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Abstract—For spaceborne polarimetric synthetic aperture 
radar (SAR), it is important to ensure the removal of both 
polarimetric system distortion and the effect of Faraday 
rotation. This paper proposes a new calibration method to 
derive the system distortion using polarization orientation 
(PO) induced in built-up areas and applies to Phased-
Array-Type L-Band SAR (PALSAR) calibration. Faraday 
rotation is corrected by the circularpolarization-based 
method from the distortion matrix (DM)-calibrated data. 
The derived DMs do not coincide with those by the Japan 
Aerospace Exploration Agency (JAXA), but our 
calibration results compare well to JAXA’s results in PO 
angles and calibrator’s responses. The two results satisfy 
polarimetric calibration requirements, and the cross-
polarized isolation improves by more than 5 dB after 
Faraday rotation correction following DM calibration—
even in the case of small Faraday rotation (−2◦ to −0.5◦). 
The proposed method is robust to noise and is useful when 
using an area of mixed polarimetric response for 
calibration. This method is also applicable to a large 
crosstalk system and the case of large Faraday rotation. 
 
Index Terms—Faraday rotation, Phased-Array-Type L-
Band Synthetic Aperture Radar (PALSAR), polarimetric 
calibration, polarization orientation (PO), urban area. 

 

1. INTRODUCTION 

 
The Phased Array type L-band Synthetic Aperture Radar 
(PALSAR) onboard the Japanese Advanced Land 
Observation Satellite (ALOS) has been successfully in 
orbit since January 2006. PALSAR has a quad-
polarization (fully polarimetric) operation mode and full 
scattering matrix scenes have been provided to the user 
community. To extract relevant information about a target, 
polarimetric calibration focusing on removal of the 
polarimetric system distortion is necessary. Extensive 
efforts have been devoted to this matter. Polarimetric 
calibration methods available in the literature can be 
categorized into three major groups: 1) methods based on 
point targets with known scattering matrices [1]-[3]; 2) 
methods based on distributed targets with known 
scattering characteristics [4], [5]; and 3) methods that use 
one or more trihedral corner reflectors and natural targets 
[6]-[8][9]. At present, van Zyl’s [7] and Quegan’s [9] 

methods belonging to the third group are widely applied 
to polarimetric calibration of airborne SARs, such as 
AIRSAR [10], EMISAR [11], E-SAR [12] and Pi-SAR 
[13], [14]. On the other hand, recently several new 
methods based on polarimetric characteristics of targets 
have been proposed. For example, one method uses 
symmetric target tilt angles [15], another introduces a 
concept of orientation angle preserving [16] and this 
author proposed a method to use polarization orientation 
angles in built-up areas [17].  
 
In addition, PALSAR has a problem of Faraday rotation 
relating to low frequency (L-band). It is suggested that a 
Faraday rotation of 30±10° provides a reasonable 
explanation of some anomalous scattering behavior 
observed by JERS-1 L-band SAR over the Amazon 
rainforest [18]. One-way Faraday rotations exceeding 5° 
are likely to significantly reduce the accuracy of 
geophysical parameter recovery, while at solar maximum, 
75% of the orbit is affected by one-way Faraday rotation 
over 5° [19]. The maximum value for Faraday rotation 
angle is estimated to be 40° at L-band; the Faraday 
rotation may be a significant source of measurement error 
even if the system distortion is well-calibrated [20]. 
Therefore, polarimetric calibration of PALSAR is more 
critical than that of an airborne SAR. Recently methods to 
estimate and correct Faraday rotation were studied [21] 
and a robust method is shown in [22] and [23].  
 
This author proposed a new approach using polarization 
orientation angles in built-up areas for polarimetric 
calibration including Faraday rotation correction [17] and 
[24]. In the following section, we apply this new approach 
to calibrate the polarimetric PALSAR system. A system 
distortion model including Faraday rotation is addressed 
in Section 2. The calibration approach using polarization 
orientation, calibration equations and separation of the 
system distortion matrices and Faraday rotation angles are 
described in Section 3. The PALSAR calibration result is 
presented in Section 4.  
 

