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1. INTRODUCTION 
 
Land surface classification is one of the important 
applications of POLSAR (Polarimetric SAR) image 
analysis. Since the POLSAR images have multi-
polarization images of HH, HV, VH, and HH polarization, 
the scattering nature of terrain can be effectively 
discriminated.  There are many classification techniques 
such as simple HV basis imaging, the Pauli basis imaging, 
H-Alpha-Anisotropy imaging [1], power decomposition 
imaging [2]-[7].   The most frequently used method is the 
H-Alpha-Anisotropy based on the eigenvalues of 
coherency matrix.  The second one is the scattering power 
decomposition based on physical scattering models, which 
was first developed by A. Freeman and S. Durden [2].  
The extended methods were proposed by our group with 
additional components, the helix component and several 
types of volume scattering components [3],[4]. 
 
As for the scattering power decomposition techniques the 
covariance matrix or coherency matrix obtained by 
POLSAR images is used for the decomposition.  In these 
types of techniques, we have many unknowns to be 
determined such as power of each component and some of 
the elements in each component-covariance matrices.  The 
number of unknowns exceeds to the number of 
independent observables in POLSAR images. Therefore 
some assumptions are adopted to obtain unique solution. 
For example, in the Freeman decomposition, they adopted 
two assumptions. The first assumption is that the volume 
scattering components is known, which can be modeled by 
return from cloud of randomly oriented dipoles.  The 
second is that the (1,1)- elements in the covariance matrix 
for single or double-bounce component is known (plus or 
minus one) [2]. In the Yamaguchi's decomposition, they 
added several additional volume scattering matrices.  In 
this technique, we should select suitable one among the 
candidates of volume scattering covariance matrices that 
can be estimated by the co-polarization power ratio [3]. 
Accuracy of decomposition in these techniques depends 
on the validity of the assumptions.  When some of the 
assumptions cannot holds good, negative power 
components often appear. 
 

Recently, Dr. Arii, et. al., proposed modified volume 
scattering model for the power decomposition [5]-[7].  
They used the model for POLSAR data set and an 
adaptive technique with a model-error term is employed to 
overcome the negative-power problem [6]. 
 
In this research, we first focus on the model-based 
scattering mechanism decomposition problem, especially 
to verify the modified volume scattering model proposed 
by Dr. Arii and van Zyl.  Then, availability of the 
polarization rotation proposed by our group [8] to the 
model is also verified. The polarization rotation is the 
basis transform to minimize cross-polarization terms in 
the covariance matrix, which enables us to decrease 
volume scattering component and increase double bounce 
in the oriented urban, where oriented means that the 
buildings are not aligned parallel to the orbit. These 
verifications are done with the ALOS/PALSAR data of 
Sapporo, Japan.  The modified model can estimate 
roughness and orientation of the distributed trunks and 
branches in the forest. By using this feature, we also 
propose a new index to discriminate forest and vegetation 
areas from urban area. 
 
We have been also considering the extended model-based 
decomposition for POL-InSAR dataset [9]-[14]. Although 
reliable results for ALOS/PALSAR data could not be 
obtained at this stage due to temporal decorrelation of 
repeat pass observation, concept of the approach will be 
available for the future study.  Hence, summary of these 
techniques are also included before conclusions. 
 

2. OVERVIEW OF VARIOUS MODEL-BASED 
DECOMPOSITION TECHNIQUES 

 
2.1. Freeman-Durden model [2] 
The Freeman-Durden model is the most famous model 
based decomposition model by using physical or 
canonical scattering models such as single, double-bounce, 
and volume scattering components. By using these models, 
covariance matrix of the POLSAR data can be 
decomposed by 
 vvddss fff CCCC ++= ,   (1) 
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where sC , dC , and vC are the covariance matrices of the 
single, double and volume scattering component, 
respectively, as shown in Fig.1. The single-bounce 
component is dominant in the open surface such as bare-
soil and sea surface, and the double-bounce component is 
dominant in the urban-area especially for the buildings 
which locates along the azimuth track. The volume 
component is dominant in the forest and vegetation area. 
Therefore, to determine the coefficients in (1), ds ff , ,and 

vf , and estimate each component ratio becomes very 
powerful tool for the POLSAR data analysis. 
 

