 (2,3) により与えた。

またんは次式により与えた。

$$h_l = 0.023 \frac{\lambda_l}{D_c} R_{ef}^{0.8} P_{rf}^{0.4} \varphi_{\text{ent}} \varphi_c$$
 (2.4)

図2.13 燃焼室ガス側熱伝達率分布

ここで λ_l は液の熱伝導率, D_e は水力等価直径, R_e はレイノルズ数, P_r はプラントル数である。入口補正因子 φ_{ent} は次式で与える。

 $arphi_{
m ent} = 2.88/(X/D_e)^{0.325}$ (2.5) ${\it C}$ こで ${\it X}$ は加熱開始点(入口)からの距離で, 上式による値が ${\it 1}$ になった時点で計算を打切る。 ${\it \varphi}_c$ については後述する曲率による圧損増加因子が レイノルズアナロジにより ${\it h}_l$ の増加にそのまま 対応するものとして

$$\varphi_c = [R_e (D_e/2R)^2]^{0.05}$$
(2.7)
を用いた。ここで R は流路の曲率半径である。
また各種物性値の参考温度は次式

$$T_f = (T_w + T_b)/2 (2.8)$$

で与えられる境膜温度を採用した。なお液側の物性値は文献 $^{(2,3)}$ によった。

次に式(2.1.a-c)より $\widehat{T_{wl}}$, $\widehat{T_{wg}}$ は以下のように表わされる。

$$\widetilde{T_{wl}} = (\chi \eta_f h_l (1 + h_m / h_g) T_b + h_m T_{ad}) / (h_m + \chi \eta_f h_l (1 + h_m / h_g))$$
(2.9)

 $\widehat{T}_{wg} = (h_g T_{ad} + h_m \widehat{T}_{wl}) / (h_g + h_m)$ (2.10) ここで χ (面積拡大率)= A_l / A_g , $h_m = \phi \lambda_m / t$ である。

圧力損失は式(2.11)により算出する。

$$dP = -\rho U dU - f_r \frac{\rho U^2}{2 q D_e} dx \qquad (2.11)$$

なお管摩擦係数 f_r は $1.9\,\mu$ rmsの表面粗さを持つ場合の次式 $^{(2.4)}$

$$f_r = 0.078 \, \varphi_c \, R_e^{-0.1021} \quad (R_e \ge 10^4)$$
 (2.12)

によった。 φ_c は曲率による圧損増加因子で式 (2.7) と同一である。

最初に流れ方向に沿う T_b ,P分布を近似的に以下のように与える。 T_b は水冷却燃焼試験より得られた熱流束(q)分布より算出し,Pは適当な直線分布を仮定する。この第1次近似の T_b ,P分布をもとに局所の T_{wl} , T_{wg} ,q を式(2.9)(2.10) を用いて繰り返し法により求める。この計算を図2.14に示す軸方向31点について行い,新しいq分布を算出する。これにもとづいて第2次の T_b ,P分布をエンタルピバランスおよび式(2.11)により予測する。上記の計算を T_b および T_b 分布が収束するまで継続する。

このようにして得られた主な熱物理量の結果を以下に示す。

図 $2.15\sim 2.19$ には $G_I=G_{rg}$ における各物理量の軸方向の変化の様子を示す。図 2.15 には q 分布を示す。水冷却(\bigcirc 0) の場合より q が一様に増加しているのがわかる,これは LH_2 の h_l が水の場合より高いためである。図 2.16 には T_b 分布,図 2.17 は P 分布,図 2.18 には T_{wg} , T_{wl} 分布,図 2.19 には平均流速切分布を示す。図 2.18 ではスロート部の外に接臨界温度 T_{cr} (定圧比熱 C_p が極大値をとる温度)近傍にも T_{wg} , T_{wl} の鋭いピークを持つことが示されている。しかし以上の結果は,便宜のために 1 次元熱流と仮定して得られた解であり,念のため熱的に最も厳しいスロート部で 2 次元熱伝導計算により確認する必要がある。その結果を表 2.5 に示す。ここで q , T_b , P 等は 1 次元計算の結果を用いた。 T_{wg} の最大

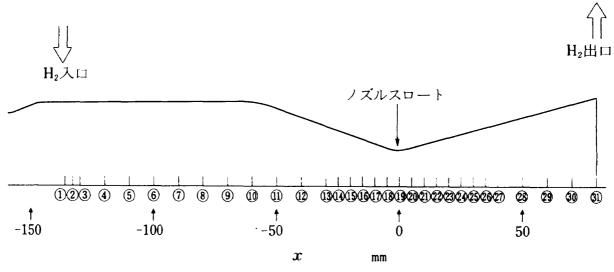


図2.14 燃焼室の計算点

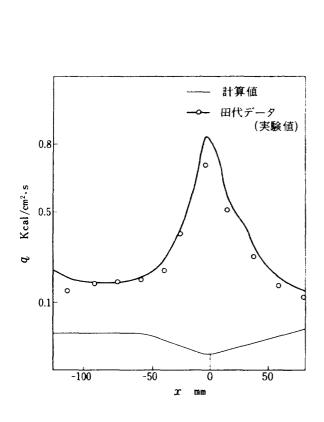


図2.15 熱流束分布(流量0.148 kg/s)

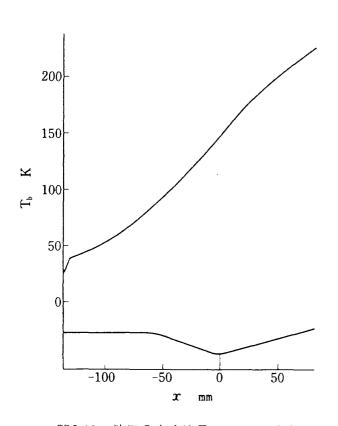


図2.16 液温分布(流量0.148 kg/s)

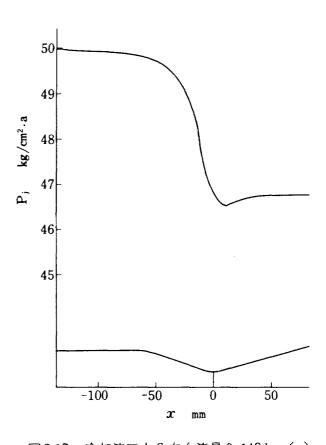


図2.17 冷却液圧力分布(流量0.148 kg/s)

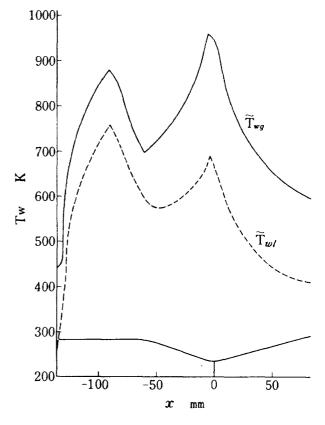


図2.18 壁温分布(流量 0.148 kg/s)

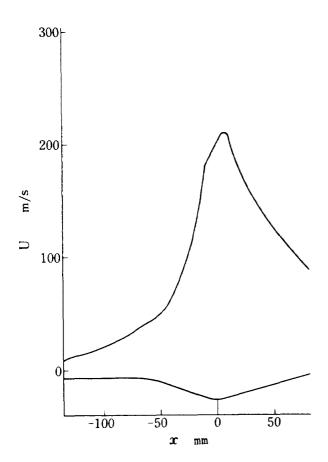


図2.19 冷却液流速(流量0.148 kg/s)

点は \hat{T}_{wg} より約70K高い温度を示している。しかし前述の最高使用温度(1170K)以下であり計算上は完全再生冷却試験も可能である。

(4) 熱疲労

燃焼室の寿命に影響を及ぼす主な因子として、① 熱応力、②圧力差から生ずる機械的応力、③外部構造物による拘束力等があるが、①の熱応力が最も支配的であることが知られている⁽²⁵⁾のでこれについてのみ検討を行う。

計算方法

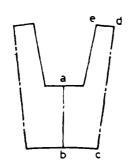
燃焼室内筒の熱歪 ε_i は式(2.13)により与えられる。

$$\varepsilon_i = \alpha_c \, \Delta T_c \tag{2.13}$$

ここで α_c は無酸素銅の線膨張率, ΔT_c は内筒の温度変化(290 $K \rightarrow 980K$)である。

また外筒の熱歪 ε_s は同じく式(2.14) により与えられる。

の温度変化(290K→135K)


$$arepsilon_s = lpha_s \, \Delta T_s$$
 (2.14)
ここで $lpha_s$ はCRES 347 の線膨張率, ΔT_s は外筒

よって熱歪の合計は

$$\varepsilon_t = \varepsilon_i + \varepsilon_s \tag{2.15}$$

表 2.5 壁 温 分 布 (0.148 kg/s, スロート)

			OVER LOOP TRAP -THROAT AREA-						THERMAL CONDUCTIVE DISTRIBUTION							ER=0.4	02	AC =	1.50	NR	- 1001					
				O IN	1PJ1	-	0.0				KCAL	/5	SJT	PJT=				KCAL	75							
	,	OX(MM)		ο.	. 1	0.1	. 0	. 1	0.1	с.	.1 0	.0 0	.0 0	.0 0	.0 0	.0 0	.1 0	.1 0	.1 0	.1 0	.1 0	-1 0	.1 0	.1 0	.0	
	,	DY	((11)										
()	1)	0.4		ō.		٠.	0.	0		٥.	0.	C.	0.	٥.	eo.	317.	318.	319.	320.	321.	322.	322.	322.	322.	322. (1
(2	2)	0.4		o.		٠.	0.	0		C.	0.	0.	0.	٥.	314.	315.	317.	319.	321.	323.	324.	324.	325 •	324 -	٥.	
1	3)	0.1		0.	4	o	_ O .	0								325									0.	
(4	4)	0.4		0.	- (٥.		0								344.								c.	0.	
(:	5)	0.4	•	0.		٥.	0.	0		٥.	0.	367.	368.	369.	370.	371.	372.	373.	374.	374.	373.	372.	0.	0.	0.	
((5)	0.4	4	16.	41	6. 4	119.	418	. 4	14.	409.	407.	407 -	407.	408.	408.	408.	408.	408.	408.	408.	408.	0.	٥.	0.	
(:	7)	0.4	4	50.	45	0. 4	150.	449	. 4	19.	449.	448.	447.	446.	446.	445.	445.	444.	444.	443.	443.	443.	0.	0.	0.	
()	8)	0.4														480.									0.	
7 9	9 }	7.4	5	20.	52	03	520.	520	• 3	9.	519.	519.	518.	518.	518.	518.	518.	518.	517.	517.	517.	0.	σ.	. c.	0	
(1)	0)	0.4	5	58.	55	6. 9	558.	558	. 5	58.	557 .	557.	557.	557.	557.	556.	556.	556.	556.	556.	556.	0.	0.			
(1)	1)															595.						-				
(1)	2)															641.									-	
(1)	3)															636.							-	٥.	٥.	
(1	4)	0.0	7	09.	70	6. 7	704.	704	. 7	Э3.	704 .	704.	705.	705.	707	708.	710.	715.	723.	739.	0.	0.	0.	0.	٠.	
-												•	-							- 1	ζ					

a~eは上表の位置に対応 単位°C

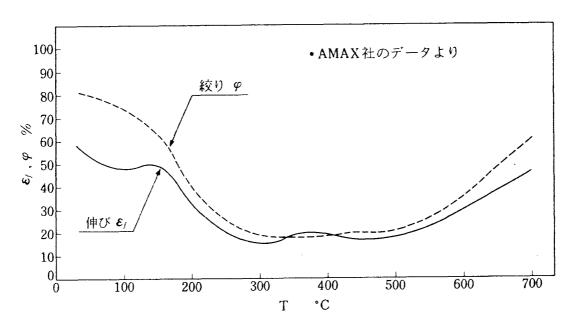


図2.20 無酸素銅の伸び,絞り一温度

Na	壁 温	温度変化	ε_i	ϵ_0	$\varepsilon_i + \varepsilon_0$	φ	ϵ_f	N_1	N ₂	備	考
	T_{w}	ΔT_w	×10 ⁻²	×10 ⁻²	×10 ⁻²			$(\epsilon_f/2\epsilon_t)^2$	$(\varepsilon_f/2\varepsilon_t)^{.67}$		
	(K)	(K)									
1	670	380	0.627	0.270	0.897	0. 19	0.211	138	61	$G_l = 3$	G_{rg}
2	720	430	0. 710	"	0. 980	0. 20	0. 223	129	58		
3	770	480	0. 792	"	1.062	0. 21	0. 236	123	56	$G_l = 2$	G_{rg}
4	820	530	0.875	"	1. 145	0. 26	0. 301	172	74		<u>-</u>
5	870	580	0. 957	"	1. 227	0. 35	0.431	308	120		
6	920	630	1.040	"	1. 310	0.48	0.654	623	215		
7	970	680	1. 122	11	1.392	0.61	0.942	1144	358	$G_l = C$	Gre

表 2.6 燃焼室内筒スロート部の熱疲労計算

となる。一方無酸素銅の局所伸び率 ϵ_f は次式

$$\varepsilon_f = l_n \left(1/(1-\varphi) \right) \tag{2.3}$$

ここで φ は絞り率で図2.20に示すように温度により変化する。図には ϵ_f の変化の様子も示す。により与えられる。

最終的に寿命Nは式(2.17)により与えられる。

$$N = \left(\varepsilon_f / 2 \varepsilon_t\right)^a \tag{}$$

ここで指数aは環境温度,破壊の形態により決定されるものであるが,ここでは一般に使用されるa=2と $Manson^{(26)}$ が与えているa=1.67の2つの場合について計算を行ってみる。

その結果を表 2.6 に示す。a を 1.67 とした場合の方が寿命が短かく、さらに $G_l=2$ $G_{r,g}$ において極小値をとるが、先に掲げた基本性能 N=50 をわずかではあるが超えており、使用上問題はないものと思われる。

2.2 推進薬および冷却液供給系

燃焼試験装置の系統は試験の目的によって異なるが,大別すれば燃焼用推進薬供給系統と燃焼器冷却 液供給系統からなる。この内,冷却系統については, 再生冷却燃焼試験では燃焼器の冷却に用いた水素が 燃焼用水素となるが、液体水素による独立冷却燃焼 試験では冷却用液水は燃焼用液水とは独立に供給されて、冷却に用いられた水素はベント・スタックから大気へ放出される。以下、燃焼用推進薬供給系および冷却液供給系について概略を述べる。

2.2.1 推進薬供給系

主要系統を図2.21に示す。 LO_2 の供給は当初ランタンクを GN_2 で加圧することにより圧送していた。ところが第5.1.2項で述べるように燃焼時間30秒以上の試験において,燃焼圧力が漸次減少する傾向が見られ,この原因として LO_2 中への加圧窒素の混入が考えられたため,中途より GO_2 加圧方式に変更した。このようにして圧送される LO_2 は流量計,調量弁,主弁を経て噴射器に供給される。ランタンクは真空断熱が施されており,噴射器までのラインは液体窒素(LN_2 と記す)ジャケットにより保冷されていることから,噴射器ドームでの液温は約 $93\sim100$ Kである。一方,水素側は LH_2 供給系および GH_2 供給系からなり,混合器において所定の割合で混合されて設定温度の水素が得られ,噴射器に供給される。今回の試験においては水素噴射温度の設計点は140

Kであるが、水素噴射温度の燃焼性能におよぼす影響を調べるため約 $65\sim300$ Kの範囲で変化させた。燃焼用 LH_2 ランタンクは多層真空断熱であり、 LH_2 供給ラインは真空断熱が施されているため、流量計部での LH_2 温度は約 $22\sim26$ Kである。 LH_2 はランタンクを GH_2 で加圧することにより流量計、調量弁、主弁を経て混合器に至り、 GH_2 と混合され噴射器へ供給される。また、着火に用いるトーチ・イグナイタに供給される GO_2 、 GH_2 のラインは主ラインとは独立して設けてある。

2.2.2 冷却液供給系

 LH_2 による燃焼器冷却系を図 2.22 に示す。この場合は燃焼用 LH_2 供給系とは独立して,冷却用 LH_2 の冷却条件を変えることが出来る。以後,この方式による冷却を LH_2 独立冷却方式と呼ぶ。すなわち冷却圧の制御はランタンク圧力及び出口側背圧の制御弁R 2 によって行なわれ,流量の制御は流量調整弁MV4によって行なわれる。当初, LH_2 ランタンクの GH_2 加圧デフューザの不具合により低温 LH_2 (T_{in} < 30K)が得られなかったが,デフューザの改良により所定の温度の LH_2 が供給されるようになった。(2.7)

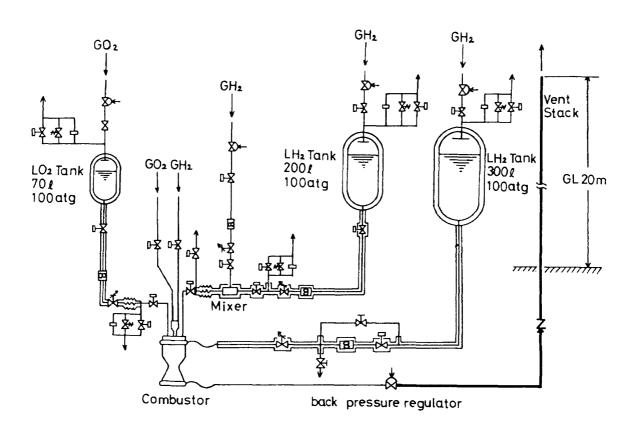


図2.21 試験装置主要系統図

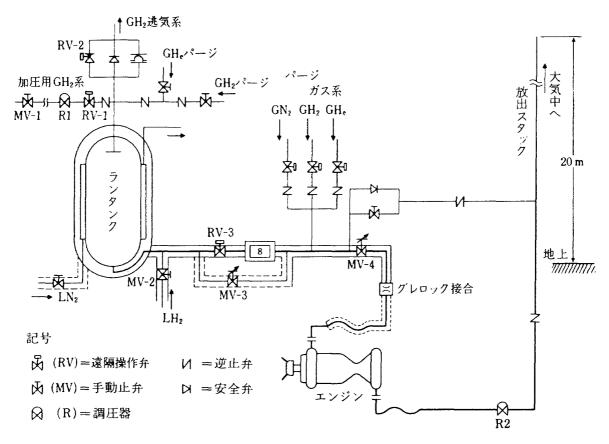


図2.22 LH₂供給系概略図

2.2.3 再生冷却時の推進薬供給系

再生冷却時の LH_2 供給配管系は第2.2.2項で述べた独立冷却用 LH_2 供給配管系の一部を変更し、スタックより放出していた GH_2 を噴射器へ供給することにより再生冷却を行えるようにするために、必要な弁、配管類を追加したものである。

再生冷却用配管系統図を図 2.23, およびその写真を図 2.24 に示す。図 2.23 に示したように,同配管系は LH_2 供給配管(簡易断熱加工)(H)~(I),戻り配管(H)~(I)~(I),予冷放出配管(H)~(I)0)、戻り配されており,これらには LH_2 主弁①, LH_2 予冷切替弁②, LH_2 予冷放出升③がそれぞれ設けてある。このうち, LH_2 主弁, LH_2 予冷切替弁については燃焼開始,および停止時のなめらかな作動特性を考慮して,線形プラグを採用した。なお,これらの再生冷却用 LH_2 配管系を除く LH_2 配管系および LO_2 配管系については,前述の独立冷却用配管系と全く同一のものである。

この再生冷却用配管系におけるLH2, GH2の流れ

は以下の二つに大別される。一つには,燃焼直前における燃焼器を含む配管系の予冷の場合である。すなわち,独立冷却の場合と同様に冷却ジャケットを冷却し,蒸発した低温の GH_2 は出口マニホルド,予冷放出弁を経て,従来の GH_2 放出配管系,一次圧調圧器を通って,スタックより大気中へと放出される。この間,予冷切替弁は閉のままとし,戻り配管系,噴射器への予冷は行なわなかった。さらに,燃焼停止後にも,この放出管系を通して残留 LH_2 を大気中へと放出した。

他方,再生冷却燃焼試験中には, LH_2 予冷切替弁は開, LH_2 予冷放出弁は閉であり, LH_2 は冷却ジャケットにて燃焼室壁を冷却した後,約 $110\sim220\,\mathrm{K}$ の GH_2 となって戻り配管, LH_2 予冷切替弁を経て噴射器より噴射され,燃焼に供される。

この他,予冷放出弁の下流側に真空引用手動弁④を設け, LH_2 および GH_2 配管系内の水分および空気等の不純ガスを除去するために事前に系内の真空引を行った。

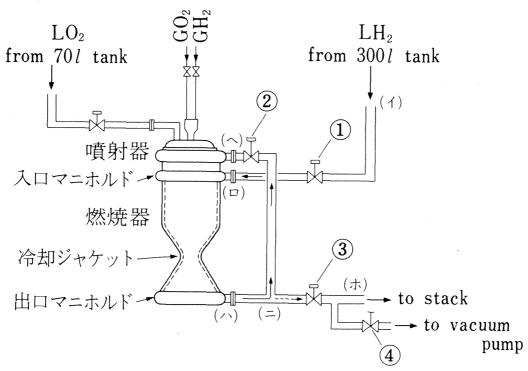


図2.23 再生冷却用配管系統図

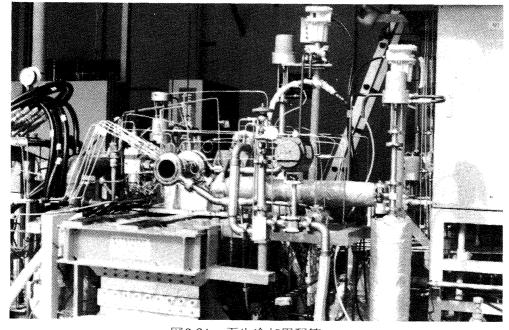


図2.24 再生冷却用配管

文 献

- 2.1) 昭和52年度宇宙開発業務委託成果報告書, 液水エンジン開発基礎試験(その1), 燃 焼器基礎試験(その1), YET 78504.
- 2.2) D.R. Bartz, Jet Propulsion, 27, 1 (1957), 49.
- 2.3) R.C. Hendricks ほか 2 名; NASA TN D-7808, (1975-2).
- 2.4) R.L. Schacht & R.J. Quentmeyer; NA-

SA TND-7207, (1973).

- 2.5) R.T. Cook & G.A. Coffey; AIAA Paper No.73-1310, (1973),
- 2.6) G.R. Halford & S.S. Manson; Transaction of the ASME, Vol.61, 94-102(1968).
- 2.7) 大塚, ほか; 共同研究成果報告書, 液酸・液水ロケットエンジン用燃焼器系の研究. 小型溝構造液水冷却燃焼器の研究(I), (1980-10).

第3章 試験方法

3.1 予備試験

3.1.1 液体窒素(LN₂), LH₂によるコールドフロー試験

ことでは新規に製作した冷却用 LH_2 供給系のコールドフロー試験について述べる。この試験の目的は以下のとおりである。

- ① LH₂供給系が第2.2.2項に掲げた基本性能を 満たすことの確認。配管系の圧力損失が先の設 計値以内に収まることの確認。
- ② 制御装置が良好に動作し、かつ燃焼系制御装置との整合性が良いことの確認。
- ③ 予備試験を行うことにより設備の運転に習熟すること。

試験は安全上から最初に LN_2 を用いて行った。 LH_2 と同等の圧損を与えるため, LN_2 流量は $500\sim1400$ g/s の範囲で実施し,その後に LH_2 による試験を $G_{rg}\sim3\,G_{rg}$ の範囲で行った。図 3.1 には入口一出口マニホルド間圧損と $\rho_lW_l^2$ の相関を示す。図 3.1 において LN_2 と LH_2 の結果が異なるのは燃焼室への熱流入量の違いによると思われる。すなわち LH_2 の場合の方が熱流入量が大きく,流動抵抗が LN_2 に比べて相対的に減少したためと考えられる。

次に供給系の温度特性について述べる。図 3.2 は下方吹出し式のデフューザを用い LH_2 をランタンクに 100 %充てんした状態で,ステップ状加圧をした場合の各所の温度および LH_2 体積流量 W_l の

時間経過である。この図からも明らかなように,基本性能である $T_{\rm in}$ <30 K の状態はわずか 5 秒間持続するだけで,その後は流量計温度 T_{FM} , $T_{\rm in}$ そして出口マニホルド温度 $T_{\rm out}$ のいずれも 55 Kに漸近していく。一方 W_l は設定値 4.5 l/s から徐々に増加し,6 l/s に漸近していく。このような非定常な動作特性のもとでは,安定した試験結果を得ることは期待できない。そこで種々の運転方法を試みた結果,経験的に次のような方法をとることにした。

- ① GH_2 による LH_2 液面のかく乱を少なくするために LH_2 充填量は70%以下とする。
- ② 同様な意味でステップ状加圧をさけ、ドーム 圧ラインに絞りを入れることにより立上り時間

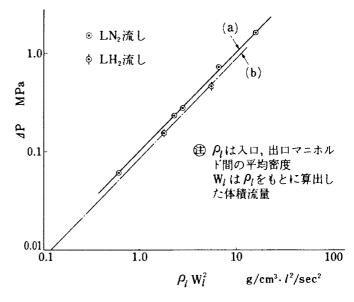


図 3.1 冷却ジャケット流動特性

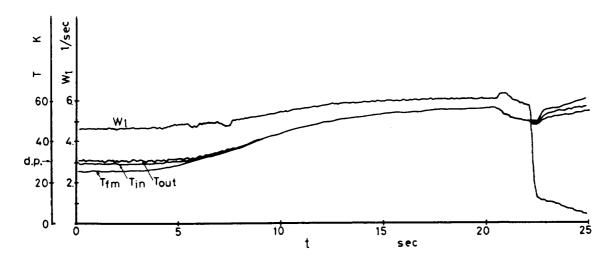


図3.2 下方吹出し式デフューザによる温度および流量特性

約10秒のランプ状加圧とする。

上記の運転方法の採用により、 $W_l=2 l/s$ 時で $T_{\rm in}=45 {\rm K}$ の定常状態が約 30 秒持続することができた。しかしこのような改良運転のもとでも層状化のため高温になって使用できない ${\rm LH}_2$ 残量は約70 l もあった。この状態で得たデータ(RUN 114)は,著者らの一部が先に報告 $^{(3,1)}$ した領域 ${\bf Q}$ ($T_{\rm in} {\geq} T_{\rm cr}^*$)に属するものである。

しかし $T_{\rm in}$ が 45 K では実機における冷却特性を模擬することは不可能である。そこでデフューザを上方吹出し式に改良し、以後の試験を行った。改良後には、 LH_2 を 100 %充塡し、ランプ状加圧のもとで、 $T_{\rm in}=27$ K の状態が 100 秒以上にわたって持続し、温度特性が飛躍的に改善された。また層状化による LH_2 残量も 30 ℓ となり著しく減少した。改良後の温度特性の 1 例を図 3.3 に示す。

3.1.2 無冷却燃焼室によるコールド・フロー試験 および短秒時燃焼試験

噴射器の流量と噴射差圧の特性,各供給配管での 圧力損失,ランタンク圧力の設定値,流量調整弁の 開度設定等を定める目的でLO₂系、水素系のコール ド・フロー試験を行った。特に水素系については設 定噴射水素温度に合せてLH2, GH2を同時に流した。 これらの試験により各特性を把握した上で、それぞ れの設定条件を定めた。更に、点火からメイン・ス テージへのスムーズな燃焼が得られるためのタイム ・シーケンスを定めるために短秒時燃焼を行なった。 燃焼試験のタイム・シーケンスの詳細は第3.2節で 述べるがここでは燃焼系について概略を示す。すな わち燃焼用LO2, LH2ラインの予冷操作後, 自動シ ーケンス・スタートにより電気スパーク ON ,着火 用GO2、GH2弁開によりトーチ・イグナイターに着 火される。約0.7秒後LO2主弁, LH2主弁, GH2主 弁がほぼ同時に開きメイン・ステージへ移る。トー チ用GO₂はメイン・ステージでは遮断されるが、 GH2は点火器保護のため開のままである。設定燃焼

 GH_2 は点火器保護のため開めままである。設定燃焼時間後, LO_2 主弁閉により燃焼は終了し,約0.1秒の時間遅れをもって GH_2 , LH_2 主弁も遮断され,燃焼系のHeパージが行なわれる。

無冷却燃焼室の内面形状は液水冷却燃焼器。水冷

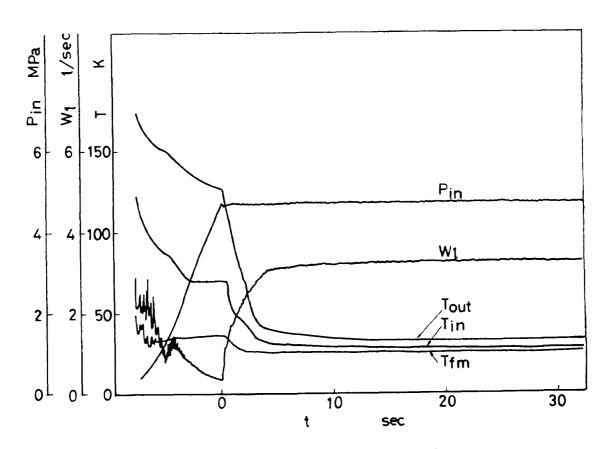


図 3.3 ディフューザ改良後の流動特性

却燃焼器と同一であり材質は無酸素銅である。無冷却燃焼室による短秒時燃焼データは燃焼時間が1~2秒であって諸量の定常値が得られていないため、燃焼性能解析データとしては採用していない。

