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OPTIMAL LOW-THRUST INTERPLANETARY ORBIT TRANSFER
INCLUDING EARTH ESCAPE SPIRAL TRAJECTORY*

Shoichi YOSHIMURA** and Tatsuo YAMANAKA **

ABSTRACT

A numerical analysis has been carried out on minimum-time low-thrust
Earth-Mars transfer including Earth escape spiral trajectory. This is a
three-point boundary-value problem with a constraint at the interior point
t=t, when the hyperbolic velocity is attained in the geocentric force field,
and the terminal constraints at the final time t=t¢ (5t; +t,).

Minimal time t} for the Earth escape problem is obtained here by the
authors in a manner similar to that in Ref. 3, and t} for the Earth-Mars
heliocentric transfer problem is well-known (e.g., Ref. 2, 16).

A three-dimensional search procedure using At,, Ats, and the control
correction length o as three parameters is developed to solve the present
complicated problem numerically.

The obtained total mission time t¢ is slightly shorter than the sum of
t¥ and t}. The control history in the escape portion is quite different
from that in an optimal escape problem, but in the interplanetary portion
it is similar to that in an optimal interplanetary transfer problem.
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1. INTRODUCTION

The low-thrust orbit transfers may be
classified into the following three catego-
ries;

I) Transfers between geocentric (planet-
centered) orbits—The total energy E of
the spacecraft (kinetic energy plus poten-
tial energy in the central force field) is
negative through the transfer. Both ascent
and descent are included.

II) Interplanetary transfers in the helio-
centric force field—This is the same type
of I)in essence from a point of view of the
transfers in one central force field, but is
classified especially from a point of view
of the Earth being our mother planet. The
transfers to the outer-planets and the
inner-planets are equivalent to the ascent
and descent in category I) respectively.
III) Spiral escape (settling) trajectories
from (into) the planet—centered orbit to
(from) the hyperbolic volocity—This is a
transient region which connects I) and II).
E changes the sign from negative (posi-

tive) to positive (negative).

It is well-known that a lot of studies
have been carried out on I) and II), and a
few studies on III). Authors!'?3 have
also been studying some transfer problems
on I), II), and III).

On the contrary, few studies have been
carried out on the orbit transfer problems
covering more than two categories among
the above-mentioned three.

Moeckel*®:%) studied the Earth-Mars
one-way trip and round-trip. The parame-
ters, e.g., E, radial distance, velocity,
steering angle, and angular distance, are
calculated of the spiral escape (settling)

trajectories with a constant tangential

thrust of wide range of thrust-mass ratio
of 10~10%, and shown in many charts. It
is simulated an eight-man Earth-Mars
round-trip expedition with initial accelera-
tion of 1.6 mm-s'2 from the geocentric
circular orbit to the Mars-centered circular
orbit including the exploration of Mars
surface by the chemical-rocket vehicle. In
the computation, the 1068-day long expe-

This document is provided by JAXA.



Optimal Low-Thrust Interplanetary Orbit Transfer Including Earth Escape Spiral Trajectory 3

dition is divided into seven phases as
follows:

1) Acceleration from the geocentric orbit
to the hyperbolic velocity for minimum-
energy interplanetary transfer.

2) Coasting along the minimum-energy
path to the Mars orbit.

3) Settling into the orbit round Mars
from the hyperbolic approaching velocity.
4) Waiting period and exploration at Mars
surface.

5) Acceleration from the orbit round
Mars to the hyperbolic velocity for mini-
mum-energy interplaneary transfer.

6) Coasting along the minimum-energy
ellipse to Earth’s orbit.

7) Settling into the geocentric orbit from
the hyperbolic approaching velocity.

It is assumed that the spacecraft is
accelerated (decelerated) by a tangential
thrust throughout the powered flight.
Moeckel®®’ studied also the round-trip
including the powered interplanetary
flight and reduced the mission time with
indirect trajectory.*

Fox™? also studied the one-way trip and
round-trip with constant tangential accel-
eration between the Earth and Venus,
Mars, and Jupiter respectively. The coast-
ing is included, and the proper moments
for thrust shutdown and startup are deter-
mined using the concept of the osculating

orbit.
Recently, some missions®~ %) using the

solar electric propulsion systems have
been studied of flyby and rendezvous to
some celestial bodies such as the comets

*transfer to the high (low) altitude orbit

descending (ascending) in the beginning of
the flight.

Encke, Halley, the asteroids, and the
planets. However, in all missions, the
chemical rocket launching vehicles such as
Titan/Centaur are to be used until the
eascape velocity is attained.

As mentioned previously, the studies
are few in number on the interplanetary

- transfer starting from the geocentric orbit

with the low thrust. Even so, in almost all
of them, it is assumed that the thrust is
acted in the tangential direction through-
out the powered flight. Therefore,
they are near-optimum problems, but not
optimal ones. It is quite clear that such an
optimal problem has one or more interi-
or-point constraints, e.g., total energy,
radial distance, and velocity, in addition
to the constraints at the initial time t,
and the final time t¢. This is consequently
reduced to a complicated multi-point
boundary-value (MPBV) problem!® but
not to a conventional two-point bounda-
ry-value (TPBV) problem. Moreover, the
motion of the spacecraft should be con-
sidered in more than two different central
force fields one after another. Even if the
motion is approximated as a two-body
problem throughout the flight, the equa-
tions of motion should be switched at the
moment when the spacecraft goes out of
one central force field and enters into
another. At the same time, the state
variables such as the distance and the
velocity jump because of the different
coordinate systems, e.g., the planet-cen-
tered coordinate system and the heliocen-
tric one. The apparent discontinuities are
caused also by the different normalization
units as shown later.

Even if solving the conventional TPBV
problem numerically, we often encounter
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the difficulties such as a bad convergence
or even a divergence. The above men-
tioned complexities and the difficulties in
obtaining a numerical solution would
explain why such an MPBV problem has
not been studied yet numerically.

Authors have defined and tried to solve
a very simple optimal problem among the
MPBV problems, i.e., an optimal orbit
transfer from the geocentric orbit to the
heliocentric planetary orbit including
Earth escape spiral trajectory. The space-
craft attains to the hyperbolic velocity
starting from the geocentric circular orbit
through spiral raising, and then continues
the powered flight to the target-planet
orbit in the heliocentric force field. This
problem has an interior-point constraint
on the total energy E at t=t; besides the
initial conditions at t=t, and the terminal
constraints at t=ty (=t,+t,). The state
variables have an apparent discontinuity
at t=t,, and the equations of motion are
switched also at the same time.

The defined optimal problem is a mini-
mum-time low-constant-thrust coplanar
orbit transfer with constant mass flow
(fuel consumption) rate. The performance
index of the present problem is J=t¢, and
a function of three parameters, ie., Ats,

At,, and «, the corrections of t; and t,,
and the control (steering angle) correction
length along the search direction respec-
tively.

In Ref. 16, Powers and Shieh developed
the two-dimensional search procedure
(2-DSP) to approximate the minimum of
a function of two parameters J(Atg, «).
The procedure with the conjugate gradi-
ent method employing the 'penalty func-

tions was applied to a minimum-time inter-

planetary orbit transfer problem with
terminal equality constraints while im-
proving considerably the convergence
rate.

Authors have developed a three-dimen-
sional search procedure (3-DSP) with Aty
At,, and « as three parameters. The 3-DSP
with the gradient method employing the
penalty functions is applied to the present
problem.

Since the solution t¥ for a minimum-
time Earth-Mars heliocentric orbit transfer
is well-known by numerous investigations
(e.g., Refs. 2, 16), Mars is chosen as the
target planet from a point of view of
comparison. The solution tf for a mini-
mum-time Earth escape problem from the
geosynchronous orbit has been obtained
here using 2-DSP similarly in Ref. 3.

A number of simulations have shown
that it is difficult in many cases to get a
good convergence using only 3-DSP. Tak-
ing account of the fact that the magnitude
of «a is extremely small compared with At
and At,, a conventional one-dimensional
search procedure (1-DSP) is introduced
with Atg=0 and At,=0. 3-DSP and 1-DSP
are used in series. A number of combina-
tions have been tested of search proce-
dures and the penalty functions.