2. SYSTEM MODEL AFFECTED BY FARADAY 

ROTATION 

 
The polarimetric PALSAR system affected by Faraday      

© 2009 IEEE.  Reprinted, with permission, from [H. Kimura, Calibration of Polarimetric PALSAR Imagery Affected by 
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rotation can be modeled as the following nonreciprocal 
distortion system:  
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where O is the observed scattering matrix, S is the 
Scattering matrix, F represents the one-way Faraday 
rotation matrix [19] and [21], R and T are the receive and 
transmit distortion matrices, respectively, and N is the 
noise matrix. The matrices R and T include cross-talk 
(off-diagonal) terms rij and tij (i ≠j), which are usually 
expected to be small compared to the diagonal terms rii 

and tii, but are not neglected in this article. A Faraday 
rotation angle  in the matrix F is approximated by [19]  

]radians[seccos 2
0 fBKN f   (2) 

Where K is constant of value 2.365×104, Nf is the total 
electron content (TEC) in TEC units (TECU) of 1016 
electrons per square meter, B is the magnetic flux density 
in Tesla,   and 0 are the angles the wave normal makes 
with the earth’s magnetic field and the downward vertical 
respectively, and f is frequency in Hz. The magnetic field 
factor 

0seccos B  is calculated at a constant height of 
400 km. In this article, we define the unit horizontal 
polarization vector h as v×k from the unit vertical 
polarization vector and the unit incident direction vector 
(see Fig. 1). The incidence plane is defined by the line of 
sight direction and by the z axis (i.e., the y-z plane in Fig. 
1). In (1), the positive Faraday rotation is defined in a 
clockwise direction when looking toward the radar.  
 Equation (1) can be rewritten as  
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where RF and TF are combined matrices of Faraday 
rotation and the receive and transmit distortion, 
respectively (equivalent distortion matrices). This has the 
same form of (1) with no Faraday rotation, which is the 
case of an airborne SAR system. The diagonal terms of 
the matrices R and T are usually very large compared to 
the off-diagonal terms. However, the off-diagonal terms of 
the matrices RF and TF increases when the Faraday 
rotation angle increases. These terms have the same effect 
of the increase of cross-talk. If the additive noise is 

negligible, calibration can be equivalently carried out 
using the following equation: 

1

F

1

Fc OTRS
  (5)

Given the matrices RF and TF and the Faraday rotation 
angle , the matrices R, T and F can be derived from the 
relation of (4), and then 

1111  FOTRFSc
 (6) 

 
3. POLARIMETRIC CALIBRATION USING 

POLARIZATION ORIENTATION 

 

The methods in [6]–[9] classified into the third group in 
Section I are widely used for polarimetric calibration, but 
they employ several assumptions such as small system 
cross-talk, scattering reciprocity and complete 
uncorrelation between the co- and cross-polarized 
backscatter of azimuthal symmetric targets. In addition, 
Quegan’s method expects areas used for calibration to 
have much larger co-polarized backscatter than the cross-
polarized one. In reality, the careful selection of 
calibration areas is often required. When Faraday rotation 
increases, the equivalent system cross-talk increases. Even 
with a zero cross-talk system, the Faraday rotation angle 
of 5° induces an equivalent 15 dB cross-talk from (1). 
Therefore these methods must have problems under 
Faraday rotation due to deviation from the assumptions. In 
this section, we introduce a new method to calibrate 
polarimetric SAR using polarization orientation in built-
up areas. The polarization orientation in built-up areas is 
briefly reviewed, followed by the derivation of equivalent 
distortion matrices, separation of Faraday rotation and 
calibration of general scenes.  
 