3.2 試験方法および制御

試験制御装置の構成図を図3.4に示す。HTL(High Threshold Logic)をコントロール・ロジックとして, 30 個のパワードライバ, 13 個のマニアル・シーケンス・スイッチ, 10 個のアンサーバック回路, 10 個

のランプドライバ,パッチボードによって主要部を構成している。パッチボード上の配線を変えることにより,任意のシーケンスのプログラムる組むことが出来る。

図 3.5 に LH_2 独立冷却燃焼試験の系統図を,図 3.6 に再生冷却燃焼試験の系統図を示す。図 3.7, 3.8 にそれぞれの自動シーケンスのタイム・チャートを示し,これらの時間設定値は表 3.1, 3.2 に示した。

緊急停止項目および設定値を表3.3に示す。

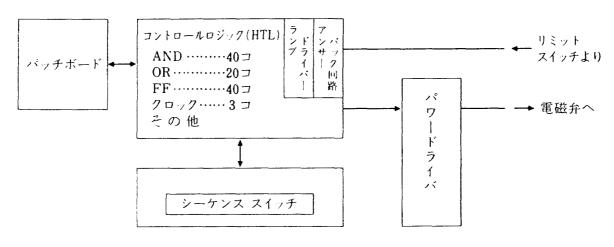


図 3.4 試験制御装置構成図

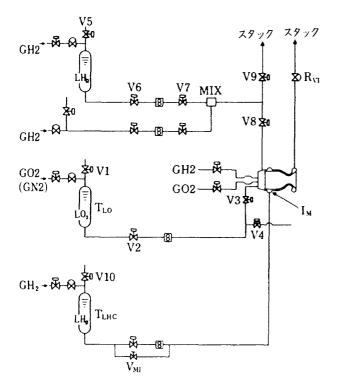


図 3.5 LH₂独立冷却燃焼試験装置

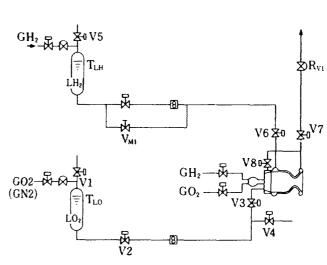


図 3.6 再生冷却燃焼試験系統図

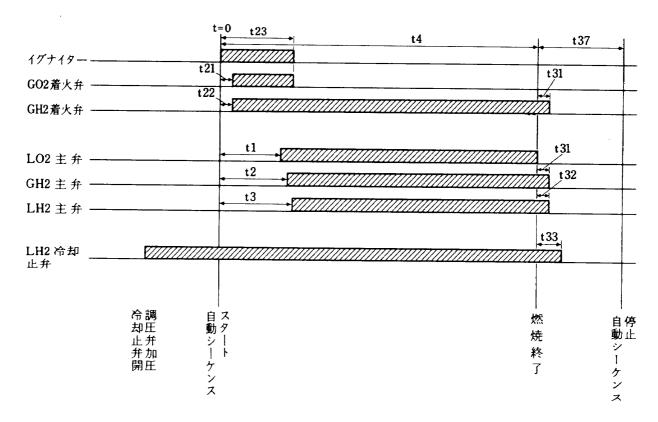


図3.7 LH2独立冷却燃焼試験自動シーケンス

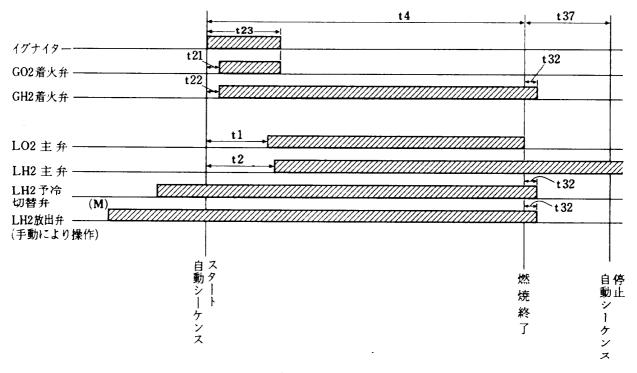


図3.8 再生冷却燃焼試験自動シーケンス

表 3.1 LH₂独立冷却燃焼試験自動 シーケンス設定値

記号	動作	設定値(SEC)
t_1	LO ₂ 主 弁 開	1. 5
t_2	GH ₂ 主 弁 開	1. 55
t_3	LH2 主 弁 開	1. 5
t4	燃焼時間設定	$6.0 \sim 61.0$
t ₂₁	G O₂ 着 火 弁 開	0. 5
t_{22}	GH₂着火弁開	0. 5
t ₂₃	イグナイター停止	1.5
t_{31}	GH2 主 弁 閉	0. 1
t32	LH ₂ 主 弁 閉	0. 1
t ₃₃	冷却止弁閉	1.0
t ₃₇	シーケンス停止	10.0

表 3.2 再生冷却燃焼試験自動 シーケンス時間設定

記号	動 作	設定値(SEC)
t_1	LO ₂ 主 弁 開	0.9
t_2	LH2系主弁開	0. 7
t4	燃焼時間設定	11.0~61.0
t ₂₁	GO₂着火弁開	0. 5
t22	GH₂着火弁開	0.5
t23	イグナイター停止	1.5
t32	LH ₂ 系主弁閉	0. 1
t ₃₇	シーケンス停止	10.0

表 3.3 緊急停止項目

緊急停止項目	設定値
燃 焼 圧 上 限	4 MPa
入口マニホルド圧上限	6.5 MPa
壁 温 CH1~CH20上限	900 K
レベル計 LO2下限	10 %
レベル計 LH ₂ "	10 %
LH ₂ 液 温 上限	35 K
テレビカメラ	目 視

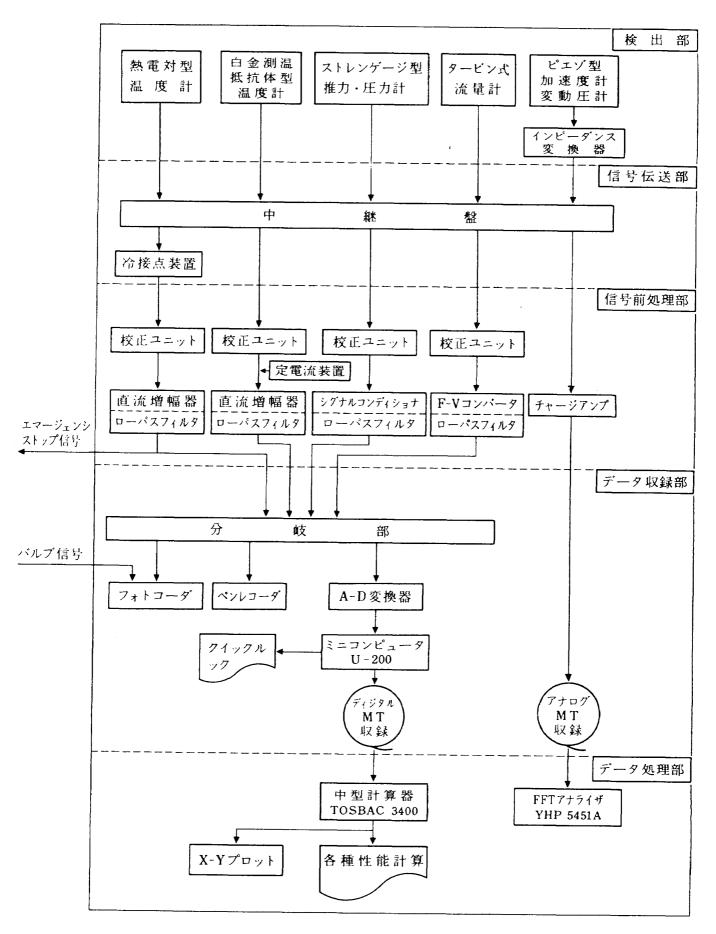
3.3 計 測

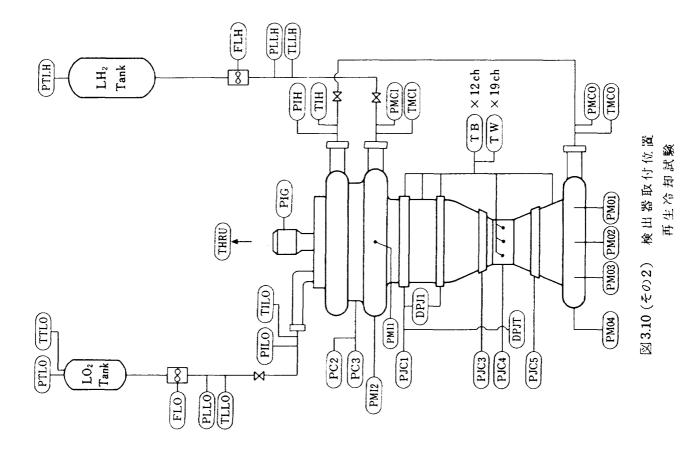
測定量は燃焼性能評価に必要な推力、燃焼圧力、各推進薬流量、噴射圧力、温度等の他に冷却性能評価に必要な冷却用 LH2流量、圧力、温度および燃焼室冷却通路内液温、ジャケット圧力、燃焼室壁温等の各定常量と、燃焼圧力、冷却液マニホールド等の変動圧力および燃焼器の加速度である。計測系ブロック・ダイヤグラムを図3.9に、計測項目を表3.4、検出器取付位置を図3.10に示す。各測定量はA/D変換器により各チャンネル当り100点/秒でデジタル収録され、主な測定量は電磁オシロ及びペン書オシロによりモニターされる。

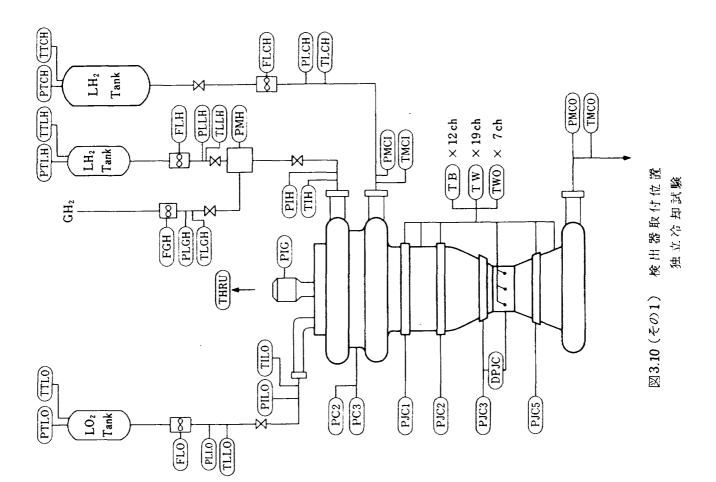
各測定値の推定精度を表3.5 に示す。これらの測 定量のうち燃焼系の計測で重要となる項目はLO₂、 LH₂, GH₂流量, 燃焼圧力および推力である。流量 についてはタービン式流量計で体積流量を測り,流 量計位置での温度、圧力から流体の密度を求め質量 流量とした。それぞれの密度については、文献^(3,3) (3.4)によった。 LO_2 流量については配管が LN_2 によ って保冷されているので、流量計部における液温は 全試験を通じてほぼ93K前後に保たれている。一方, LH₂配管は真空断熱が施されているが、流量計部で の液温は時間とともに低下し24K前後の値に達する。 さらに図4.9.2に示した様に、特に常温水素と混合 後の水素噴射温度の時間変化が安定するまでの間は、 流量計を通過する流量と噴射される流量とは同一と 見做すことが出来ないため、燃焼性能を求めるため のデータ処理には燃焼開始後 15 秒から 30 秒間での 平均値を用いた。

燃焼圧力及びジャケット圧力の測定は無冷却のストレンゲージ式圧力センサーを使用した。これらの圧力導管の長さは約6mであり、温度ドリフトは無視出来るものであった。また、推力については、低温加圧時の配管反力の補正を行ない、推力架台支持用板バネ等の反力は、インプレース校正によって除かれる。

さらに、燃焼性能に大きな影響を及ぼす燃焼器ノ ズルスロート径については付図2に示すように、そ の変形量が大きいため、燃焼試験の各シリーズ毎に 予めマイクロメータによってスロート径を測定して、 これを用いた。




図 3.9 計測ブロック図


表3.4(その1) 計測項目 独立冷却試験

計測項目	記号	メー	カおよび型式	計測項目	記号	メーナ	および型式
LH ₂ ランタンク圧	PTLH	共和	ストレンゲージ式	冷却液入口マニホルド温度	TMCI	ローズマウント	白金測温抵抗体
ゅうイン 圧	PLLH	"	"	ク 出口マニホルド温度	тмсо	"	"
GH2ライン 圧	PLGH	"	"	リージャケット部温度	TB× 12ch	フイリップス	Cr C 熱電対
H ₂ ミキサー圧	РМН	"	"	燃焼器内壁温度	Tw× 19ch	"	"
〃 噴 射 圧	PIH	"	"	〃 外壁温度	Two× 7ch	"	"
LO₂ランタンク圧	PTLO	"	"	燃 焼 器 振 動	AC	キスラー	ピェゾ型
ゅうイン 圧	PLLO	"	"	燃 焼 圧 振 動	P'C	"	"
〃 噴 射 圧	PILO	"	"	冷却圧振動	P' in	"	"
イグナイター圧	PIG	"	"	"	P'out	"	"
燃 焼 圧	PC2	"	"				
"	PC3	"	11				
推力	THRU	"	"				
冷却用LH2ランタンク圧	ТРСН	"	"				
ゅ ライン圧	PLCH	"	"				
冷却 入口マニホルド圧	PMCI	"	"				
ク 出口マニホルド圧	РМСО	"	"				
ク ジャケット圧	PJC1	"	"				
" "	PJC2	"	"				
" "	PJC3	"	"				
" "	PJC5	"	"				
ク ジャケット差圧	DPJC	В&Н	"				
LH ₂ 流 量	FLH	コックス	ターピン式				
GH ₂ 流 量	FGH	"	"				
LO ₂ 流 量	FLO	"	"				
冷却用LH ₂ 流量	FLCH	EFM	"				
LH2 ランタンク温度	TTLH	チノ	Cr C 熱電対				
りライン温度	TLLH	ローズ マウント	白金測温抵抗体				
GH₂ライン 温度	TLGH	チノ	CC 熱電対				
H ₂ 噴射温度	ТІН	"	"				
LO2ランタンク温度	TTLO	"	"				
クライン温度	TLLO	"	"				
〃 噴 射 温 度	TILO	"	"				
冷却用LH2ランタンク温度	ТТСН	"	Cr C 熱電対				
ク ライン温度	TLCH	ローズ マウント	白金測温抵抗体				
	·				i		

表 3.4 (その2) 計 測 項 目 再生 冷 却 試 験

計測項目	記号	<i>x</i> –	カおよび型式	計測項目	記号	1 4	カおよび型式
LH ₂ ランタンク圧				冷却液ジャケット部温度	TB×	 	
クライン圧	PLLH	/	1	燃焼器内壁温度	12ch Tw×	ップス	Cr C 熱電対
冷却 入口マニホルド圧		,	"	然 焼 器 振 動	19ch	1	// / m // mai
ク	PMI1	,	"		AC P'C		ピェソ型
,	PMI2	,	"	燃焼圧振動	P'in	"	"
冷却 出口マニホルド圧			"	冷 却 圧 振 動 〃	P'out	"	,
/	PM01	"	"	,	r out	7	"
,	PM02	,	"				
,	PM03	,	"				
,	PM04	,	"				
H。噴射 田	PIH	11	"				
LO ₂ ランタンク圧	PTLO	"	"				
ク ライン 田	PLLO	"	"				
ク 噴 射圧	PILO	"	,				
イグナイター圧	PIG	"	,				
燃 焼 圧	PC2	"	,				
<i>"</i>	PC3	"	"				
	PJC1	"	"				
	PJC3	"	"				
	PJC4	"	"				
"	PJC5	"	"				
冷却 ジャケット差圧	DPJ1	В&Н	"				
"	DPJT	"	"				
LH ₂ 流 量	FLH	EFM	ターピン式				
LO ₂ 流 量	FLO	コックス	"				
LH ₂ ライン温度	TLLH	ローズマウント	白金測温抵抗体				
冷却 入口マニホルト温度	тмсі	"	"				
冷却 出口マニホルド温度	тмсо	"	"				
H ₂ 噴射温度	тін	チノ	CC 熱電対				
LO₂ ランタンク温度	TTLO	"	"				
クライン 温度	TLLO	"	,,				
ヶ噴射温度	TILO	"	,				

	, 	T		
	基準器	センサー	電気系	誤差総合
圧 力	注2) 0.2%	ストレンゲージ式 0.2%		± 0.30 %
推力	注3) 0.16 %	ストレンゲージ式 0.2 %		± 0.41 %
LH ₂ 温度	注4) 0.1 K	白金抵抗体 0.1 K	0.41 %	± 0.2 K
LO ₂ 温度	LO ₂ 沸点 0.1 K	C-C 熱電対 0.1 K	0.00.0/	± 1 K
Tw, Tb	注5) 1 K		0.26 %	± 1 K
LO ₂ , LH ₂ 流量	注6) タービン式(液) 1%		0.14.0/	± 1 %
GH ₂ 流量	注5)	タービン式(ガス) 1%	0. 14 %	± 1 %

表 3.5 計測誤差の推定

- 注1) データの分布は正規分布とし、自由度n-1 (nはデータ数)のt分布より信頼度95%の区間を求めた。
- 注2) 重錘型基準圧力計(誤差 0.2%)で校正用圧力計を校正し、基準とした。
- 注3) ロードセル校正装置(誤差 0.1%)で校正用ロードセルを校正し、基準とした。
- 注4) 液体水素温度で校正した場合。
- 注5) カタログ値
- 注6) 水で校正した流量計を液体水素、液体酸素で使用することによる誤差。

冷却系の計測についてもほぼ燃焼系と同じであるが、データ処理時間は冷却系の諸量の方が熱的に整定するまでの時間が長いため、試験終了前の5~10秒間のデータを平均して用いた。冷却液の変動圧力を測るため、ピエゾ型変動圧計を流路に直接取り付け、センサー部をGN₂で保温して用いた。燃焼圧力変動は燃焼器の構造上、直接取り付けることが不可能であるため、内径4.6mm、長さ10cmの導圧管を設け、センサー部を水冷して使用した。このセンサーの温度ドリフトは0.045%/Kである。また燃焼器長手方向及び半径方向の加速度の測定はピエゾ型検出器(測定範囲0.5~5,000g)を用いた。これらのデータはアナログ・データ・レコーダ(記録周波数上限20 KHz)に収録し、フーリエ・アナライザにて解析された。

文 献

- 3.1) 新野, ほか 4名; 航技研報告 TR-583, (1979-8).
- 3.2) R.B. Scott, et al; "Technology & Uses of Liquid Hydrogen, (1964), Pargamon Press.
- 3.3) R.B. Stewart, et al; The Thermodynamic Properties of Oxygen and Nitrogen, NA-SA CR-128525, 1972.
- 3.4) R.C. Hendricks, et al; GASP-A Computer Code for Calculating the Thermodynamic and Transport Properties for Ten Fluid, NASA TND-7805 (1975).
- 3.5) 航空宇宙技術研究所のロケット・エンジン 高空性能試験設備, NAL TR-454 (1976).

第4章 試験結果

4.1 燃焼性能試験結果

4.1.1 定常性能

燃焼諸特性の解析は、燃焼室スロート部までの内面形状が液水冷却燃焼器と同一な水冷却燃焼器(局所熱流束測定用に用いたもので詳細は別報 $^{(4,1)}$ で述べる)による燃焼試験データも用いた。但しノズル・スロート以降の膨張部は液水冷却燃焼器においては過膨張(ε_e =8.0)であるため、推力のデータについては水冷却燃焼器(設計点で適正膨張、 ε_e =5.6)についてのみ論ずる。更に無冷却燃焼器の場合についても燃焼時間が数秒であるためこれは除外した。

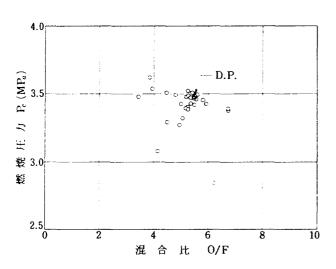


図 4.1 設計点および試験範囲(混合比~ 燃焼圧力,8エレメント噴射器)

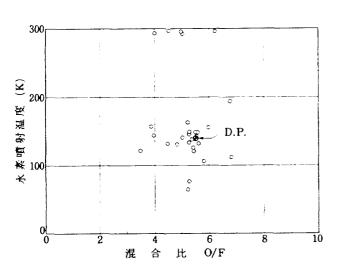


図 4.2 設計点および試験範囲(混合比~ 水素噴射温度、8 エレメント噴射器)

また, LO_2 ランタンクの窒素ガス加圧方式では LO_2 への窒素の混入の影響が,場合によっては燃焼性能に 4%程度にも及ぶことが分ったため,酸素ガス加圧方式に変更するとともに窒素ガス加圧方式によるデータは第5.1.2項で述べるように充分に注意して加圧を行なったもの以外は除外した。

以上の条件での試験範囲は燃焼圧力 P_c = $3.3\sim3.7$ MPa ,混合比O/F= $1.96\sim8.1$,水素噴射温度 $T_{H_2,inj}$ = $65\sim300$ Kである。8及び18ェレメント噴射器に対するこれらの試験マトリックスを図 $4.1\sim4.4$ に示す。すなわち燃焼圧力は設計点を狙い,混合比,水素噴射温度を広く変化させることによって燃焼性能へ及ぼす影響を調べた。各噴射器の流量~噴射差

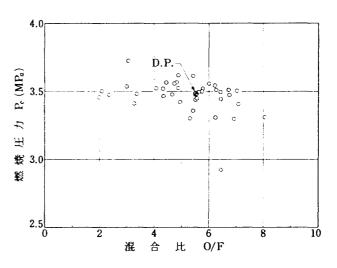


図 4.3 設計点および試験範囲(混合比~ 燃焼圧力,18エレメント噴射器)

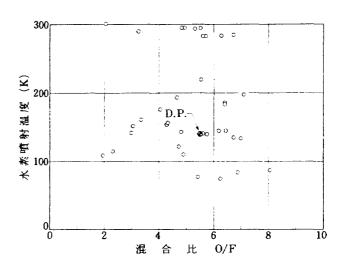


図 4.4 設計点および試験範囲(混合比~ 水素噴射温度,18エレメント噴射器)

圧の特性を図4.5~4.8に示す。設計点での噴射差圧 は

⊿ P_{LO2}=0.58 M Pa , ⊿ P_{H2}=0.23 M Pa 18改型

 ΔP_{LO_2} = $0.58\,\mathrm{MPa}$, ΔP_{H_2} = $0.31\,\mathrm{MPa}$ である。但し水素側流量については第 $2.1.1\,$ 項で述べた通り,多孔質板フェイス・プレートおよびフィルム・クーリング孔からの冷却用水素流量を差し引

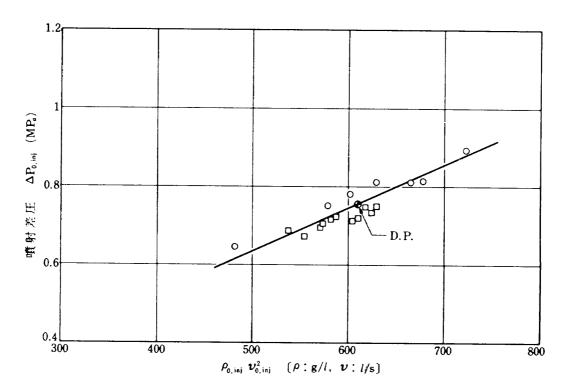


図4.5 8エレメント噴射器,噴射差圧~噴射流量特性(LO₂側)

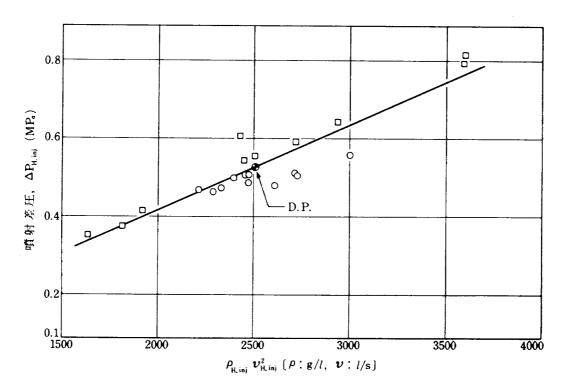


図4.6 8エレメント噴射器,噴射差圧~噴射流量特性(水素側)

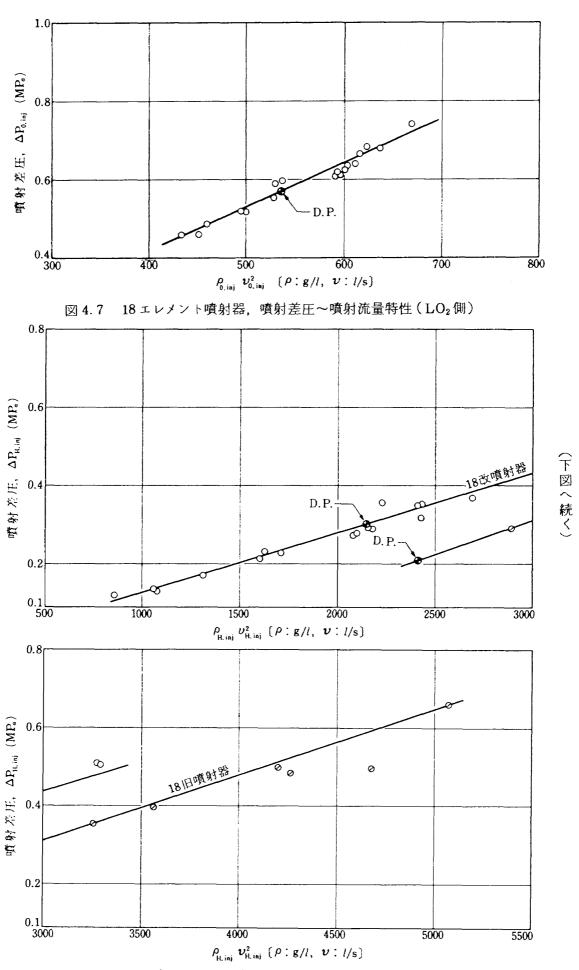


図 4.8 18エレメント(18旧,18改)噴射器,噴射差圧~噴射流量特性(水素側)

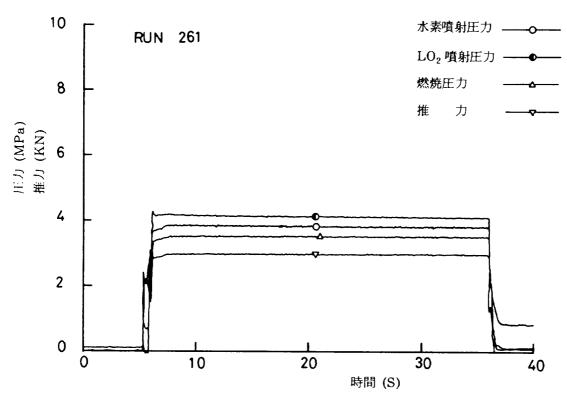
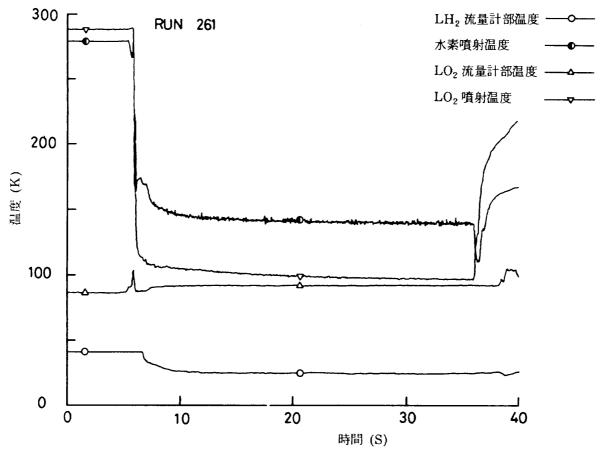