The total mission time tg(=t,+t,) is
obtained which is slightly shorter than the
sum of t{ and t¥. t, is longer than t¥, but
t, is shorter than t¥. In some case, the
resultant tg is as short as 4.2 percents. It is
very interesting that the minimal time for
the total flight is shorter than the sum of
the minimal times for the partitioned
flights, i.e., the escape portion and the
interplanetary portion respectively. The
control history in the escape portion is
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quite different from that in an optimal
escape problem, but in the interplanetary
portion it is similar to that in an optimal

interplanetary

transfer problem. The

trajectories are rather similar in both

portions.

NOMENCLATURE

B,; ~ B,
C;~Cyo

He[t] ,He[s] :

Hg[t] Hs[s]

: augmented

: partial derivatives

: ratio of te to t5, te/ts=

V' 13 [ue /v Riau [ Bs

: 4x4 square matrix, dX(t})

=B-dx(t))

: elements of B
: coefficients of a quadratic

function J(a,At, ,Ats)

: total energy in the central

force field

. specified total energy
: equations of motion in
‘vectoral form for t€[tT,t¢]

and for t€[t,,t7]

: co-state equations in vec-

toral form for tE€[t],t]
and for t€[ty,t] ]
Hamiltonian for t€[ty,t] ]
and for s€[0,17], He[s]=
t 'He{t]

: Hamiltonian for t€[t],ts]

and for s€[1%,2], Hg[s]=
(te-t, )-Hs[t]

: Jacobian matrix
. performance index

performance
index

of J
with respect to At ,Ats,
and « respectively

: initial mass
: mass flow (fuel consump-

tion) rate

: normalized mass flow rates

P,~P,

p(s)

. time for

in the geocentric and in
the heliocentric force

field, me¢/(meV re/r3),
me/(mgyV “s/RiU)

: penalty functions
: control

search direction
(gradient direction)

: ratio of ry to Rpy, ro/

Rau

. astronomical unit
: radial distance
: radius of the initial geo-

centric circular orbit

: new independent variable

introduced by Long’s
transformation

: transformations of x(t7)
into X(t})

: thrust magnitude

: normalized thrust magni-

tudes in the geocentric and
in the heliocentric force
field

: time unit in the geocentric

force field, ry/vo=Vr3 /e

: normalized time by t,,

tAV 13 /ie

: final time, total mission

time (=t, +t, )

: time unit in the heliocen-

tric force field, Ry /ve=

\4 R3AU M

: normalized time by tg,

th RiU i

: 1nitial time
: time for Earth escape
: t=t, when the escape con-

dition is attained

: t=t, when the interplane-

tary transfer is started
interplanetary
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transfer

Atr : correction of t¢

At : correction of t,

u : control (steering angle)

| %4 : ratio of vy to ve, Vo /Ve

Ve : Barth’s orbital velocity
round the sun, vV ug/R.y

vy : radial velocity

Vg . circumferential velocity

Vo : orbital velocity of the ini-

tial geocentric circular
orbit, v/ e/To

X : column vector of the nor-
malized state variables for
telt] tel, XT=(X,,X; X3,

X4)

X X3, Xy : specified state variables at
t=t¢

X : column vector of the nor-
malized state variables for
tE[to 1], xT=(x,,X, X3,
Xg)

(Greek letters)

o : control correction length
along the search direction

4 : angle between velocity
vector and thrust vector

Y : angle between local hori-
zontal direction and veloc-
ity vector

€ : convergence criterion

¢ : angle between Earth’s or-
bital velocity v, and v(t])

) : transfer angle

Oe : transfer angle of the Earth
in the heliocentric coordi-
nate system

B0 : angle between the Earth
and the sun seen from the
spacecraft

0 : angle between the Earth

and the spacecraft seen
from the sun

A : column vector of Lagrange
multipliers, AT=(\,,\, A3,
As)

u : mass of a central body x
universal gravitational con-
stant

Ue : mass of the Earth x univer-
sal gravitational constant

I : mass of the sun x universal
gravitational constant

v~y : boundary constraints
(Symbols)

d( ) . differential

6( ) : variation

() : derivative with respect to s

2. EQUATIONS OF MOTION

Before deriving the equations of mo-
tion of the spacecraft as a point mass,
authors have adopted the following as-
sumptions:

1) Coplanar motion throughout the spiral
escape and the interplanetary transfer.
The spiral escape problem is usually con-
sidered in the equatorial plane, and the
interplanetary transfer between the circu-
lar planetary orbits in the ecliptic plane.
Although the inclination angle between
both planes is about 23°27’ (obliquity of
ecliptic)’”, a coplanar motion throughout
the flight is assumed like in Refs. 4, 5, 6,
and 7.

2) Two-body problems throughout the
flight, i.e., in the geocentric force field
until the hyperbolic velocity is attained,
and in the heliocentric force field there-
after.

It is not a simple matter to estimate
where the planet-centered force field
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Optimal Low-Thrust Interplanetary Orbit Transfer Including Earth Escape Spiral Trajectory

should be switched to the heliocentric
one. Moeckel*’ calculated and discussed
about the ‘“‘sphere of influence” for several
planets under the condition of the effec-
tive acceleration due to the heliocentric
force field being equal to that due to the
planet-centered force field, but adopted
finally the above assumption for simplici-
ty. Fox studied the moon’s effect on the
motion through some computer runs, and
concluded that it was small if the ‘“time
phasing” was properly carried out.

The state variables are defined in Figure
1. The angles u,y, and f are a steering
angle measured from local horizontal di-
rection, an angle between local horizontal
direction and velocity vector, and an angle
between velocity vector and thrust vector
respectively.

The equations of coplanar motion of a
point mass in the polar coordinate system
with an origin at the mass center of a
central body are well-known (e.g., Ref.
18):

dr
&, )
ioi. =y /r 2
- A (2)
. 7
‘\\Thrust Vector /' Velocity Vector
P

Figure 1. Polar Coordinate System for
the Coplanar Motion

dv

el vg/r - u/r*+ T - sin u/(mg- me- t)

(3)

d
d_Q.i = . Vrve /r + T - cos u/(mo- me: t)
(4)

The above equations are normalized
using ry,vy(=/u/ry),ty,my, the units of
radial distance, velocity, time, and mass
respectively.

In geocentric force field

The following normalized equations are
obtained using the radius r, and the
velocity vy (=V Ue /1) of the initial circular
orbit, te(=ry /vy ), and my :

dte °° )
at, Y ©)
dx,
FTR =x§:/x,—1/x% )

+Te'si.n u/(l-ﬁloe'te) (7)
dxq
i, ='%3X4/X1 A

+ Te- cos u/(1 - Mge- te) (8)

In heliocentric force field
The normalized equations are

dX,

— = 9
T X, (9)
ax,

— =X,/X 10
& & (10)
dX

'&f =X3}/X,-1/X}

+ Ty sinu/(1 ~thes b))  (11)
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dX,
T = -X3X4/X%,

P Dy cosu/(l - g ) (12)

The units are an astronomical unit
Rau, Earth’s orbital velocity ve
(®V is/Ray) round the sun, ts(=Rau /ve),
and m, respectively.

Since the motion of the spacecraft is
continuous in essence through the transi-
tion from spiral escape to interplanetary
flight, the state variables are, too. How-
ever, in the derived equations, the state
variables have an apparent discontinuity
at t=t,, because of the different coordi-
nate systems and the different normaliza-
tion units. To more complicated, an inde-
pendent variable t has, too. As for the
state variables, the transformations of
x(t7) into X(t}) can be derived as follows:

X, =v1+R?x?+ 2Rx,cos(fe- X,)

(13)
-0 _ -1
X, = fe-tan { 1+ X -Rx2 (14)
Rx;sin(fe- x
x, = - Rxisin(e-x:)
X
+V{x3<X%+R2x%—1)
2Rx,; X,
sin(fe-
+ Xg48in(0e Xz)} (15)
Xy
< = X2-R%*x%+1
4 2X,
+V{— X5 - sin(fe- X, )
X
X2+ R%*x2-1
+ X4 (X5 1 )} (16)
2Rx, X,

where R=r,/R, y and V=v,/ve. For the
details, see Appendix A. The same proce-
dure cannot be applied to as for time t.
Because an independent variable should
be continuous throughout the equations
of motion. Therefore, time unit should be
te also at this time, but not t.