A. Polarization Orientation in Built-up Areas  
The polarization orientation angle is defined as the angle 
between the major axis of the polarization ellipse and the 
horizontal polarization axis. It is known that terrain slopes 
induce a polarization angle shift , which is the angle that 
rotates the incidence plane about the line-of-sight to the 
surface normal by the following equation [25]:  






sincostan
tantan


  (7) 

where tan is the azimuth slope, tan is the slope in 
ground range direction, and  is the radar incidence angle. 
The incident direction and the vertical polarization are in 
the incidence plane. Note that is positive when the 
azimuth slope lies in the first and third quadrants of the h-
v plane and negative when it lies in the second and fourth 
quadrants.  
 For polarimetric data represented by scattering 
matrix  
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The measured scattering matrix after the rotation by  is  
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Note that in this article the direction of the rotation is 
opposite to [25] and [26].  
 Lee et al. compared three estimators of the 
polarization orientation angle and attributed the soundness 
of the circular polarization method [26]. It can be 
explained by the fact that this algorithm employs only an 
assumption of reflection symmetry. The covariance matrix 
gives the following relation:  

4**~~ j

llrrllrr eSSSS   (10) 

where  indicates averaging. Note that the argument in 
(10) is opposite to that in [26] due to the definition of  
(9). For a reflection symmetrical medium, <SrrS

* 
ll> 

becomes real in value  
  44 22*

hvvvhhllrr SSSSS  . (11) 

For scattering from sloping natural terrain (11) is normally 
negative [26], therefore the estimate of orientation angle 
by the circular polarization method is 

  4~~Arg *
llrr SS . (12) 

 Polarization orientation angle shifts can be seen 
not only in rugged terrain but also urban areas. Those in 
built-up areas can be explained by double-bounce 
scattering ground-wall and wall-ground. From the 
scattering model of built-up areas, the polarization 
orientation angle shift in built-up areas is given as [27] 
and [28]  






cos
tantan 

  (13) 

where is the wall or street orientation angle, and  is the 
radar incidence angle (see Fig. 1). This relation suggests 
that urban scatterers are in reflection symmetry.  
 
B. Derivation of the distortion matrices  
The basis of our calibration method is very simple and is 
that two polarization orientation angles from the two 
combinations of polarizations (HH, VV and HV) and (HH, 
VV and VH) must be identical after calibration in built-up 
areas [17] and [24]. Here we need not know a value of the 
true polarization orientation angle. The two circular 
components are  
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We have two possibilities for xyS
~

, that is hvS
~

 and vhS
~

. 

Therefore, the following must be satisfied after calibration 
in built-up areas.  

   
vh
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where the suffix xy of   indicates that the xy component 
is used. This is similar to identical cross-polarized 
backscatter but not exactly, because the polarization 
orientation angle is a function of three linear polarizations.  

 
The proposed method to derive distortion matrices has the 
following schemes. After calibration,  
1. Two possible polarization orientation angles in built-

up areas must be identical,  
2. In built-up areas, reciprocity is satisfied and two sets 

of cross-polarized power are same under a high S/N 
state,  

3. Correlation between the co- and cross-polarized 
backscatter for surface scattering targets not always 
becomes zero, but small,  

4. For trihedral corner reflectors and/or other standard 
targets, co-polarized channels are balanced.  

 
So far urban areas have not been considered as calibration 
targets, but the proposed method uses them positively. An 
advantage of this method is its robustness to noise. In 
contrast to other well-known methods [6]-[9], this method 
does not impose a complete uncorrelation between the co- 
and cross-polarized backscatter for surface scattering 
targets and a small system cross-talk. According to the 
above schemes, we introduce the following functions 
using the calibrated scattering matrix terms:  
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4321 fffff   (16) 
where BA, SS and SC mean built-up areas, surface 
scattering areas and standard calibrators respectively, is 
the polarization orientation angle, sgn is a sign function, w 

in f4 is a weighting parameter (10 in this study), NSC is the 
number of used calibrators (1 in this study) and (u,v) 
represents the correlation coefficient between u and v  