図 4.9.1 圧力, 推力時間経過

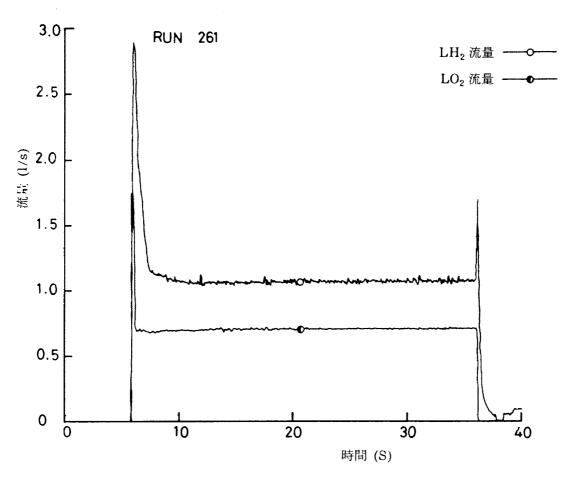


図 4.9.3 流量時間経過

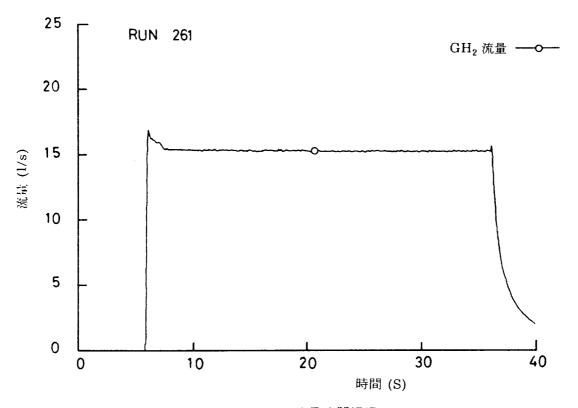


図4.9.4 流量時間経過

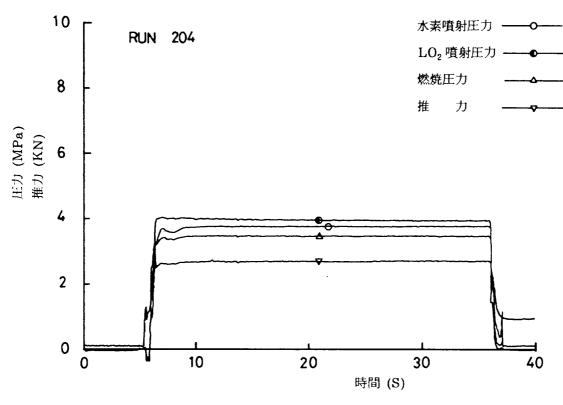


図4.10.1 圧力,推力時間経過

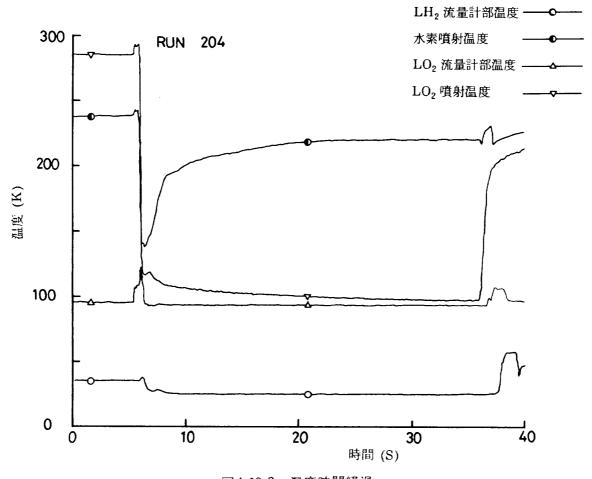


図4.10.2 温度時間経過

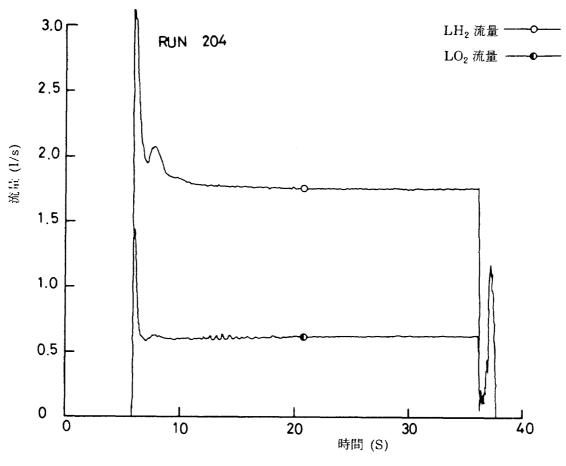


図4.10.3 流量時間経過

いた値で示してある。

次に測定された各量の代表的なオシログラムを以下に示す。水冷却燃焼器による試験 RN 261, および液水冷却燃焼器による再生冷却燃焼試験 RN 204 である。これらは、共に $18 ェレメント噴射器である。図 4.9 に RN 261 を、図 4.10 に RN 204 を示す。RN 261 は酸素ガスによる <math>LO_2$ ランタンク加圧の場合であるが、RN 204 は窒素ガス加圧方式である。

これらの測定量から求まる混合比, C^* 効率の時間変化例を図4.11に示す。燃焼開始後約7秒で T_{C^*} の変化量はほぼ ± 0.35 %以内におさまっていることが分る。図中破線は, H_2 流量を流量計指示値にもとづいてそのまま C^* 計算に用いた場合である。実線は流量計と噴射器間の H_2 供給配管内に H_2 のアキュムレーションがあるとして,計算によって求めた水素噴射流量に基づく C^* 値の場合であるが,約5秒後には両者はほぼ一致することから,配管系は充分に冷え,流量計を通過する流量と噴射される H_2 流量とは

一致するものと見做せる。また, GN_2 による LO_2 ランタンク加圧の場合には,燃焼開始後約30秒付近から窒素の LO_2 への混入の影響が顕著になり始めるため,燃焼性能の計算に用いる諸量は燃焼開始後15秒から30秒までの間の時間平均値を用いて求めた。

これらの値から燃焼の性能を表す特性速度, C^* (m/s)と比推力, I_{sp} (sec)を求め理論値との比較により効率を求めた。理論値は90Kの LO_2 と噴射水素温度および燃焼圧力 P_c =3.48 MPa における移行平衡理論値である。 C^* 値に対しては熱損失の補正,ノズル断面積変化の補正,ノズル流出係数の補正を行なったが,噴射器端で測定した燃焼圧力には補正を行なわずそのまま用いた。これは第3.1.2 項の無冷却燃焼器による燃焼試験において噴射面における燃焼圧力と,ノズル収縮部入口(x=87.5 mm)での燃焼圧力測定値の間に差が認められなかったことから,この間の総圧損失が無視出来るものと見做されたからである。また I_{sp} については推力の測定値に,

スラスト・スタンド配管反力等の補正をほどこした後,燃焼圧力を $3.48\,\mathrm{MPa}$ の状態に換算して I_{sp} 効率を求めた。各補正量の詳細は付録1で述べる。次に図4.12,4.13に全試験範囲の水素噴射温度での混合比に対する C^* 効率を $(LO_2$ ランタンク) GO_2 加圧方式と GN_2 加圧方式の場合について示した。これらの図から設計点における η_{C^*} の値は分りにくいが,第

5.1.1 項の試験結果の整理によれば、18エレメント噴射器ではエレメントの水素入口形状を変更した18 改型の場合にも18旧型と有意な差は見られず以下の値となる。

$$\eta_{C}^*$$
= 0.97 ± 0.01 (C^* = 2285 m/s)
8 エレメント噴射器では
 η_{C}^* = 0.90 ± 0.015 (C^* = 2120 m/s)

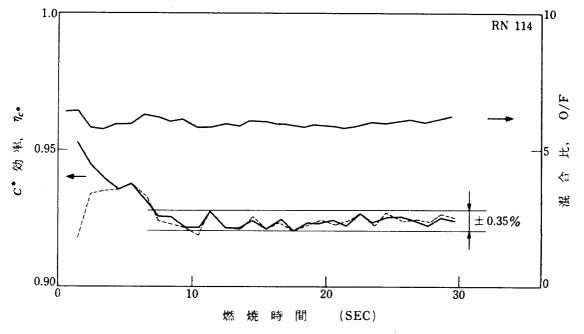


図4.11 混合比, C^* 効率の時間変化

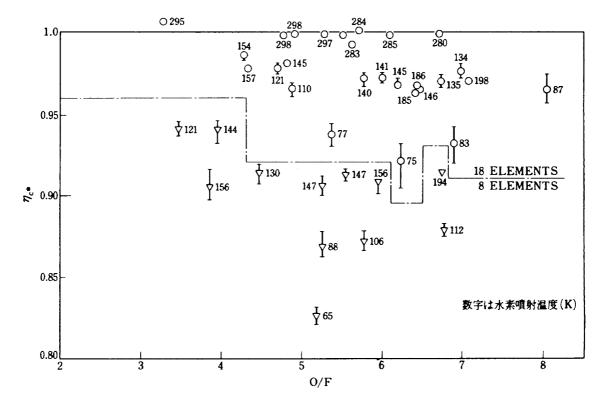
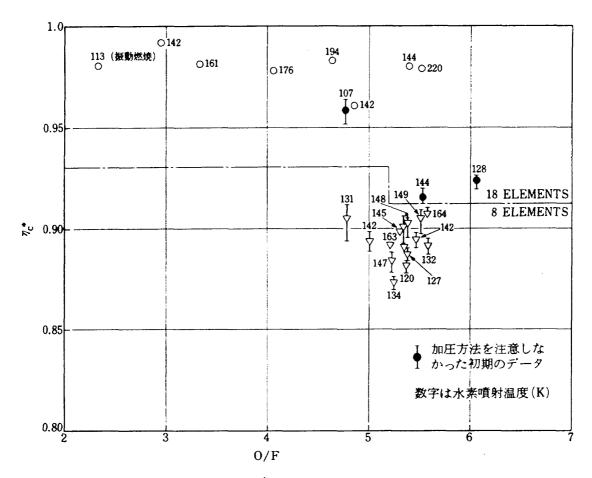



図4.12 混合比に対する C^* 効率(LO_2 ランタンク, GO_2 加圧の場合)

である。更に GN_2 加圧方式ではこれらの値より約 $1 \sim 1.5$ %低い値を示した。

図4.14に設計点で適正膨張となる水冷却燃焼器の I_{sp} 効率を C^* 効率に対して示す。8および18ェレメント噴射器に対してほぼ

$$\eta_{I_{sp}}\cong\eta_{C^*}-0.065$$
となる。設計点での I_{sp} 効率は, 18 ェレメント噴射器で

 $\eta_{I_{sp}}=0.90\pm0.02$ ($I_{sp}=326~{
m sec}$) 8エレメント噴射器で

$$\eta_{I_{sp}} = 0.83 \pm 0.02$$
 ($I_{sp} = 301 \text{ sec}$)

以上の燃焼試験においては設計点付近での燃焼は極めて安定であり、燃焼圧変動は約±1%程度である。フェイス・プレート、噴射エレメントの熱による変色、焼損は設計値付近においてはほぼ問題にならなかったが、18エレメント噴射器(旧型)において低混合比(0/F<3)、常温水素による燃

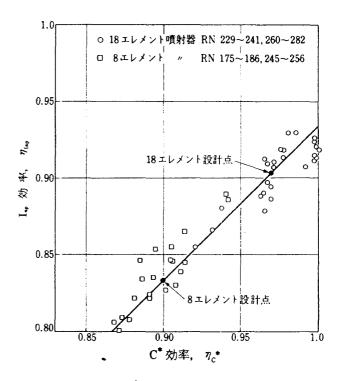


図4.14 C^* 効率に対する I_{sp} 効率 (水冷燃焼器、 $\varepsilon_c = 5.6$)

焼によって噴射エレメント2個の焼損とフェイス・プレートのかなりの変色を来たした。試験後の噴射器フェイス・プレートの様子を図4.15に示す。また、燃焼室内壁のヒート・マークは外周部の各噴射エレメントの位置に対応して起り、試験回数とともに銅壁は黒く変色した。これは水冷却燃焼室に比べて液水冷却燃焼室の場合がより顕著であった。

4.1.2 振動燃焼について

再生冷却燃焼試験において,混合比が3以下で約100Hzの低周波振動燃焼を起した。ピエゾ型圧力センサーによる燃焼圧変動を図4.16,4.17に示す。圧力変動巾の燃焼圧平均値に対する割合は

 \pm $\Delta p_c/\bar{p}_c\simeq\pm$ 0.09 である。図に示した周波数分析によれば RN 198

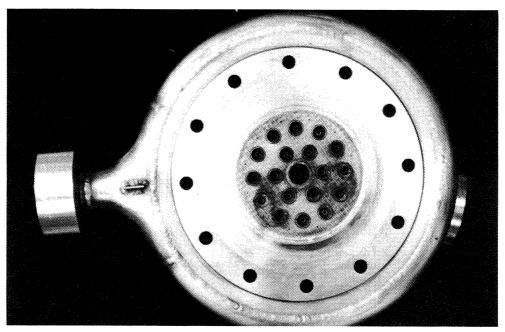
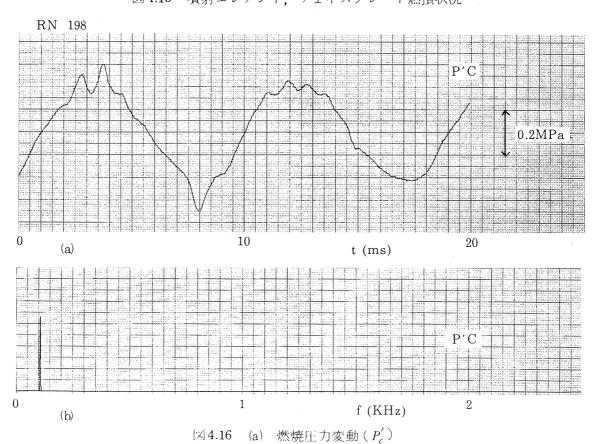
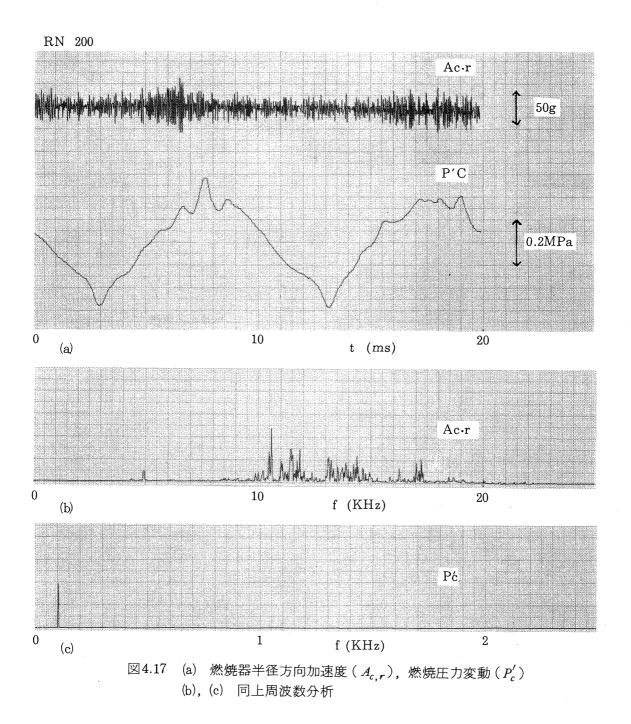




図4.15 噴射エレメント,フェイスプレート燃損状況

(b) 同上周波数分析

 $(O/F=1.96, T_{H_2,inj}=108.7 {\rm K})$ は $110 {\rm Hz}$, RN $200 (O/F=2.32, T_{H_2,inj}=114.7 {\rm K})$ は $100 {\rm Hz}$ で ある。これらの他にも常温 ${\rm GH_2}$ での燃焼,および 8 . エレメント噴射器での燃焼においても弱い($\pm \Delta P_c$ / $\bar{P}_c \simeq \pm 0.02$)低周波振動燃焼が観察された。

特に注意すべきこととして, LO_2/GH_2 の燃焼において $RN 234 (O/F=4.6, T_{H_2,inj}=296 K)$ の場合には 90 Hz の低周波の他に,約 13.8 KHz の高周波に振動成分を持っていた。これは縦方向二次のモードの計算上の周波数 12.6 KHz に近い値である。更に 8 エレメント噴射器において RN 255 (O/F=3.6)

85, $T_{H_2,inj}$ =157K) の場合には $5~\mathrm{Hz}$ に振動成分を有していた。

以上のデータの中で低周波振動燃焼に着目して,噴射差圧と燃焼圧力平均値との比で表わした座標系,すなわち($\Delta P_{O,inj}/P_C$, $\Delta P_{H,inj}/P_C$)面上にプロットして図4.18に示す。振動燃焼点が少ないため,安定と不安定燃焼を分ける境界については明らかではないが,著者らが以前に行った $\mathrm{LO_2}/\mathrm{GH_2}$ の燃焼試験 $^{(4.2)}$ での結果と同一の傾向を示している。すなわち $\mathrm{LO_2}$ 側噴射差圧, $\Delta P_{O,inj}/P_C$,を一定にして H_2 側噴射差圧, $\Delta P_{H,inj}/P_C$,を大きくして行くに

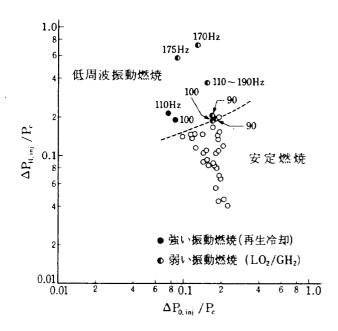


図4.18 振動燃焼領域(18エレメント噴射器)

従い低周波振動燃焼領域へ入る傾向を示している。

4.1.3 点火器試験結果

図 2.5 に示した点火器は GO_2 , GH_2 の混合気にスパークプラグによって着火し、主推進薬に対するトーチとなるものであるが、これは以下の範囲で安定に動作することが確認されている $_{0}^{(2.1)}$

点火器燃焼圧力範囲 0.64~0.93 MPa " 混合比 " 0.97~1.45

今回の一連の試験に先立ち,点火器の着火試験を行ない上記の範囲のほぼ中間点 (P_C =0.66 M Pa, O/F \simeq 1)で,安定なトーチが得られることを確認した。以後の燃焼試験においてはこの条件に固定した。スパーク用エキサイター電圧は $10\,\mathrm{KV}$,スパーク回数 $70\,\mathrm{GP}/\mathrm{sec}$,スパークを動るが,スパーク時の計測系に対するノズルを除くため2重のシールド・コードを用いたがノイズを除去することは出来なかった。従ってスパークが行なわれている期間と主弁が開き主燃焼が開始して,スパーク時期とオーバーラップする時間を出来るだけ短く(約0.5 秒)設定した。

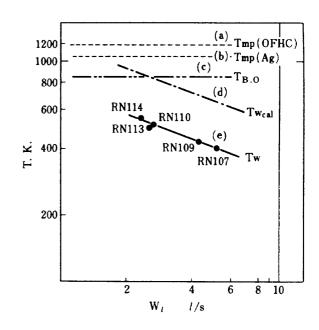


図4.19 W_l に対する $T_{w(th)}$ の相関

4.2 冷却特性試験結果

4.2.1 LH₂独立冷却燃焼試験

(1) 定常特性

図4.19により試験計画および試験結果の概略を説明する。破線(a), (b)はいずれも T_{wg} が銅およびT.C 固定に使用している銀ローの融点(m,p)に達した場合に、 T_w 測定用T.Cが指示する温度である。供試燃焼室の使用温度上限は(b)線であるが、緊急停止(EMS)の設定温度は応答遅れを考慮して(b)線より 200 K 低い(c)線(850 K) に設定した。 T_w 測定用T.C 20 点がこの EMS システムに組み込まれている。

次に直線(d)は第 2.1.2 項の熱設計より求めたスロート部壁温(T.C 指示温度)と冷却用 LH_2 流量 W_l に対する相関である。試験順序として安全性の高い大流量から始めて,徐々に再生冷却相当量 G_{rg} (W_l = $2\ell/s$)に近づける方式をとった。最初に $3G_{rg}$ (RN107, W_l = $6\ell/s$)の短秒時試験を行い,安全性を確認した後,順次低流量の試験を実施していった。また,この図は各試験毎の冷却条件(Pおよび T_{in})が異なっており,次の試験条件を設定するための早見表的なものである。しかし, G_l = G_{rg} での試験後,スロート部のT.C固定用銀ローが密出するという事態が発生した。この原因は第

6章で詳しく述べるが,T.Cの埋め込まれた位置が設計がありの燃焼室壁面から0.5mmではなく,0.83~4.3mmの幅を持って取り付けられており,結果として T_{wg} を低く見積っていたためである。

図 4.20 には主要な冷却系物理量のペン書きオシロに よる記録例(RN114)を示す。燃焼系、冷却系の予冷 操作終了後,直ちに冷却用LH2を流し始めるが,流 量計のオーバスピンを避けるためと、動作タンク内 のLH₂面のかく乱をできるだけ少なくするために、 加圧はランプ状加圧方式によった。燃焼開始時を0 秒(s)とし、-15 s の時点から加圧を開始する。-10s前後に二相流状態での激しい流量変動があり-2s 付近で安定な流動状態に入り, 入口マニホルド温度 Tinも約27K程度の値を示すようになる。このよう に冷却系が完全に整定し、しかも設定条件通りであ ることを確認した後に燃焼を開始する。なお、以後 の試験においても熱的条件を一定におさえる意味か ら燃焼条件は原則として設計点に固定してある。以 後のシーケンスはすべて自動であり、その詳細は第 3.2 節を参照されたい。図からも明らかなように 冷却系特有の種々の過渡現象が観察された。『私は燃 焼開始と同時に冷却ジャケット内での圧損増加によ り約5%程 \pmb{k} 少している。またスロート部壁温 (T_w) (th))はいったんオーバシュート(約80K)を示し、 以後不規則な変動が持続する。このオーバシュート

の量は予冷の度合によって大きく左右される。壁温 変動の詳しい検討については次項でふれる。各物理 量の整定時間は F_l が $5\sim6$ s, $T_{w(th)}$ が $4\sim5$ s,

 $T_{\rm out}$ が約20s である。ただしこの整定時間は W_l の量によって左右され、 W_l が少量になると整定時間はより増加する。物理量の定常値は燃焼系も含め全ての物理量が整定した後の10s 間の平均処理によって求めた。

図4.21にはRN 114 における熱物理量の軸方向分布を示す。ジャケット圧 P_j ,液温 $T_{b\,ms}$ は測定値を内挿して得られた分布形状である。 T_b は燃焼ガス側熱流束 q_g をもとにエンタルピ収支より得られた混合液温である。 $T_{b\,ms}$ と T_b はスロート上流側では比較的良い一致を示すが,スロート下流では $T_{b\,ms}$ の方が T_b より 50 K 程度高めの値を示している。この原因は当初スロート部曲率による2 次流の影響と推定されたが,供試体の分解検査の結果,設計値では外筒壁より 0.5 mm の位置にT.C 先端が設置されるはずであったものが,スロート下流のすべてのT.C は実際には内筒壁にほば接する状態で取付けられているためであることが明らかになった。

 q_g , T_{wg} , T_{wl} 分布は T_w 測定用 T.C が取付けてある各断面毎に第 5.2.1 項に示す 2 次元熱伝導計算をもとにして求めたものである。 q_g がピークを有するスロート部では,曲率効果のため液側熱伝達率 h_l が

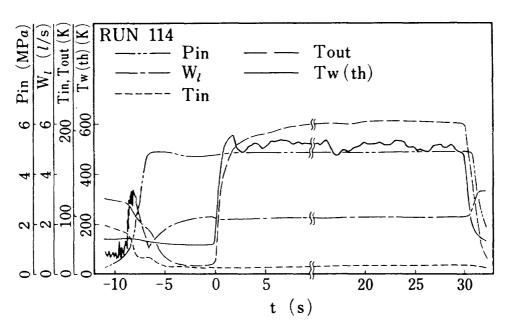


図4.20 冷却系諸物理量時間変化例(RUN 114)

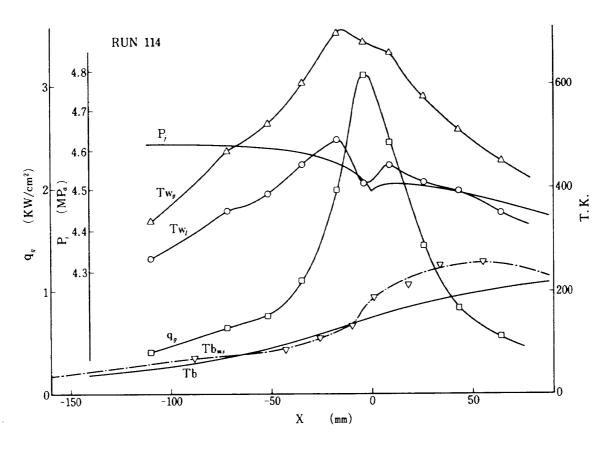


図4.21 冷却系物理量軸方向分布例(独立冷却時)

増加し T_{wg} のピークはスロート上流x=-18 mmの位置に表われている。

(2) 振動現象

冷却系に見られた振動現象は大別すると次の2つになる。1つは燃焼系の振動に誘発される場合で他 方は冷却系固有の場合である。

① 燃焼系に誘発された振動現象

この代表的試験例(RUN 116)を図 4.22, 4.23 に示す。図 4.22 は燃焼系主要物理量,図 4.23 は冷却系主要物理量の時間変化を示す。また対比のために比較的安定した試験例(RUN 120)を図 4.24, 4.25 に示す。RUN 116 と RUN 120 について燃焼条件の主な違いは水素噴射温度(T_{Hinj})にある。RUN 116 の場合は T_{Hinj} = 106.5 K, RUN 120 の場合は T_{Hinj} が低温になればなる程,燃焼系物理量の振動が激しくなる傾向のあることがわかっている。その中でも冷却系に直接的に影響を与えるのは,低周期の η_{C} *の変動である。この両者の相関は安定し

た RUN 120 の図 4. 24 からも読み取れる。すなわち $t \doteq 40 \, \mathrm{s}$ までは $\eta_C *$ と冷却液による総受熱量 Q_t はほ ぼ一定であるが, $t \doteq 40 \, \mathrm{s}$ 以降は冷却系が一定であるにもかかわらず $\eta_C *$ の低下に対応して, Q_t も同様な低下傾向を示している。

 $CO\eta_C^*$ 変動量の大きな場合がRUN116である。 図4.22の η_C^* の変動の位相と図4.23の $T_{w(th)}$ および $T_{out}(Q_t$ と比例した量)の変動の位相がきわめて良く一致している。ここで注目すべきことは η_C^* の3%程度の変化が T_{wth} には約150Kの変化(これは h_t にして約50%の変化量に相当する)として表われている。いいかえれば燃焼系の微少な変動は冷却系には大きく増巾されて現われることになる。このメカニズムは図4.26および図4.27により以下のようなものと推察される。図4.26に示すN字形の流動特性は相変化を伴なう加熱管に見られる特性と同一であり、この種の加熱管を並列に連結した場合には、いわゆるマルチ・チャンネルモード振動が発生する可能性が大きく、亜臨界圧ボイラ、沸騰水型原子炉では

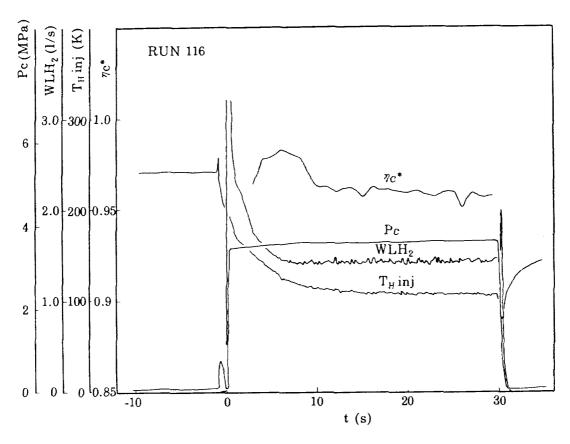


図4.22 燃焼系諸物理量時間変化(RUN 116)

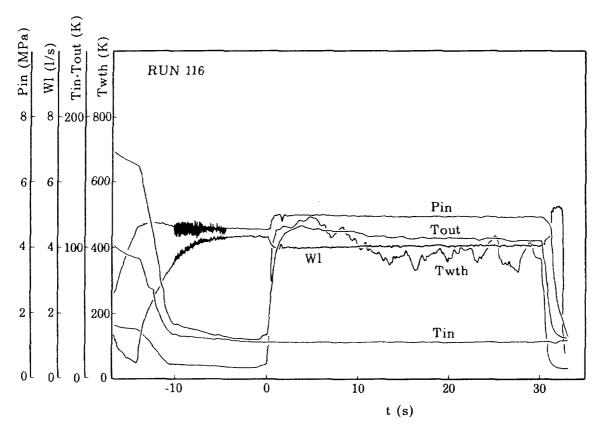


図4.23 冷却系諸物理量時間変化(RUN 116)

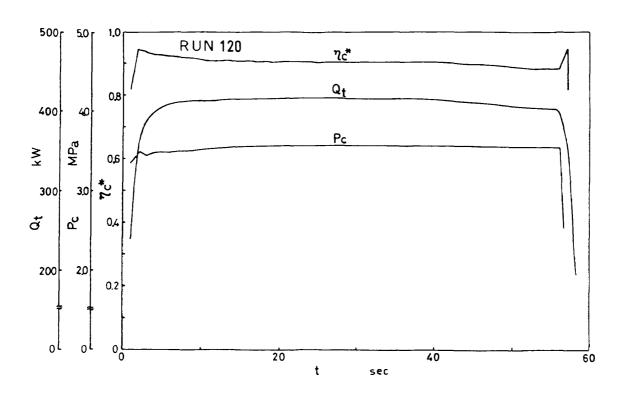


図4.24 燃焼系諸物理量時間変化(RUN 120)

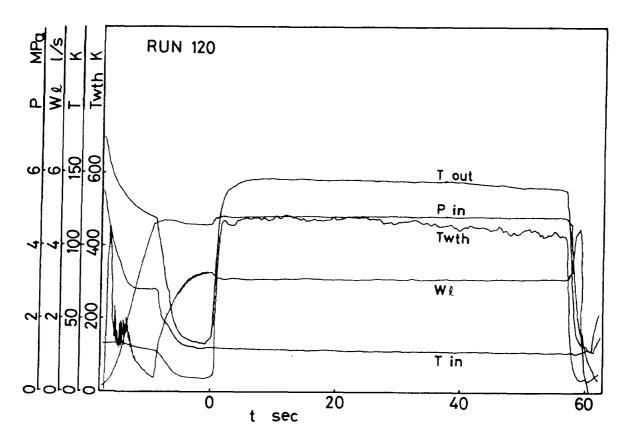


図4.25 冷却系諸物理量時間変化(RUN 120)