Now, the normalized equations of mo-

tion are

dX, =A {x } 17
dEe 3 ( )
X, =A {X /x} 18
a. 4 /X, (18)
dX
di;: = A;{xz/x] -1/X3 A

+ Ts- sin u/(1 ‘Iﬁce'te)} (19)
daXx

= =A'{“X3X4/Xl
dte ) )
+ Tg- cos u/(1 - Mge- te)} (20)

A=/r3/ue N Riy /us. Hereafter,
the normalized time t, will be expressed
simply by t without confusion. The equa-
tions of motion and the transformations
are written compactly in vectoral form
using the state variables vectors.

where

xT(t) = (x; (£),%, (t),%5 (£),x4 (1)) (21)

XT(t) = (X (£),X, (£),X5 (£),X4 (1)) (22)

B fxut), tEIt] (23)
dt

Ei% = F(X,u,t), t€ [t],tr] (24)
Xt =T (X (¢]),x(t7)) (25)

where f,F, and T are the column vectors
whose elements are the right-hand sides of
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Egs. (5)~(8), Egs. (17)~(20), and Egs.
(13)~(16) respectively. t; means t=t,
when the escape condition is attained, and
t] when the interplanetary flight is start-
ed.

3. PROBLEM DIFINITIONS AND
THREE-POINT BOUNDARY-VALUE
PROBLEM

3.1. PROBLEM DEFINITIONS

The present problem is a minimum-
time orbit transfer with a constant low
thrust and mass flow rate without coast-
"ing from the geocentric circular orbit to
the heliocentric planetary orbit. The steer-
ing angle is a control which minimizes the
total mission time tf. It is assumed that
there is no constraint on the steering
angle.

The performance index of the present
problem is defined by

J=ts (26)

The constraints are given at the initial
time t,, the final time t¢, and the interior
time t, .

Initial conditions at t=t,
For the initial geocentric circular orbit,

x,(0)=1.0,

X, {0): arbitrary (normally = 0),

x3(0) = 0.0,

X4(0)=1.0 (27)

Terminal conditions at t=t¢
Since the final target is a heliocentric
planetary orbit, the conditions are

Yy =X, (k) -X5=0 (28)
Yo = X3(tf) - X3¢ =0 (29)
V3 = Xa(ts) -Xqe =0 (30)

where X,¢,X3;, and X4 are a radius, radial
and circumferential velocity of the target
orbit respectively. Xj is zero for any
target planet since the circular orbit is
assumed.

Interior condition at t=t,

The total energy (kinetic energy plus
potential energy) of the spacecraft at
t=t<t, in the geocentric force field is
given by

E(t) = x3(t) + x3(t) - 2/x, (t) (31)

In the escape problem, E(t)=0, i.e.,
condition of parabolic velocity, is usually
adopted as the terminal condition. Since
the trajectory starts from the geocentric
orbit where E is negative, E remains
negative near to zero even with good
convergence in numerical solution. The
solution might be sufficient for the escape
problem. However, it is not for the
present problem, where the interplanetary
flight is to continue without interruption.

Therefore, hyperbolic velocity must be
attained, even E(t]) is just slightly larger
than zero. The condition is

Ya = x5 (t7) + x5(t7) - 2/x, (t7) - Ee
=0 (32)

where E. is a specified total energy
(slightly larger than zero).
The present optimal problem is de-
fined:
Minimize J=t;
Subject to Equations of motion (23)
and (24) with Transforma-
tions (25)
Boundary conditions
(27)~(30), and (32)

Well-known penalty function approach
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is employed to deal with the boundary
equality constraints.

The augmented performance index is
defined by

J=J+ ElPiwf (33)

=w+P{X4w)-qu
+P4XAm-XMF
+ Py {Xcz (t) - X4f}2

+m{th)+xinn

-2/x,(t) - Ee}2 (34)

where P, ~ P, are the penalty functions.
The problem previously defined is con-
verted into the following one:

— 4
Minimize J =tf+ T Py;
i=1

Subject to

Equations of motion (23) and (24)
with Transformations (25)

Without boundary conditions

3.2. THREE-POINT BOUNDARY-VALUE

PROBLEM
The performance index J and the aug-

mented pferformance index J are written
in more general form in order to define
the three-point boundary-value problem
more generally.

J=<qu031+{”1@uaxuaxudt

+ [ LeX(E), u(t), tldt (35)

. 3
I = O[X(t)te] + T Pivf [X(br)b]

+Pad[x(t).t]
+ ﬁt,:’ Le [x(t), u(t), t]dt
+ f;’ Ls[X(Y), u(t), t1dt (36)

For the present problem,

Le[X(t), U(t), t'] =0 ’ tE[to ’ t;] (37)
Ls[X(t), u(t), t] =0 , te[t}, tz]  (38)

PIX(tg), te] = tg (39)

Hamiltonian H, Hg are introduced by
He [x(t), u(t), t] = Le[x(t), u(t), t]

+ T (t) - £[x(t), u(t), t] (40)
Hs[X(t), u(t), t] = Ls[X(t), u(t), t]

+N'(t) - F[(X(t), u(t), t] (41)

where A is a column vector whose ele-
ments are Lagrange multipliers A;j(t)
i=1~ 4,

XT(t) = (A (£), A2 (£), A (t), Aa(t) ) (42)

The augmented performance index Eq.
(36) is rewritten as

J = B[X(tr), te] + él Pyl X(tr), te]
+P Y2 [x(t)),t,]
+ f:_‘{He[x(t),u(t), t] - X(t)
-£[x(t), u(t), t]}dt

+ f;f{Hs[X(t), u(t), t] - A (t)

FIX (), u(t), t]} dt (43)
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Integrating by parts the fourth angd
fifth terms and taking the variation, the
first variation of J is derived.

8 = a;if) 5X(tf) + tf
+ 2.3 P af(‘ft‘f) X (tr) + Sty
+2P4\1/4(ai¥:)6 x(t) + ‘b“ dt, )
; {)\T-ﬁx]: - [A‘”-BX];‘
+ [(He - X7 -5)at]]’
+ [(H, - NG !
+ f:'{(aaie +%)6x
+a:f u}dt f‘f{ aa};s d’f)ax
+%§-Sau}dt (44)

The differentials dx(t;) and dX(t})
and the variations 8x(t;) and 6X(tf) are
related to each other as follows:!'s)

dx(ty) = sx(ty) + 28 g (45)
dt
dX(t}) = §X(t} )+d>i ‘)dt (46)

It is assumed without loss of generality
that the initial time t, and the initial value
of the state variables are given.

Therefore,

dto = 0, dx(tg) =0, 8x(to) =0  (47)

Substituting Eqs. (45)~(47) into Eq.
(44) and collecting terms, Eq. (44) yields

oY

- 5T
[————ax(tf) 2 2 Pij —ati s - X0
axmm 2128 wf’""

+ Hy(tr) - X0 (1) )

0
+ [2P4 Ya - (‘t‘) - N(t1)] dx(t))

+ N (t))dX(t7)

Wy Vs  dx(t)
ot, 0X(t;) dt

+ [2P4 Y4 ( )

+ He(ﬁ) - Hs(tn] dtl
.\ f { dHe
ox

oH
RS

dx’ 9H,

dt)(‘Sx + " 5u}dt

d)(“ 9H, }
ou

(48)

Since x(t;) and X(t{) are dependent as
shown by Eq. (25), the differentials dx(t;)
and dX(t}) are not independent each
other.

dX(t!) = B - dx(t]) (49)

where B is a 4x4 square matrix derived
from Eq. (25). For the details, see
Appendix B.