***),( vvuuuvvu  . (17) 

The suffix xy of (u,v) and  in f1 indicates that the xy 

component is used to calculate them. Functions f1 to f4 
correspond to the above schemes 1 to 4. For f1 (scheme 1), 
cross-correlation coefficients are used instead of 
polarization orientation angles so that a built-up area with 
higher coherency gets more weight. The sgn function in f1 
is introduced to prevent them from running into opposite 
signed numbers. Again note that we don’t need the precise 
value of each polarization orientation angle. The 
derivation of distortion matrices can be expressed as a 
minimization problem of the summed function f. To solve 
this problem, we employ simulated annealing [29], which 
is an iterative stochastic relaxation technique for the 
global optimization. This method has been known to have 
a relatively low risk of running into a local minima 
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compared to other optimization algorithms, and has been 
applied to various fields such as restoration of 
polarimetric SAR images [30], unwrapping of SAR 
interferograms [31], and atmospheric correction of 
hyperspectral data [32], among others. After simulated 
annealing optimization, the equivalent distortion matrices 
including Faraday rotation effects TF and RF are derived.  
 
C. Separation of Faraday rotation angles and distortion 
matrices  
We assume stable system distortion with PALSAR and a 
variable Faraday rotation angle depending on observation 
time i. From (4), it seems that given more than two sets of 
independent measurement of the equivalent system 
distortion matrices TF(i) and RF(i) (i ≥2), the system 
distortion matrices T and R and the Faraday rotation angle 
(i) could be separated. However, it is not the case.  
 
The Faraday rotation angle can be written as,  

)()( 10 ii  . (18) 
where 0 is a biased term and 1(i) is a variable term at 
observation time i. From this, the one-way Faraday 
rotation matrix can be rewritten as,  
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These equations mean that the one-way Faraday rotation 
matrix F(i) can be the product of two matrices F(0)F 
(1i) or F (1i)F(0). From (4) and (19), we have  
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where RF0RF(0) and TF0F(0)T are distortion 
matrices involving the bias term of Faraday rotation. 
Hence, if N sets of TF(i) and RF(i) are given (N≥2), TF0, 
RF0 and 1(i) (i=1,…N) can be analytically resolved by a 

 
 
Only in the case of 0=0, exact Faraday rotation angles 
are resolved because of (i)=1(i). However, that is not 
guaranteed. The number of pairs of 0 and 1(i) 
satisfying (18) will be innumerable. Solutions of 0 and 
1(i) by a least square method will be converged to 
arbitrary values minimizing the least square error by 
chance. If one or some datasets are altered to others, the 
solutions 0 and 1(i) corresponding to remaining 
datasets may change. Therefore (20) means that unique 
separation of the Faraday rotation and the system 
distortion matrices is impossible in the presence of both 

Faraday and system cross-talk effects. In this study, 0 is 
differently estimated as shown in IV. When the bias term 
0 is determined, the system distortion matrices are  
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D. Calibration of general scenes  
Once the distortion matrices are determined, the 
calibration of general scenes can be performed in a 
straightforward way. System distortion is first removed 
from the observed data. 

11  OTRZ  (22) 
Next, the Faraday rotation angle is estimated by the 
method based on the correlation of circular cross-
polarizations [33], known as a robust method [22] and 
[23].  
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Finally, polarimetrically calibrated data removing the 
Faraday rotation is obtained.  

)()( 11  
ZFFSc

. (25) 
 

4. PALSAR CALIBRATION 

 
The method described in III is applied to PALSAR scenes 
of JAXA’s level 1.1 products calibrated by JAXA. 
Parameters of distortion matrices used for JAXA’s 
calibration are stored in the leader file. Before applying 
our calibration method, JAXA’s calibration was removed 
and uncalibrated scenes were recovered.  
 