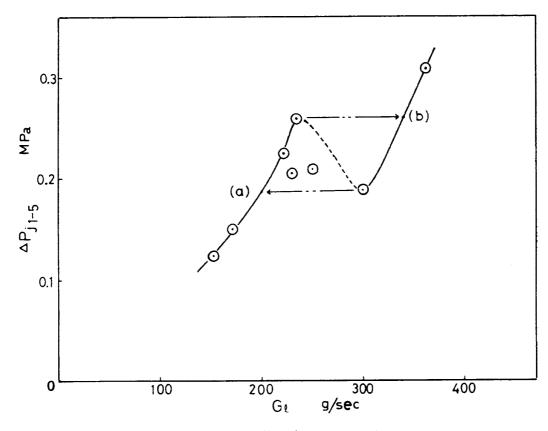


図4.26 圧損特性(独立冷却時)

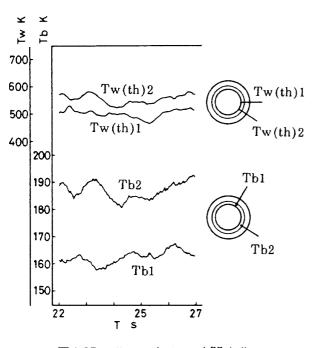


図4.27 $T_{w(th)}$ と T_b の時間変化

重大な関心が払われている。 ΔP_{j1-5} は圧力タップ 1から 5 まで摩擦損失のみを示したものであるが,点(a)~点(b)の流量範囲では入口,出口マニホルド間 に同一の圧力差を与えたとしても流路によっては50 %程度の流量の差が生じることを意味しており,外

乱(ここでは燃焼系における η_{C} *の変動)が入ると 各流路間の干渉が生じ、マルチ・チャンネルモード 振動が誘発される。

てのマルチ・チャンネルモード振動の一端を図4. 27からうかがうことができる。残念ながら同一旅路の T_w , T_b を示すことはできないが,各旅路間に位相差のあることがわかる。すなわち W_l は一定であっても各旅路間には位相差をもった大きな流量変動が発生していることがわかる。これが結果として h_l に大きな変化を与えることになる。RUN116の場合は, $G_l=300~{\rm g/s}$ であり,N字形の不安定領域に入っており, T_w の変動量すなわち h_l の変動量と G_l の変動量が約50%と一致しているのも上述の推察が妥当であることを物語っている。この種の不安定流動の防止策としては一般に大きな抵抗を入口側に与える方法がとられる。しかし本供試体の場合,逆に出口側に絞りを与えたため,むしろ不安定性を助長する結果となってしまった。

ところで本試験においてN字形の流動特性が得られた真の原因は現在のところ不明であるが,電気加熱実験において,摩擦係数fが T_{cr}^* 近傍で極端に低

下する現象が報告 $^{(4.3)}$ されており、本試験においても流路内で $T_b = T_{cr}^*$ を経て流動しているため、上記の現象が大きく関与しているものと思われる。

② 冷却系固有の振動現象

この振動現象は低周波振動と高周波振動の2つに大別される。図4.28には低周波振動の発生した試験例(RUN 124)を示す。この場合には T_{wth} , T_{out} が周期の長い変動を示しており, η_C *の変動も生じているものと思われる。しかしここで着目してもらいたいのは冷却系の入口マニホルド圧 P_{in} と W_l の振動(数Hz~数10~Hz)である。これらの周波数分析等の詳細な議論は第5.2.4項にゆずるとして,ここではこの低周波振動が冷却系下流配管のシステム振動であることを述べるにとどめる。このシステム振動の発生した事例は,試験開始時に冷却系が完全に整定せず,二相流状態での大きな流動変動が生じている時期に燃焼を開始した場合にのみ見られたものである。

次に高周波振動について簡単にふれる。この振動 はマニホルドに直接取付けたピエゾ型振動計により 観察されたもので数KHzから十数Hzに及ぶ。これ は冷却ジャケットを一種の共振系とする熱音響振動であり、 $T_{in} < T_{cr}^*$ の試験条件のみに発生し、 $T_{in} > T_{cr}^*$ 時には観察されなかった。また先述のシステム振動が発生している状態では $T_{in} < T_{cr}^*$ でも観察されなかった。この原因については不明であるが、現象論的には両者とも自励振動であり、振動エネルギはその周波数の2乗に比例することから、低周波のシステム振動が発生するとエネルギレベルの低い低周波振動が発達し、高周波の熱音響振動が抑制されるものと考えられる。このような現象は後に述べる再生冷却燃焼試験においても観察されている。

4.2.2 再生冷却燃焼試験

再生冷却燃焼試験は,前述の独立冷却燃焼試験の成果,すなわち設計点 $(G_l=G_{rg})$ にて冷却が可能であったという点を踏えて計画実施したものである。しかしながら,混合比の設定,燃焼開始時における立上り特性等について若干の不確定要素が残されていたので,最初に前述の独立冷却の場合と同様に, $\mathbf{LH_2}$ によるコールドフロー試験を行った後に燃焼試験を実施した。第2.2.3項で述べた燃焼器を含む再生冷却用配管系の流動特性,特に立上り特性,圧力損失につい

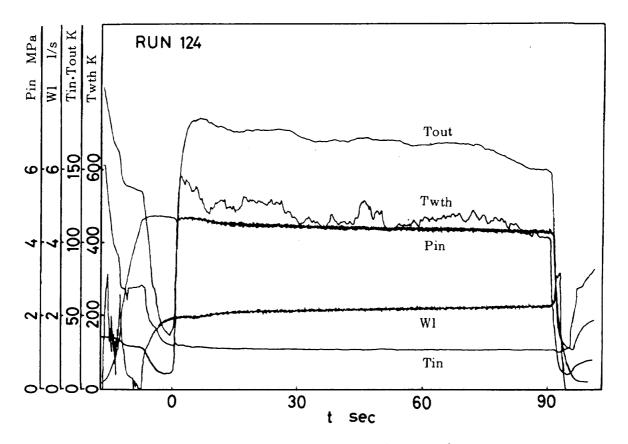


図4.28 冷却系諸物理量時間変化(RUN 124)

てのデータを得る目的で、 $2.6 \sim 4.1 \ l / sec$ の範囲でコールドフロ試験を実施した。

図4.29はRUN192における流動開始直後の電磁オシロの記録である。この例からも明らかなように、 LH_2 入口マニホルド温度 T_{in} 、 LH_2 流量 W_i にはスタート直後に設定値に対してかなりの幅をもつ変動が見られた。特に LH_2 流量については,設定値をかなり下回るアンダーシュートが見られ,これが燃焼時において,混合比および壁温の一時的な増加をもたらすことが懸念された。そこで,一連の試験結果について検討を行なった結果以下のことが判明した。すなわち,実験点のうち図4.30に示したRUN191の場合には,予冷操作終了から燃焼開始までの時間が最も短く(約60秒であり,他の実験では約90秒であった),RUN192の場合よりもかなり流量が少ないにもかかわらず,その変動量は最も小さいというこ

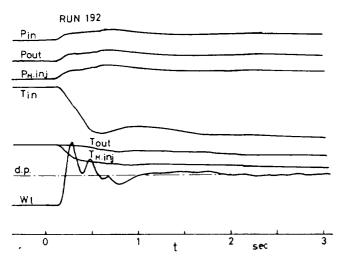


図4.29 LH₂コールドフロー過渡特性例(その1).

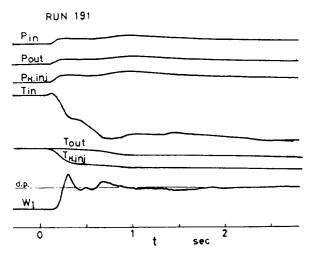


図4.30 LH₂コールドフロー過渡特性例(その2)

とがわかった。すなわちこの種の変動は予冷を十分 に行うことによって,流量の多少にかかわらずかな り抑制することができるということである。

各管路抵抗については図4.31に示すような特性を示した。噴射器の入口には、燃焼系の変動が冷却系にフィードバックしないように絞りを挿入して、圧力降下を与えた。

図4.32には再生冷却燃焼試験中の写真を示した。また、図4.33には再生冷却燃焼試験完了後のノズルエンドから見たノズルスロート近傍の変色の様子を示した。図中、スロート付近に見られる周方向の縞模様は、周方向に埋めこんだ熱電対固定用の銀ローの表面が、燃焼試験中にごくわずか容出したことによって生じたものである。

以下,再生冷却時の冷却系の諸特性について述べる。

(1) 定常特性

試験は燃焼圧 P_c = $3.5\,\mathrm{MPa}$,混合比O/F= $2\sim5.5$, LH_2 流量 W_l = $1.8\sim3.7\,\ell/\mathrm{sec}$ の範囲で行った。第4.1.2 項で述べたようにO/F<3にて約 $100\,\mathrm{Hz}$ の低周波振動燃焼の発生がみられた以外,安定したデータが得られた。

図4.34には再生冷却燃焼試験において燃焼ガスから冷却液側に伝えられた総伝熱量 Q_t の混合比による変化を示した。図中の実験点は,燃焼圧の差異に対して次式(4.1)により設計燃焼圧 $(P_{c \text{ design}}=3.48 \text{ MPa})$ に換算してある。

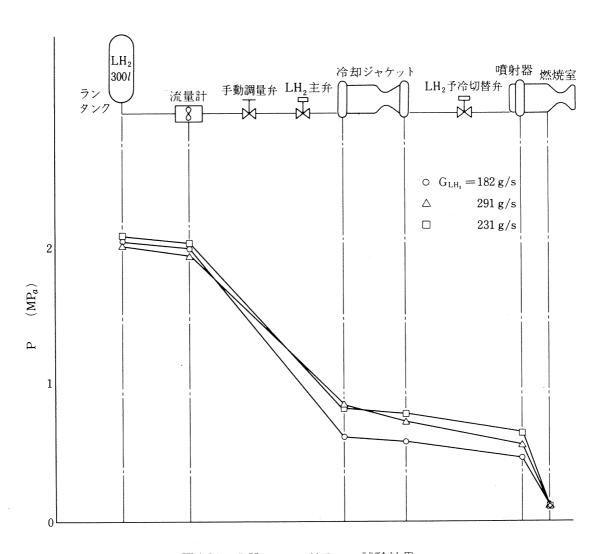


図4.31 LH2コールドフロー試験結果

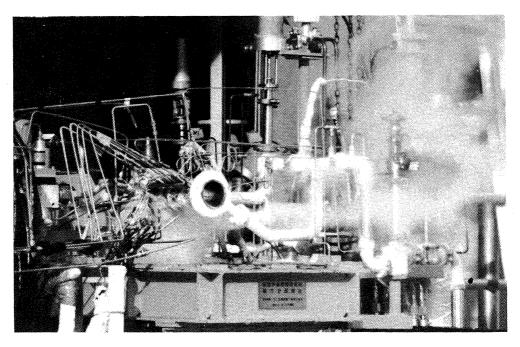


図4.32 再生冷却燃焼試験

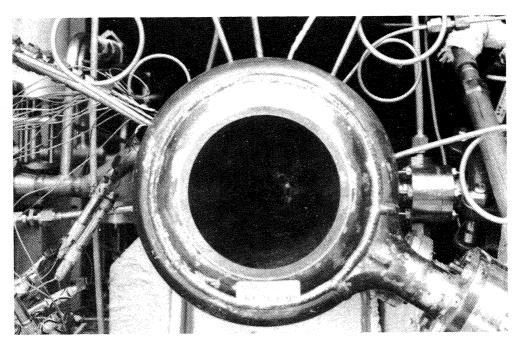


図4.33 / ズルスロート部 (再生冷却燃焼試験終了後)

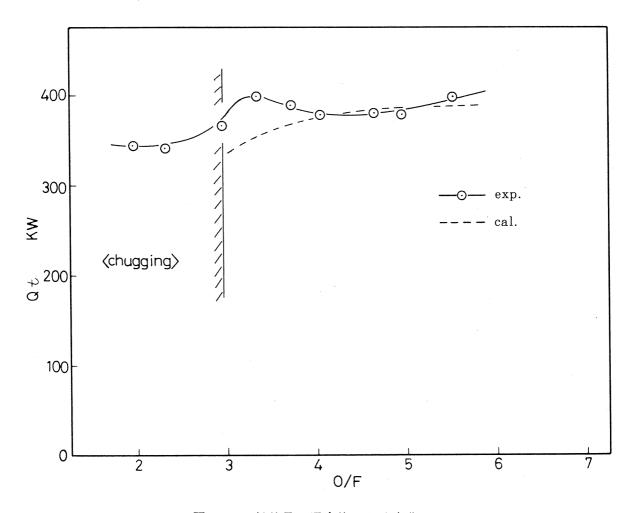


図 4.34 伝熱量の混合比による変化

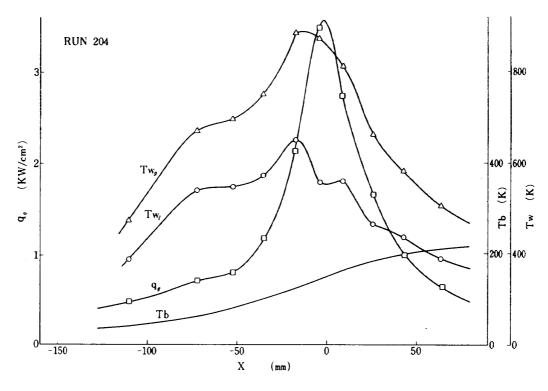


図4.35 冷却系諸物理量軸方向分布例(再生冷却時)

 $Q_t = Q_t \exp \left(P_c \operatorname{design} / P_c \exp \right)^{0.8}$ (4.1) また,点線は第 5.2.1 項で述べるデータ処理手順のうちの1 次元計算により求めた値である。ただし, h_g の分布としては水冷却燃焼試験結果 $^{(4.1)}$ のうち,RUN 261を用い,O/Fによらず h_g の分布形状は一定であるとした。また h_l の値は独立冷却の結果にもとづいて決定した。実験点のうち,強い低周波振動燃焼が発生した $O/F \approx 2$ 付近の Q_t の値は,他の安定な燃焼の値に比して,小さな値をとっている。また,O/Fが $3 \sim 4$ 付近の実験点は計算値よりも最大 20 %もの高い値を示している。この原因としては,水冷却燃焼試験の結果から,低混合比領域において h_g 分布形状がかなり変化し,特に燃焼室平行部において熱流束が増加したためであるということが明らかになっている。

軸方向の諸物理量の分布の例を燃焼側の設計点に最も近い RUN 204 の場合について図 4.35 に示した。独立冷却時の燃焼条件に比して,水素噴射温度が高温化し(約 220 K), η_{C} *が向上している(η_{C} *= 98 %)ところから,熱流束の値が幾分大きくなっている。また, LH_2 流量は,独立,再生冷却を通じて最も少なかったため,そのガス側壁

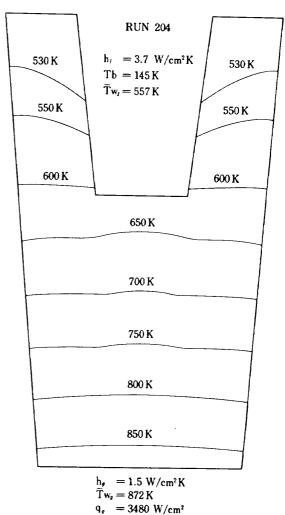


図4.36 壁温分布例(再生冷却時)

温はスロート近傍で約900 K と最も高い値を示している。図4.36 にはこの場合のスロート付近の2次元熱伝導モデルによる壁温分布の計算値を示した。なお、この計算法については第5.2.1 項を参照されたい。

図4.37は,図4.26と同様な再生冷却の場合における圧損特性を示したものである。再生冷却の場合には,独立冷却の場合に比して Q_t が大きいため,変物性効果による摩擦係数の減少によって,全般的に小さめの圧損となっている。そして独立冷却において表われた,図中(a)-(b)の領域のN字特性は見られず全試験範囲にわたり比較的安定な流動特性を示した。

(2) 過渡特性

前述の LH_2 コールドフロー試験において見られた、スタート時における流量等の過渡変動は燃焼試験においても現われた。図4.38には、かなり大きな壁温のオーバーシュートが現われたRUN 199 の諸物理量の時間変化を示した。同様に図4.39には、前述の対策を

施した後のRUN 204 の場合を示した。RUN 204 の壁温にはスタート時に多少のスパイク状の変化が表われているものの前述の操作手順の対策が的確なものであったことがわかる。定常状態への整定時間についてはRUN 199 の場合,ズタート直後の変動は激しいにもかかわらず,流量が多いため約 5 秒後にはほぼ定常値に達している。これに対して,RUN 204 の場合には,流量が約3 と減少しており,その整定時間も約15 秒と3 倍の時間を要している。

燃焼開始時の壁温のオーバーシュートについては,入口,出口マニホルドの圧力,温度および LH_2 流量の挙動から次のように解釈される。すなわち,燃焼開始直後に冷却ジャケット,戻り配管へ流入した LH_2 は急激な加熱を受けて膨張し,ジャケット圧も増加する。これにより供給系(ランタンクージャケット間)における圧力差が減少し, LH_2 流量も低下する。そして,この流量の低下によって,熱発生量と冷却能力の間に,不均衡が生じ,結果として一時的

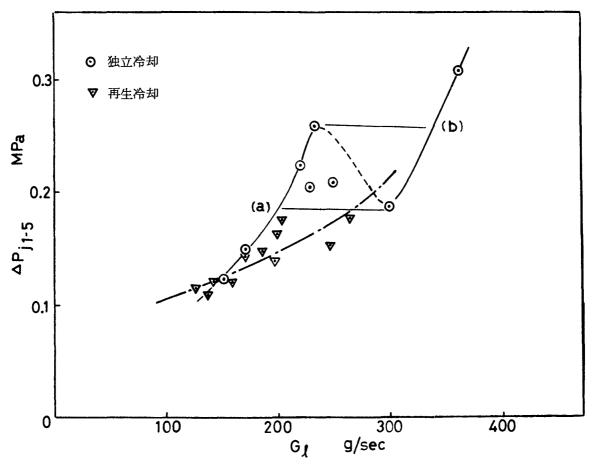
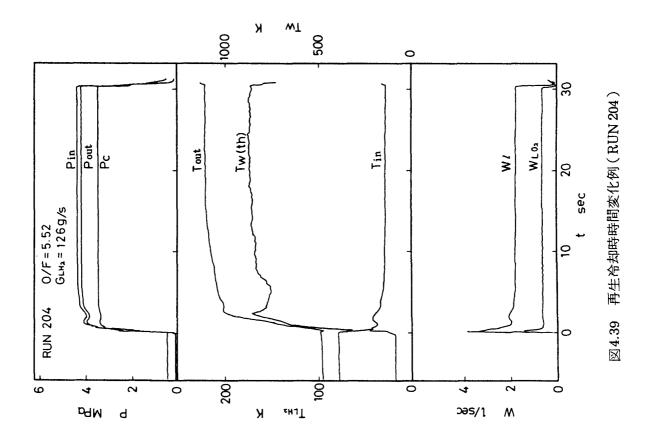
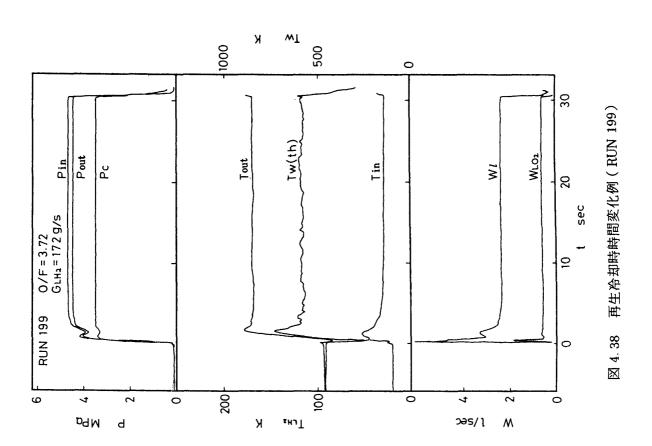




図 4.37 圧損特性(再生冷却時)

な壁温のオーバーシュートが生じたものと思われる。

(3) 振動現象

再生冷却時における冷却系の振動は,低周波振動燃焼発生の有無という燃焼側の条件によって2つに大別される。低周波振動燃焼が生じた場合には,図4.40にその例を示したように,約2.5msecの遅れをもって冷却系にも同一周波数(約100 Hz)の振動が生じた。独立冷却時には前述のように高々0.1 Hz程度の燃焼系の変動が内筒壁を通して冷却系に影響を与えるにすぎなかったところから,このことは冷却系と燃焼系とが供給系を通じて結合したことによる

再生冷却特有のものと解釈される。

安定燃焼時には、図4.41に例を示したように、独立冷却の際に見られた高周波の熱音響振動は観察されなかった。この場合、燃焼系、冷却系ともに振動帯域が約1kHz以下であるところから、その理由は以下のように考えられる。すなわち、独立冷却時には、冷却系それ自体の低周波振動が高周波振動を抑制した。しかし、燃焼系と冷却系が結合した再生冷却時には、燃焼系によって誘起された冷却系の約1kHzの振動によって、それ以上の周波数をもつ熱音響振動が抑制されたものと思われる。

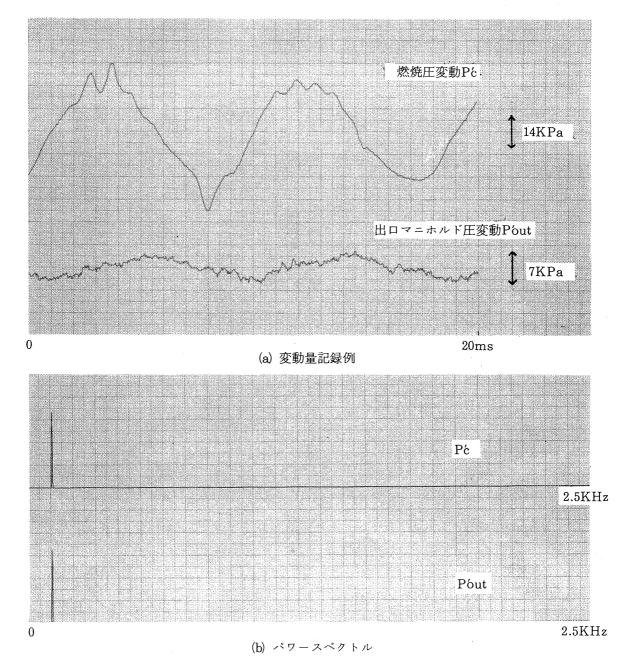


図4.40 振動特性例(RUN 198)

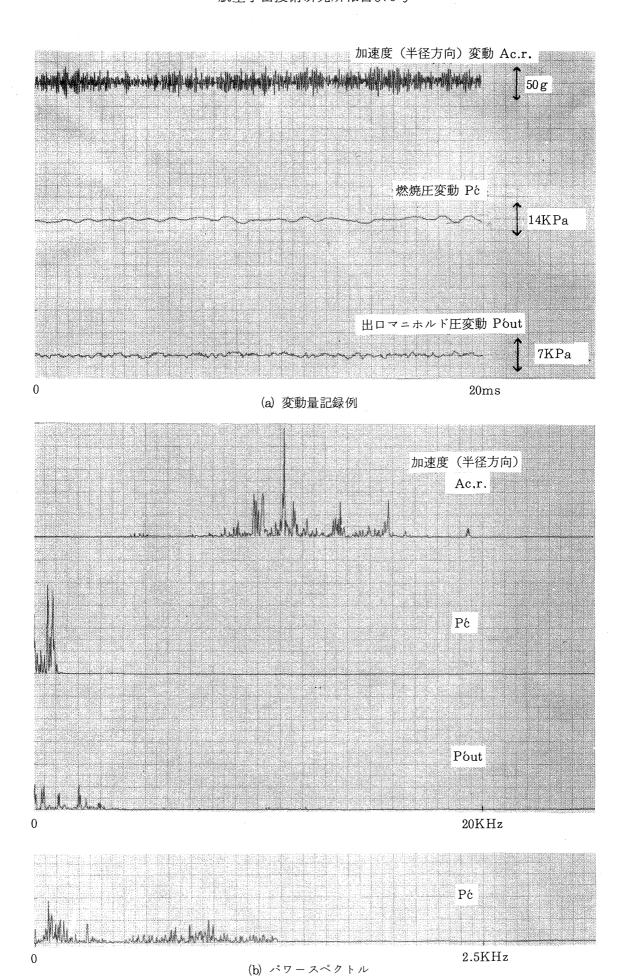
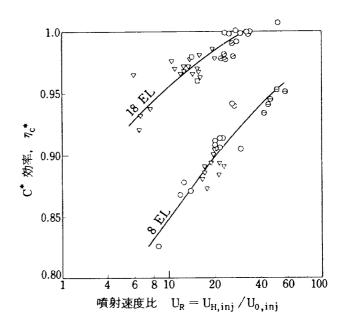


図4.41 振動特性例(RUN 204)

対 対

- 4.1) 新野,熊川ほか;小型溝構造液水冷却燃焼器の研究(第2報), "多分割型環状水冷燃焼器試験結果",刊行予定.
- 4.2) 鈴木昭夫,八柳信之,五味広美,坂本博; 液体酸素・ガス水素ロケットの燃焼性能(I), 航空宇宙技術研究所報告 TR-473,1976.
- 4.3) L. Yu. Krasyakova ほか 2名; Teploenergetika, 20-4 (1973), 45.