Substituting this equation into Eq. (48)
yields

_0Y;

od 3
= [ +
X(tr)

09 T
0X(tr) i= - N (%))

l‘pl a
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SX(tg) + [»— +2 z Py Z‘b‘
te

dX(tr)

= rldt

He(ts) - X' (t1) -

+[2P4 Y4 -X'(t))

dx <t1)
+ XU (t) - Bldx(t})

IV _ 0y, ‘dx(t])
ot;  ox(ty) dt

+ [2P4 Y ( )

+ He(t7) - Hg(t])]dt,

ox TTanx 3

H T
+ ftf{(g—s +%)5X Lt u}dt

T
+f { 8He _ dX aHeéu}dt

t 0X ou
(50)

Choosing the Lagrange multipliers A(t)
to cuase the coefficients of 6x and 6X
to vanish, the co-state equations are

obtained.
d\' _ oHe B
t
gt 5% t€(to, t1] (51)
dX'  9Hg R
A ks th,t
I X telty, tel (52)

with boundary conditions

od 3 oy;

T —
A (tg) = aX(tf) ”plaX(tf) (53)

a
AN (t7) =N (t]) - B+ 2P, Y, < zp?) (54)

Eq.(50) becomes

3
§J = [39+22 P\]/l-—dil+H (t¢)

dX(tf)

- N(tr) - Jdty
0Ys  0Yy _dx(t))
V2PV (G 5w T ar )
+ He(t]) - Hg(t7)]dt,

+f { }dt f‘f{ H}dt (55)

For an extremum, 8J must be zero for
arbitrary éu(t), dtf, and dt,. This can only

happen if
3H,
su -0 tElto, ti] (56)
oH, N
au =O ’ te[tl5tf] (57)
od 3 i
S T2E Pl S+ HL )
- X (tg) - dx(tf) =0 (58)
2P4l1/4(aw4 0y _dx(t{))

ot, ox(t;) 4t

He(t7) - Hg(t7) =0 (59)

Now, Euler-Lagrange equations (51) ~
(54) and (56) ~ (59) are obtained. Egs.
(56) and (57) are known also as optimality
(58) and (59) as trans-
versality conditions at t = tf and t = t,.
Since a direct method is employed, trans-

condition, Egs.

versality conditions are not used in solving
the present problem numerically. It is
clear at a glance of Eq. (54) that the
Lagrange multipliers have a discontinuity
att=1t,.
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For the present problem, co-state d\ . 69
equations are as follows: Gt - GIX, Al telty, t] (69)

for te[t,, ti],
[to, ti] where g and G are the column vectors

whose elements are the right-hand sides of
%l = -{-x2x4/x§ + Ay (-x2/x? + 2/x])  Eqs.(60) ~ (63), and of Egs. (64) ~ (67)
respectively.

e x3x4/xf} (60) Boundary conditions are
X'(t) = 2(Py ¥y, 0, Py ¥z, Pays)  (70)
d\, _
3 {0} (L) Xr(t7) = XT(e) B + 4Pa i (1/x2 (8),
0, x5 (t7), x4(t7)) (71
di; _ -{7\1_)\4}(4/5(1} 62) 3 (87), xa (8] )
dt
an Well-defind three-point boundary-value
_Ei_t—A = -{)\2/1‘11 +2X3%4 /X, -)\4X3/X1} problem is:
(63) Equations of motion (23) and (24)
for te[t7, t¢], with initial conditions (27) and trans-
\ formations (25)
%ﬁ = -A{-?\; X4 /X2 Co-state equations (68) and (69) with

transversality conditions (70) and (71)
+ N3 (-X2/X2 +2/x3)
3.3. LONG’S TRANSFORMATION'®
+ Ny X4 X4 /X2 } (64) Since the present problem is a free-final-
time problem, both t, and tf (=t, + t,)
must be determined through the searches.
A, _ -A {o} (65) The following parameterization on t due
to Long is employed to alleviate some of
the difficuties involved with variable t,

dA
_d—t—3: —A{)\ L - g Xy /X1] (66)  and tf, especially extrapolation problems.
For the conventional free-final-time prob-
lem, Long introduced the new independ-
dA\,4 . .
FT -A (A, /X ent variable s defined by
t-t,=tf-s (72)
+ 203X, /X, -)\4X3/X1} (67) }
Assuming t, = 0 without loss of gen-
The above equations are written compact-  erality yields
ly in vectoral form. t=tf-s (13)
d\ _ -
a - glx, Al , t€[ty, t1] (68) s ranges from 0 to 1 when t ranges from

O to variable tf in each search. Long
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extended the method to the multi-point
boundary-value (MPBV) problems.
For the present problem, the para-
meterization is given by
t = tl - S ’
ty +(te-t)(s-1)
te[0, ti] (74)
te[ti, tf] (75)

s ranges from 0 to 1 and from 1 to 2
when t from O to t, and from t} to t;.
The relation between the derivatives with
respect to t and s is

d)_ 1 .d0) 1 -y
dt t t ’
te[0, t7] s€[0,17] (76)

da( ) _ 1.d()=1(')
dt tf—tl dS t'f-t] ’

te[t], tr] se[1%, 2] (77)

Substituting the above equations into
the previously derived equations yields:

Equations of motion;
for s€[0, 177,

X, =t {x3} (78)
%, = t, -{x4/x,} (79)
X5 = t, -{xf,/x1 - 1/x2

+ T sin u/(1 - Mge- t - s)} (80)
Xg=t; - [—x3x4/x1

# Te cos /(1 - e *t,°5)]  (81)

in vectoral form,

x(s) = t, - £[x(s), u(s), s, t, ] (82)
for se[1%, 2}

Xy = (tr-t) - A-[ X, (83)

Ra=(te-t) A {Xa/X, (84)

Xy =(ts-t,) A [X¥/X, - 1/X?
+ T, sin u/ll ~fice -t
~fee -(tr-t,) (s- 1)} (85)
Xe =(tr-t,) A [-X3X4/X,
+ Ty cosu/ll—ﬁmce-t, - Moee
ECRUPRICER Y (86)

in vectoral form,

X(s) = (tr - ty) - F[X(s), u(s), s, t¢, t, ]

(87)
Co-state equations;
for se[0, 17]
As) = t,-g[x(s), A (5)] (88)

for se1%, 21,
A(s) = (tr - t,) - G[X(s), \(s)]  (89)

Boundary conditions;

Y =X,(2)-X,£=0 (90)
Yy =X3(2)-X3¢=0 (91)
Y3 =X4(2) -Xag =0 (92)

Va =x3(17) +x3(17) - 2/x,(17)

This document is provided by JAXA.



Optimal Low-Thrust Interplanetary Orbit Transfer Including Earth Escape Spiral Trajectory 15

-Ee=0 (93) 4. THREE-DIMENSIONAL SEARCH
PROCEDURE

The augmented performance index J is
a function of three parameters, i.e., Atg,
At,, and «, the corrections of t; and t,,
and the control (steering angle) correction
0,x53(17), x4(17)) (95) length along the search direction respec-

Transversality conditions;
X'(2) = 2(P, ¥y, 0,P,0,,Pyys)  (94)

N'(17) =X(1%) - B+ 4P4 Y (1/x3 (1),

— tively.
J, J and He, Hg are also rewritten as

- J = J[q At,, A 102
J=0[X(@), 4] + 11t (% &ty 8] (192
° In Ref. 16, Powers and Shieh developed
‘Le[x(s), u(s), s, t; Jds + f12+(tf -t) the two-dimensional search procedure
(2-DSP) to approximate the minimum of
- Ls[X(s), u(s), s, tf, t, ) ds (96) a function of two parameters, ie., dJ
[a, At;]. The 2-DSP with conjugate
3 . .
J =d[X(2),t] + 2 Piy? [X(2), tf] gradient method employing the penalty
i=1 functions was applied to a minimum-time
, .- interplanetary orbit transfer with three
+Payilx(1),t] it terminal equality constraints while im-
proving considerably the convergence
‘Le[x(s), u(s), s, 1 1ds+ [ (¢ -,)  Tate.
Authors3) have also applied the 2-DSP
- Lg[X(s), u(s), s, tg, t,1ds  (97) to a minimum-time Earth escape problem
with one terminal equality constraint
hi tti

H, [x(s), u(s), s, t, ] while getting the good convergence.
To solve the present problem, authors
=t '{Le [x(s), u(s), s, t1 1+ X7(s) have developed a three-dimensional search

-£[x(s), u(s), s, t, ]} (98)  Procedure (3-DSP) with Aty, Aty, and o
as three parameters, The details are shown

=t "He[x(t), u(t), t] (99)  hereafter.
Hs[X(s), u(s), s, tf, t; ] At the n-th search in the N-th iteration,

the three-dimensional search is performed

= (tg -tl)-{LS[X(S), u(s), s, tr, t;1 with

+N'(s) - F[X(5), u(s), s, ts, t, ]](100) u®m (g) = u™ () - @ pM(g) |

= (ts - t,) - Hg[X(t), u(t), t]  (101) s€[0,17] sef1%,2] (103)
N = () 4 A (104)
(N = N 4 A (105)
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where u™(s), tMN), t{N) are the results
of the N-1 -th iteration and p™’(s) is
a control search direction (gradient direc-
tion) in the N-th iteration. u®™)(s), t{N),
and t{N) are then updated for the N+1
-th iteration using the o™ At{), and
At™ which give the least J in the N-th
iteration.

u® sy = u(s) - aMpM(s)  (106)
tNFD = (N0 4 AL (107)
NP = N+ A (108)

It is necessary to assume at least a
quadratic function in parameters for a
surface-fitting.

