ISSN 0389-4010 UDC 533. 6. 07

航空宇宙技術研究所報告

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY

TR-811

航技研2m×2m遷音速風胴のデータ処理

中村正剛 • 鈴木弘一 • 白井正孝 小池 陽 • 藤田敏美

1984年5月

航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

附録 データ処理プログラムについて ………………………………………………………… 43

次

目

航技研2m×2m遷音速風胴のデータ処理*

中村正剛** 鈴木弘一** 白井正孝** 小池 陽** 藤田敏美**

The Data Processing System of the NAL 2m X 2m Transonic Wind Tunnel

Seigou NAKAMURA, Koichi SUZUKI, Masataka SHIRAI, Akira KOIKE and Toshimi FUJITA

ABSTRACT

The current data processing system of the NAL $2m \times 2m$ Transonic Wind Tunnel is described. The system is based on dual ECLIPSE S/140 processors with a core memory of 128 KW \times 2 at 16 bits/word.

An outline of the main processing stages through which the test data cascade is first given, and then a description is given of the way in which force- and moment data as well as pressure- and temperature data are collected, processed, stored and displayed at each processing stage.

Part of the hardware system used for the test data acquisition is also described when thought helpful in delineating the process of data reduction.

	記号の説明	CL_{w}	:1つの翼幅位置における断面の揚力係 数
CA	:機体 軸系軸力係数	Cl	:機体軸系ローリング・モーメント係数
CAF	:機体 軸系フォアボディ軸力係数	Cls	:安定軸系ローリング・モーメント係数
CAw	:1つの翼幅位置における断面の軸力係	Cl_w	:風軸系ローリング・モーメント係数
	数	$C_m (=C_n)$	ms): 機体軸系ピッチング・モーメント係数
CC	:風軸系橫力係数	Cmow	:1つの翼幅位置における断面の前縁回
CD	:風軸系抗力係数		りのピッチング・モーメント係数
CD1	:安定軸系軸力係数	C_{ml}	:1つの翼幅位置における断面の前縁か
CDb	:底面抗力係数		ら距離L[m]点回りのピッチング・モ
CDF	:風軸系フォアボディ抗力係数		ーメント係数
CDF1	:安定軸系フォアボディ軸力係数	C_{mw}	:風軸系ピッチング・モーメント係数
CD _w	:1つの翼幅位置における断面の抗力係	CN	:機体軸 系垂直力係数
	数	C _{NW}	:1 つの翼幅位置における断面の垂直力
CL	:安定軸系揚力係数		係数
* B2	3和59年2月14日受付	C_n	:機体軸系ヨーイング・モーメント係数
	云力学第二部	$C_{ns}(=0)$	Cnw): 安定軸系ヨーイング・モーメント係数

$(C_{pi} \sim C_{pn})$	"): 1 つの翼幅位置における断面の圧力f	系
	数分布	
Cpb	:底面圧力係数	
Cpwi	:翼面上の圧力係数	
CY	:機体 軸系横力係数	
$d\theta$:較正された模型姿勢ピッチ角のオフィ	e
	ット値 [deg]	
$d\phi$:較正された模型姿勢ロール角のオフィ	z
	ット值 [deg]	
dH	:較正された模型姿勢上下位置のオフィ	e
	ット値 [mm]	
EPM	:単位ピッチング・モーメントによるオ	<u>ل</u> م ر
	わみ角 [rad/N・m]	
ERM	:単位ローリング・モーメントによるね	þ
	じれ角 [rad/N・m]	
EYM	:単位ヨーイング・モーメントによるカ	
	わみ角 [rad/N・m]	
FC	:風軸系横力 [N]	
FD	:風軸系抗力 [N]	
FD1	:安定軸系軸力 [N]	
FL	:安定軸系揚力 [N]	
FNN	:単位垂直力によるたわみ角	
	[rad/N]	
FX	: 機体軸系軸力 [N]	
FY	:機体軸系横力 [N]	
FYY	:単位横力によるたわみ角 [rad/N]	
FZ	:機体軸系垂直力 [N]	
H _s	:模型姿勢上下位置 [m]	
H'_s	: " [mm]	
H_v	:模型姿勢上下位置ポテンショの出力	
	[V]	
IGm	:中速走査 A/D変換器の設定ゲイン番	
IGs	:高速走査 A/D変換器の設定ゲイン番号	弓
K _i	:通風時に対する較正時の励起電圧比	
Kp	:差圧型圧力変換器の変換係数	
	[KPa/V]	•
k	: レイノルズ数算出式中の定数, 集合	
	圧の単位により 1.0 または 7. 50064 ×	を
0	とる。	~
kθ	:較正された模型姿勢ピッチ角の変換	杀
	数 [deg/V]	