第5章 試験結果の解析

5.1 燃焼性能

5.1.1 噴射形式,混合比,水素噴射温度による C^* 効率への影響

本試験の燃焼に関するパラメータは噴射形式(8 エレメント噴射器,18 エレメント噴射器,18 エレメント噴射器,18 エレメント噴射器),混合比(O/F),水素噴射温度($T_{H_2,inj}$)である。図4.12,4.13 に全試験点を混合比に対して示したが,傾向としては混合比が小さくなるに従い C^* 効率は増加すること,また同一の混合比では水素噴射温度の高い場合がより高い C^* 効率となることが分かる。常温 H_2 では試験範囲の全般にわたりほぼ $\eta_{C^*}=1$ であり完全に燃焼が行なわれる。

これらの実験パラメータに対して統一的な結果を得るため、噴射速度比 $(U_R = U_{H,inj}/U_{O,inj})$ で整理すれば 8 エレメント噴射器および 18 エレメント噴射器に対して図 5.1 を得る。この図から混合比、水

	1	18エレメ	ント記号説明]							
0	再生冷却	18-旧型	LO ₂ /LH ₂	LOX ランタンク GN ₂ 加圧							
0	水冷却	18-旧	LO ₂ /GH ₂	GO₂							
∇	"	18-改	$LO_2/(LH_2+GH_2)$	GO₂							
	"	18- ⊟	GN ₂								
8エレメント記号説明											
0	水冷却	8	$LO_2/(LH_2+GH_2)$	GO₂加圧							
θ	"	"	LO ₂ /GH ₂	"							
∇	"	"	$LO_2/(LH_2+GH_2)$	GN ₂							

図 5.1 噴射速度比による C*効率の整理

素噴射温度のパラメータは,ほぼ噴射速度比によって整理されることが分かる。O/F=5.5, $T_{H_2,inj}=140\,\mathrm{K}$ の設計点では

8エレメント噴射器

 $U_R\!=\!18.8$; $\eta_C^*\!=\!0.90\pm0.015$ 18エレメント噴射器

 $U_R = 13.5$; $\eta_C^* = 0.97 \pm 0.01$

である。噴射速度比の変化に対する η_{C} *の変化量は,8及び 18 エレメント共にほぼ同じ傾向を示すが,8 エレメントの場合は η_{C} *の絶対値がかなり低く,噴射初期条件が大きく影響していることが分る。第 5. 1. 4 項の考察では,これらの C*効率に対する影響を "燃焼モデル"による計算によって論じる。

 LO_2 ランタンク加圧方式による差は,図4.12と4.13の比較から GN_2 加圧の場合がほぼ $1\sim1.5$ %低い C^* 効率となっている。また図5.1によって18ェレメント噴射器については,噴射器ドーム内噴射エレメントの水素入口通路形状が丸穴の18-旧型(図中〇印)とスリット型の18-改型(図中 ∇ 印)とを比較すれば,実験点の傾向から見て,両者の間には有意な差は認められないと言える。

5.1.2 LO₂ ランタンクのGN₂加圧による影響

本試験では当初LO₂ランタンクをGN₂により加圧していたが、図5.2に見られるように燃焼時間が長

くなるに伴ない燃焼圧力が低下し、従って η_c *が低 くなる現象が観察された。原因としてはLO2への加 圧GNoの混入が懸念されたので、以下に述べる試験 を行なって確認した。すなわち燃焼試験時と同じ流 量、タンク圧力の下でGN₂加圧によるLO₂流し試験 を行なった。LOX流量の一部を分岐し、ガス用シリ ンジに直接サンプリングを行ないガス・クロマトグ ラフ(T.C.D)にてガス分析を行なった。種々のL O₂充塡タンクレベル、流量に対してLO₂中のN₂重 量分率の時間変化は図5.3の様になる。一方, N₂溶 け込みによる C^* 値への影響は図 5.4 に示す通りであ る。すなわちLO。へのN。の溶け込みのない場合を1 とすれば、重量分率で10%の N_2 の溶け込みがある 場合には約2%の効率低下となる。そこでGN₂加圧 方式をGO₂加圧方式に変更した。従って変更以前で は以下に述べる方法で出来るだけN2の溶け込み量を 少なくするように留意した。

1) LO_2 充塡量は70%以下とする、2) -度 GN_2 で加圧した LO_2 は使用しない、3) LO_2 ランタンク 残量は20%程度とする、4) 再充塡の場合には残り の LO_2 は完全に捨てる 等である。

従って当初GN₂で加圧していた試験の中で上述の 加圧方法以外のものは全てデータとしては採用して いない。図5.3から燃焼開始時のLO₂レベルが高い

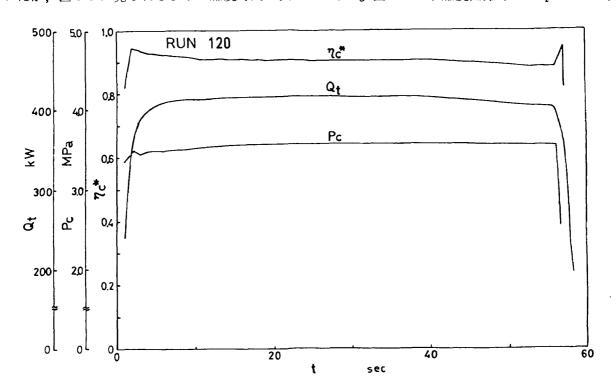


図5.2 LO₂ランタンクのGN₂加圧による燃焼への影響

場合には N_2 の溶け込み量が $5\sim10\%$ 程度と見られるから, η_{C^*} への影響は図5.4から $1\sim2\%$ 減となると考えられる。この値は図4.13の η_{C^*} の GN_2 加圧方式による値が GO_2 加圧方式による値よりも $1\sim1.5$ %低いことに対応している。

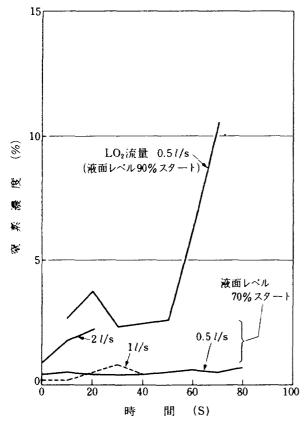


図5.3 液体酸素中の窒素濃度の時間変化

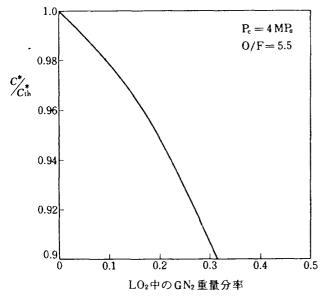


図 5.4 LO₂中へのGN₂**凝縮**による*C**
理論値の低下

5.1.3 考察

燃焼性能に関する考察として,ここでは C^* 効率の考察のみに限定する。これまで示して来たように 18 エレメント噴射器においては $\eta_{C^*}=0.97$,8 エレメント噴射器では $\eta_{C^*}=0.90$ であった。この両者の差は当初の設計計画値(18 エレメントで 0.985,8 エレメントで 0.963)に比べて大きすぎる。設計計画書において,燃焼性能は文献(5.3)等により,推進薬蒸発効率と推進薬間の混合効率の積で

$$\eta_{C}^{*} = \eta_{vap} \times \eta_{mix}$$
 (5.1)
と表わせるとしている。

上式において, LO_2 噴霧の蒸発効率を $\eta_{vap} = 1.0$,更に混合効率を表わす η_{mix} は Rocketdyne社のASE、SSME等に対する手法 $^{(5.4)}$ によって,8,18ェレメント噴射器とも0.99を採用している。

その際に、 η_{vap} を評価する蒸発計算上、最も重要である LO_2 液滴の平均粒径 (\overline{D}) の見積に $Mayer^{(5.5)}$ の式が用いられ、8および18ェレメントの場合に \overline{D} $\simeq 40~\mu$ m としている。しかしながら、Mayer の式よりも LO_2 / H_2 ロケット燃焼器での実際に近い場合の LO_2 液滴径算出の式 $^{(5.6)}$ を用いれば、8ェレメントの場合にはO/F=5.5, $T_{H_2,inj}=140$ Kの設計点では $\overline{D}=580~\mu$ m,18ェレメントでは $450~\mu$ m 程度の値となる。従って未蒸発 LO_2 液滴による燃焼損失が存在する可能性が考えられる。

次に,混合の不完全さによる損失分の見積について,設計計画書においては混合の一様性を表す混合指数 E_m を文献 $^{(5,4)}$ によって求めている。すなわち図5.5に示されるような混合係数のパラメータに対して,8ェレメント噴射器で E_m =0.94,18ェレメントで0.98を得ている。この場合には η_{mix} =0.99程度が達成されるとしている。しかしながら E_m に対する混合係数 α_{mix} の取り方に対して以下の様な疑問がある。すなわち混合係数

$$a_{mix} = \frac{4}{D_l} (V_g - V_l) \frac{\dot{v}_g}{\dot{w}_l} \times 10^{-4}$$
 (5.2)

において,気・液噴射流量 \dot{w}_g , \dot{w}_l が一定の場合に(混合比一定の条件において)液側噴口径 D_l の影響は,一般に $V_g\gg V_l$ であるから,この場合には

$$\alpha_{mix} \propto V_g / D_l$$

と表わされる。従って液側口径を小さくすることによって α_{mix} は大きい値となるから,図 5.5 から示されるように混合指数 E_m は増加することになる。しかしながら,この傾向は著者らが行なった気・液コールド・フロー試験 $^{(5.7)}$ での傾向とは逆である。すなわち気・液の噴射流量を一定とした場合には液噴口径の大きいものほど,液噴射初期流束が小さくなることから,噴霧の拡散の状態は良好になると言う結果を得ている。また混合指数を表すパラメータとして(5.2)式の外に文献 $^{(5.8)}$ によれば

$$(\rho_g V_g)^2 \frac{\dot{w}_g}{\dot{w}_l} \frac{1}{V_l} \sim \frac{\dot{w}_g^3}{\dot{w}_l^2} \left(\frac{D_l}{D_g^2}\right)^2$$
 (5. 3)

が採用されており、このパラメータを用いる場合に

は著者らの実験値の傾向を説明することが出来る。 ここで著者らの実験値を用いて E_m を求めると、 E_m は 噴口からの距離によって増加するが、その漸近値は 8 エレメント噴射器に対して $E_m \simeq 0.8$ 、18 エレメン トでは $E_m \simeq 0.9$ を得る。これらはいずれも設計計画 書の値、すなわち文献 (5.4) による値に比べて低い 値である。

燃焼実験値と設計計画値との差を説明するために、 燃焼モデルを想定して蒸発損失、混合損失および C* 効率の値を以下に検討する。燃焼モデルは図 5.6 に、 示すように燃焼室長手方向を二つの領域に分けて考える。

第一の領域は噴射器フェイス・プレートに近い領域で、噴射エレメントからの気 (H_2) ・液 (LO_2) 同

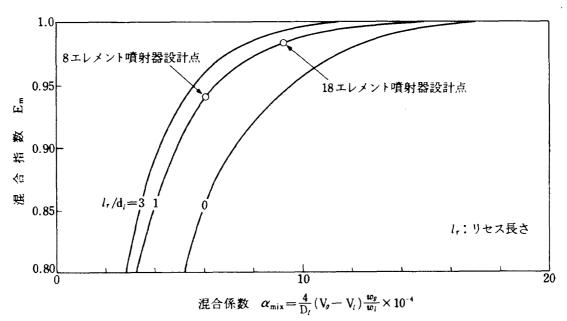


図 5.5 噴射器混合指数(設計計画書による値)

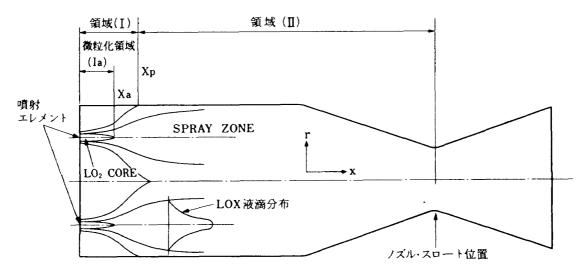


図 5.6 燃焼モデル

軸噴霧流としてジェットの性質が強く残っている部分である。第2の領域は噴流が壁に到達した後の領域であり、 LO_2 液滴流束を除いて、他の量はほぼ断面で均一と見做せる一次元(軸方向にのみ依存する)領域である。更に第一の領域には LO_2 の霧化が行なわれる徴粒化領域が存在する。ここで用いる計算式は領域 I に対して文献 (5.9) で導びいた気液同軸噴霧流の解析法を(これは自由空間中への噴霧流であるため)制約噴流へ直して用いた。また領域 I に対しては文献 (5.10) で導びいたロケット燃焼器内の一次元燃焼状態の計算式によったが、これらの詳細は文献を参照されたい。

図 5.7 に計算のフローチャートのみを示す。

以上の燃焼モデルを用いると燃焼室内長手方向の燃焼状態の計算が可能になり、燃焼性能および蒸発損失,混合損失の量を見積ることが出来る。計算例を以下に示す。図5.8 は C*効率予測計算値と実験値の比較である。18 エレメント噴射器においてはほぼ両者の一致が見られるが、8 エレメント噴射器に対

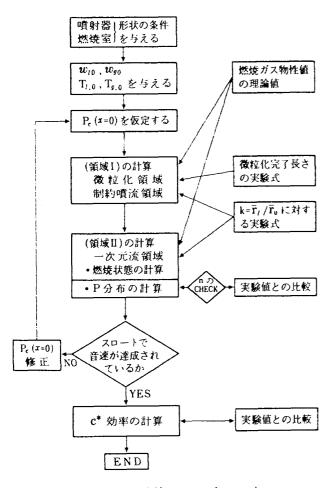


図 5.7 計算フローチャート

しては C^* 効率を幾分過大に見積る傾向にある。これらの予測 η_{C^*} 値が起因する損失を図5.9 に示す。 LO_2 液滴からの蒸発の不完全さに基づく蒸発損失分と,酸素・水素の混合の不完全さに基づく混合損失分の割合が推定出来る。8 エレメント噴射器においては蒸発損失が大きな割合を占める場合が多く,18 エレメント噴射器では低温の水素噴射温度の場合以外は η_{C^*} の損失は混合損失によっていることが分る。以上のことにより,これまで示して来た燃焼実験値,

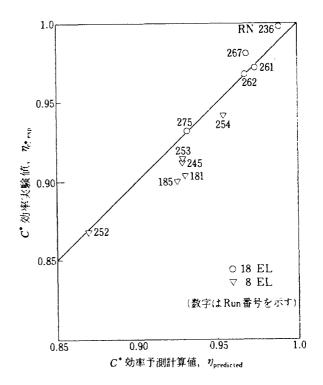


図 5.8 C^* 効率予測計算値と実験値の比較

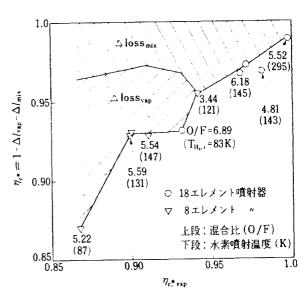


図 5.9 予測 c*効率に占める蒸発損失(⊿ loss_{vap}) と混合損失(⊿ loss_{mix})の割合

解析値から見て設計計画書及び文献(2.1)で示されている燃焼性能については過大評価の懸念がある。 尚,燃焼モデル計算法の詳細については別途報告 予定である。

5.2 冷却特性

5.2.1 冷却系データの解析

冷却側熱伝達率は以下に示した手順に従って算出 した。最初に簡単のために1次元熱伝導計算を例と して述べる。燃焼室壁の1次元熱伝導問題について は、以下の式が成り立つ。

$$q = h_g(T_{ad} - T_{wg}) = \frac{\lambda_m}{t} (T_{wg} - T_{wl})$$
$$= h_l(T_{wl} - T_b)$$
(5.4)

仮に、図5.10に示したように、燃焼側壁面からの深さ t_1 の位置における温度 Tw_m がわかっているものとすれば、

が成り立つ。従って、 h_g 、 T_{ad} 、 T_b 、 t_1 、 t_2 、 λ_m の

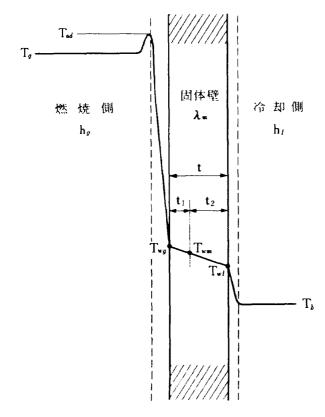


図5.10 燃焼室壁1次元温度分布モデル

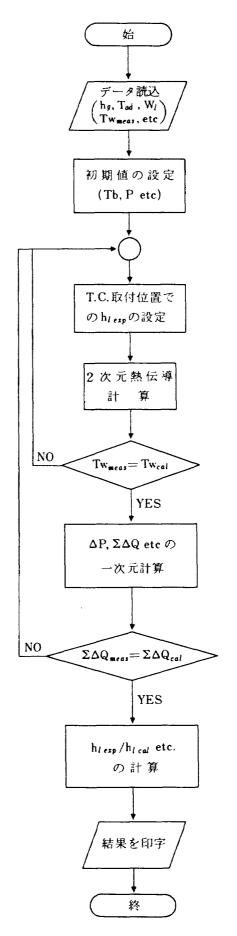


図5.11 冷却系データ解析手順概略

値が与えられれば、上記の式は Tw_g , Tw_l , h_l を未知数とする連立方程式となり、解くことができる。ここでは、これを2次元の場に拡張してある。

データ処理の手順の概略をフローチャートにて図 5.11に示す。基本的には,第2.1.2項で述べた手法 と同じものであり,2次元計算の結果に基づいて, 冷却通路に沿った熱収支のバランスをとっている。 1次元計算については既に触れたので,ここでは2次元計算を行うのに必要な入力データと解法について述べる。 (5.11~14)

(1) 入力データ

① 燃焼ガス側熱伝達率等

 h_g 等の燃焼ガス側のデータについては、別に行った水冷却燃焼試験の結果に基づいて決定した。(詳細については続報 $^{(5.15)}$ を参照されたい)。本報告におけるデータ処理に際しては、独立冷却の場合、18 エレメントでは RUN 261 を、8 エレメントでは RUN 245 の熱流東分布を基本分布として用いた。また、再生冷却の場合には、上記のRUN 261 と、0/F の異なる RUN 280 の 2 つのデータを基礎に、それぞ

れ O/F の変化を内挿して決定した。基本分布とした実験ごとの熱流束等の分布を図 $5.12\sim14$ に示した。なお, T_{ad} については, H_2-O_2 燃焼生成ガス物性値計算プログラム(5.16)によって決定した。

② 冷却液混合温度

 T_b 分布については,入口マニホルドからの LH_2 のエンタルピの増分より決定するのであるが,第一次近似としては水冷却燃焼試験の結果を用いた。

③ 断面形状と熱電対取付位置

当初、冷却ジャケットの外筒と内筒との接合部のはく離による断面形状の変形が懸念された。しかし幸いなことにT.Cを埋込んだ冷却通路近傍については、実験終了後に行なった切断検査(第6章参照)においてもそのようなはく離は観察されなかった。そこで、断面形状としては設計値を用いた。熱電対取付位置については、表6.3に示した実測値を用いた。

④ 流量配分について

実験結果と既存整理式との比較等に用いた冷却通 路の流量としては、 壁温測定用熱電対を埋め込んだ

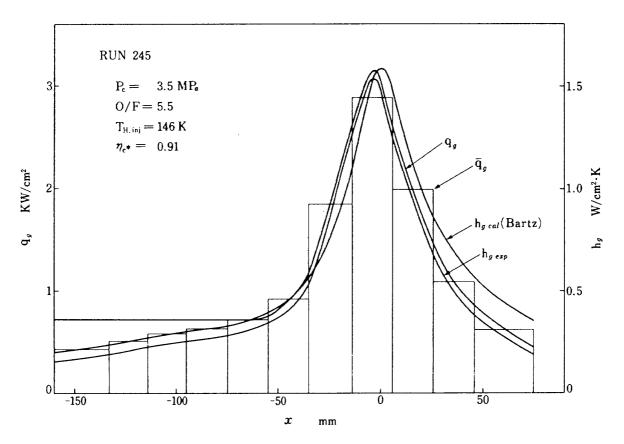


図5.12 水冷却燃焼試験結果(その1-8エレメント)

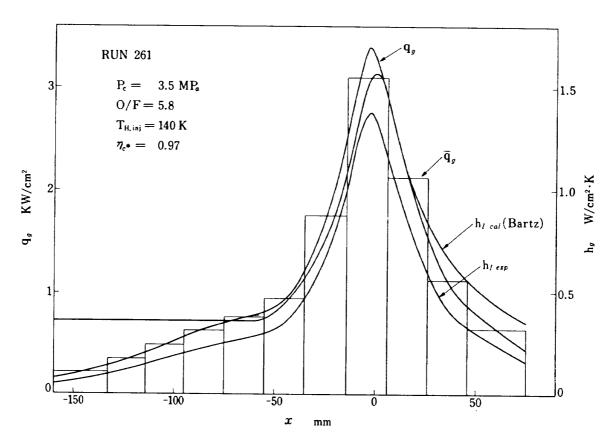


図5.13 水冷却燃焼試験結果(その2-18エレメント)

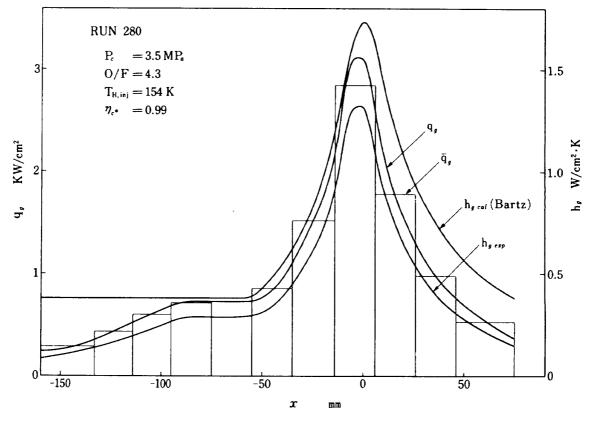


図5.14 水冷却燃焼試験結果(その3-18エレメント)

隔壁の両側 2 流路にわたる平均値を用いた。本燃焼器の場合のようなマルチチャンネル系においては加熱による加速損失をも考慮した全流路に渡る流量分配の問題を解いた上で,該当する通路の流量を決定すべきである。しかし,この件については別の機会にその詳細を論ずることとして,ここでは簡単のために,試験完了後に行った各冷却通路の流動抵抗の測定結果(表 6.2 参照)に基づいて流量を配分した。その結果,ここで使用した流量は全流路の平均流量に対して,3%しか違っていないものであった。

⑤ 冷却通路の等価砂粒粗さ

表面粗さが熱伝達率に重要な影響を及ぼすことはよく知られたことであるが,機械加工仕上げされた冷却通路の場合のような自然粗さについては,あらかじめ実液による流し試験によって,それと等価な砂粒粗さの値を確定しておく必要がある。また,このことは,熱伝達に及ぼす粗さの評価式(たとえば,式(5.20))を用いる際にも必要になることである。そこで, LH_2 による流し試験を行い,燃焼室平行部に設けた冷却通路圧力測定孔間の圧力損失(P_h $-P_{j_2}$)を差圧計により測定し,この区間の等価砂粒粗さを決定した。図5.15はその結果を摩擦係数fとレイノルズ数 R_e との相関として示したものである。図中の実線は流体力学的に完全に滑らかな場合で,

Nikuradse の式
$$f = 0.0032 + 0.221 R_e^{-0.237}$$
 $R_e > 10^5$ (5.6)

より得られたものであり、一点鎖線は、

Colebrook-White の式

$$\frac{1}{\sqrt{f}} = -2\log\left[\frac{2.51}{R_e\sqrt{f}} + \frac{\varepsilon_s^*}{3.71 D_e}\right] \quad (5.7)$$

において、等価砂粒粗さ $\varepsilon_s^*=1.5~\mu$ とした場合であり、実験値とよく一致している。この値は切断後に得られた冷却通路の中心線平均粗さにほぼ等しい値である。データ処理に際しては、燃焼室平行部以外の部分については中心線平均粗さの実測値(5.7)式の ε_s^* に代入して使用した。

(2) 2次元熱伝導計算について

冷却側熱伝達率 h_{lexp} は壁温測定点での熱電対指示値に基づいて、2次元熱伝導問題を解くことによ

り求めた。計算に用いた冷却通路の熱的モデルを図 5.16に示した。解を得る際の仮定としては,

① T_{ad}, h_gは(1)-①より, T_bは(1)-②より与 える。

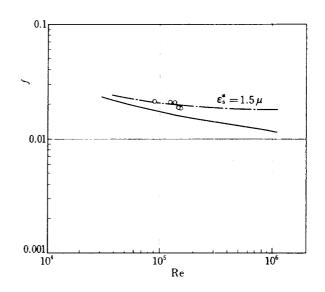


図5.15 冷却通路(燃焼室平行部) における摩擦係数(LH₂による)

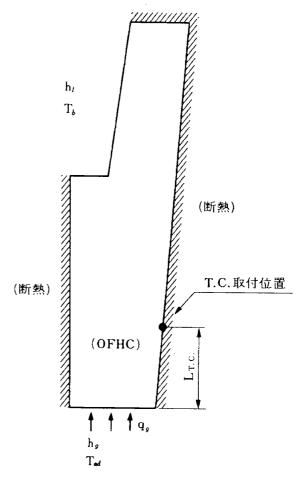


図5.16 2次元熱伝導計算における熱的モデル

- ② 図5.16において、斜線部は断熱壁とする。
- ③ 冷却通路の断面における流体の温度は混合 平均温度 T_b によって表わされるものとし,温 度分布は考慮しない。従って,台形断面にお いて生じる 2 次流,曲率による 2 次流の効果 についても無視する。
- ④ $h_{l,exp}$ は、 LH_2 と接する通路全表面に渡って一様とする。

 $h_{l\,\,\mathrm{exp}}$ は以上の仮定に基づいて有限要素法により求めた。なお,用いた要素は三角形一次要素である。冷却通路断面の要素への分割例を図5.18に示した。また,計算結果の一例を図5.19に示した。この結果を1次元化する際の平均壁温 T_{w} は次式により決定した。

$$\widetilde{T}_{w} = \frac{1}{L_{s}} \int T_{w}(s) ds \qquad (5.8)$$

但し、L、:外筒を除く壁面全接触長さ

 $T_{w}(s)$:局所壁温,s:壁面に沿った座標以上より得られた冷却系の主なデータ解析結果の一例を表 5.1 に示した。

次に先に述べた仮定のうち、実験結果に直接関係する④について検討してみる。 h_l そのものは第5.23項で述べるように壁面近傍における変物性効果によって影響を受ける。既存整理式のうち、この効果(すなわち T_{wl} 分布の影響)を陽に表わしているのは T_b によって評価を下す式(5.15)のようなバルク型である。そこで、ここでは式(5.15)の変物性項(T_{wl}/T_b) $^{-0.57}$ が仮に妥当なものとして、 h_l exp = const とした計算結果との比較を行う。図5.17は、熱流束の大きい,従って壁での温度勾配の極めて大

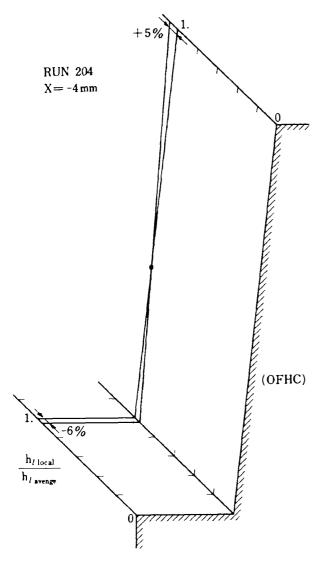


図5.17 冷却通路における局所的変物性効果 の影響の例

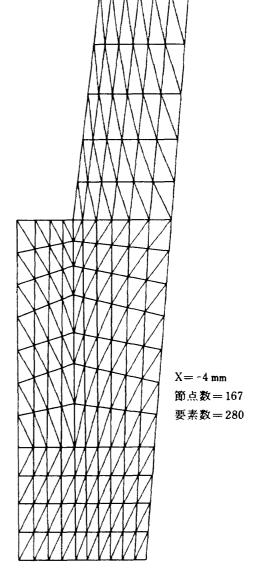


図5.18 断面分割例

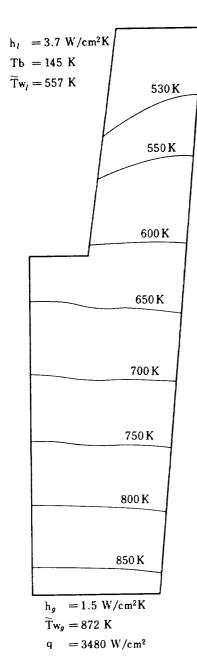


図5.19 2次元熱伝導計算結果例

きい RUN 204 のスロート近傍(X=-4mm)における壁面上での局所的変物性効果を示したものである。図中の $h_{l \ average}$ は平均壁温 T_w をもとに導かれた $h_{l \ exp}=const$ の値であり, $h_{l \ local}$ は,これに対して壁温分布による変物性項を考慮して得られたもので,平均壁温を示す位置にて, $h_{l \ local}=1$ となる。図から明らかなように,その差は最大約 $\pm 5\sim 6$ %程度であり, $h_{l \ exp}=const$ として何ら支障のないことがわかる。

5.2.2 設計値との比較

第2.1.2項で行った熱設計値と試験結果との比較 を試みる。比較例として設計値は $G_l = G_{rg}$ の場合, 試験結果としてはRUN 124を採用する。両者とも燃 焼条件、冷却条件ともにほぼ等しいためである。燃 焼条件のうち熱計算の基礎となるのは燃焼ガス側熱 流束 q_g であるが、それは図 5.20 に示すように設計 値と実験値は設計値がやや大きめではあるがほぼー 致している。最初に,図5.21にジャケット圧*P;*分布 図 5.21 にジャケット EP, 分布の比較を示す。 燃 焼室平行部では両者の差はあまりないが、スロート 部において大きな差が生じる。この主な原因は設計 においては管摩擦係数 f に対する変物性効果 ϕ (= $f_{s,n}/f_{s,i}$)を考慮していないためと思われる。 ϕ は非加熱時の摩擦係数 fs.i に対する加熱時の摩擦係 数 $f_{s,n}$ の比であり、管摩擦係数 f は q の増加すなわ ち T_m/T_b の増加にともない減少してくる。その様 子を図5.22に示す。種々の式が提唱されているが著 者らの直管における電気加熱実験での経験から粗面

表 5.1 冷却系データ解析結果一覧表

表中の使用記号、単位は以下のとおりである。

X	燃焼室中心軸座標	L mm J	NU // メセルト数 ―	-
ТВ	冷却液混合温度	(K)	H-EXP/H-CAL $h_{l \exp}/h_{l \operatorname{cal}}$ —	-
TWC	冷却側壁温	(K)	TAYLOR 式(5.15)によ	る
TWG	燃焼側壁温	(K)	HESS KUNZ 式(5.16)によ	る
QG	燃焼側熱流束	(kW/em^2)	HENDRICKS 式(5.27)によ	る
H-EXP	冷却側熱伝達率	(W/em^2K)	SCHADT QUENT 式(5.17)によ	る
P	" 压力	(MPa)	但し,	
U	〃 速度	(m/sec)	Hendricks の式	
RE	〃 レイノルズ	数一	$N_{uf} = 0.021 R_{ef}^{0.8} P_{rf}^{0.4} $ (5.5)	27)
PR	〃 プラントル	数一	である。	

SCHADT QUENT	1.35 1.24 1.21 1.14 1.21 1.26 1.26 1.09	SCHADT QUENT	1.26 1.45 1.45 1.41 1.41 1.27 1.28 0.95	SCHADT QUENT	1.15 1.23 1.09 1.10 1.12 1.14 0.94	SCHADT QUENT	1,44 1,25 1,26 1,20 1,34 1,34 1,14 1,13 0,92
H-EXP/H.CAL SSS HENDRICKS KUNZ	1.75 1.50 1.50 1.42 1.85 1.36 1.36	H-EXP/H-CAL SS HENDRICKS KUNZ	1.91 1.98 1.98 1.76 2.46 1.61 1.61 1.03	H-EXP/H-CAL SSS HENDRICKS KUNZ	1.66 1.67 1.52 1.44 1.81 1.81 1.30 1.06	H-EXP/H-CAL SS HENDRICKS KUNZ	2.06 1.53 1.53 1.80 1.80 1.39 1.39 1.04
H.EXP. HESS KUNZ	1.46 1.30 1.34 1.34 1.33 1.39 1.39 1.08	H.EXP. HESS KUNZ	1.59 1.59 1.56 1.56 1.48 2.30 2.30 1.36 1.02	H.EXP HESS KUNZ	1.44 1.29 1.19 1.11 1.17 1.65 1.65 1.03 1.03	H-EXP HESS KUNZ	1.71 1.33 1.46 1.25 1.39 1.65 1.21 1.21 1.20 0.98
TAYLOR	1.52 1.95 1.91 1.70 1.67 1.56 1.38 1.13	TAYLOR	1.33 1.39 1.64 1.79 2.95 2.95 2.95 1.79 1.70	TAYLOR	1.21 1.32 1.49 1.61 1.80 2.32 1.79 1.19	TAYLOR	1.38 1.76 1.77 1.77 2.13 2.32 2.32 1.54 1.50
D Z	351. 407. 369. 430. 624. 266. 256.	NU	655. 515. 726. 918. 1229. 2471. 1514. 1504.	n N	255. 408. 490. 591. 798. 1354. 1004. 789. 551.	DN	382. 522. 718. 758. 1058. 1468. 1468. 1469. 580.
R	1.26 0.83 0.72 0.72 0.72 0.70 0.66	PR	1.09 1.38 1.29 1.13 0.94 0.84 0.76 0.75	PR	1.17 1.36 1.13 0.94 0.82 0.77 0.74 0.72	PR	1.39 1.32 1.08 0.91 0.76 0.74 0.72
я Э	2.92E 05 3.09E 05 2.83E 05 3.07E 05 3.72E 05 3.72E 05 2.64E 05 2.64E 05 1.68E 05	និ	3.63E 05 5.39E 05 6.32E 05 8.03E 05 1.09E 06 1.20E 06 1.15E 06 8.84E 05 5.81E 05	RE	3.12E 05 4.83E 05 5.47E 05 6.62E 05 8.78E 05 8.75E 05 6.37E 05 5.08E 05 4.08E 05	ន	4.00E 05 5.63E 05 6.10E 05 7.23E 05 9.44E 05 8.93E 05 6.93E 05 6.93E 05 4.45E 05
Ð	18.1 33.0 43.2 67.6 128.1 178.1 199.6 125.7	ā	21.8 29.6 37.2 59.3 118.7 174.1 201.1 181.5 108.7	Þ	18.1 27.6 36.9 80.9 124.5 111.9 171.2 112.0	Ð	21.9 34.2 44.4 71.3 144.4 206.5 206.5 188.7 132.0
c.	4 661 661 662 663 663 663 663 663 663 663 663 663	٩	4 93 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7	۵.	6.55 6.57 7.77 7.77 7.74 6.68 6.53 6.53 6.53 6.54 6.54 6.54 6.54 6.54 6.54 6.54 6.54	۵	4.41 4.40 4.38 4.37 4.24 4.21 4.21 4.21 4.21
H·EXP	1.10 1.29 1.43 1.77 2.35 5.17 4.27 3.18 2.15	H-EXP	1,72 1,95 2,42 3,16 4,96 11,17 7,27 5,59 3,36 2,71	H-EXP	1.17 1.39 1.51 1.98 1.98 5.76 5.76 4.44 4.44 2.55	H-EXP	1.68 2.11 2.11 2.44 4.53 5.53 5.53 5.53 5.53 5.53 5.53 5
9	0.41 0.65 0.76 0.76 1.10 0.99 3.12 2.45 1.44 0.84	90	0.45 0.72 0.84 1.24 1.24 3.56 0.94 0.52	· S	0.42 0.66 0.76 1.12 2.54 2.55 1.51 0.58	8	0.65 0.05 1.14 2.23 2.23 0.89 0.89
TWG	336.5 475.0 525.0 606.6 703.6 665.7 579.6 516.5	TWG	262.3 379.3 394.0 446.8 546.8 514.1 511.1 423.1 374.6 331.6	TWG	311.3 433.8 478.4 535.0 618.4 574.4 543.3 456.1 394.8	TWG	332.5 392.0 409.3 479.4 607.4 557.4 550.6 859.0 396.4
TWC	263.7 358.4 388.5 444.0 492.9 409.6 408.7 392.2 351.1	TWC	104.5 253.5 246.9 269.4 311.6 211.7 268.6 228.1 228.1 240.2	TWC	238.8 316.9 341.8 371.1 402.4 292.7 317.3 282.4 268.9	TWC	237.8 276.9 269.7 315.0 361.8 278.7 280.4 267.1
RUN 114 (19.29 SEC) X TB	50.0 70.9 87.5 103.6 114.9 116.7 19.0 203.8	RUN 116 (19.29 SEC) X TB	35.3 45.8 46.8 46.8 70.5 70.5 70.5 70.5 103.1	RUN 118 (16.26 SEC) X TB	96.9 53.8 61.8 7.13.8 85.3 96.7 118.4	RUN 126-2 (38-48 SEC) X TB	39.8 48.6 55.0 62.3 74.3 85.2 105.7 114.5
RUN 114 (110. 12.2. 15.2. 18.1. 18.5. 1	RUN 116 (110. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	RUN 118	0.11 0.55 2.58 2.58 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59	RUN 126- X	110. 25. 28. 38. 4. 4. 28. 38. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.

