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ABSTRACT

This paper presents analytical expressions for the shock response
spectrum of an oscillator with any amount of damping which is subjected
to an arbitrary shock excitation. The residual shock spectrum is also
evaluated in an analytical manner when a rectangular, triangular or half sine

wave pulse is applied to the oscillator.
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1. INTRODUCTION

Dynamic responses of a structure sub-
jected to shock loadings are complex. The
shock response is determined by vibration
characteristics of the structure and the
type and severity of loading. In practical
design problems, the detailed time history
of the reponse is not necessarily a major
concern. The peak responses — induced
maximum displacement, acceleration,
strain and stress — are often more signifi-
cant.

A shock response spectrum is a plot of

the peak response of a single-degree-of-

* Received September 1, 1982
** First Airframe Division

freedom oscillator subjected to a specific
shock excitation; the spectrum is a func-
tion of the natural frequency of the
oscillator. The concept of the shock re-
sponse spectrum was originally developed
by Biot [1] in 1932 to examine the

effects of earthquakes on the buildings.
The shock spectrum approach has been
extended and applied to a large number of
engineering problems; for instance, air-
craft landings [2, 3], launching and sepa-
ration of sub-structures of space-vehicles
[4—17], responses of an earth-moving vehi-
cle [8], package cushioning {9], nuclear
explosions [10, 11] and seismic designs
[12, 13]. Figure 1 shows typical shock
spectra of a half-sine pulse for different
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Fig. 1  Shock spectra of a half-sine pulse [9].

damping ratios [9]. The characteristics of
the shock force is often not well defined
at design stages. The spectrum is not as
sensitive to change of the force as the
time history of the response. This fact
was discovered by Shappiro and Hudson
[14], and confirmed by Fung [15]. From
these spectra obtained for several types
of the shock forces, the values for the
mass, spring stiffness and damping of the
system can be selected so that the re-
sponse does not exceed a specified limit.
If the system parameters are given, an
allowable maximum amplitude of the
shock force can be determined.

The spectra for some simple shocks
have been evaluated analytically [16, 17].
Few analytical examinations of the peak
response to an arbitrary shock were, how-
ever, made particularly for damped sys-
tems. Analog and digital computers were

used to calculate the spectra. Charts of
the shock response spectra of a linear,
single-degree-of-freedom system are avail-
able in Refs. 18—21 and 26. Review
papers on the shock spectrum approaches
have been written by the present author
on a three year basis [22, 23].

As mentioned above, few shock spec-
tra for the damped system has analytically
been evaluated because their response
characteristics is very much complicated.
However, it is a conservative design to
calculate the peak response without the
damping being taken into account, since
the damping reduces the response of the
structure. In addition, the effect of damp-
ing in most engineering structures in con-
sidered to be relatively small. However,
for instance, airplanes are equipped with
oil dampers with large damping in the
landing gears. Many instruments are
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mounted on shock absorbers. Some indi-
cators for dynamic measurements are
designed to damp critically. The systems
which will encounter severe shock load-
ings are installed with absorbers with large
damping. Hence, it is often very import-
ant to evaluate the effect of damping on
the shock response spectrum. In this
paper we will first present analytical ex-
pressions for the peak response of an
oscillator with any amount of damping,
and evaluate the peak response of the
oscillator subjected to typical forces of
simple patterns.

2. LINEAR SYSTEMS

The equation of motion of a single-
degree-of-freedom system with spring, Kk,
subjected to a force shock, af(t), (Fig. 2)
is written as

X+2nwx+ w?x =%f(t) (1.1)

where 1, w and m are, respectively, the
damping ratio, natural frequency and
mass. The equation of motion for a

ground shock is
V+2nwy +w?y=—§=—af(t) (1.2)

For the force shock, x is the displacement
of the mass. For the ground shock, y and
s are, respectively, the relative and ground
displacements. The absolute displacement,
x, of the mass is
xX=y+s (2)

The amplitude of the shock loading is
determined by the parameter a, because

ft) s Ofor 0< t < ¢,

f(t)=0fort< Oandt > t, (3)
and max{f(t)}=1f(t )=1
o<t<t,,

faf

T7T7/T7r777
(b)

Linear system models;

(a) force shock,
(b) ground shock.

Fig. 2

In these equations t, is a duration and t,
is a rise time. If f(t) rises monotonically to
a peak value and falls back to zero, it is
called a simple pulse [24]. The impact
force of a typical airplane landing is
known as the simple pulse [2].

The solution of Eq. (1.1) for an initial
condition x(0) = x(0) = 0 is described by
Duhamel’s integral:

Ex®) - p g yince — )ae (4.1)
=/ f(t — &) h(¥)dt (4.2)
= X(t) (4.3)

where h(t) is an impulsive response, and
h(t) =—‘ﬁi e-nwt sin (Bwt) (5)
B=(1—n*)"? (6)

X(t) is a ratio of the displacement to the
maximum static deflection. The time, t,,
at which the response reaches the maxi-
mum or minimum peak is given by

dX (t) =
dt |t=t, 0 (7
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The nondimensional peak displacement
X(t,) is a function of the natural frequen-
cy, Sg(w); that is, max{X(t)}=X(t,) =
Sy(w). A plot of Syx(w) against a frequen-
cy parameter, wt, /T or wt,/m, is called
the displacement spectrum, amplification
spectrum, or shock response spectrum.
The velocity and acceleration spectra are
defined as the peak values of X(t) and
)'('(t), respectively. The peak response,
which occurs before or after t=t,, is
called, respectively, the primary or resi-
dual shock spectrum.