   
(a ) Single-bounce   (b) Double-bounce  (c) Volume 

Fig.1.  Typical Scattering Mechanizm 
 
When reflection symmetry holds, we only have 4 
independent observables in C . Therefore, they proposed 
to determine vC as derived by the random oriented dipole 
clouds to shown the volume scattering components in the 
forest canopy, and assume that one of the component in 

sC  or dC is known to make the problem solvable. This 
decomposition is effective to many POLSAR data. 
However there is a problem of negative power component.  
For the area where volume scattering component is 
dominant, single or double-bounce component becomes 
negative.  This is caused by the assumption denoted above. 
 
2.2. Yamaguchi model [3],[4] 
To alleviate the problem, Yamaguchi et. al., have extend 
the model in (1) as 
 hhvvddss ffff CCCCC +++= .  (2) 
where hC  is the helix component. In addition, they 
introduce three types of vC s depending on their dipole 
distribution. Selection of suitable vC at given patch can be 
done by using co-pol power ratio.  The number of patches 
that have negative power component becomes smaller 
than the Freeman model. The helix component is not 
dominant in almost all the areas with enough number of 
multilooks.  Therefore, extension of the volume scattering 
model can be considered to alleviate the problem. 
However, there still remain patches having negative power 
component. To resolve this inconvenience, they roll up 
small power components to the others. 
 
2.3. Arii-van Zyl model [5] 
Recently, Dr.Arii and van Zyl have proposed a new 
decomposition method by using modified volume 
scattering model. In their model, the covariance matrix is 
decomposed as 

 rvvddss fff CCCCC +++= ),( θσ , (3) 
where σ and θ  corresponds to the roughness and 
orientation of the dipole cloud distribution, respectively. 
This volume scattering model can be said as the 
generalized model of Yamaguchi’s volume scattering 
component. They also introduce the new component, rC , 
for the residue.  
 
This kind of extension always makes problem solvable. 
However, they successfully make the problem solvable as 
the minimization problem of residue among unknown 
variables [6]. The computer burden of this decomposition 
is heavy compared to the previous ones, nevertheless this 
decomposition is very attractive. Main cause of the 
negative power component is model error of each 
component. All the model errors can be included in the 
residue component. Therefore no negative power 
component occurs in this decomposition. Furthermore, we 
can obtain additional information of roughness and 
orientation in the forest area. In the followings, we call 
this volume scattering model as “modified volume 
scattering model”. 
 
3. VERIFICATION OF THE MODIFIED VOLUME 

SCATTERING MODEL 
 
3.1. Experimental data 
In the verification of the volume scattering model, ALOS 
data of Sapporo, Japan was employed.  Detailed data 
specification and its optical image are listed below. As can 
be seen in Fig.1, urban and vegetation area are located at 
the right-middle, left-middle in this image.  The rightmost 
and leftmost areas are the forest. The blue area is the Sea. 
 

Table.1  Experimental data set 
Area Sapporo and environs 
Observed data July 29, 2009 
Polarization HH, HV, VH, VV 
Sensor ALOS/PALSAR (L-band) 
Incident angle 21.5 degree 
Multilooks 3 x 18 (Azimuth x Range) 
 

 
Fig.2  Optical image of the test site (Sapporo, Japan). 

 

This document is provided by JAXA.



3.2. Derivation of fv with the modified volume 
scattering model 
Dr.Arii et. al., developed Adaptive Non-Negative 
Eigenvalue Decomposition (ANNED) method [6], which 
is modified version of the Non-Negative Eigenvalue 
Decomposition (NNED) [15], to solve (3). In the first 
stage of the ANNED, we evaluate eigenvalue of the 
following matrix with given σ  and θ  by changing vf , 
 ),(' θσvvf CCC −= .   (3) 
The best fit vf can be determined which minimize power 
of the remainder ][ vTr C  in the condition of 
       0][,0]'[,0][ ≥≥≥ vr TrTrTr CCC .  (4) 
where Tr[] denotes trace of a matrix. In their approach 
denoted in [5], one-dimensional search on vf  is required 
in addition to two dimensional search on σ  andθ .  It is 
time consuming. 
 