SCHADT	QUENT	- 38	0.97	6	0 94	0 93	20.0	77.	8 :	1.09	0.97	96.0			CCHADT	QUENT	7	90	3 2	5.5	70.	5.2	1.10	21.1	7.7	10.1	1.10			SCHADE	QUENT	1.56	9	16 0	9	180	1 19	77.7	0.80	78.0	0.91	0.85
P/H-CAL HENDRICKS		1 98	98.	1.24	22	1.21	1 53	5.7	67.1	1.2.1	1.11	1.10		IVU	HENDEICKS		208	- 40	35.	3 2	35	3.5	36.1	8. 1.	1.0	1.16	1.24		H-CAL	HENDRICKS		2.20	25	1.20	1 17	60.1	92	50.1	97.	1.14	8.5	96:0
H-EXP/H-CAL	KUNZ	98	0.95	96.0	1.01	001	1 37		7.10	07:1	1.07	1.07		H GVD/U CAT	HESC 1	21	1.39	2	5.5	8 2	=	1 43	1.24	1.2	8.1	71.1	1.20		H-EXP/H-CAL	HESS	21	191	100	0.94	96 0	06:0	2	3 5	3.5	707	1.01	0.93
TAYLOR		1.43	1.59	1.56	1.51	1.38	35	S = -	8:-	1.31	1.13	1.10			TAVIOR		1.41	1 74	1 79		5	1 72	1 43	9	2.5	1.1	1.23			TAYLOR		1.57	1.58	1.51	1.46	1.28	32	8	1.63	67.7	1.08	0.97
NU		254.	280	292.	318.	341.	605	424		376.	288	258.			12	·	221.	280	180	262	323	445	092	335	. 136	.167	243.			IN.		308	325	318.	343	321	013		-07-0	. 281.	312.	256.
PR		1.45	0.88	0.78	0.74	0.72	0.72	0.72	2 6	0.70	99.0	0.67			80	;	1.49	88.0	0.77	0.73	62.0	0.72	02.0	0.10	0.0	0.00	0.65			PR		1.43	0.91	0.80	0.75	0.72	0.79	1 5	2.5	7.0	5.7	0.68
RE		2.83E 05	3.50E 05	3.25E 05	3.48E 05	4.18E 05	4.29F.05	4.01E.05	20.00	3.00E 05	Z.42E US	1.95E 05			æ	•	2.41E 05	3.10E 05	2 82E 05	3.01E 05	3.51E.05	3.56E 05	3 30E 05	2.302.03 2.49F 05	1 96 5 95	3 2 2 C	1.57E 05			RE		2.94E 05	3.85E 05	3.66E 05	3.96E 05	4.80E 05	4 94F 05	20 21 27	20.00	3.55	2.83E 05	2.282 06
Ω		15.7	33.3	44.5	70.2	133.7	187.0	508.9	154.1	1.69.1	130.3	105.0			Ω	ı	13.2	29.8	41.8	9.79	131.4	185.5	210.0	166.5	132.8	0.001	108.1			D		16.1	34.0	45.0	70.5	133.4	186.1	7 306	161.0	0.101	1.821	6.201
e,		4.51	4.51	4.50	4.49	4.46	4.41	4.40	9. 7	8 8	4.33	4.36			Q.	ı	4,37	4.37	4.36	4.35	4.32	4.28	4 27	4.26	36.4	04.	6. 23			Δ.		4.65	4.64	4.63	4.62	4.59	4.55	72.7	5 2	3 5	5.5	4.30
н-Ехр		0.89	0.88	1.00	1.42	2.17	3.97	3,62		6.0	17.7	1.86			H-EXP		0.78	0.84	86	1.37	2.23	3.74	3.44	8	2 13	27.75	1.92			H-EXP		1.12	0.99	1.06	1.45	2.08	3.76	3 74	9 6	86.6	3.7	17.11
96		0.54	0.71	97.0	1.12	1.93	3.30	2.51		10.0	16.0	0.57			Ö		0.48	0.71	0.90	1.18	2.14	3.48	2.74	1.65	0.97		8.			သွ		0.59	0.72	0.74	1.07	1.76	3.09	5	8 %	9.6	6.0	0.52
TWG		487.5	652.4	656.2	694.4	811.0	197.9	722.3	9	0.400	5.00.4	452.4			TWG		476.2	671.5	696.2	751.0	883.9	872.2	810.6	6.139	587.1	1.00	1.606			TWG		451.2	611.4	611.0	651.5	760.9	766.5	678 8	558.3		1.184	479.0
TWC		390.5	521.9	515.5	527.8	602.4	500.5	493.1	416.9	3.006	0.000	349.2			TWC		389.9	541.3	547.8	574.1	651.4	556.7	559.5	465 4	436.8	200				TWC		345.2	479.0	475.3	493.2	571.0	487.8	489 7	305.9	4.000	0.000	8.000
TB		44.6	65.6	81.3	96 .5	115.2	132.3	147.5	163.7	176.5	0.017	187.8	RUN 204 (25-30 SEC)	(2000)	TB		43.3	65.0	83.8	102.1	124.7	145.0	163.3	183.9	200	2.25	214.4	RUN 206 (25-30 SEC)		TB		43.6	63.4	77.3	6.06	107.4	123.0	136.7	150.7	1.00.1	131.0	11.1.4
×		.110.	-72.	-52.	-35.	-18.	4	6	K	3 5	į;	Ž.	RUN 204 (×		-110.	-72.	-52.	-35	-18.	,	9.	22	5	;	į	RUN 206 (×		-110.	-72.	-52.	-35.	-18.	4-	٠	;	iş	į	ž

RUN 203 (25-30 SEC)

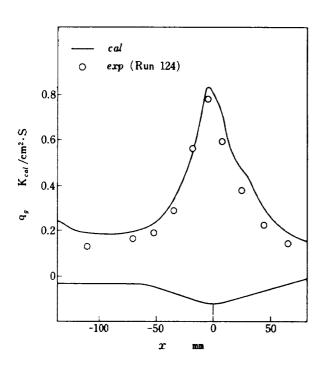


図5.20 熱流束分布の比較

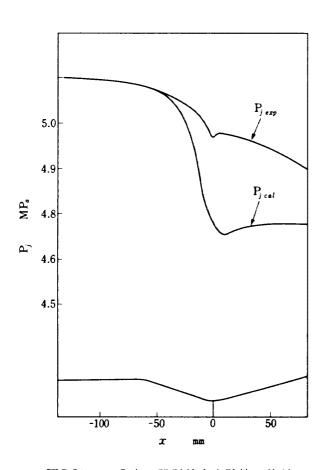


図5.21 P_i 分布の設計値と実験値の比較

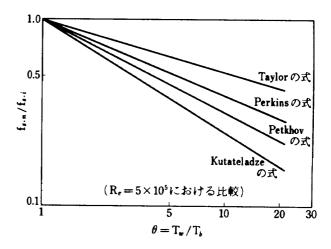


図5.22 $f_{s,n}/f_{s,i}$ と θ の相関

流路の場合は Taylor の式 $^{(5.17)}$ が最も信頼性が高い。そこで 2 次元熱伝導計算により RUN 124 における平均の T_{w_l}/T_b を求めてみると約4 となり,図5.22から T_{w_l}/T_b =4 に対する ϕ を求めてみると ϕ \div 0.7 となる。

ところで圧損計算において表面粗さ,変物性効果を考慮すると設計に用いる摩擦係数 f_r は次式のように表わされる。

$$f_r = f_{s,i} \cdot \phi \cdot \xi$$
 (5.9)
ここで $\xi (=f_{r,i}/f_{s,i})$ は非加熱時において,粗

面流路における摩擦係数 $(f_{r,i})$ の,滑めらかな流路の $f_{s,i}$ に対する比であり, R_e の関数である。そこで第 5.2.1 項で示した LH_2 による流動特性(図5.15)より RUN 124 での試験条件 $R_e=3\times10^5$ での ξ を求めると約 1.2 の値を得る。以上の値を式(5.9)に代入すると

$$f_{r \text{(exp)}} = 0.84 f_{s,i}$$
 (5.10)
となる。ところが設計に用いた式(2.12)は $1.9 \mu \text{rms}$
の表面粗さを持つ場合の $f_{r,i}$ を与える式であり, R_e
 $= 3 \times 10^5$ での ξ を求めてみると 1.48 となる。設計に
おける $f_{r \text{(cal)}}$ は

 $f_{r \, (cal)} = 1.48 \, f_{s.\,i}$ (5.11) となり実験値($\Delta P_{\rm exp}$)と設計値($\Delta P_{\rm cal}$)の比は最終的に

$$\Delta P_{\text{exp}} / \Delta P_{\text{cal}} (= f_{r \text{(exp)}} / f_{r \text{(cal)}}) = 0.57$$
(5.12)

となる。なおここで加速損はあまり大きくないので 無視してある。 一方図5.21より $extit{$\it IP}_{
m exp}$ と $extit{$\it IP}_{
m cal}$ の比を求めてみる

$$\Delta P_{\rm exp} / \Delta P_{\rm cal} \approx 0.60$$
 (5.13)

となり先の計算で求めた結果と良く一致している。 次に図 5.23 に T_b 分布の比較を示す。設計値が高めにでているのは q_g 分布自体が設計値では入口,出口付近で多少高めなためであろう。図 5.24 の流速分布では実験値の方が全流路にわたり多少大きめにでている。これは実験値の G_l が 4% 程大きいためである。

図5.25には T_{wg} , T_{wl} 分布の比較を示す。 T_{wg} と T_{wl} は q_g に比例するので実験値,設計値ともその温度差に大きな違いはない。そこで T_{wg} のみについて実験値 T_{wg} (exp) と設計値 T_{wg} (cal) の比較を行なってみる。流路全長にわたり T_{wg} (cal) が高めにでているのは表面粗さの効果を設計では無視したのも影響しているものと思われる。また設計では $T_b = T_{cr}^*$ ($x=-90\,\mathrm{mm}$) 近傍に,円管の電気加熱実験で観察されるサーマルスパイク (5.18) が顕著に表われている。しかし実験結果からは,設計値程のサーマルスパイク は見出せなかった。この主な理由は設計に用いた q_g が噴射器近傍で実際より大きいためであろう。

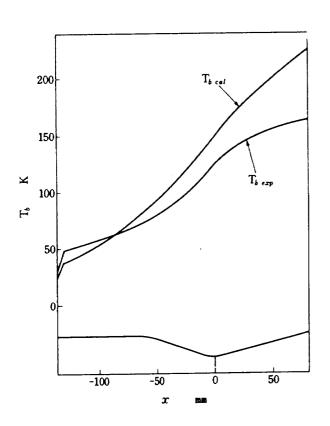


図5.23 冷却液温分布の設計値と実験値の比較

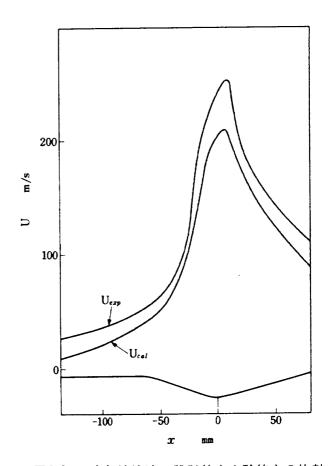


図5.24 冷却液流速の設計値と実験値との比較

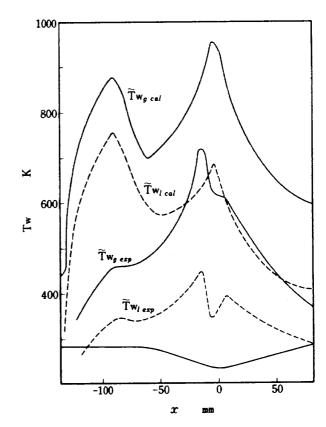


図5.25 壁温分布の設計値と実験値の比較

5.2.3 既存熱設計式との比較

燃焼室の熱設計に用いられるんは一般に次式で与 えられる。

$$h_l = \frac{\lambda}{D_c} N_{u.s} \cdot \varphi_{ent} \cdot \varphi_r \cdot \varphi_c \qquad (5.14)$$

てこに $N_{u,s}$ は滑めらかな円管を用いた電気加熱 実験において入口より十分に離れた点での局所 ヌセルト数, $\varphi_{\rm ent}$ は入口補正因子, $\varphi_{\rm r}$ は表面 粗さ補正因子, $\varphi_{\rm c}$ は曲率補正因子である。

 LH_2 における $N_{u,s}$ を与える式は先の報告 $^{(5,19)}$ に示すように数多く発表されているが,ここでは物性値を評価する際の参考温度 (T_r) の違いにより次の3式を比較式として採用する。

① バルク型
$$(T_r = T_b)$$
Taylor の式^(5,20)
 $N_{u,s} = 0.023 R_{eb}^{0.8} P_{rb}^{0.4} \theta^{-0.57}$ (5.15)
ことで $\theta = T_{vv} / T_b$ である。

② フィルム型
$$\left[T_r = T_f \left(= \frac{T_w + T_b}{2}\right)\right]$$

Hess-Kunz の式^(5,21) $N_{u,s} = 0.0208 R_{ef}^{0.8} P_{rf}^{0.4} \left\{ 1 + 0.0145 (\nu_{vv} / \nu_b) \right\}$

(5.16)

③ 積分型 (任意の物性値 χ を次式により評価する。) $\widetilde{\chi} = (\int_{T_L}^{T_w} \frac{T_w}{T_b} \chi \, dt)/(T_w - T_b)$

Schacht-Quentmeyerの式(5,22)

$$N_{u,s} = 0.023 \widetilde{R}_e^{0.8} \widetilde{P}_r^{0.4}$$
 (5.17)

以上の各式で添字w, b, fは T_r として T_w , T_b , T_f を使用することを意味する。

 φ_{ent} についてはプレナムインレットの場合に適応できるものとして次の2式がある。

Taylor の式^(5,23)

$$\alpha = -a^{1.59/(s/D_e)} \cdot (1 + 5 / s / s)$$

$$\varphi_{\text{ent}} = \theta^{\text{L.59}/(s/D_e)} \cdot (1+5/s/D_e)$$
 (5.18)
Boelter らの式^(5.24)

 $\varphi_{ent} = 2.88/(s/D_e)^{0.325}$ (5)

またこの外にも米国のAerojet 社グループが導入した温度補正係数 $C_L^{(5,25)}$ も φ_{ent} と同一のものであるが,直管にしか適用できないのでここでは考慮しない。

 φ_r については Martinelli の式 $^{(5.26)}$, Dipprey – Saberskyの式 $^{(5.27)}$ 等もあるが、著者らの直管にお

ける経験から計算値が両者の中間に位置する次式 Nunnerの式^(5,28)

$$\varphi_{r} = \frac{1 + 1.5 P_{rb}^{-(1/6)} R_{eb}^{-(1/8)} (P_{rb} - 1)}{1 + 1.5 P_{rb}^{-(1/6)} R_{eb}^{-(1/8)} (P_{rb} \xi - 1)} \xi$$
(5. 20)

ここで ξ は第5.2.2項で定義した値を使用する。 を採用する。

 φ_c については設計に用いた式 (2.7) が従来より使用されてきた。しかし Taylorら $^{(5.29)}$ は $T_{in} \leq T_{cr}^{}$ においては φ_c に対し曲率の方向性が現われるとして

Taylorの式

凹側
$$\varphi_c(+) = \{R_e(D_e/2R)^2\}^{0.05}$$
 (5.21)

凸側
$$\varphi_{\epsilon}(-) = \{R_{\epsilon}(D_{\epsilon}/2R)^2\}^{-0.05}$$
 (5.22)

2 つの式を与えている。ただし $T_{in} > T_{cr}^*$ の場合は式 (5.21) のみで良いとしている。なお著者らの行った 曲管での結果 $^{(5.30)}$ では $\varphi_c(+)$, $\varphi_c(-)$ とも遅れ効果 がありしかも凹側では式(5.21) よりも大きな実験値を得ているが,曲率条件が本供試体と同一でないので,ここでは式(5.21), (5.22) を採用することにする。ただし曲管での遅れ効果を考慮に入れて $\varphi_c(+)$ については曲率終了点以降 $15 D_{e(th)}$ (ここで $D_{e(th)}$) はスロート部流路の水力直径)だけ延長して用いる。

また本試験結果と既存式との比較においては、 T_{in} の度合によって以下の2つの領域に分けて検討する。

領域A ;
$$T_{in} > T_{cr}^*$$

領域图 ;
$$T_{in} \leq T_{cr}^*$$

その理由は著者らが行った電気加熱実験 $^{(5.31)}$ において、 T_{in} が T_{cr}^{*} より低温である場合と、高温である場合とでは LH_2 の熱伝達特性が大きく異なることが明らかになったためである。

(1) 領域Aについて

領域®に属するデータは第4.2.1項で示した RUN 114 しかないのでこれについて既存式との比較を行う。図5.26に $h \exp/h \operatorname{cal}(=\alpha)$ の軸方向の変化を示す。 $h \operatorname{cal}$ の算出は三種類の基本式($5.15\sim17$)によった。

いずれの場合も α の値が入口付近で特に大きい。 そこで、 \hbar cal に式 (5.18) による φ entの補正を行った結果を図 5.27に示す。式 (5.15) を除いてほぼ 1 に近い値を示している。次に φ , として式 (5.20) による補正を行った結果が図 5.28である。いずれの場合

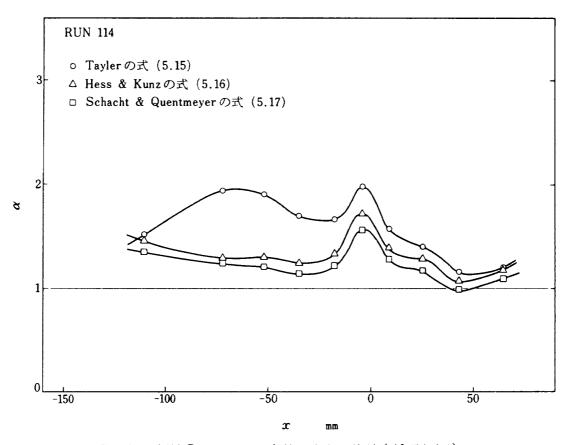


図5.26 領域分における既存整理式との比較(補正なし)

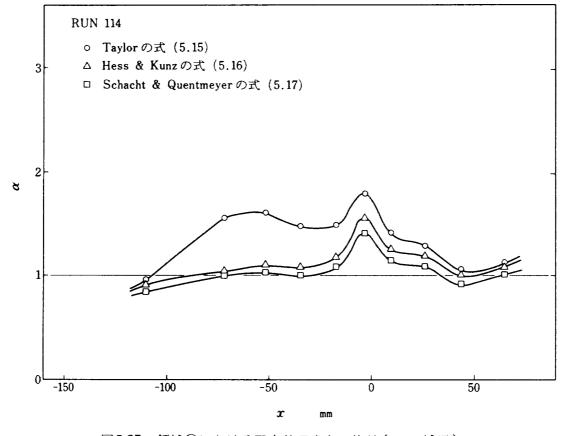


図5.27 領域 Λ における既存整理式との比較(ϕ_{ent} 補正)

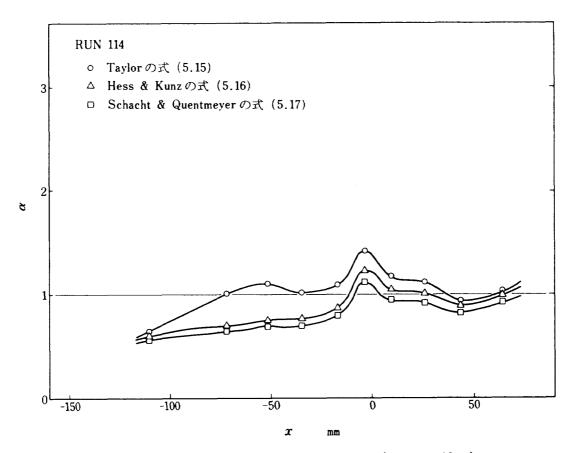


図5.28 領域 \mathbf{A} における既存整理式との比較($\mathbf{\varphi}_{ent}$, $\mathbf{\varphi}_{r}$ 補正)

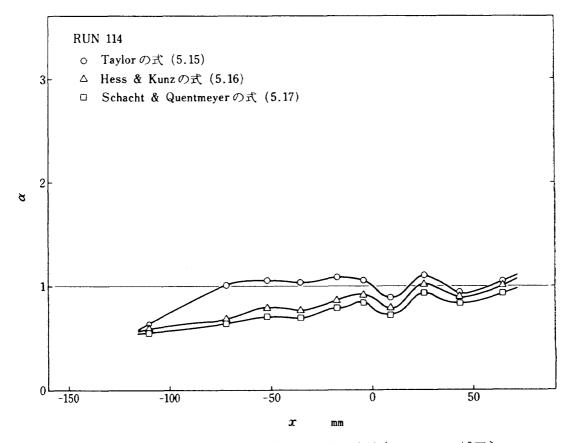


図5.29 領域 $(\varphi_{ent}, \varphi_r, \varphi_c$ 補正)

もスロート近傍で α がピークを示している。これは 曲率のためん \exp が増加しているためである。 図 5.29 にはさらに式 (5.21) による φ_c (+) を付加し た結果を示す。式 (5.15) 以外はほぼ全長にわたり 1 を割っている。ただ式 (5.15) にしても入口付近での落ち込みは大きい。そこで式 (5.15) についで図 5.30 に示す。x=25 mmの極大値は φ_c (+) の遅れがあるためで、 φ_c (+) を考慮すれば α はやや低下する可能性がある。x=-110 mmを除外して見ると α 分布は全体として右下りの傾向を有し、 $\alpha=1$ に漸近していく。このことは $\varphi_{\rm ent}$ を完全に無視すべきでないことを表わしている。そこでより入口効果の少ない整理式、たとえば直管における Taylor の式

Taylor の式^(5,23)

$$\varphi_{\text{ent}} = \theta^{1.59/(s/D_e)}$$
(5.23)

を採用し、基本式としては $\varphi_{\rm ent}$ として式 (5.23) を採用した場合に比較的平坦な結果を与える式 (5.17) を、 $\varphi_{\rm r}$ としては式 (5.20)、 $\varphi_{\rm c}$ としては式 (5.21) を組み合せた場合の α 分布を図 5.31 に示す。 x

= $25 \, \mathrm{mm}$ で極大値が見られるのは φ_c (+)の効果と考えられるので,この点にも φ_c (+)を考慮すると α = 0.97から0.76に低下し, α 分布はより平坦化する。そこで実験点 10点の算術平均値をもとにして,一応領域(0における設計式を導びいてみると以下のようになる。

基本式としては式(5.17)の係数を $0.023 \times 0.8 = 0.018$ とした。

$$N_{u,s} = 0.018 \ \widetilde{R}_e^{0.8} \ \widetilde{P}_r^{0.4} \tag{5.24}$$

を用い φ_{ent} としては式(5.23), φ_r としては式(5.20) φ_c としては式(5.21)を曲率部および曲率終了点から $30\ D_{e(th)}$ まで延長して使用する。精度は $\pm 10\%$ である。

上記の設計式は一応の目安として与えたもので, 今後多くの試験を重ね,より精度の高い設計式を提示したい。

(2) 領域®について

領域®についてはRUN 204 について既存式との比 ・較を行う。図 5.32 に基本式(5.15)~(5.17)との比較 を示す。入口側が高めに表われているのでやはり、

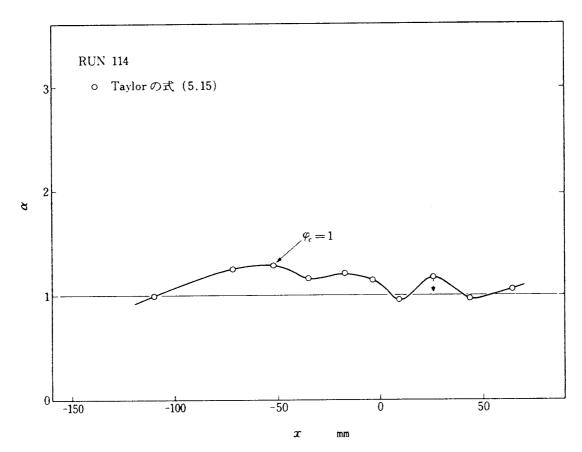


図5.30 領域 \mathbf{A} における既存整理式との比較(φ_r , φ_c 補正)

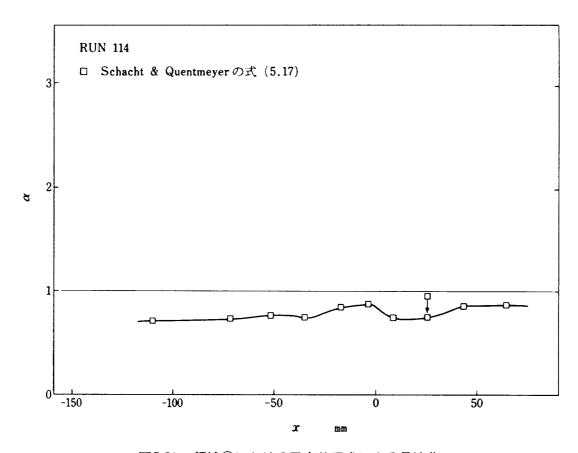


図5.31 領域企における既存整理式による最適化

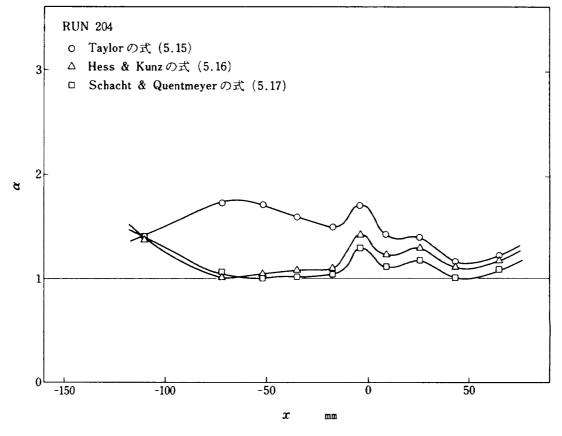


図5.32 領域®における既存整理式との比較(補正なし)