kφ	:較正された模型姿勢ロール角の変換係
	数 [deg/V]
kH	:較正された模型姿勢上下位置の変換係
	数 [mm/V]
L	:1 つの翼幅位置における断面の前縁か
	らモーメント基準点までの距離
	[m]
L_m	:レイノルズ数算出用基準長 [m]
М	:一様流マッハ数
MXB	:機体軸系ローリング・モーメント
	[N · m]
MXS	:安定軸系ローリング・モーメント
	[N · m]
MXW	:風軸系ローリング・モーメント
	[N · m]
MYB(=M	YS):機体軸系ピッチング・モーメント
	[N · m]
MYW	:風軸系ピッチング・モーメント
	[N · m]
MZB	:機体軸系ヨーイング・モーメント
	[N · m]
MZS(=M	ZW):安定軸系ヨーイング・モーメント
	[N · m]
M_{wi}	:翼面上のマッハ数
Р	:測定部一樣流静圧 [KPa]
P'	: " [mmHg]
P_1	:クオーツ圧力センサーの変換値
	[mmHg]
P^*	:基準圧を用いた較正値(測定部静圧)
	[mmHg]
P_0	:集合胴総圧 [KPa]
P_0'	: " [mmHg]
P_0^*	:基準圧を用いた較正値(集合胴総圧)
	[mmHg]
P_b	:底面圧力 [KPa]
Pc	:クオーツ圧力センサーの BCD出力
P _{cc}	:差圧型圧力変換器による集合 胴総圧の
	出力 [V]
Pr	:差圧型圧力変換器による測定部静圧の
	出力 [V]
$P_z(=P_r)$:差圧型圧力変換器の零点 [Ⅴ]

2

P_i''	:差圧型圧力変換器の出力	[V]
P_i'''	:差圧型圧力変換器の出力に	に零点補正し
	たもの	[v]
Pwi	:差圧型圧力変換器の出力」	より求めた静
	圧	[KPa]
P1 _{wi}	:翼面上の圧力比	
Q	:動圧	[KPa]
R _e	:レイノルズ数	
T_0	:集合胴温度	[K]
<i>T</i> 1	: "	[°C]
T_{mV}	:銅ーコンスタンタン熱電対	すの出力
		[mV]
t ₀	:通風前の基準となる時刻	[min]
t_1	:測定時刻	[min]
tr	:通風後,模型水平状態で凋	間定した時刻
		[min]
U	:測定部風速	[m/sec]
Vi	:第1素子から第6素子の出	コカ[mV]
V_m	:中速走査 A/D変換器の出た	」を電圧値に
	変換したもの	[mV]
V_{mc}	:中速走査 A/D変換器の出た	力数值
Vs	:高速走査 A/D変換器の出力	」を電圧値に
	変換したもの	[V]
Vsc	:高速走査 A/D変換器の出た	力数值
Xi	:6 素子天秤の物理量	
	[kg また!	t kg - m]
XXi	:6 素子天秤の物理量	
	[Nまた	はN-m]
XH _i	:6素子天秤の変換係数	
	[kg/mVまたはkg-	-m/mV]
XNi	:通風前の模型水平状態での)6素子天秤
	出力	[mV]
XR _i	:通風後の模型水平状態での)6素子天秤
	出力	[mV]
XVi	:6素子天秤の出力	[mV]
(X_1, Z_1)		
$\sim (X_m, Z_m)$):1つの翼幅位置における断	面の局所翼
	弦長で無次元化した(x, z	2)座標
α	:迎角	[rad]
α_{s}	:設定迎角	[rad]
Δa	:スティングのたわみ補正量	t(迎角)

∆ø	:	スティ	ング	がのね	ねじれ神	証量(τ	コール角)
							[rad]
Δψ	:	スティ	2	ブのフ	にわみ補	証量()	扁揺角)
							[rad]
φ	:	模型多	勢	0 –	ル角		[rad]
ϕ_s	:	模型多	冬勢 語	設定	$\mathbf{u} - \mathbf{v}_{j}$	角	[rad]
ϕ'_s	:			"			[deg]
φ _v	:	模型多	勢	- -	ル角の	ポテンシ	╯∍出力
							[v]
ψ	:	模型多	勞	扁揺	角		[rad]
ψ_s	:	模型多	冬勢	設定	偏摇角		[rad]
θ_s	:	模型多	勢	没定	ピッチ	角	[rad]
θ'_s	•			"			[deg]
θ_{v}	:	模型多	冬勢	ピッ	チ角の	ポテンシ	╯』出力
							[v]
$\left[\frac{\Delta x}{\Delta t}\right]_i$:	6 素-F	子天道	軽の	時間ド	リフト日	系数
L dt Ji							/min]
- 4 X: -							,
$\left[\frac{\Delta X_i}{\Delta V_j}\right]$:	6 素于	F天i	秤の	1次干:	涉係数	
$\begin{bmatrix} \Delta X_i \end{bmatrix}$		にまご	277	ጀጣ	の加工	此区勒	
$\left[\frac{\Delta X_i}{(XV_j)^2}\right]$	•	ዐኡገ	" ሌ ነ	トリ	201		/mV]
A Y .						ĹJ	/ m v]
$\Big[\frac{\Delta X_i}{XV_j \cdot XV_k}\Big]$	-]	:63	【子]	天秤	の複合	荷重によ	、る干渉係
y · ĸ		数				[]	l/mV]
$\left(\frac{\Delta X X_i}{\Lambda \theta}\right)$:	6 素子	天利	平の	自重補	正量	
× 10 /						ーー Nまたは	N⋅m]
							· ····