J o, At,, Atg] = C, + C,a+ C; At
+ C4Atf + CS(X'At,+ CéAtl Atf
+Coa- Atg + Cga? + CoAt3

+Cyo At (109)

where C,~C,, are the coefficients to be
determined through the surface-fitting.
Ten data points concerning J are at least
necessary in order to determine them.
However, four data points are readily
available after the first calculation of J.

Clearly,

J© =770,0,0] =C, (110)

Taking the partial differentials of Eq.
(109) with respect to «, At,, and At,
respectively yields

0d _—
’a—a' = J(X [(X, Atl ) Atf]

= 02 + CsAt] + C7Atf + ZCsa
(111)

a —
— =Jdi [, At,, At
at, t, [ 1 f]
= C3 + Csa + C6Atf + 2C9At1
(112)
o0d _ —
5{} = Jt-f[ay Atl L] Atf]
=Cy + CqAt, + Coa+ 2C,, Ats
(113)
Clearly,
40 =17,[0,0,0] =C, (114)
3@ =1J;,[0,0,0] = C, (115)
3® =J;.[0,0,0] =C

J, Jtl , and Jy, must be derived in
analytical form to obtain C,, C;, and C,
numerically using Eqgs. (114)~(116).

J, and J;, can be derived in the similar
manner in Ref. 16, where Powers and

Shieh developed the 2-DSP.
Using Eqs.(97)~(101) yields

3d _ @ d 3 2., 0
. T D g‘(? 1Wi)+aa(P4\i/§)

1" .
+5&f01 [tlLe + 7\T(tlf—x) ds

0 .2
ﬁfr[(tf -t;)Ls

+ Xf{(tf - t,)F - X}] ds

"—'fln {aLe ou +

N T—a—fil-)ds
ou o«

ou oa

oLg du

du oo Tﬂ‘a_u}ds

+ 2 -t GBS SRS
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: - of . 0

A (Gt e
t0F. ou
)\au o }d

+ (b= t,)f{

1 aH [S] ou
= [ s

0

f2 (aH [s] ou

Substituting Eq.(106) into this equation
yields

)d (117)

3d 1 BH [S] 2 aHs[ s]

== p(s)ds - [ p(s)ds
(118)

Similarly,

aJ _ 0 K 2

atf atf(q)) atf( ? PlWl ) + f(P4 W4)

9 i
+'5{f' 01 {tlLe +)\T(t1f—i)]ds
e 2Lt - )L+ X

atf 1* 1 S

[CENLE | )as

d
-5 ® s (Pl + { X

ots 'i=1

(S A o

L
0X(2)i tf+ L]

Substituting Eq.(63) into this equation
yields

9d ———(<1>)+

9d zp, :
T ( ¥i)

+ N (t£)F(tg) + Ls[tr]

_9 D 2 py?
= &-f(q)) + dtg (iglplwl ) + Hg[t5]

(119)

0 1
=2 (d)+ > P, 4 H[2]
atf((b) tf( Bbl ) t] S
(120)
Itl is derived as follows:
9 _ 3, 3,3 L, 3.,
oty ot ) o, (S, PV gy (Pada)
J T
+—— tlLe“”A(t f X) ds
at,

A (UL

X‘“{(tf -t,)F -X]]ds

_ a(Pa‘//4)+ 0(Pay4)  dx
ot, ox(17) dtlg

f L [t] +X (t){f(t) -—}1 dt

9
+ at,f, [Lg[t]

T dx
+X (t){F(t) "d‘t‘}] dt

_ o(Psys) + o(Pava) . 1

5, ox(1) | & )
+ Le[t1] - Lg[ti]
_aPedi) , BaYe) 141,
ot ox(1) 1;1
+ Le[17] - Ls[17] (121)

For the present problem, Eqgs. (118),

(121), and (120) are reduced to

— _ [ 0He[s])? o dHg[s])?
Jg 'fo{ 3u } ds—ff{-——a—u—} ds

(122)
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J. =é?t4—w4‘[xl/xf +X3k3 +XaXa) o
1
(123)
o =1+ o Hal2) (124)

Besides the information supplied by
Egs. (110), (122), (123), and (124), six
more data points concerning J are neces-
sary to determine the remaining six coeffi-
cients in Eq. (109).
three funciton evaluation at first step

Evaluate

j(l) = j[a(l), O, 0]

=C, +Co® + Cga’ (125)
T®=17(0, At{?, 0]
=C, +C, A2 +C,AtD" (126)

T®=710,0,44"]
=C, + CaAt® + CoaY (127

where

o =2 x (2 - TO) T O (128)
At® = -0.01 x t sgn[3 ] (129)

AtY =-0.01 x t{” “sgn[J 1 (130)

at the first iteration referring to the 2-DSP
developed in Ref. 16, and

a® = N D (131)
At? = AN (132)
At® = AN (133)

at the N-th iteration. '
Calculate J& and jt(;) j=1~3 using
Egs. (123) and (124).

Cs ~ C, are obtained using Eqs.(112)
and (113).

;ﬂll(l) [a(l), 07 O] - C3

C; =

Ol(l)
_ 3 1a®, 0,01 - 3210, 0,0]
Ol(l)
(134)
T 10, AtS?, 0] - C4
° AP
3'(2) (2) 7 (0)
_ 3210, At?, 0] - 357 [0, 0, 0]
2
At$?
(135)
I [, 0,0] - C,
C, =

a(l)

I, 0,01 - 342 (0, 0, 0]
1)

(64
(136)

Cg ~ C,, are obtained using Eqs.(125)
~(127).

_IP1a®,0,0] - (C, +Cra?)

Cs

oD’
_ 771, 0,0 {710, 0,01
oV’
+ P %10, 0, 0}]
. ‘ (137)

7?70, A¢2,0] - (C, + C,At?)

? At
—(2) ~+1(0)
_ 3710, At 0) -{J [0, 0, 0]
AP
+ A2 3,710, 0, 0]]
(138)

This document is provided by JAXA.



Optimal Low-Thrust Interplanetary Orbit Transfer Including Earth Escape Spiral Trajectory 19

210,0, Atf] - (C, +C,ALD)

At

_I®[0,0,At] - {3“”

Cio =

[0, 0, 0]
At

)—(0)

+ At Ji, [0, 0, 0]}

(139)

surface-fitting with C, ~C,,

Substituting J,=0, ‘Tt, =0, and J;, =0
into Eqgs. (111)~(113), the following
simultaneous linear equations are obtain-
ed.

2Cs, Cs, C, ¢ -C,
Cs,2Co, Cs | - | At, | = | -Cs
C,, Cs,2Cio Atg -Cq

(140)

Evaluate four functions using the
solutions a, At,, and At; of the above
equations.

T® =T, At,, 0] = T [, At 0]

(141)
T =T, 0, Ats] = T [0, 0, At
(142)
7® =710, At,, Atc]
= J [0, At'®, At{®] (143)
T =Ta, Aty At
=T, At A" (144)
Calculate :ft’ and Jt(f” j=4~1.

Seven function evaluations so far have
brought twenty-five data points concern-

=) T 3G4) =) .

ing J,i.e.,d ,d ,Jdt j=0~7and
ja(O)
surface-fitting with J° ( C, ), (=02 ),

T ~T® Tt(’) Jt:” to obtain C; ~ C,,

Jacobian matrix

s/ 2 2T 927
- oa? > dadt, " dadty
2J 92 J 32y
atj oo ’ atl 2 ’ 3t, atf
32d 92J 92d
ot;0ar ’ Otpdt, " dtg?
= 2Cg, Cs, C,
CS s 2C9 ’ C6
Cs, Cs,2Cy (145)

is defined from Eq.(109).