入口効果が大きいものと思われる。図5.33には φ_{ent} として式(5.18)を付加した結果を示す。全長にわた りやや平坦化した様子がわかる。次に φ として式(5. 20) を付加した結果が図5.34である。 3 式とも入口 付近での劣化の度合が大きくなり右上りの傾向がう かがえる。これは φ_{ent} の効き方が実際より大きい ためであろう。スロート付近でのピークはやはり曲 率の影響によるもので、次に $\varphi_c(+)$, $\varphi_c(-)$ の補正を 施した結果が図5.35である。図5.34に比べると凹凸 が激しくなっている。そこで比較的凹凸の少ない式 (5.17) に絞って検討を加える。まず $x=-52 \,\mathrm{mm}$ に ピークが現われているのは φ_{c} (一)がそれほど影響を 及ぼしていないためと考えられる。そこでこの点に おいては φ_c(-) を無視すると α は 0.75 から 0.58 に 下り、分布は平坦化する。 さらに $x=25 \, \text{mm}$ におけ るピークは逆に $\varphi_c(+)$ の効果が15 D_e よりもさらに 下流に及ぶことを示しており、この点においても φ_c (+) を考慮することにより $\alpha = 0.91$ から 0.70 に低 下し、α分布はより平坦化する。以下に数例の試験 結果についてx=-52, $25 \, \text{mm}$ に同様な操作を施し, 式(5.17) に φ_{ent} , φ_r , φ_c の各補正因子を乗じた結果を示す。ただし, φ_{ent} については,式(5.18) より効果の効き方の少ない式(5.19) を用いてある。図 5.36 は G_l = 158 g/s(RUN 206),図5.37 は G_l = 252 g/s(RUN 126-2)の場合である。

以上の比較結果から、領域®における漸定整理式 として、積分型の

$$N_{u,s} = 0.019 R_e^{0.8} P_r^{0.4}$$

を基礎式とし、前述の諸補正式(φ_{ent} としては式(5.19)、 φ_r としては式(5.20)、 φ_c としては凹部のみの式(5.21)を曲率部および曲率終了点から $30\,D_e(\iota_h)$ まで延長して用いる)からなる熱設計式を提示する。 このようにして得られた計算値(N_u cal)と全実験値(N_u exp)の相関を図 5.38 に示す。 計算値と実験値の一致はきわめて良好であり、士25%の誤差内に全データの90%が含まれている。

以上は本試験結果からのみ導びかれた概略の結果であるが,より精度の高い設計式を導出するには今後,本供試体と同様の曲率分布を有する試験片を用いた電気加熱実験を行うことにより φ_c 等についての

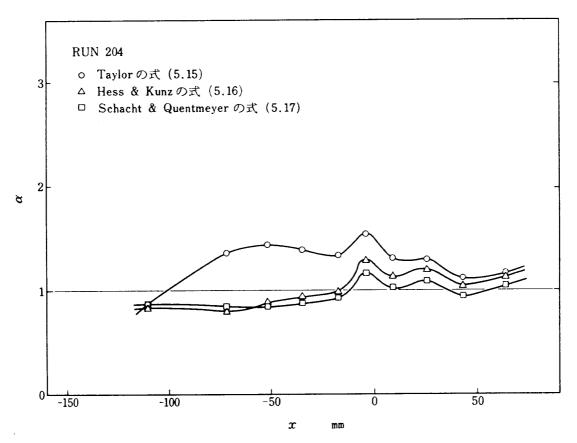


図5.33 領域Bにおける既存整理式との比較(ϕ_{ent} 補正)

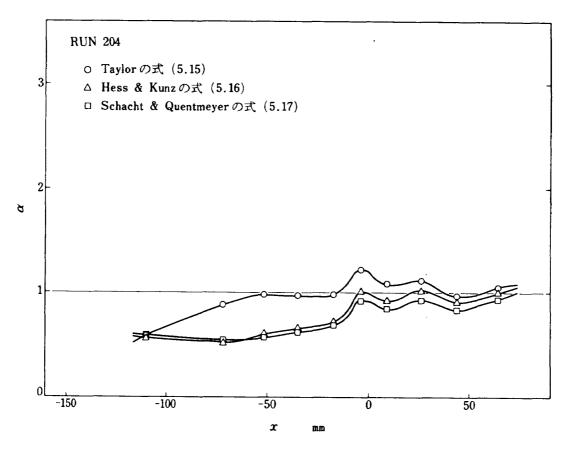


図5.34 領域Bにおける既存整理式との比較(φ_{ent} , φ_{r} 補正)

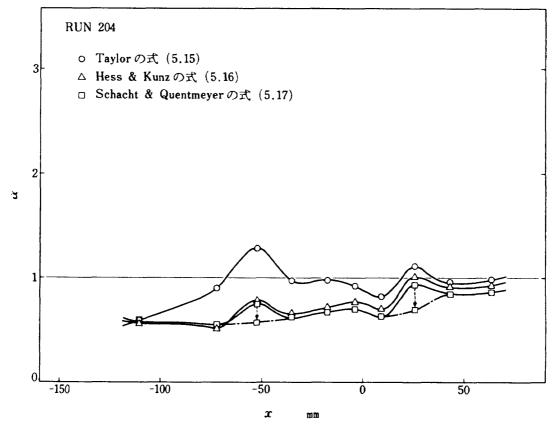


図5.35 領域®における既存整理式による最適化(その1)

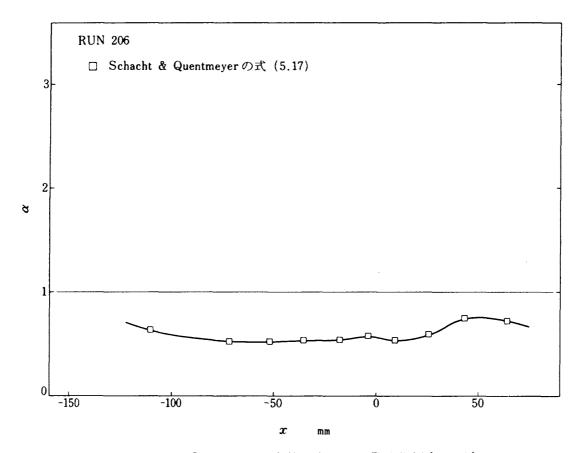


図5.36 領域®における既存整理式による最適化例(その2)

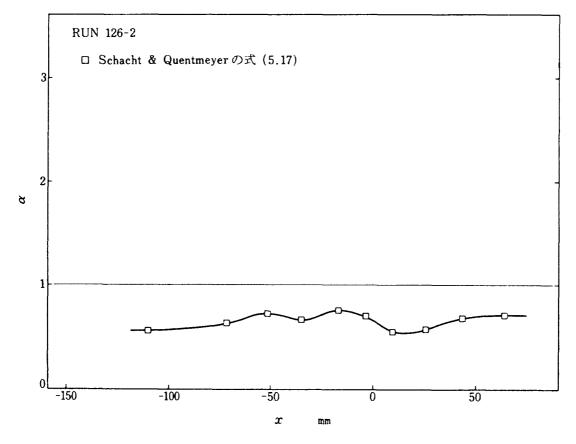


図5.37 領域®における既存整理式による最適化例(その3)

詳細なデータを得る必要がある。

ところでこれまでに実際の燃焼室において、冷却液としての LH_2 の h_1 を実測した唯一の例としてSchacht-Quentmeyerの試験 $^{(5,22)}$ がある。彼らはチューブ構造燃焼室を用い、燃焼室壁表面に T_{wg} 測定用T.Cを溶着し、燃焼試験を行い、 h_1 のデータを取得した。その代表的な試験例を図5.39に示す。計算値には彼らが実験値との一致性が良いとして提唱した式(5.17)が用いられている。しかし著者らは、彼らの報告には多くの問題点があるものと考えている。まず実験技術の点で、 T_{wg} 用T.Cの保護のために N_i 板をT.Cの上から被服していることが上げられる。接

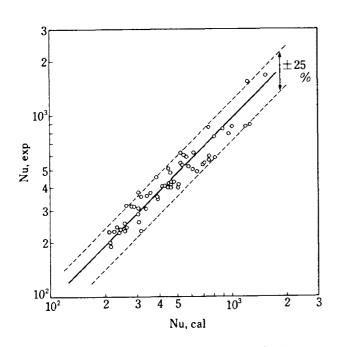


図5.38 本整理式と実験結果との相関

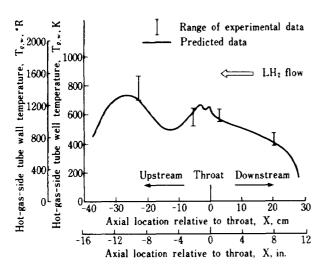


図5.39 Schacht-Quentmeyerの試験結果例

触面での熱抵抗が大きく影響し,真の値は更に高温になるものと思われる。また実験点が少なく,またその精度も極めて悪いことから厳密な議論はでき難い。また計算値については φ ,の効果が全く無視されており,この効果を彼らの文献 $^{(5.22)(5.32)}$ 中のデータより予測するとスロート部で h_{l} (cal) 値は約30%近く上昇し, T_{wg} (cal) は約150 K低下することになり,実験値との差はさらに増大する。本供試体と流路形状が異なり画一的な比較はできないが,いずれにしろ Schacht - Quentmeyer の提唱している式(5.17)をそのまま設計式として用いるには少なからぬ危険がともなうことを物語っている。

次に著者らが行った直管、および曲管における電 気加熱実験との比較を簡単に述べる。

本試験結果と著者らの行った電気加熱実験の結果 $^{(5.31)}$ を α 値で比較すると、式(5.15)が約5%減、式(5.17)の場合が約10%減、式(5.16)が最も劣化が激しく、約30%減となる。これは円管による実験の場合には T_{wl} が流路断面に一様であるのに比べて、構型流路の場合は第5.2.2項に示したように T_{w} が分布を持っている。この面積平均値として T_{w} を定義したことが、参考温度 T_{r} の違う各式の物性値評価に微妙に影響を与えたものと思われる。この α の劣化は従来不明であった片面加熱の影響と考えられ、設計上は危険な方に作用することになる。

φ,については、ここで使用した式(5.20)が妥当であるかどうかは流路面が滑らかな供試体による試験結果を待たないと結論は出せない。

 φ_c については電気加熱実験で得られた凸面の効果が現われていないこと、また凹面についても h_l の増加が電気加熱実験時より小さめであることがわかった。

このように本試験結果と既存設計式および著者らが行った各種の電気加熱実験との間に大きな差異のあることが明らかになった。そしてその大部分が従来不明確にされてきた全面加熱と片面加熱の違いに起因するものであろうと推察される。今後我が国におけるロケット開発の動向を考える時,燃焼圧の高圧化にともない,燃焼室の構造は冷却効率の高い構構造形式に必然的に向うものと思われる。そこでとりあえずデータ不足には目をつぶり,あえて漸定的

な設計式の導出を試みた。

本整理式導出の基となったデータの約%は近臨界領域(P<9 P_{cr} かつ T_b < T_{cr}^*)に属し,残りは温度による物性値変化の少ない超臨界領域(T_b > T_{cr}^* もしくは,P>9 P_{cr})に属する。このように広い領域のデータを精度よく整理出来たのは,基本式となる $N_{u,s}$ の物性値評価を積分平均法によったためである。

5.2.4 振動解析

(1) 燃焼系に起因する振動

先述のRUN 116の場合について検討を加える。温度,流量等については A.D.R (Analog Data Recorder) に記録していないので,100 (点/秒) 収録したディジタルデータをもとに周波数分析を行う。幸い燃焼系に誘因される振動は低周波であり問題はない。図5.40~42 に燃焼系物理量 $(T_{Hinj}, N_{LH_2}, N_{GH_2})$ のパワースペクトルを示す。図5.40における最大振巾を示す周波数は,スケールオーバのため読み取れないが,他の図との対応で約 $0.1 \text{ Hz}(f_1)$ と思われる。第2ピークを示す周波数は約 $0.5 \text{ Hz}(f_2)$,第3ピ

* FOURIER ANALYSIS *

RUN = 116 CHANNEL = 25 START TIME = 25.00 STOP TIME = 45.01

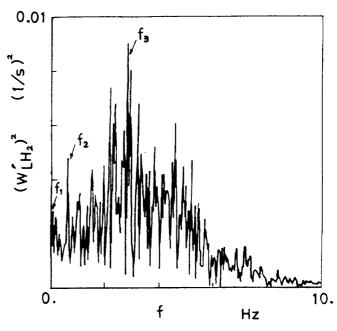


図5.41 W'_{LH_2} のパワースペクトル例

* FOURIER ANALYSIS *

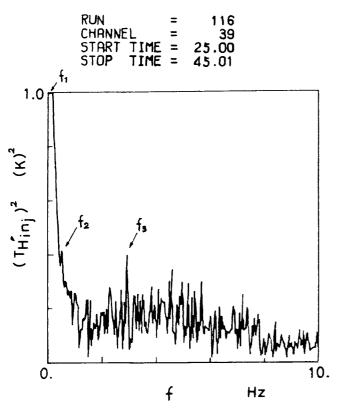


図5.40 T'_{Hini} のパワースペクトル例

* FOURIER ANALYSIS *

RUN = 116 CHANNEL = 26 START TIME = 25.00 STOP TIME = 45.01

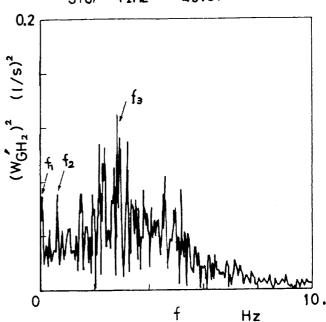


図5.42 W'_{GH_2} のパワースペクトル例

-2は約3 Hz (f_3) に表われる。図からもわかるように T_{Hinj} における各周波数成分に対する W_{LH} , W_{GH_2} の振巾は T_{Hinj} のそれとは必ずしも対応していない。これは流量計から噴射器までの配管のもつ容量が関係しているものと思われる。

次に図 5.43, 44 には冷却系物理量(T_b , T_w)のパワースペクトルを示す。いずれも f_1 に第 1 ピーク, f_2 に第 2 ピーク,そして f_3 に相当する目立ったピークは表われていない。このような燃焼系,冷却系の振動解析の対応の結果.次のような推論が成り立つ。このような低周期の変動は,最初燃焼系の流量変動により生じた $T_{H,inj}$ の変動が η_c^* に代表される燃焼変動となり,それが燃焼室壁を介して冷却系の変動となり,しかも低周波成分程大きな変化となって冷却系に現われるものと思われる。

- (2) 冷却系固有の振動
- ① 低周波振動

図4.28に示したシステム振動の顕著な試験例RUN 124について検討を行う。この場合には T_{Hinj} =147 Kと比較的低温であるため図4.22からも明らかなようにシステム振動と平行して燃焼系でも η_c^* 等の低周波振動が発生していることが予想される。そこでA.D.Rにより燃焼器軸方向加速度 $(A_{c.a})$,冷却ジャケット出口マニホルド圧変動 (P_o) を記録し,周波数分析を行った。図5.45にはA.D.Rより再生して得られた各変動量を示す。振巾の最も大きいものは P_{out} で、平均値に対する比率 ΔP_{out} $(=(P_{out}/P_{out})\times100)$ は約±6%の値を示す。 P_c の P_c に対する比率 ΔP_c は土3%程度である。 P_c の場合は極めて小さく,最大変動巾(p-p)で2g 程度である。

図 5.46 , 47 には各変動量のパワースペクトルを示す。 $A_{c,a}$ の共振周波数 (f_r) は約 0.2 Hz に表われている。 P'_{out} では約 0.2 , 6 , 12 , 70 Hz の 4 種の f_r が表われ, P'_c については約 0.2 , 5 , 540 , 750 Hz の 4 種の f_r が表われている。3 者に共通に表われている0.2 Hz の振動は先に述べた燃焼系に起因するものであろうと思われる。

次に P'_{out} に表われている6, 12 Hzの2種の f_r は以下のように考えられる。先ず,この種のシステム振動が発生しているのは,冷却系の低周波振動が整

定しきらないうちに燃焼を開始した場合に限られている。そこでこの現象が顕著に表われている図4.23(RUN 116)の $t=-10\sim-5\,\mathrm{s}$ について周波数分析

* FOURIER ANALYSIS *

RUN = 116 CHANNEL = 87 START TIME = 22.00 STOP TIME = 46.01

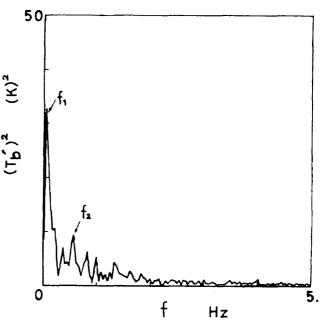


図5.43 T_h' のパワースペクトル例

* FOURIER ANALYSIS *

RUN = 116 CHANNEL = 72 START TIME = 22.00 STOP TIME = 46.01

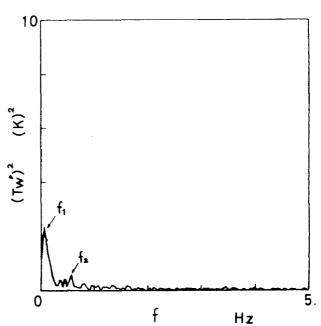


図5.44 T'_{w} のパワースペクトル例

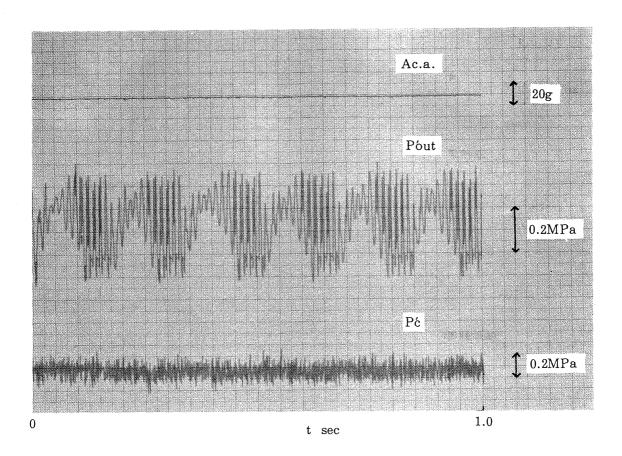


図5.45 システム振動記録例(RUN 124)

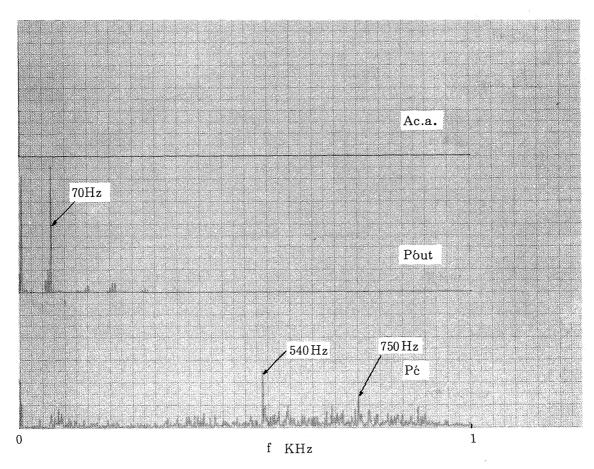


図5.46 システム振動パワースペクトル (RUN 124) — その1

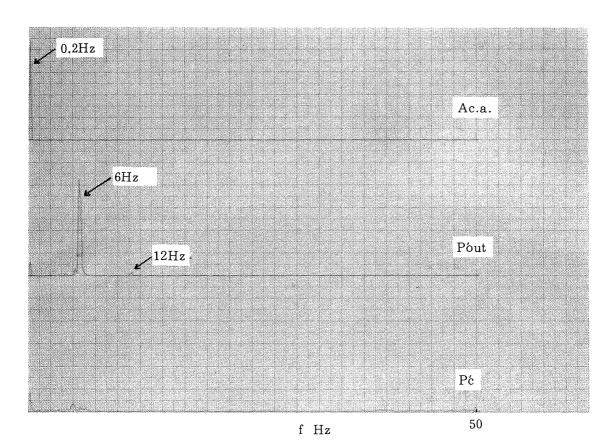


図5.47 システム振動パワースペクトル(RUN 124) — その2

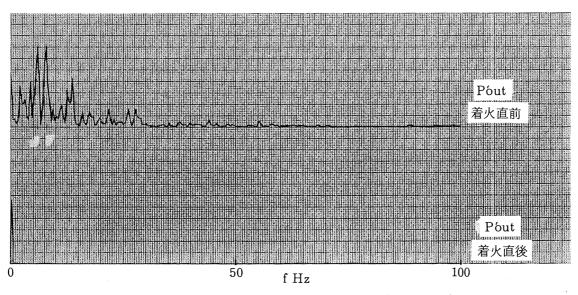


図5.48 システム振動パワースペクトル(RUN 116)

を行った結果を図5.48に示す。種々の f_r が表われているがRUN 124の燃焼試験時に見られる6 Hz と同じ f_r の存在していることがわかる。この6 Hz の振動は冷却ジャケット下流にある1 次圧調圧器の固有振動数と考えられ,非燃焼時は配管からの熱の流入が自励振動源となり,さらに燃焼開始後には燃焼ガスによる加熱が自励振動源となり持続するものと考えられる。 f'_{out} の12 Hz はその2 次モード振動である。

さらに P'_{out} における $70\,\mathrm{Hz}$ の振動は冷却ジャケットから1次圧調圧器までの下流配管($L = 16\,\mathrm{m}$)を両端開放の共振系とする熱音響振動である。熱音響振動数 $f_{r,t}$ は

$$f_{r.t}=a/L$$
 (5.26) 式(5.26) で表わされ,式中に $L=16$,RUN 124 の出口条件($P = 4.0$ M Pa , $T_b = 200$ K)時の音速 $a=1100$ m/s を代入すると $f_{r.t} = 70$ Hz を得,実験値

と良く一致する。

またこの種のシステム振動がん」にどの程度の影響を与えるかについては、非振動時のデータと比較を行ったが目立った変化は見られなかった。さらに再生冷却方式をとる実際のエンジンシステムでは本試験装置におけるような独立した冷却系を有することはなく、この種のシステム振動が問題になることはないと思われる。

② 高周波振動

第4.2.1 項において高周波振動は $T_{in} < T_{cr}^*$ で、かつ低周波のシステム振動が発生していないという条件

下で観測されることを述べた。ここでは,以上の条件を満足する試験例RUN 120について検討を加える。図 5.49 に $A_{c.a}$ と P'_{out} の記録を示す。 $A_{c.a}$ は RUN 242 と比べて極めて大きく,p-pで約40gの振巾を示している。これとは逆に P'_{out} の場合は P_{out} に対する比が $\Delta P_{out}=\pm 0.4$ %程度でRUN 242のそれに比して著しく小さい。次に図 5.50 に周波数分析結果を示す。 $A_{c.a}$, P'_{out} とも 7.4 ,14.8 kHzに同一の f_r を示している。両者のうちいずれかが振動源となり,他方は共振しているものと考えられる。そこで図 5.51 に P'_{out} に対する $A_{c.a}$ の相互相関を示す。図から

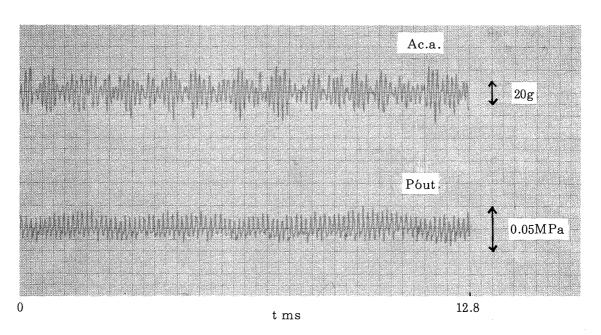


図5.49 高周波振動記録例(RUN 120)

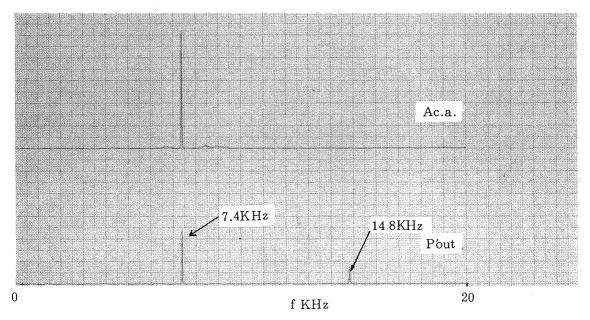


図5.50 高周波振動パワースペクトル(RUN 120)

 $A_{c.a}$ の方が P'_{out} より約2ms の位相遅れを有していることがわかり,振動源は P'_{out} であると推定できる。この推論を裏付ける例として $T_{in}>T_{cr}^*$ いわゆる領域 \mathbb{A} に属する試験例 \mathbb{A} UN114 の周波数分析結果を図5.52 に示す。図からも明らかなように冷却系には熱音響振動は発生していない。このように強制的な外乱がない場合は,供試燃焼器の振動特性は本来図5.52に示すような広帯域のスペクトル分布を有していると考えて良い。ところがなんらかの外乱(それは本項①でふれた0.2Hz程度の燃焼系の振動であれ,ここで述べている数kHz の冷却系の振動であってもかまわない。)があると外乱の振動に共振し, A_{ca} には

他の周波数成分は現われなくなる。

次に P_{out} における高周波振動を熱音響振動とした計算との比較を行ってみる。ここで問題となるのは共振系の選択の仕方である。つまり冷却通路全体をとるか,またはスロート部での圧損が大きいため,スロートを境として上流側と下流側を独立した系として扱うかである。ここでは下流側を両端開放の共振系として式(5.26)により計算を進める。事実全流路を共振系とすると実験値との差が大きくなる。そこで式(5.26)に $L=94~\mathrm{mm}$,下流側での平均的試験条件($\widetilde{P}=4.2~\mathrm{MPa}$, $\widetilde{T}_b=100~\mathrm{K}$)時の音速 $a=800~\mathrm{m/s}$ を代入すると $f_{r,t}=8.5~\mathrm{kHz}$ を得る。実験値の

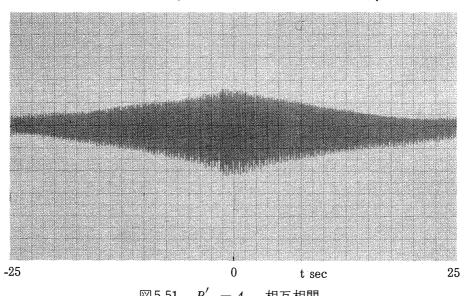


図 5.51 $P'_{out} - A_{c,a}$ 相互相関

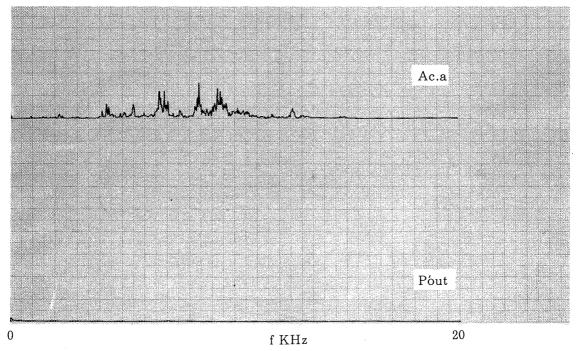


図5.52 領域(A)におけるパワースペクトル(RUN 114)

 $7.4 \, \mathrm{kHz}$ とほぼ近い値であり,実験で現われている $15.8 \, \mathrm{kHz}$ の成分は 2次モードの振動と思われる。 またこの熱音響振動が h_l に及ぼす影響はその振巾が小さいためもあり,あまり顕著ではないようである。

菊 文

- 5.1) 五味広美,八柳信之,坂本博;液体酸素中 への加圧ガス窒素の混入,第23回低温工学 研究発表会講演論文集,1979.
- 5.2) 大塚貞吉, 宮島博 ほか; 液酸・液水ロケットエンジン用燃焼器系の研究-小型高膨 張燃焼器の実験(i)-, 航技研・宇宙開発事業団 共同研究成果報告書, 昭和55年.
- 5.3) R.J. Burick; Space Storable Propellant Performance Program Coaxial Injector Characterization, NASA CR-120936, 1972.
- 5.4) M.C. Yost; Preburner of Staged Combustion Rocket Engine, NASA CR-135356, 1978.
- 5.5) Mayer, E.; Theory of Liguid Atomization in High Velocity Gas Streams, ARS Journal, Vol.31, 1961.
- 5.6) Martin Hersch and Edward J.Rice;
 Gaseous-Hydrogen Liguid-Oxygen Rocket
 Combustion at Supercritical Chamber
 Pressures, NASA TND-4172, 1967.
- 5.7) 八柳信之;気液同軸噴霧流の研究(3),第8 回液体の微粒に関する講演会,講演集, 1980.
- 5.8) R.J. Burick; Space Storable Propellant Performance Program Coaxial Injector Characterization, NASA CR-120936, 1972.
- 5.9) 八柳信之;気液同軸噴霧流の研究(2),第7 回液体の微粒化に関する講演会,講論集, 1979.
- 5.10) 八柳信之, 鈴木昭夫, 五味広美, 坂本博; 液体酸素・ガス水素ロケットの燃焼状態の 計算, 航空宇宙技術研究所報告 TR-472, 1976.