In our research, we directly derive vf  by using 
generalized eigenvalue of   
 0),( =− θσλ vCC .   (5) 
Since C is the 3x3 matrix, we have three eigenvalues, 

321 λλλ ≥≥ . If the volume scattering is correctly 
removed, rank of 'C becomes 2 including single and 
double-bounce whose covariance matrixes have rank of 2. 
Therefore, it is clear that the best-fit vf  can be directly 
solved by 
 3λ=vf ,     (6) 
Except for the case that ),( θσrC  becomes singular. This 
property was numerically checked. There was no 
significant difference between experimental results of (3) 
and (5).  In the followings, we adopted the approach in 
(5) . 
 
3.3. Comparison of the decomposed results 
The decomposed results of the Sapporo data by using 
Freeman-Druden and Arii-van Zly decomposition are 
shown in Fig3 and 4. Ps, Pd, and Pv denote power of the 
single, double-bounce and volume scatterings, 
respectively. In the false color images we allocate red, 
green and blue to Ps, Pv and Pd. As reported in several 
articles, Freeman method tends to overestimate power of 
volume scatterings. This tendency can be clearly seen in 
these figures.  Contribution of the power of the single and 
double bounce in urban area becomes dominant in 
comparison with the power of the volume scatterings. In 
the urban area, we still see the relative strong volume 
scatterings. They become strong especially in the urban 
area where buildings/streets are not aligned parallel to the 
azimuth track of the SAR platform. This problem will be 
considered in the next section. 
 

 
(a) Ps                                 (b) Pd 

  
                (c)  Pv                          (d) False color image  
Fig.3  Decomposed results by using Freeman-Durden 
decomposition. 
  

 
(a) Ps                                 (b) Pd 

  
                (c)  Pv                          (d) False color image 
Fig.4  Decomposed results by using Arii-van Zyl 
decomposition. 
 
3.4. Further analysis: Error Criterion 
As denoted in (4), criterion in this minimization problem 
is 
    ( ) 0][ with ][min  :ICriterion ≥rr TrTr CC .  (7) 
However, in the model matching sense, we can also adopt 
the following criterion. 

   0][ with min  :IICriterion 2
≥








rFr Tr CC  (8) 

where 
F

⋅ denotes Frobenius norm.  In the false color 
images we could not see the differences with both criteria. 
Difference can be seen in the estimated σ  and θ  as 
shown in Figs.5 and 6.  Also, Trace and Frobenius norm 
of the derived remainders with Criterion I and II are 
shown in Figs. 7 and 8, respectively. 
 

      
(a) Criterion I                   (b) Criterion II 

Fig.5   Estimated roughness (σ ) 
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(a) Criterion I                   (b) Criterion II 

Fig.6   Estimated orientation (θ ) 
 

   
          (a)  Trace of rC          (b) Frobenius norm of rC  

Fig.7  Remainder rC with Criterion I. 
 

   
          (a)  Trace of rC          (b) Frobenius norm of rC  

Fig.8  Remainder rC with Criterion II. 
 
 

The Criterion I adopted in [5] minimizes trace of rC , 
hence trace with Criterion I (Fig.7(a)) is smaller than that 
with Criterion II (Fig.7(b)).  However, difference can be 
seen only in the urban area. This difference brings us the 
difference of σ  and θ as shown in the Figs.5 and 6. 
However, when we see the forest and vegetation area, 
estimated σ  and θ , and also remainders, are almost same 
in both criteria. 
 
It is clear that the estimated results coincide with each 
other if the employed models are correctly matched to the 
observed scattering signals. The demonstrated results in 
this subsection are one of the evidence that the modified 
volume scattering model in (3) is valid for 
forest/vegetation analysis. 
 

4. ORIENTED URBAN PROBLEM IN THE 
DECOMPOSITION 

 
4.1 Polarimetric decomposition in urban area 
The volume scattering model in (3) is intended to model 
tree branches and trunk distribution in forest.  As 
discussed in the previous section, forest region can be well 
analyzed by the Arii’s model.  However, strong volume 
scattering remains in the urban area. Example of the false 
color images are shown in Fig.9. These are the close up 
images of urban area denoted white box in Figs.3(d) and 
4(d). 
 

    
(a)                     (b)                          (c) 

Fig.9  Optical and False color images in the urban area. 
(a) optical image, (b) Freeman decomposition, (c) Arii 

decomposition 
 
Intuitively, urban area has strong double bounce 
component when the buildings are aligned long the 
azimuth track of platform orbit. As shown in these figures, 
red and blue are dominant in the urban area which aligned 
parallel to the orbit (“pararel-urban”). However, green 
becomes dominant where the buildings are not aligned to 
the orbit (“oriented-urban”) in both decompositions.  
Improvement can be seen in (c) , however there still 
remain dominant green patches.  
 