3. SHOCK SPECTRUM OF DAMPED
SYSTEMS SUBJECTED TO AN AR-
BITRARY FORCE

The general expressions for the re-
sponse to an arbitrary excitation, f(t), is
given by Egs. (4). The characteristics of
the response depends on whether n <1 or
not.

3.1) n<1, i.e., Damping less than critical.
(i) Peak response reaches before the end
of the force, i.e., t;<t, with 0(to)< 1.

Differentiating Eq. (4.1) with respect to

time, we have
. w2y
X(t) = Sh'f(g)emet-d

x [B cos{Bw (t—¥)} — 7 sin{fw(t — )} dE
If w<< 1, then
X(t) = w2 [H(E) 1w (t—%)12dE (8)
The time, t_,
X(t,) = 0.
It is noted that this cannot occur if

is a root-of Eq. (8) when

S[Hf(E)de> 0 fort<t,

(ii) Peak response reaches after the end of
the force, i.e., t, > t, with 0(ty) <1,
Eq. (4.1) may be written as
X(t) =5 et Asin (Bt +61) (9)

where

2

A =[{[Pf(x)ent cos (Buwk)dE)

1/2

+{ [of(g)entsin (Bwt)dt} ]
(10.1)

tan 6, = —f"°f(f)enwt sin(fwt)dE
+ ff(£)e™k cos(BwE)dE  (10.2)

Differentiating Eq. (9) with respect to t, we
obtain

B 2
X(t) = ‘g— Aenwtcos(fwt + 0, +6%)
(11)
where
tan 6 =lg— for0<6’l"<% (12)

From Eq. (11), we have an expression for t, :
wt, =§-%7r — (68, +6F)1 />0

forn=1, 3, ... (13)
Simplified results can be obtained when

w<1.1f w~0, then A tends to| /. f(¢) d¢|,
while 6, tends to O or m according to the sign
of [*f(£)dt. Hence, from Eq. (13),

wt, = (—g —6¥)g forn=1or3 (14)
Substituting Eq. (14) into Eq. (9) yields

IX(t)lmax = €xpl— (75— 0 )n/B}

x | [y f(&)d| (15)
From Eq. (15), we have

L X(V)]p = exD1 (5= 61/8)

x| [tof(¢)dg| (16)
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If n < 1, Eq. (15) reduces to

1X(t) ax = @ €xpi—nm/2} [t £(£)dE]
(17)

If n tends to 1, then Eq. (15) becomes

1X(t) | e = @ €1 [0 f($)dE| (18)
Eq. (17) is equivalent to Eq. (7) of Ref. 24.

3.2)'n>1,i.e., Damping greater than critical.
A response to an arbitrary excitation,
f(t), may be written as

X(t) = (w/B) [ f(£) exp!—nw(t — &)

x sinh {yw (t —§)}d¢ (19)
where
Yy =(n*—1)% (20)

(i) In caset <t,,0(t,) < and w<1, we
have the same expression as Eq. (8).
(ii) In case tp> t,:

We have
X(t) = (w/v) Be™“!sinh (ywt —0,)
(21)
where

B = [{[tf(s) et cosh(ywi)dE)? —

{[ff(£) ent sinh(ywt)dE)? 1% (22.1)

tanh §, = [*of(¢) e™ ¢ sinh(yw§)dg

+ [ f(£) ent cosh(ywi)dE  (22.2)
Differentiation of Eq. (21) with respect to t
yields

X(t) = — (w?/7)B et

x sinh(ywt — 0, — 65F) (23)
where
tanh6F =y/n (24)
From Eq. (23), we have
wt, = (02 +63)/y (25)

Substituting Eq. (25) into Eq. (21) yields,
for arbitrary w,
|X ()| ax = @B expi—n(8,+03)/v!
(26)
If w<1,60, tends to zero, and

B~ | [t f(£)dt]

Hence,
1X(t) | pax = @ t€XD(— 165 /7)}
x| [te £(£)dé| (27)

As n approaches 1, Eq. (27) reduces to Eq.
(18).

4. FORMULAE FOR PEAK RESPONSE
TO SHOCK PULSES OF SIMPLE
PATTERNS

Next, we will present analytical ex-
pressions for calculating the residual
shock spectrum of a damped system when
the shock pulses applied are of such forms
as rectangular, triangular and half-sine
waves.