A. The system distortion  
To derive sets of TF and RF, four calibration site scenes in 
Japan were used. One Tomakomai scene from a 
descending orbit contains a JAXA’s 3 meter trihedral 
corner reflector as a calibrator. Three Gifu scenes from 
ascending orbits contain a 2 m trihedral corner reflector 
and a 1.0 m × 3.6 m flat plate as calibrators. While the 
maximum RCS of a 2 m trihedral corner reflector is 30.6 
dBm2 for PALSAR (23.5 cm wavelength), that of a 1.0 m 
× 3.6 m flat plate increases to 34.7 dBm2. Taking into 
account that an azimuth of SAR illumination is much 
more stable than its elevation, the 1.0 m side was aligned 
with the range direction during deployment. The 
approximate half-power beam width is 1.9° in azimuth 
and 6.7° in range. Owing to a careful orienting the flat 
panel to the PALSAR’s illumination direction, it was 
imaged more brightly than the trihedral corner reflector in 
all three Gifu scenes. The flat panel was therefore used as 
a calibrator for the Gifu scene.  
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The PALSAR scenes are displayed in Fig. 2. In the Gifu 
and Tomakomai scenes, ten 9 × 45 pixel and six 16 × 80 
pixel areas are respectively selected in both built-up and 
low co- and cross-polarized correlation areas. Their 
locations are shown in Fig. 2. Built-up areas are selected 
so that the number of areas with positive and negative 
street orientation angles becomes the same, with their 
angles as far away from zero as possible. It is easy to 
discriminate positive and negative street orientations from 
street patters in the PALSAR amplitude images. 
Furthermore, referring street maps will make certain it. 
Figs. 3(a) and 3(b) show two polarization orientation 
angles from an uncalibrated scene of Gifu and 
Tomakomai respectively, in which the difference of the 
two angles is obvious. To improve a throughput of the 
simulated annealing optimization, the following constraint 
is introduced expecting the small Faraday rotation and 
small cross-talk:  

0 <|RFii
|<1.5, | RFij

|<0.2(ij), |TFii
 |<1.5 AND 

|TFij
|<0.2 (ij) 

This must be changed in case of large Faraday rotation 
and/or large cross-talk. Four sets of distortion matrices, TF 

and RF, affected by the Faraday rotation obtained by each 
optimization differ from each other because of varied 
Faraday rotation effects.  
 
Next, a least square method is applied to separate TF0, RF0 

and ifrom four sets of TF and RF.  





























0277.07237.00077.00285.0
0141.00509.00000.1

4196.08982.00052.00305.0
0262.00241.00000.1

jj

j

jj

j

F0

F0

R

T
 (26) 

The four Faraday rotation angles  are given in the third 
column of Table I. If estimates are good, these separated 
Faraday rotation angles should be equal to those found by 
the circular-polarization-based method ((23) and (24)) TF0 

and RF0 calibrated scenes, shown in the fourth column of 
Table I. The maximum difference is 0.65° in the 
Tomakomai case.  
 
As described in III-C, the bias term of the Faraday 
rotation angle 0 may be nonzero. To estimate 0, we 
compare the Faraday rotation angle from (2) and the 
scene-dependent term 1. This calculation is performed 
not only for the four calibration scenes in Japan (in the 
Northern Hemisphere), but also the four Amazonian 
scenes (near the Equator) and four Australian scenes (in 
the Southern Hemisphere) obtained between May 2006 
and October 2007. Among the 12 scenes, one Tomakomai 
and two Amazonian scenes are from descending orbits, 
and the rest are from ascending orbits. Using (2), the TEC 
value and the geomagnetic field were derived from the 
International Reference Ionosphere (IRI-2001) and the 
International Geomagnetic Reference Field (IGRF), 

respectively. Fig. 4 shows a good linear relationship 
between  and 1 expressed by  

713.0050.1 1    (degrees) (27) 
with R

2 = 0.787 and an almost 1.0 slope. This equation 
supports validity of the relationship (18) and yields the 
estimate 0= 0.713 degrees. Hence, the final solutions of 
the PALSAR system distortion matrices by the proposed 
method are  





