4.2 Rotation of the polarization basis 
To decrease the oriented urban effect in the 
decomposition, our group has proposed polarization basis 
transform to the original fully polarimetric data. The 
transformed scattering matrix is defined by 
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To minimize cross-polarized term, we can obtain the 
following expression for the rotation angle [8] 
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Above transformation is derived in order to minimize 
closs-polarized term. However, transformation itself is an 
Unitary transform.  Therefore, component power of the 
volume scattering must be unchanged if the model is 
correct. 
 
4.3 Experimental results with the rotation 
The experimental results with rotation are shown in Fig.10. 
Estimated area is the same as shown in Fig.4.  Also false 
color images without and with rotation are shown in 
Fig.11.  In this dataset, no big improvement can be seen. 
However, as can be seen in these figures, polarization 
basis rotation can be successfully applied to enhance 
double-bounce in the urban-area, especially to the 
oriented urban area, without loss of volume scattering 
power in the forest area. This is the important point to 
realize stable and robust decomposition. In the previous 
models in (1) and (2), power of the volume scattering 
often decreased and power of angle and double bounce 
were increased due to the imperfection of the volume 
scattering model. This problem seems to be resolved by 
the modified volume scattering model. 
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(a) Ps                                 (b) Pd 

  
                (c)  Pv                      
Fig.10  Decomposed results with rotation by using 
Arii-van Zyl decomposition. 
 

(a) without rotation 
 

(b) with rotation 
Fig.11 False color images with and without rotation. 

 
5. APPLICATION OF THE MODIFIED VOLUE 

SCATTERING MODEL 
 
5.1 Estimated roughness and orientation with rotation 
One may want to see what happens in estimated roughness 
and orientation with rotation. The estimated σ  and 
θ (Criterion I) with rotation are shown in Fig.12.  For 
estimated orientation θ , large shift can be seen in the 
urban area but random phase shift can be also seen in the 
forest area (See Figs.12(a) and 6(a)). On the other hand, 
typical variation can be seen in the estimated roughness 
σ .  In comparison with Figs. 12(b) and 5(a), roughness of 

the forest in almost unchanged by the rotation, however 
clear difference can be seen in the urban area including 
the oriented urban. 
 

(a) orientation                     (b) roughness 
Fig. 12  Estimated orientation and roughness with 
rotation 
 
5.2 RVI for Forest/vegetation and urban area 
discrimination 
Radar vegetation index (RVI) is one of the famous index 
to discriminate forest and vegetation area in the POLSAR 
images which is given by [17] 

 
321

34
λλλ

λ
++

=RVI    (11) 

where 3λ  is the smallest eigenvalue of C . The RVI is 
adopted for the comparison in this section with light 
modification so as to limit its maximum to 1: 

 
321

34
λλλ

λ
Λ

++
=    (12) 

The estimated result is shown in Fig.13. 
 

 
Fig.13  Radar vegetation index distribution 

 
5.3 Roughness with rotation for Forest/vegetation and 
urban area discrimination 
As denotes in Sect.5.1, roughness of the forest area seems 
to be almost stable.  Figure 14 shows variation of 
roughness of the selected area in Fig.13 with rotation. 
Clearly, forest region is very stable, and vegetation (crop-
field) and urban area show their own charactersitics.   
 
When we employ the characteristic that the variation of 
σ with forest region is small, we can derive following 
index. 

 
0

1 1
σ
σ∆σ −=     (13) 
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where )()( minmax φσφσσ∆ −= is defined by using 
maximum and minimum value of σ . 0σ  is 0.9069 which 
is upper limit of σ . By using this index, stable region 
such as forest shows high index.   
 
In addition, the forest region shows the highest σ in 
comparison with those of other areas. Forest 
discrimination can be enhanced by using the following 
index. 

 







−=

00

max
2 1

)(
σ
σ∆

σ
φσ

σ    (14) 

The estimated results by using index in (13) and (14) are 
shown in Fig.15. 