1. 概 要

航空宇宙技術研究所 2 m × 2 m 遷音速風胴¹⁾(連続 式,最高試験マッハ数 1.4)における風胴試験におい て,基準条件,供試体の空気力および周辺の気流状 態などを計測し,力データおよび圧力データの空気 力係数を求めるまでのデータ処理に関する現行の方 式を述べる。

昭和 35 年遷音速風胴(以下風胴という)通風以 来,データ処理用計算機と計測機器の高速化や精度 向上をはかってきたが,近年,風胴で実施される試 験の種類や内容が多岐にわたるようになり,その一 方取得データ量も増えて,試験結果に対しても高い

[rad]

4

精度が要求されるようになってきた。

昭和 35 年以来の変遷(第1表参照)を簡単に述 べると,所内共用の中央計算機(以下設置場所を計 算センターという)DATATRON 205 時代は風胴と のオンラインおよびオフライン方式でデータ処理が 行なわれていたが,計算機の主記憶容量が少なく (4KW),演算速度も遅いために処理データ量もか ぎられていた。

昭和 43 年に,中央計算機として HITAC 5020が 導入されて,主記憶容量が増え演算速度も速くなっ た。

カデータは、この中央計算機にカードを持ち込み 処理を行なった。一方圧力データは昭和44年に模 型内挿の圧力変換器を導入してデータ収集を行うよ うになったが、これにともなうデータの多量化や高 速化のために、今まで使用していた出力装置(カー ド・パンチ機)が能力不足となったので、出力装置 として風胴計測室にAICOM C-3(紙テープ出力) を導入した。この圧力データ処理に関しては,大型 低速風胴専用計算機 NEAC-2230 を利用した。

昭和49年には,遷音速風胴データ処理専用計算 機として,TACC 840 Mを導入した。このシステム では磁気ディスクを使用するので多量のデータ収集 が可能となった。データ処理は,磁気ディスク上の データを磁気テープに移し,計算センターに磁気テ ープを持ち込み,中央計算機(FACOM 230-75)を もちいて,これを行った。

昭和 55 年頃からこのシステムの老朽化が著るし くなったので,昭和 57 年の中央計算機の更新にと もない,風胴データ処理システムとして ECLIPSE S/140 2 台を導入した。現在,経常的な内容の試 験についてはこのシステムでデータ処理をほぼ完了 できるが,特殊な場合は,通信回線を通して中央計 算機に処理を依頼する。

昭和 57 年 2 月の ECLIPSE S/140 の導入以来,この計算機に基いたデータ処理システムを整備すべ

設置場所	項	l 目	昭和		35	-	-	-	-	40	-	-	43	44	45	-	-	-	49	50	-	-	-	-	55	-	57	58	
週	計算	卸機	機種	名		-									CC					TA									PSE
音										· · · · _ ·					С-	3					10 N	1						S/1	40
風服	使	用	期	間									•	←						_					-	-	-		
遷音速風胴計測室	使	用	- HIID	語											アセ	:ンフ	ブラ			F	'OF	TR	AN	N N			FO	RTF	RAN5
室	デー	- 9	・ベ-	- ス											紙	.	プ			磁気	デ気気	ィステー	ップ				磁集	気デ 査気	ィスク テープ
					DA	٩T/	AT F	RON						Н	IT	AC				FA	VC(DM							COM
計算	計算	₽쭩	機種	名		2	05								502	20				2	30-	75						м- (М-	180 380)
セ	使	用	期	間		t						****								-		_				-	+		
ンタ	使	用	1)III	語		機	械語	Ì						F	OR.	ſRA	NIV				FO	RTI	RAI	NIV			FO	RTR	AN77
	デー	- タ	・ベー	- ス		カ	-	3							カ・	- ř				磁気	「デ 転気	ィステー	クプ						ィスク テープ
*	- 1 - 6	a. 1.1													NE	AC													
型低	計算	Į機	機種	2名											22	30				_									
大型低速風	使	用	期	間									•	◀					•										
胴計	使	用		語										2	NE/	AC #	语												
測室	デー	- タ	・ベ-	- X											紙	7	プ												