0279.07235.00074.00195.0
0141.00384.00000.1

)()(

4194.08983.00052.00429.0
0314.00353.00000.1

)()(

0
1

0

00
1

jj

j

jj

j

FRFR

TFFT

. (28) 

For reference, JAXA’s distortion matrices are  





























0237.07217.00080.00063.0
0071.00063.00000.1

3830.09572.00062.00115.0
0129.00024.00000.1

(JAXA)

(JAXA)

jj

j

jj

j

R

T
. (29) 

 
B. Calibration results  
The derived PALSAR system distortion matrices by the 
proposed method differ from those by JAXA. In this 
section, 12 scenes are calibrated and the results are 
compared for the following cases:  

1) uncalibration (UN),  
2) distortion matrix (DM) calibration, applying (22) 

and (28) or JAXA L1.1, and  
3) distortion matrix and Faraday rotation calibration 

(DMF), applying (23)-(25) to the DM case, viz., 
(22)-(25) and (28).  

Faraday rotation angles are estimated in the DMF case 
from (23) and (24). Fig. 5 shows a comparison of the 
derived Faraday rotation angles from JAXA L1.1 products 
and those from DM- calibrated scenes using our method. 
Note that the angles by our method coincide with those by 
JAXA within a difference of –0.03° to 0.04°.  
 
Figs. 3(c) and 3(d) show the two orientation angles of 
Gifu and Tomakomai scenes for the DM case using our 
method. Compared with the angles from the uncalibrated 
scenes (Figs. 3(a) and 3(b)), the consistency of the two 
angles dramatically improves after calibration. Fig. 6 
shows the average difference of two polarization 
orientation angles of 12 scenes for three cases. Figs. 6(a) 
and 6(b) show the mean and standard deviation, 
respectively, and indicate a significant decrease in the 
difference between the two angles and its deviation after 
calibration and a slight difference between our method 
and JAXA. The improvement in the DMF case over the 
DM case is not recognizable. Thus the two polarization 
orientation angles of the DMF case by our method and 
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those of the DM and DMF cases by JAXA are not 
depicted here.  
 
Another good index of calibration quality is a calibrator’s 
response. The average of the four calibration site scenes 
was examined. The average co-polarized amplitude 
balance shown in Fig. 7(a) is 0.08 dB for our calibration 
and 0.23 dB for JAXA calibration for both the DM and 
DMF cases. The average co-polarized phase balance 
shown in Fig. 7(b) is 0.2° for our calibration and –6.3° for 
JAXA calibration for both the DM and DMF cases. 
Remarkable improvement after calibration is obvious in 
both our method and JAXA’s as shown in Fig. 7(a) and 
Fig. 7(b). The difference between the DM and DMF cases 
appears in the cross-polarized isolation of the calibrator as 
shown in Fig. 7(c). The Faraday rotation calibration 
following DM calibration improves by more than 5 dB in 
average in the cross-polarized isolation compared to DM 
calibration only. The Faraday rotation angles range 2 to 
0.5 as shown in Fig. 5. This suggests the advantage of 
Faraday rotation calibration even if the angle is as small as 
a few degrees. The values from the calibrator’s response 
satisfy or almost satisfy the CEOS CAL/VAL Working 
group polarimetric calibration requirements as shown in 
Table II [34]. Conclusive differences between the 
obtained results and JAXA’s were not found for the 
calibrator’s responses as well as the derived Faraday 
rotation angles and the two polarization orientation angles.  
 