If J is positive definite?®’, obtain new
a, At;, and Aty by solving* Eq. (140).
If not, repeat the procedure until j=7.

If J is not positive definite for all j(0~7);
surface-fitting with J®(=C,), 3@ ~ T
_J_t‘l”, :I—t:” to obtain C, ~ C,,

If not good for all j(0~7), a, At,, and
Atg are newly defined as follows:

a=aP/2, Aty = AtP/2, Aty = AtY/2

(146)

Evaluate three functions
I® = J[a, At,, 0] = T[®, AL®, 0]
(147)

* Strictly speaking, this condition was necessary
also when Eq. (140) was solved in order to
compute J®~JD. However, authors did
solve Eq. (140) only under the condition of
W1#0. If [J|=0, a,At;, and At, are defined by
Eq. (146).
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TO=T[a, 0, Atg] = [, 0, At,”]

(148)
JUO=7J[0,At,,At¢]

= 7[0,At1, A4(10)] (149)
Ji,
surface-fitting with the smallest ten Js

and Ji, are not calculated hereafter.

among the eleven Js of JO~JU9 i

obtain C, ~C,
If good, evaluate

j(ll) Ej[a,Atl ,Atf]

= j[a(n),At(ln),At?l)] (150)
If not good, evaluate J?!) using the
previous «, At; , and Aty.
surface-fitting with the smallest ten Js
among the twelve Js of J©O~J11) to
obtain C, ~C,,
Continue the searches until the speci-

fied maximum number of searches. «,
At,, and Atg corresponding to the small-
est J are determined as o™, At{N), At{N),
u, t;, and tf are corrected by Egs.
(106)~(108) for the N+1 -th iteration.

The procedure described so far is re-
peated compactly below.

1) ¢,=JO®, C,=39; fit Eq. (109) with
FO~F®), jg), I for j=0; if good, go
to 4); if not, repeat 1) for larger j to 7.

2) Replace I by J); fit Eq. (109); if
good, go to 4); if not, repeat 2) for
larger j to 7.

3) a=at)/2, At =At®)/2, Atr=Atf/2.

4) Evaluate J®=J[c,At,;,0], J9=J[a,0,
Ate], JA®=J[0,At,,At¢]; select the
ten points with the smallest costs
among J©O~JA0). fit Eq. (109); if
good, go to 5); if not, evaluate J11)=
J[a, Aty ,Atf]; go to 6).

j=j+l

Start with 25 data Points

[e-3e30 303

Y

es

; !Fitling] ]

No
Good
Y Yes

SO]VE JQ:O.Jllzo'Jgfz()‘
a At,. Atf

a=0.5a1, At,=0.5At,?

At;=0.5At,°

T

Evaluate

T2 =J(ant,,00,] °=Xa0,At,),7 " =J(0,At,,At))

Select 10 smallest Js among J © ~J " ]

N

o
Good

Yes

Evaluate
Jn=Jia, At, Aty

Solve Jo=0,7,,=0.J,,=0
a Aty Aty

lgaluate J'=Ja At, Aty

[Eo

j>“\Yes
No

<1<3 1mt=Jmtyg et K@Y—GE—u

No

{Select 10 smallest Js among J° ~J""J

Go>NO
Yes

Solve Je=0,7J,,=0,],,=0|
a, At,, Aty

!

—‘{Evaluate I =J(a, at,, Atﬂ

[ Select minimum J among J ® ~J "‘}—

Figure 2. Flow Chart of 3-DSP
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—

i=4
=i+ 1
i>n\ YES
No
AT
No

L Select 3 smallest Js among J ©~J' 17! —]

iing)

No

Good

YES

[Solve Ja=0, a‘]
Y

L Evaluate Ji° —]

L Select minimum J among J®'~Ji-v }‘J

Figure 3. Flow Chart of 1-DSP

5) Evaluate J'V=J[a,At, ,Atf].

6) Select the ten points with the smallest
costs among j Js (j=12); fit Eq. (109);
if not good or [(JU-V-JU-2)/J0-2)<
1076, go to 7); otherwise evaluate J9°;
repeat 6) for larger j to the specified

21

maximum number of searches.
7) Select the point with the smallest cost

and stop = next iteration.

The flow chart of 3-DSP is shown in
Figure 2.

As to be mentioned later in Chapter 5,
a conventional one-dimensional search
procedure (1-DSP) is introduced with
At;=0 and Atf=0 in order to improve the
convergence characteristics. 3-DSP and
1-DSP are used in series. As for 1-DSP, the
flow chart is just shown in Figure 3.

5. SIMULATION RESULTS

The three-dimensional search procedure
(3-DSP) with the gradient method is
applied to the minimum-time low-thrust
orbit transfer from the geosynchronous
orbit to the heliocentric Mars orbit.

The simulation program is coded in
FORTRAN and Runge-Kutta-Gill method
is employed for integration. The computa-
tion is carried out in double precision
using the digital computer FACOM
M-380.

Parameters used in the simulations are
shown in Table 1. T and Mg correspond
to those in Refs. 2 and 16, where minimal
time t$=3.319 in heliocentric time unit tg
is obtained. Authors have obtained mini-
mal time t¥=209.49 in geocentric time
unit te using Te and Mg in Table 1 with
2-DSP in a manner similar to that in Ref.
3. The sum of t¥ and t¥ is 1425.54 in t,.
E. is chosen through a number of simula-
tions in order to assure that E(t;) becomes
positive.

An angle { between v(t7) and Earth’s
orbital velocity ve is introduced as an
additional parameter which determines
the magnitude of v(t]). Since Mars is one
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T, = 0.1405, me = 0.0749
(Ref. 2,16)

Te =3.713x 1073, mge = 2.044 x 1074
E. =5x1073

Table 1. Parameters Used in

the Simulations

of the outer planets, it may be predicted
that the larger magnitude of v(t}) leads to
the shorter flight time.

The simulations are started, but have
shown that it is difficult in many cases to
get a good convergence using only 3-DSP.
Taking account of the fact that the
magnitude of « is extremely small com-

pared with At, and Atf, a conventional

one-dimensional search procedure (1-DSP)
is introduced with At;=0 and Atg=0.
3-DSP and 1-DSP are used in series.

Then, the simulations are started again,
and a number of combinations have been
tested of search procedures and penalty
functions. The resultant data are present-
ed in Table 2. The criterion of the
convergence € is a square root of the
integral of (—%—%— , which should be zero if
the optimality condition is satisfied. n(m)
means n iterations with m-DSP, and an
arrow the change of the penalty func-
tions.

3-DSP demonstrates its effectiveness
especially when used successively after the

t AE(t AX

¢ € Iterations tf : (t:) o

t, AXy ¢ OXat
3(1)+ BT -4
77 |15 (1)+3(2) 1388.10 | 2173 7.33><10_4 2.87x10_
o —>2(1)+3(3)~4(3) 3.195 | -1.05x10 -7.37x107%
-5 -5

114 12 1378.71 216.8 | 4.75x10 4.24x10
5(3)=>4(3)~3(3) 3.170 | 5.53x10™* | 1.45x1073
-4 | _ -4

0.480 10 1364.75 215.6 1.25x10_ 3.33x10
a0° 3(1)+3(3)~2(1)+2(3) 3.136 | 2.99x107™* | 3.26x107*
-5 | _ -4

387 12 1366.44 215.6 | 6.48x10 1.22x10
5(3)>4(3)-3(3) 3.140 | 2.81x107* | 6.42x107¢
-4 | _ -4
0617 8 1379.59 215.2 2.08x10- 2,60x10~
60° 3(1)—3(3)~2(1) 3.158 | 2.10x107* 1.55x10 ™
.90x10 73 -5

10.6 12 1366.75 215.2 | 1.90x1 9.59x10
5(3)4(3)~>3(3) 3.142 | 5.05x107* | 1.22x1073
- -4

0.796 7 1395.87 215.5 8.36x10- 4.16x10
90° 5(3)~2(3) 3.221 | 2.96x107* | 3.92x107*
-4 | _ -4

0.898 10 1400.64 214.9 | 1.40x10 3.24x10
3(1)+3(3)=>2(1)+2(3) 3.236 | 38.34x107% | 4.28x107¢

£¥=209.49, t$=3.319, t¥+t¥=1425 54

P, : 1x103-2x103-4x103
P,~P,: 2x103—>5x103->1x10*

Table 2. Simulation Results
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use of 1-DSP in the first two or three
iterations.

t, is longer than t¥, but t, is shorter
than t¥. The resultant total mission time
tf is shorter than the sum of t¥ and t¥
even in the case of bad convergence. It is
very interesting that the minimal time for
the total flight is shorter than the sum of
the minimal times for the partitioned
flights, i.e., the escape portion and the
interplanetary portion. In the case of
£=30°, t; is as short as 4.2 percents.