 
Fig.14  Variation of roughness with rotation in each 
area 
 

 
(a) Estimated results by using (13) 

 

 
(b) Estimated results by using (14) 

Fig.15 Forest discrimination by using roughness 
parameter with rotation 
 
Histograms of the selected typical regions in each figure 
are shown in Figs.16(a), (b) and (c), respectively. The 

RVI index shows difference of characteristics for each 
typical area clearly, however the value sometimes 
overlaps in other area. If one wants to extract only the 
forest region, the index in (14) becomes a powerful tool. 
 
Next, we’d like to consider the discrimination of urban 
area from vegetation and forest. Even we employ RVI, 
RVIs in vegetation and oriented-urban often have the 
same value as shown in Fig.16(a). When overlap of the 
curves for “vegetation” and “oriented-urban” becomes 
small we can improve discrimination performance.  
Several combinations of parameters were checked, and we 
found that the mean value of roughness with rotation is the 
potential index which is defined by 
 ))(( φσσ average= .   (15) 
Estimated results and their histograms are shown in Fig.17 
and Fig.16(d), respectively.  Improvement of 
discrimination performance between parallel/oriented-
urban and vegetation (crop field)/forest can be realized as 
shown in Figs16(a) and (d). 
 

 
              (a)Λ                                    (b) 1σ  

  
                     (c) 2σ                           (d) σ  

Fig.16 Histograms of each index for various areas 
 

 
Fig.17 Vegetation/Forest/Urban discrimination by 
using roughness parameter with rotation by using (15) 
 
Seasonal change detection is also the important to verify 
availability of index.  Figures 18 and 19 show the 
estimated indexes and histogram of the selected areas for 
the winter season data. The data were taken at December 
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14, 2009. Since Sapporo is the snowy city, there were no 
crops in this season, and the fields were covered by snow.  
This tendency can be clearly seen in these results for both 
indexes. 

 
(a) Estimated results by using (12) (Winter Season) 

 
(b) Estimated results by using (15) (Winter Season) 
Fig.18 Vegetation/Forest/Urban discrimination by 
using each index (Winter season data). 
 

 
Fig.19 Histograms of selected areas in Fig.18. 

 
 
6. DECOMPOSITION FOR POLARIMETRIC SAR 

INTERFEROMETRY 
 
This research was intended to extend the model-based  
decomposition techniques to POL-InSAR data. In the 
POLSAR analysis of covariance matrix, we only have 4 
independent observables with reflection symmetry targets. 
However the models discussed in Sect.2 have 5 or more 
unknowns. Their techniques handle this uncertainty with 
some assumptions.  
 
Single and double bounce components are important when 
we estimate soil moisture of the vegetated area. 
Covariance matrix of the each component has one 
unknown. In the Freeman and Yamaguchi method, one of 
them is determined by 1 or -1 depending on the dominant 
component. On the other hand, Arii method uses the 

assumption that dot product of them becomes -1. They are 
semi-empirical assumptions. 
 
When we extend the decomposition to the POL-InSAR 
data, we can acquire 4 additional independent observables. 
Three complex coherences corresponding to each 
component are the newly added unknowns.  Therefore, 
there are one-freedom for estimating the unknowns in 
single or double-bounce component.  This is the main 
concept in this approach.  This concept was almost well 
demonstrated highly coherent POL-InSAR datasets, i.e. E-
SAR data, SIR-C/X-SAR. However, the method was not 
work properly for the ALOS/PALSAR data.  Main reason 
for this will be rack of coherence due to temporal 
decorrelation.  However, POL-InSAR approach for the 
decomposition is still an attractive problem and has a 
potential to extract furthermore information from the data. 
Therefore, we have been struggling to find a new 
processing technique for improvement. 
 

7. CONCLUSION 
 
In this project, we evaluate various model-based 
polarimetric decomposition techniques. To enrich and 
improve the decomposition accuracy, we have also 
proposed to apply polarization-basis rotation before the 
decomposition.  In this project we have clarify that 1) the 
modified volume scattering model proposed by Dr. Arii 
and van Zyl is acceptably accurate in comparison with that 
of conventional ones, 2) the polarization-basis rotation 
improves mis-classification between forest/vegetation and 
oriented urban, 3) the modified volume scattering model 
is stable and robust for the polarization-basis rotation of 
the covariance matrix.  We also intended to extend the 
method to the POL-InSAR data. However available 
results could not be obtained at this stage due to lack of 
coherence. This is one of the further studies to be done in 
near future. 
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