These pulses which are zero except for
the first cycle or so, can easily be con-
structed by the addition or subtraction of
semi-infinite periodic or step functions,
F(t) for t>0. For instance, if F(t) is a step
function with rise time t,,, i.e., F(t)=1 for
t 2 t,, , then the function defined by

fo(t) = F(t) —F(t +¢,) (28)

vanishes for t > 2t . The dimensionless

response X,(t) to the excitation given by
Eq. (28) is written from Egs. (4) as
Xo(t)= [T F(£)h(t—%) d&
— [ F(t—t, Yh(t—£)ds
= [t F(t—)h()ds
— [t P(t—t,, —£)h(F) di (29.2)
=X(t) — X(t—t ) (29.3)

(29.1)

4.1) Shock spectrum of single and double
rectangular wave pulses

For the single pulse case, F(t) in

Eq. (28) is represented by an ordinary unit

step function. Let us introduce an auxi-
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liary parameter, o, and
_| 1 for single rectangular pulse
{ 2 for double rectangular pulse

(30)

Then, the function for single and double

rectangular excitations of durations t,

and 2t,, respectively, can be given (Fig. 3)

by

£ (t) ={1(t)—1(t—to)} —(a—1)
X {1(t—to) — 1(t — 2t0 )} (31)

where 1(t) denotes the unit step function.
Taking into account the response to the
step function 1(t) which is, for instance,
described at p. 106 of Ref. 25, the
response to f, by Eq. (31) is written as

X, (t) = (e [B)A% sin(Bwt + 0, +af, )
(32)
where
sin ¢, =—f, cos¢; =—"1 (33.1)
A ={1—2exp (nwty) cos (Bwt,)

+exp (2nwte )} ” (33.2)
tan ¢, = exp(nwty)sin (Bwty)
+{1 — exp(nwto) cos(Bwto)} (33.3)

Differentiation of Eq. (32) with respect to
t yields
X, (t) = (w/p) A%emtsin(fuwt +ap,)

(34)
Therefore, we have
wt, =(nm —a¢,)/B (35)
£ (04
1
t’
0 to 2,

—— — s o m—

Fig. 3 Single and double rectangular
pulses.

Substituting Eq. (35) into Eq. (32) gives
X, (V) max = €XP(— nwt ) A”
x sin(¢, + nr}/B
=(—-1)™1 A" exp{—m(nn—ag3)/B}
(36)

4.2) Shock spectrum of single and double
triangular wave pulses

In order to make use of Eq. (28), it is
necessary to construct a step function,
F, (t), with initial slope 1/t_, and rise time
t,, from a linearly increasing function
F, (t)=t/t,, (Figs. 4). Then, substitution
of F(t)=F;(t) into Eq. (28) yields a
triangular pulse of duration of 2t .

Let

_ { 1 for single pulse

\2 for double pulse (37)

For the single pulse case, the response is
written as

£ (0!
1+
L
0 2ty bty
N/
V

Fig. 4a Single and double triangular pulses

JOL X OV
/ /’Fz(t-tm)
11 /, ,
// F1(t)
/ t

0t
Fig. 4b F,(t) and F,(t).

This document is provided by JAXA.



Effect of Damping on Shock Response Spectrum 7

X, =X, | = | £ (—0)R(E)

—2[*m (t—t, —F) h(¢)dt

+ [¥2m (t—2t,-E)h(E)dE] (38)
Differentiation of Eq. (38) yields

X (1) =g —[f,  B(e)de

— [¥m h(g)dg) (39)

-2t

Similarly, the response for the double pulse

is given as
X, (t) =X, () — X, (t—2t,) (40)
From Xa = 0, we obtain
wt, = E%B en() (41)
where
A=[1—a—1) expi2(n—if)wt,} ]
x [1—exp (n—if)wty 11?/(n—iB)
(42.1)
B=[1—{o—1) exp|2(n+if)wt_} ]
x [1—expl(n+iB)wt,, } 1/(n+iB)
(42.2)

Substitution of Eq. (41) into Eq. (38) or
(40) gives the peak value of the response
to the single or double pulse, respectively.

4.3) Shock spectrum of single and double
half-sine wave pulses
Let the excitation be, (Fig. 5),
f (t) =sin(pt) for 0<t<at, (43)
where

p=m/(2t,) (44)
and

o = {2 for single half-sine

4 for double half-sine (45)

It is obvious that the response is written as

X, (t) = [*msin|{p(t—¢) I h(¢)dE  (46)

£, )}
il

0 2t \ /
\
N
Fig. 5 Single and double half-sine
pulses.

From )'(a (t) = 0, we have

- _,]_'. —
t, = o n() (47)
where

- 1—exp[—{nw+i(p+fw)iat ]

A nw+i(p+fw)

_ l—exp[—{nw+i(p—fw)lat, ]
nw+i(p—fw)

(48.1)

B= 1—exp[—{nw—i(ptfw)lat, ]
nw-—i(p+pw)

_ 1—exp[—{nw—i(p—Bw)}aty, ]
nw—i(p—pw) (48.2)
Substituting Eq. (47) into Eq. (46), we have

X, (t)__ = X_(t,) (49)

5. CONCLUDING REMARKS

The analytical expressions of the
shock response spectrum for an arbitrary
shock excitation are obtained with
damping being taken into account. The
spectrum is also analytically evaluated
when the applied forces are of single or
double rectangular, triangular and half-
sine waves.
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