The control histories of that case are
shown in Figure 4 and 5. The steering
angle shown in Figure 4 is 8, and in Figure
5 u, which appears in the equations of
motion. § and u are defined in Figure 1,
and measured from the tangential direc-
tion, i.e., the direction of velocity vector,
and from the local horizontal direction
respectively. 8 is chosen for the purpose

of comparison with the optimal escape
problem, where ( is usually depicted as
the steering angle in the figures.

It is clear that the control history in the
escape portion is quite different from that
in an optimal escape problem. In the
optimal escape problem, the thrust vector
oscillates around the velocity vector. The
amplitude increases gradually, but begins
to decrease, and reaches to zero at the
escape point. t also vanishes at the same
point. This is a well-known characteristic
of the control history for the prob]em3).
However, in the present problem, § oscil-
lates in the negative range in the first
portion, then increases gradually to the
positive range, and reaches finally up to
30°. The required time t, is a little longer
thant}.

Figure 5 shows the steering angle u in
the interplanetary portion. The real line

i - Solution of Optimal
10 Earth Escape Problem
30 @
Kol tr =209.5
«,
5 -
0
S 20
=
[ Y]
2 L 0
)
3 V”WVVUV“
o
£ 10+
e -
L3
3 -5t
w0

‘) 1.0

{normalized)

O i - 1 i
\/WV\/W\/\/\QS/ t;{normatized) 1.0

Figure 4. Steering History for the Earth Escape Portion
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300 [ -
P
r/’/f’"'/
/
AX:(t/):Z,QQXIOV‘ /
2407 Ax,(t;)=-3.33x10"* /
Axe(t;)=3.26X10"" /’
/
v /
-§ 180F y
t2 =3.136 /
= /
t*=3.319 /
g / .
% 120 (Refs. 2,16) / Solution of
< / Present Problem
w0 /
i / _———
§ // Solution of
o 60 - Optimal Interplanetary
- Transfer Problem
0 i ! I 1 | | 1 1 ! J

0.5 1.0

t: (normalized )

Figure 5. Steering History for the Interplanetary Flight Portion

shows a solution for the present problem,
and the broken line for the optimal
interplanetary transfer problem. In this
portion, the control histories are rather
similar to each other. The required time
t, is a little shorter than t.

The trajectories are shown in Figure 6
and 7. Figure 6 shows that the solution
for the present problem follows outside
the trajectory of the optimal escape prob-
lem almost all the period, and enters the
inside at the final portion. Generally
speaking, Figure 6 and 7 show that the
trajectories are rather similar in both
portions.

The resultant total mission time
te(=t,+t,), 1364.75 is shorter by 4.2
percents than the sum of t¥ and t¥,
1425.54.

\ ————— Solution of

Present Problem
— — — — Solution of Optimal
Earth Escape Problem

a t, =215.6

;10—75095 10.75rev.
Tdrev. t;1)=14.36

w(t%)=13.78 o

Figure 6. Trajectory for the Earth
Escape Portion
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Solution on of Present Problem

———— Solution of Optimal Interplanetary
Transfer Problem

e ———

t2=3.136

7 t¥=3.319
(Refs.2,16)

Earth Orbit

Mars Orbit

Figure 7. Trajectory for the Interplanetary
Flight Portion

6. CONCLUDING REMARKS

A three-dimensional search procedure
(3-DSP) is developed. 3-DSP with the
gradient method employing the penalty
functions is applied to the minimum-time
low-thrust orbit transfer from the geo-
synchronous orbit to the heliocentric
Mars orbit including Earth escape spiral
trajectory.

As far as authors know, such a com-
plicated optimal problem (three-point
boundary-value problem) has not been
solved numerically in the field of low
thrust orbit transfers.

The obtained total mission-time
te(=t, +t,) is slightly shorter than the sum
of t¥ and t¥, minimum-time solutions for
Earth escape problem and for Earth-Mars
transfer problem respectively. It is very
interesting that the minimal time for the

total flight is shorter than the sum of the
minimal times for the partitioned flights.

The control history in the escape por-
tion is quite different from that in an
optimal escape problem, but in the inter-
planetary portion it is similar to that in
an optimal interplanetary transfer pro-
blem. The trajectories are rather similar
in both portions.
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APPENDIX A TRANSFORMATIONS OF x(t;) INTO X(t‘;)r

Both t7 and t] will be omitted for simplicity in this section. The case
shown in Figure A-1 (0 <0, <m/2, x, <6,) is considered at first.

In the Figure A-1;

Og origin of the geocentric coordinate system (center of mass of the

Earth)

Oy origin of the heliocentric coordinate system (center of mass of the
sun)

Q position of the spacecraft

6, transfer angle of the Earth in the heliocentric coordinate system

6, angle between the Earth and the spacecraft seen from the sun

6o angle between the Earth and the sun seen from the spacecraft

In the triangle QOg OH, Law of cosines gives

(XiRay)? = Riy +(X110)% - 2x;10R,y “ cOS(X; - 6 + )

= Riy +x3r + 2%, 10 R,y " cos(f, ~ x;) (A-1)
(x;70)> = Riy +(X;Rauv)? - 2X,R2 cos b, (A-2)
Riu = (x110)* + (X Ray)? - 2%, X 1Ry cos fq (A-3)

Figure A-1. Relative Loacations of Sun, Earth, and Spacecraft
att=1t, (0<0e<7m/2 x, <8e)
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Law of sines gives

1To _ Ravu _ X1 Rau - X1 Rau (A-4)
sinf,  sinfg sin(x, -6, +7)  sin (6 - X,)
Dividing the both sides of Eq.(A-1) by R%y yields
r2 r
X2 = 1+x?—— +2x, 2 cos (6, - X,)
AU AU
X, 1is derived;
X, = \/1+R2xf + 2Rx; cos (Oe - x,) (A-5)
where R =ry/Ray.
From Eqgs.(A-2) and (A-4),
cos es:‘RiU +(X1R’AU)2 _(xer)z - 1+X% _sz? (A'G)
2X,R3%;, 2X,
X Ip sin(x, -6, +7 Rx, sin (6, -
COSBS= 110 (2 e )= 1 ln(e x?) (A-7)
X1 Rau X,
Then,
sin 0, 2Rx, sin (0, - x,)
tan g = = A-8
® 7 cosé, 1+X2-R%x? (4-8)
X, is derived,;
2Rx, sin (8, - x,)
X,=0-6, =6, -t ‘1( } A-9
2 e an 1+ X% _ RZ X? ( )
From Eqgs.(A-3) and (A-4),
(x,15)? + (X, Ray)? - R? X2 +R2x? -1
cos 9Q _\1to 1 tYAU AU M 1 (A-10)
2x, X roRau 2Rx,X,
. RAU sin (ee - x2) sin (0e - X2)
sin 0g = = (A-11)
Xl RAU Xl
From the Figure A-1,
X3Ve = -V sin O + X3V, cos Oy + x4V, sin Oq (A-12)
X4Ve = Ve €Os 05 - X3Vg sin Og + X4V, cos fg (A-13)
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Then, X5 and X, are derived;

X3 = -sin f; + V(x5 cos Oy + x, sin fg)

Rx, sin (6, ~x,) .\ V{ x3(X? + R?2x? - 1)

Xi 2RX]X]
X4 sin (0, - x
+ 4 (e 2)] (A-14)
X,
X4 = c0s B + V(-x3 sin g + x4 cos 8g)
=X§ -R?x? + 1+v {_x3 sin (0, - X,)
2X, X,
x4(X? +R?x?% -1
§ XalX) : )] (A-15)
2RX1X|

where V = v, /v,.