5. CONCLUSION 

 
A new calibration method using polarization orientation 
induced in built-up areas is proposed and applied to 
PALSAR polarimetric calibration. Its fundamental 
concept is simple: two polarization orientation angles 
from two polarization combinations should be identical 
after calibration. Distributed targets and a standard 
calibrator response are also used in the calibration process 
as well as other typical calibration methods. The proposed 
method avoids an assumption of a small cross-talk system, 
and employs additional assumptions of only 
backscattering reciprocity of built-up areas and low 
(nonzero) correlation between the co- and cross-polarized 
backscatter from surface scattering areas. With the help of 
built-up areas (which have high SNR), this method is 
robust to noise. In this article, we apply a simulated 
annealing optimization and there are still more options to 
resolve calibration parameters. The derived system 
distortion matrices do not coincide with those by JAXA, 
but a comparison of calibration results shows good 
similarity with respect to polarization orientation angles 
and calibrator’s responses. A possible reason for this is 
that the cross-talk terms of PALSAR are inherently very 
small. It was also shown that both results satisfy the 
polarimetric calibration requirements by the CEOS 
CAL/VAL Working group. In addition, Faraday rotation 

angles can be derived by the circular-polarization-based 
method from the DM-calibrated data and its correction 
improves cross-polarized isolation by more than 5 dB 
even in case of small Faraday rotation (2 to 0.5). The 
proposed method is robust to noise and useful when using 
an area of mixed polarimetric response for calibration. 
Furthermore, this method could be applicable to a large 
cross-talk system and the case of large Faraday rotation. 
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Fig. 1 Schematic diagram of the radar imaging 

geometry showing the orientation angle of 

house/building wall. 

 

 
Fig. 3 Comparison of two polarization orientation angles. (a) Gifu uncalibrated scene. (b) Tomakomai 

uncalibrated scene. (c) Gifu TF and RF calibrated scene. (d) Tomakomai TF and RF calibrated scene. Left: angles 

from the combination of HH, VV and HV. Right: angles from the combination of HH, VV and VH. Black and 

white boxes in (a) and (b) correspond to yellow and red boxes in Fig. 2(a) and 2(b). 

 

 
Fig. 2 PALSAR scenes displayed with Pauli matrix 

components: |HHVV|, |HV|, and |HH + VV|, for 

red, green, and blue, respectively. In both, the range 

is from right to left, and the azimuth is from top to 

bottom. Yellow and red boxes represent locations of 

samples for low co- and cross-polarized correlation 

and built-up areas, respectively. (a) Gifu and (b) 

Tomakomai. Spacing in the azimuth is scaled to 1/5 

in (a) and 1/6 in (b) from JAXA L1.1 products to 

retain natural look. 
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Fig. 4 Relationship between computed from (2) and 

1 derived from TF0 and RF0 calibrated scenes. 
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Fig. 5 Comparison of Faraday rotation angles derived 

from JAXA L1.1 products and those from distortion 

matrix (DM)-calibrated scenes by our method. 

 
TABLE I: Comparison of separated Faraday rotation 

angles and estimated ones after TF0 and RF0 calibration 

Scene Date 
 

Separated 
[degree] 

 Estimated 
after TF0 and 

RF0 
Calibration 

[degree] 

Gifu 2006/6/11  

Gifu 2007/3/14  

Gifu 2007/4/29  

Tomakomai 2006/5/19  

 

 
Fig. 6 Average difference of two polarization orientation (PO) angles of 12 scenes from uncalibrated 

scenes (UN), distortion matrix calibrated scenes (DM), and distortion matrix plus Faraday rotation 

calibrated scenes (DMF). (a) mean. (b) standard deviation. 
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TABLE II: Calibration requirements for polarimetry and 
interferometry [34] 

ITEM VALUE 
CROSS-TALK < 35 DB 

CHANNEL AMPLITUDE 
IMBALANCE 

0.2 DB (SOIL 
MOISTURE) 

CHANNEL-PHASE 2  5 
FARADAY ROTATION 

CORRECTION 2.5 (L-BAND) 

 

 

 
Fig. 7. Average of calibrator’s responses of four calibration sites from uncalibrated scenes (UN), DM-calibrated 

scenes (DM), andDMplus Faraday rotation calibrated scenes (DMF). (a) Mean copolarized amplitude balance. (b) 

Mean copolarized phase balance. (c) Mean cross-polarized isolation. 

 

This document is provided by JAXA.