- 5.11) Huzel K.K. et al; NASA SP-125, 1971.
- 5.12) Bartz D.R.; Jet Propulsion 27, 49-51, 1957.
- 5.13) Omori S. et al; NASA TN-D 6825, 1972.
- 5.14) Hendricks R.C.et al; NASA TN-D 7808, 1975.
- 5.15) 小型構構造液水冷却燃焼器の研究(第2報), 刊行予定。
- 5.16) 毛呂 他; NAL TM-381, 1979.
- 5.17) Maynard F.Taylor; Int. J. Heat & Mass Transt., 10-8 (1967), 1123.
- 5.18) 新野ほか 4 名; 航技研報告, TR-583, (1979-8), 10.
- 5.19) 新野ほか 4 名; 航技研報告, TR-583, (1979-8), 12.
- 5.20) Maynard. F.Taylor; NASA TN D-4332, (1968-1).
- 5.21) H.L.Hess & H.R.Kunz; J.Heat & Mass Transfer, 87-1 (1965), 41.
- 5.22) R.L. Schacht & R.J. Quentmeyer; NASA TN D-7207, (1973-3).
- 5.23) Maynard.F. Taylor; NASA TM X-52437, (1968-6).
- 5.24) L.M.K. Boelter et al; NASA TN-1451, (1948).
- 5.25) Aerojet-General Corp; Rep. No. RN-S-0274, (1966-4).
- 5.26) R.C. Martinelli; Trans. ASME, 69,(1947), 947.
- 5.27) D.F. Dipprey & R.H. Sabersky; Int. J. Heat & Mass Transf., 6(1962), 329.
- 5.28) W. Nunner; VDI-Forsch., 455, B 22-5, (1956).
- 5.29) Maynard F. Taylor; NASA TM X-52437, (1968-6).
- 5.30) 新野ほか 4 名;第22回宇科技講演会論文集, (1978-10), 240.
- 5.31) 新野ほか 4 名; 航技研報告, TR-583, (1979-8).
- 5.32) R.L. Schacht ほか 2名; NASA TN D-2832, (1965-6).

第6章 供試体の切断検査

6.1 燃焼室形状変化

燃焼室形状変化の中で特に変化量の大きい箇所は, 熱負荷が最大になるノズル・スロート位置である。 スロート径及び平行部の製作時の検査寸法と, 燃焼 試験終了後の検査寸法を表 6.1 に示す。スロート面 積の収縮量は約12%にも及ぶ。平行部の燃焼室断面 積の収縮量は約3%である。

図 6.1 に表面粗さ計による燃焼室内の長手方向表 面形状測定値を示す。ノズル部(-52mm $\le x \le 0$, す。図 6.4は噴射器側,図 6.5はノズル部,図 6.6は

但しx=0はノズル・スロート位置)では内筒表面 に 0.5~0.8mmのピッチで±15μm程度の"うね り"が見られた。平行部においてはこのような現象 は見られない。約100 μm ピッチ, 高さ10 μm の波 形は内筒加工時の切削みぞであり、図6.2の溝はこ れに対応するものである。図 6.3 に内筒面が部分的 に高温にさらされて青黒く変色した様子を示す。

6.2 内外筒の接合状況および冷却通路の表面状態

内外筒の接合状況を表す写真を図 6.4~6.6に示

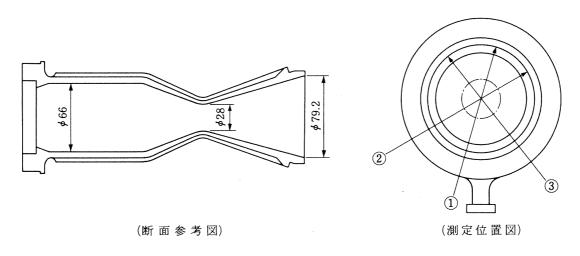


表 6.1 ノズル・スロート及び燃焼室平行部の寸法変化

製作時寸法(mm)		燃焼試験終了後寸法(mm)		
スロート径	平行部内径	スロ	ート径	平行部内径
27.99	65. 95	位置①	26. 505	65. 10
27.98	65. 94	2	26.435	64.85
		3	26. 315	65. 15

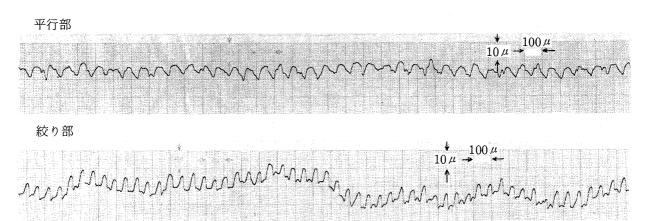


図 6.1 燃焼室壁形状

スロート部を示す。これらの写真から内外筒の接合 状況は極めて悪いことが分る。これは始めから接合 が部分的にしかなされていなかったことによるもの と,内筒の熱変形及び燃焼室と冷却ジャケット間の 圧力差によって接合部が剝離したことによるものと の2つの要因が考えられるが,図6.4, 6.5から見 れば,大半は始めから部分的にしか接合されていな かったものと見られる。これはまた図6.7で,隔壁 頂部で外筒と接合していたと見られる個所のロー材の痕跡は部分的にしか見られないことからも明らかである。またノズル・スロート位置で内外筒を貫通して壁温を測定していた熱電対の大半が,燃焼試験を重ねる毎に測定不能になったことは,内筒が収縮変形を起して接合部でのすき間がより増加したためと思われる。

次に冷却通路溝の状況を述べる。図6.7では溝の

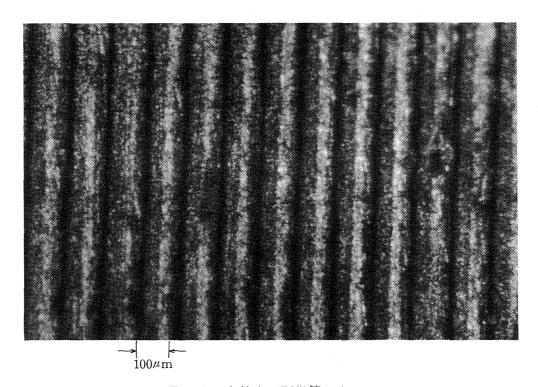


図 6.2 内筒表面顕微鏡写真

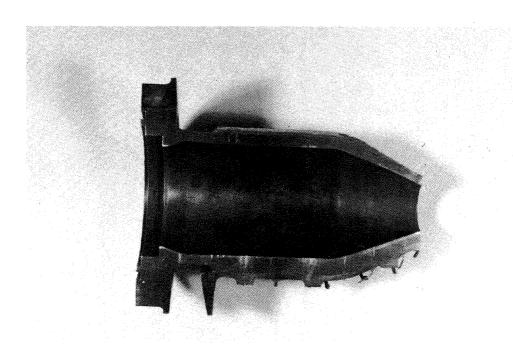


図 6.3 内筒面変色の様子

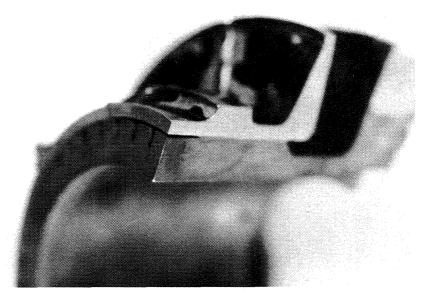


図 6.4 噴射器側内外筒接合状況

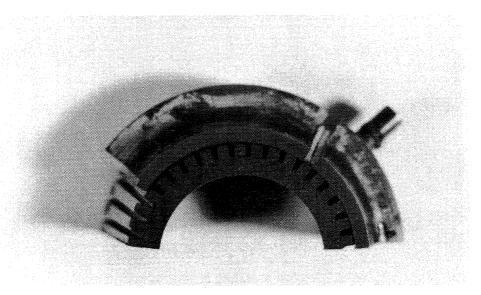


図 6.5 ノズル部内外筒接合状況

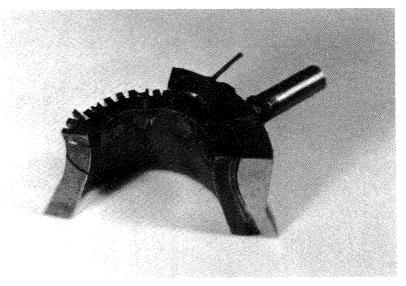


図 6.6 スロート部内外筒接合状況

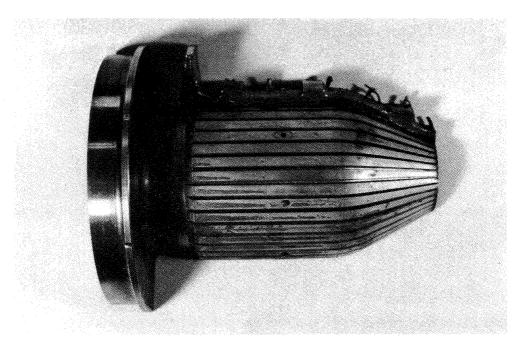


図 6.7 隔壁頂部での接合痕跡状況

表 6.2 冷却通路 C_V 值測定值

$$C_V$$
 計算式
$$C_V = \frac{Q}{273} \sqrt{\frac{G.T}{\Delta P (P_1 + P_2)}}$$

てこで Q; 15°C,1気圧の流量(m³/hr)

G; ガス比重(15°C,1気圧のairを1)

従ってGN2のGは0.97

T; 流体温度 297.2 ℃K

△P; 圧 損 (kg/cm²d)

 P_1 ; 入口圧力 $(kg/cm^2 a)$ P_2 ; 出口圧力 $(kg/cm^2 a)$

スリット AL 圧損(mm Hg) 流量(m³/Hr) $C_V / \overline{C_V}$ C_{V} Na 0.390 1 26.6 0.08790.753 23.3 2 0.0941 0.806 16.0 0.977 3 0.1140 15. 2 0.11675 14.3 0.1206 1.033 1.033 14.3 0.1206 6 7 14.4 0.1200 1.028 8 13.60.12351.058 13.6 1.058 9 0.1235 16.0 0.977 10 0.1140 13.6 0.1235 1.058 11 12 17.8 0.10780.924 13 18.8 0.10480.898 20.3 0.1001 0.858 14 16.3 0.390 0.1127 0.966

スリット Na	圧損(mm Hg)	流量(m³/Hr)	C_V	$C_V / \overline{C_V}$
16	13.6	0.390	0. 1235	1. 058
17	14. 0	1	0. 1219	1. 045
18	15. 3		0. 1164	0. 997
19	20.2		0. 1011	0.866
20	11.8		0. 1329	1. 139
21	13.2		0. 1256	ì. 076
22	17.5		0.1088	0. 932
23	13.2		0. 1256	1.076
24	17. 7		0. 1081	0. 926
25	13. 6		0. 1235	1. 058
26	17.2		0. 1097	0. 940
27	15. 3		0. 1164	0. 997
28	14.8		0. 1185	1. 015
29	12. 8		0. 1274	1. 092
30	14. 0		0. 1219	1. 045
31	18.8		0. 1048	0.898
32	16. 3		0.1127	0. 966
33	13. 3		0. 1249	1.070
34	12.5		0.1289	1. 105
35	15. 3		0. 1164	0. 997
36	18. 8		0. 1048	0. 898
37	12.0		0. 1317	1. 129
38	12.3		0. 1301	1. 115
39	15. 2	4	0. 1167	1
40	12.0	0. 390	0. 1317	1. 129

大:	気 圧	760/mm Hg
灵	温	24. 2 °C
Cv	の平均値	0. 1167

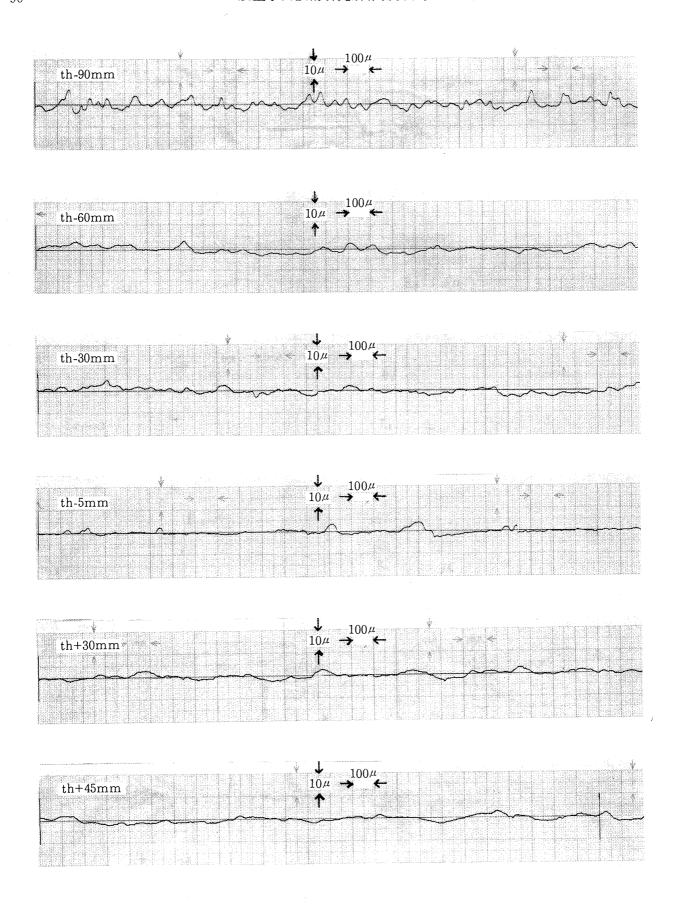


図 6.8 平均的な冷却通路溝の表面粗さ測定データ例

谷部の様子がはっきりしないが,ロー材の各流路表面への流れ込み状態は一様ではない。図 6.8 は平均的な冷却通路構の表面粗さ測定データである。図 6.9 に最も一般的な構表面の顕微鏡写真を図 6.10 にロー材の流れ込みが最も多い場合を示した。このように構表面の状態が一様でないため,表 6.2 に示す様に各流路の抵抗値のバラツキは大きく, C_V 側の最小,最大値は平均 C_V 値に対して $-15\sim26$ %に及ぶ。但し T_w 測定用のチャンネル6,7では平均 C_V 値に対す

る差異は約3%であり、データへの影響は問題にならない。

6.3 熱電対取付状況

熱電対 (T_w) 取付深さの設定位置は $0.5\,\mathrm{mm}$ であるが,実際に設置された深さの読取検査値を表 $6.3\,\mathrm{km}$ 示す。実測値は図面上の設定位置と大きく異なっている。また前述の図 $6.6\,\mathrm{mm}$ からスロート部 T_b 測定用熱電対の位置をスケッチして図 $6.11\,\mathrm{km}$ に示した。外筒表

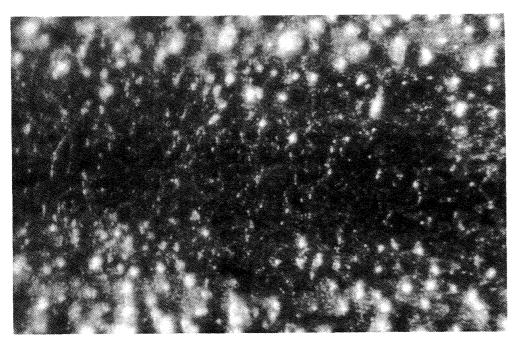


図 6.9 最も一般的な構表面顕微鏡写真

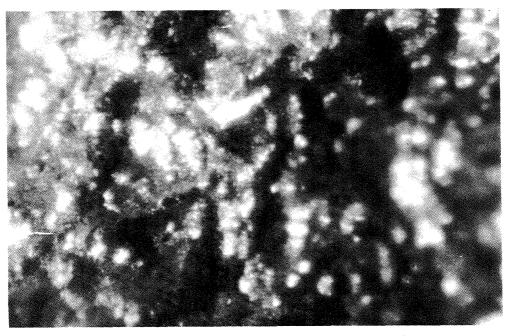
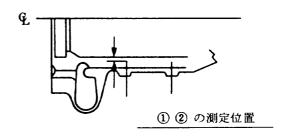
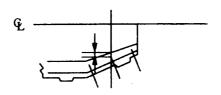


図6.10 ロー材の流れ込みが多い場合の溝表面顕微鏡写真

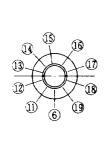
面から 0.5mmの位置が設定位置であるが、ほとんと溝の底部まで入り込んでいる様子が分る。熱電対の深さ方向位置は熱データ解析に対して極めて重大な影響を与えるものであるから、今後この種の取付方法は検討を要す。

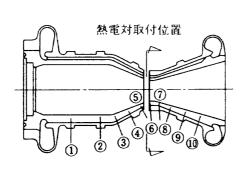
また設計上では熱電対の固定に使用した銀ローは

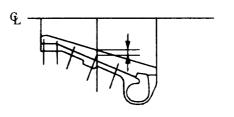

1170 K まで使用可能とされていたが,RUN~204 化 おいてスロート円周上のすべての熱電対取付箇所から銀ローが溶出している。これは RUN~204 の T_{wg} が 900 K 以下であることから,実際には 900 K 以下の融点のロー材が使用されていたためと思われる。

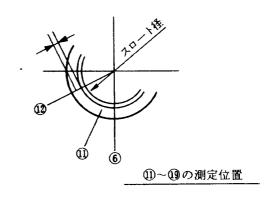

表 6.3 熱電対 (T.C)取付深さ測定値

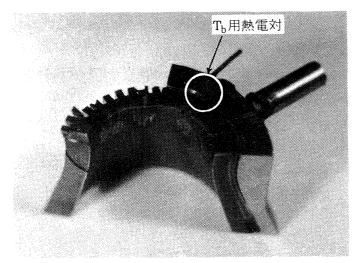
 Θ このデータにはT.C 先端の被服肉厚 t=0.64 mmが加算してある。


番号	取 付 深 さ (mm)	番号	取 付 深 さ (mm)
1	2.815	11	3.182
2	4.107	12	3.130
3	2.050	13	3.397
4	1.816	14	2.988
5	2.686	15	3.483
6	1.490	16	3.265
7	3.943	17	3.239
8	2.655	18	1.841
9	2.119	19	2.552
10	3.721		


下図は熱電対の測定位置を示す。




③④⑤の測定位置



⑥~心し測定生置

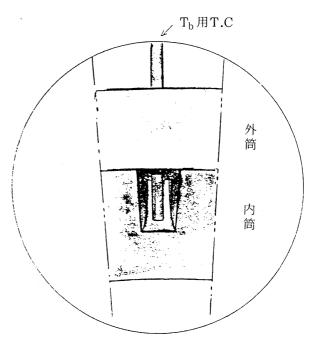


図6.11 スロート部流路断面スケッチ

第7章 結論

小型溝構造液水冷却燃焼器試作一号機による液水 独立冷却燃焼試験,および完全再生冷却燃焼試験を 行ない以下の結論を得た。

まず、燃焼特性については

① 設計点 (P_c =3.48 MPa, O/F=5.5, $T_{H_2,inj}$ =140 K) での特性速度および効率は 8 エレメント噴射器で

 $C^* = 2120 \; \mathrm{m/s}$, $\eta_C^* = 0.90 \pm 0.015$ 18 エレメント噴射器で

 c^* =2285 m/s , η_{c^*} =0.97 \pm 0.01 を得た。但し,噴射エレメント水素入口形状が丸穴の18 旧型とスリット状の18 改型の間には有意な差は見られなかった。

② これらの値は設計計画書および文献(2.1)の値にくらべて一様に低い値である。これは設計計画書においては燃焼性能に関与する噴射後の推進薬間の混合効率およびLO2蒸発効率を過大

に評価していることによるものと考える。

- ③ 混合比 $2\sim8$, 水素噴射温度 $65\sim300\,\mathrm{K}$ の試験範囲で、8 および 18 エレメント噴射器についてこれらの C^* 効率への寄与は、著者らが以前に得た $\mathrm{LO}_2/\mathrm{GH}_2$ (常温) 燃焼の場合と同様に、ほぼ噴射速度比によって表わされることが分った。
- ④ 再生冷却燃焼時に低混合比(O/F<3)で約 100 Hzの低周波振動燃焼が観察されたが,それ 以外の試験範囲ではほぼ安定な燃焼が行なわれた。
- ⑤ 燃焼性能に関して広い混合比範囲,水素噴射 温度範囲,及び噴射エレメント数の影響を表し うる燃焼計算モデルを用いて②の差異の説明を 行った。

次に冷却特性については

⑥ 一般に小推力の燃焼器においては再生冷却が 困難とされているが、冷却効率の高い溝構造燃 焼室の採用により設計点での完全再生冷却燃焼 試験を達成した。また強度上内筒肉厚は現在の ものより、より薄くすることが可能であること から、冷却能力としてはまだ十分な余裕のある こともわかった。

また冷却条件を広範囲に変えて実施した独立冷却燃焼試験の結果、以下のことがわかった。

- ① 熱伝達整理式 $(N_{u,s})$ に種々の補正因子を付加して計算を行う一般的設計手法によった場合,比較に用いた既存の $N_{u,s}$ が構構造燃焼室における熱設計式としてはすべて不適当であり,かつ設計上危険性の高いことがわかった。
- ⑧ 実験結果より、積分型のNu.sを基礎式とし、 一連の補正因子よりなる整理式を導いた。計算 値と実験値との一致はきわめて良好であり、士 25%の誤差内に全データの90%が含まれる。本 整理式は、近臨界領域も含め、より高圧の設計 条件にも適用できるものと期待される。
- ⑤ 冷却ジャケット内圧力損失は、コールドフロー試験にもとづいた流動特性に、Taylorの提唱する変物性効果を考慮することで十分な精度で予測することが可能である。これは著者らが粗面管を用いて行った電気加熱実験の結果と一致する。
- ⑩ 独立冷却試験時には種々の振動現象(0.1Hz ~ 十数 kHz)が観察されたが、冷却系固有の振動現象が多く、再生冷却時にはほとんど観察されなかった。またその変動量も小さいため、燃伝達率への影響も見られなかった。
- ① N字形の圧損・流量特性が得られ、同時にマルチチャンネルモード振動が観察された。この現象は蒸発管群に顕著に現れるもので、時として発熱体の焼損につながる。防止対策としては冷却ジャケット入口に十分な抵抗を挿入することが考えられる。
- さらに、燃焼器製作上の問題に関しては,
- ② 試験後、供試燃焼室の切断検査を行った結果、 冷却流路に多量のロー材が流れ込み、場所によっては流路底部にロー材が数 mm の厚さに付着 しているものもあった。結果として各流路間に ー15~+26%もの流動抵抗のバラツキを生じた。 さらに内、外筒の接合状況はきわめて悪く、特

にスロート部での剝離は冷却上非常に危険である。今後, 溝構造燃焼器の製作法については抜 本的な改善が望まれる。

これらの結論は、この種の溝構造燃焼室における 冷却特性に関する詳細な研究例がほとんど見当らな い現状では、今後予想される高圧燃焼器の熱設計に とって重要な知見を与えるものであると考える。

本研究は宇宙開発事業団との昭和52年度から56年度にわたる共同研究「小型構構造液水冷却燃焼器の研究」による成果の一部であり,多分割型水冷却燃焼器による熱負荷測定及び冷却水側熱伝達特性に関する研究報告及び構構造液水冷却燃焼器試作2号機による液水冷却特性に関する研究報告は別途行う予定である。

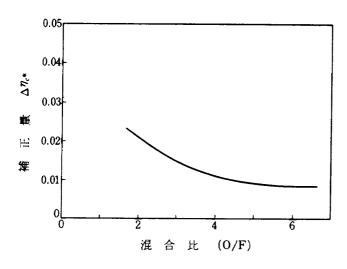
終りに、本研究を行うにあたり大塚貞吉前支所長には研究の計画および遂行の全般にわたる御指導をいただいたことを付言する。

付録 1. C^* 、 I_{sp} に対する補正

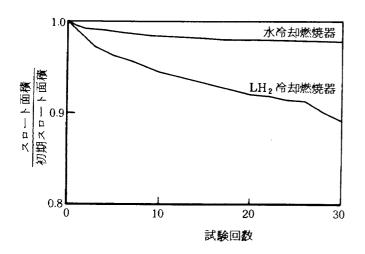
(1) 熱損失の補正

燃焼室壁を通して逃げた熱量の C^* 値への補正は次式により行なった。

熱損失補正係数 $f_{HL} = 1 + \frac{1}{2} \frac{\dot{Q}}{w_t C_p T_c}$


Q; 単位時間当り燃焼室壁を通して逃げた熱量(測定値)

w,;推進薬総流量


C。;燃焼ガス定圧比熱

 T_c ;燃焼ガス温度

試験範囲での補正量を付図1に示す。

付図1 C^* 効率に対する熱損失補正量

付図2 ノズル・スロート面積の変化

(2) ノズル・スロート面積変化の補正

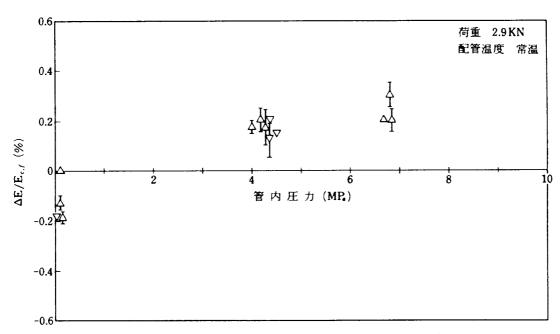
ノズル・スロート面積は燃焼試験回数とともに付図 2の様に収縮した。特に液水冷却燃焼器の場合の収縮量は大きい。 C*を計算する場合のノズル・スロート面積は各燃焼試験毎の実測面積を用いた。またノズル流出係数は文献 (付1)により

$$f_{DIS} = 0.989$$

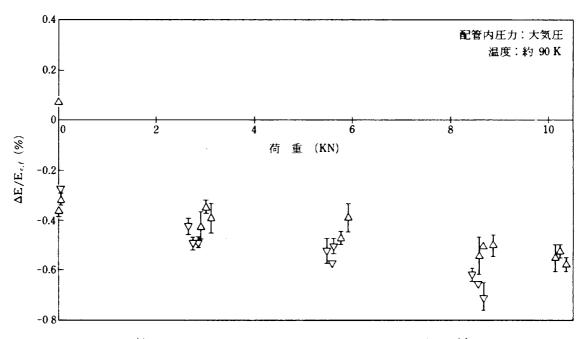
とした。

(3) 燃焼圧力の補正

 C^* 値計算に用いる燃焼圧力は噴射器フェイス・プ レート側で測定された圧力を用いて補正は行なって いない。これは同一内面形状の無冷却燃焼室を用い た燃焼試験において測定されたノズル縮り部入口上 流(フェイス・プレートから87.5 mmの位置)での 圧力が、噴射器フェイス・プレート側での測定圧力 に等しかったことによるものである。これによって 噴射器フェイス・プレート側における測定圧力をノ ズル縮り部入口における総圧力と見なし, さらに ノズル縮り部入口からノズル・スロート位置まで は等エントロピー変化が行なわれると仮定したと とによるものである。従って、もしノズル収縮部に おいて燃焼反応が持続する場合には等エントロピー 変化と見なせないから総圧の損失が起るが、この量 の補正は行なっていない。特に LOX 噴射流量の多 い混合比の高い場合には、ノズル収縮部においても 燃焼が行なわれると考えられるから、この場合には ノズル・スロートにおける総圧は下り、本報告の*C** 効率も低下することが考えられる。


(4) 推力測定値に対する補正

推力はフルスケール1トンの推力計測台によって 測定された。配管系の加圧,低温時におけるインプレース校正は行なっていないが,各々の推力測定値 に対する影響量は以下の様になる。すなわち配管内 圧による影響量は常温時,付図3の様になり,燃焼 試験時には管内圧力が約5MPaであるから


$$0.2 \times 10^{-2} \times 3 KN = 6N$$

である。一方,配管が低温になることによる影響量は付図4から

 $-0.4 \times 10^{-2} \times 10 KN = -40 N$

付図 3 推力計測台校正試験(推進薬供給配管内圧力の影響, ΔE ;校正用ロードセルと計測用ロードセル出力の差, $E_{c,f}$;荷重フルスケール時の校正用ロードセル出力)

付図4 推力計測台校正試験(推進薬供給配管低温時)

となるから,加圧低温時には+34Nの補正を行なうものとして,推力測定値に上述の値を一律に補正した。さらに,各燃焼試験における燃焼圧力は $P_c=3$. 72 \sim 2.87 MPa の範囲にあるため, I_{sp} 効率を求める際には $P_c=3$.48 MPa での I_{sp} に換算した値を次式 (f^{12}) によって標準化した。

$$I_{sp}' = I_{sp} \left(\frac{P_c'}{P_c} \right)^n$$
$$n \approx 0.0043$$

対 対

- 付1) F.E. Arndt and R.M. Williams; Space Storable Thruster Investigation, NASA CR-72495, 1969.
- 付 2) Sanford Gordon and Bonnie J.McBride; Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant, NASA MEMO 5-21-59E, 1959.

航空宇宙技術研究所報告679号

昭和56年8月発行

発 行 所 航 空 宇 宙 技 術 研 究 所 東 京 都 調 布 市 深 大 寺 町 1880 電話武蔵野三鷹(0422)47-5911(大代表)〒182

印刷所 株 式 会 社 東 京 プ レ ス 東 京 都 板 橋 区 桜 川 2 - 27 - 12