For the other cases, e.g., (0 <8, <7/2, x, > 6,), the same results are ob-
tained. Therefore, the transformations are given by Eqgs.(A-5), (A-9), (A-14),
and (A-15).

APPENDIX B DERIVATION OF MATRIX B; dX(t}) = B * dx(t;)

Both t] and t} will be omitted for simplicity in this section. From the
result of Appendix A, X is described as follows:

X; =X [xy, x,] (B-1)
X, =Xy (%1, %5, Xy ] (B-2)
X3 =X;5 [x,X4] (B-3)
Xs = X4 [x, X, ] (B-4)

Taking the total differentials of the above equations yields

oX, [x,,x oX,[x,,x
= ! [ . 2] dX} + '_']"‘[——!"‘—2—] dX2 = Bn dx1 + B;dez (B'5)
0x, 0%,

dX,

0X,[x,, %, X, ] 0X,[xy, %, X ]
= dx +

dX, I dx,

0x, 0x,

0X y X4, X
+ 2 (X4, X, l]dX

B-6
ox, i (B-6)
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X , X X , X 0X;5[x, X
_ 3 [x l]dx N 3[x ]]d + 3l ‘]d

dX X X
3 0X, : X, 2 0X3 }
0X; [x, X;] 0X;[x, X, ]
+—————dxy +——dX B-7
%4 Xq X, 1 ( )
X, [x, X 0X,[x, X 0X,[x, X
ax, - e X, RSILIRY PNC.S1 LoD I)
0x, 90X, 0X5
aX4 [X$X1] aX4 [X’Xl ]
+ ——————=dx, + ———dX (B-8
aX4 %4 ax‘ ! )

Substituting Eq.(B-5) into Egs.(B-6) ~ (B-8) yields

X, [xy, x5, Xy ] + 0X, [xy, %5, X, ]
0x, 0X,

dXz ={ B“} dx1

+{ 09X, [Xy, %5, X, ] + 0X, (X1, %2, X, ]

: BI'Z} dX'Z
aXQ aX1

0X;[x, X, ] . 0X3[x,X,]
axl aXl

{ax3[x, X1 0X30x, X, ]
+ + .

aa)e
0X, 0X, 1z | O%2

aX3 [X, X!] a>(3 [X, Xl]
t————— dx; +——————d

X4
0X3 X4

= B3| dx, + B32dX2 + B33dX3 + B34dX4 (B'IO)

X, [x, X, 1 N 0X,[x,X;]
axl aX‘

dX, ={ B, ] dx,

{axzz [x,X;] dX,([x, X, ]
+ + .

B dx
9%, X, ‘2} 2

X3

0X,4[x, X 0X,4[x, X
+ a[x, X1 dx, + a[x, Xy d
0X; 0X4

= B41 dX] + B42 dX2 + B43 dX3 + B44 dX4 (B'll)
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Defining 4 x 4 square matrix

B=,B,;, B;,, 0, O
B,;, By, O, 0
B3, Bsz, Bsz, Bas
Bay, Baz, Bas, Baa/

(B-12)

Egs. (B-5), (B-9), (B-10), and (B-11) are described in vectoral form.

dX = B dx

(B-13)

The elements of B are obtained using Egs.(A-5), (A-9), (A-14), and (A-
15). Comparison of the terms involving x; and x4 in Egs.(A-14) and (A-15)

shows clearly that

By = -Bis
By, = B
Eq. (A-5) 1s;

X, =+ 1+R?x? + 2Rx, cos (0, - x,)

_0X[xy,x,] R?x, + R cos (6, - x,)
H 0x, v 1+ R?x? + 2Rx, cos (6, - x,)
_ R?x; +Rcos (6 -x,)
X
B = oX, [x;,Xx,] _ Rx, sin (6, - x,)
' 0%, v 1+R?x? + 2Rx, cos (6, - x,)
_ Rx, sin (6, - x,)
Xy
Eq.(A-9) is;
2Rx, sin (6, - x
X2 = Be-tan“l 1 - (32 2)}
1+ X?-R?*x?
Then,
2Rx, sin (6, -
tan (6 - X) = 21 0 (% - Xa)

1+X?-R%x?

(B-14)
(B-15)

(B-16)

(B-17)

(B-18)

(B-19)
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Taking the total differential of the above equation yields

dX, _ 2R sin (6, - x,)dx; -2Rx,cos (6. - x,)dx,

" cos? (6, - x,) B 1+X?-R?x?

N 2Rx, sin (6, - x,) (2R?*x,dx, - 2X,dX;)
(1+X} -R?x})’

_2R sin (6 - x,) (X2 +R%x%+1) 4

(1+X2?-R?x2)? *
2Rx, cos (0, - x,) 4Rx, X, sin (6. - x,) dX
TIexXioRIE T @xXpoRI
Therefore,
B, = - cos? (6, - X, 21 *RIxi+1)B,,  4X(B,;,
2 T O e T R N T (T X2 - RZXD)? (1+X7 -R7x%)7 "
(B-20)
2x, (X,By; - R%x,) 4X1B);
= 2 -— - - B
By, = -cos® (G XQ){ 1+ X? -R%x? (1+X? -R%x})? 12}
(B-21)
Eq. (A-14) is;
< x, R sin (6, - x,) N Vx;(R%x2 +X2 -1) . Vx4 sin (6, - x,)
37 X, 2Rx; X, X, (B-22)

Taking the total differential of Eq.(B-22) yields

_ R sin (6, - x,) q Rx, cos (6, - x;) dx. + Rx, sin (6, -xz)dXl

X; t X2 2
Xl Xl Xl

dX, =

v {2R2x, x,dx, + (X7 + R?x? - 1)dxs + 2%, X, dX|
2Rx, X,

+

VX3(X12 + sz% - 1) (dexl+ dexl)
B 2Rx2X?

Vx, cos (B - x,) dx. + V sin (6, - x5) dx Vx, sin (6, -xz)d

- - X,
X] 2 Xl ! X%
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Therefore,

B,, .\ Vx3(R?x? -X2 +1)

B, = -
¥ X) 2Rx%X,
(x;R - Vx4)B;;  Vx3(X? -R?x? +1) }
* * B B-23
{ Rx X, 2Rx, X? n (B-23)
- (B;; X; -R%x;) (Rx, - Vxy)
32 RX,
+{ (iR - VXa)Bio | Vxo(Xi -R7x7 + 1)} B (B-24)
Rx, X, 2Rx, X? 12
V(X2 +R?x? -1)
B = (B-25)
2Rx, X,
VB,
Baa = Rx (B-26)
1
Eq.(A-15) is;
X X3 +1-R?x} Vxzsin (6, -x,) .\ Vx,(X? + R?x2 - 1)
’ 2X, X, 2Rx, X,
(B-27)

Taking the total differential of Eq.(B-27) yields

-sz] dX] +X1dX] Xf +1 -R2X§
dX4 = - 3
X, 2X?

dX,

\Y 6, - V sin (6, -
+ X3 cos (6, Xz)d _ sin (0, Xz)d

X,

X
X, X, >

. Vx4 sin (6, - x5)

dx,
X}

.\ V{2R2x, Xqdx; +(X? + R2x? - 1)dx4 + 2x4 X, dX,
2Rx, X,

Vx4 (X? + R?2x? - 1) (X,dx, +x,dX,)
2Rx?X2
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Therefore,
B, = R(-Rx, + Vx,) _ Vx4(X? + szlz -b
41 X, 2Rfo1
+{Xf +R2x? -1 + Vx;Bia | Vxq(X] - R?x] + 1)}311 (B-28)
2X? Rx, X, 2Rx, X}
_ Vx;(X; By -R?*x)
42 RX]
+[ X2 +R%*x} -1 + Vx;3 By, + Vxa (X} -Rx} + 1)}312 (B-29)
2X2 Rx, X, 2Rx, X2
VB
L VBa (B-30)
RX1
V(X2 +R?x? - 1)
Bs4s = = Bj3 (B-Bl)

2RX1X]

Now, all elements of B have been obtained.
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