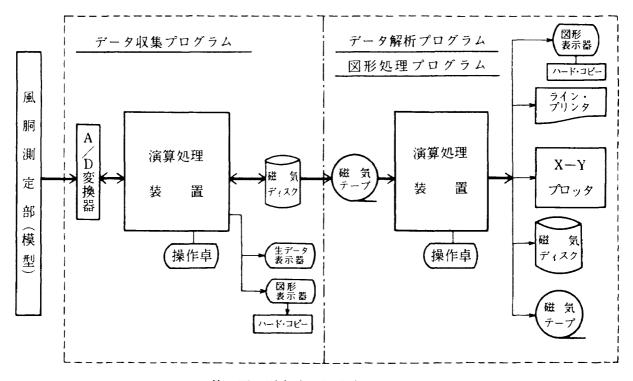
第1表 遷音速風胴データ処理に使用した計算機の変遷

く作業をすすめてきて,この程それが一段落したの で,これを機会にデータ処理システムの内容を報告 することとした。まず次節では処理プログラムから 観たデータの流れを簡単に示し,第3節ではやはり 処理プログラムから観た入出力機器をリストアップ する。次の第4節で本報告の主題であるデータ処理 の内容をやや詳しく述べた。なお利用者の便を考え て,6分力天秤データおよび圧力データの解析処理 プログラムの内容を附録に記載した。

2. 試験データの流れ

データ処理プログラムは、データ収集プログラム、 データ解析プログラムおよび図形処理プログラムか らなる。

データ収集プログラムでは,風胴測定部内に設定 された供試模型から取り出された6分力や圧力,そ の他に関する電気信号を必要なものは増幅し,A /D変換器により数値化し,解析処理を行う。また, その結果の生データ表示や図形表示を行ない,数値 データを磁気ディスク内の特定の場所に特定の記録 形式で,名称を与えて登録し格納する(以下この特 定の場所に特定の記録形式で格納されているデータ を総称してファイルという)。


生データの保存の目的で試験終了後,磁気ディス ク内に格納された数値データをファイル単位毎に磁 気テープに転送する。

データ解析プログラムでは,磁気ディスクや磁気 テープに格納された数値データをもとにして空気力 係数の計算や結果の印字を行うことおよび計算結果 を磁気ディスク内に格納することを行う。

計算結果の保存の目的で磁気テープにもデータの 転送を行う。

	Ĭ	頁	E		仕 様	
	機	ŧ	種 名		ECLIPSE S/140	
	記	憶	容		128 K語	
	語	-		長	16 ビッ	۲
<u></u> ∄†					整数1 語	
	数	值	表	現	実 数 2 語	
算					倍精度実数 4 語	
	演	算	速	度	加算(倍精度)1.4 μ	秒
機	(浮動	协小数	点の場	合)	除算(倍精度) 9.2 μ	耖
	文	字	表	現	ASCII	۲
	オペレ	ーティ	ングシフ	マテム	MRDOS	
	FOR	TRAN	「言	語	FORTRAN N, 5	
補 磁気ディスク	記	億	容		25 Mバイ	4
聞	デー	タ南	运送证	速度	910.6 Kバイト/	秒
記磁気	記	億	容	量	1.26 Mバイ	ŀ
憶 ディスケット	デー	タ斬	送送	主度	62.5 Kバイト/	秒
装 置 磁気テープ	記	録	密	度	1600/800 ビット/イン	Ŧ
	デー	タ斬	送送	恵 度	120/60 Kバイト/	杪

第2表 計算機および補助記憶装置主要性能

第1図 遷音速風胴試験データの流れ

図形処理プログラムでは,解析プログラムで計算 された空気力係数データをもとにして, 6分力や圧 力分布などの図形化を行う。

計算機および補助記憶装置の主要性能を第2表に 示し、試験データの流れを第1図に示す。

3. 入出力機器

遷音速風胴データ処理システム全体の機器構成図 を第2図に示す。

3-1 データ収集プログラムから見た入出力機 器

1) 入力機器

ここでの入力機器はA/D変換器である。

A/D変換器までの信号の流れを述べると、測定 部供試模型に内挿された歪ゲージや圧力変換器の電 気信号を各種 A/D変換器に適した入力電圧範囲ま で増幅器等により増幅し各種 A/D変換器を通して、 数値化する。

本システムでは、それぞれの目的に従って次の3 種類のA/D変換器を具えている。

① 中速走查 A / D 変換器

この変換器は、6分力天秤やヒンジ・モーメント

などのデータの収集用として使われる。

変換器のサンプルレート,入力チャンネル数と入 力電圧範囲は, 33Hz, 24ch, ± 2.5mV~±10.24 Vである。

② 高速走查A/D変換器

この変換器は, 圧力データや模型姿勢のデータの 収集に使われる。

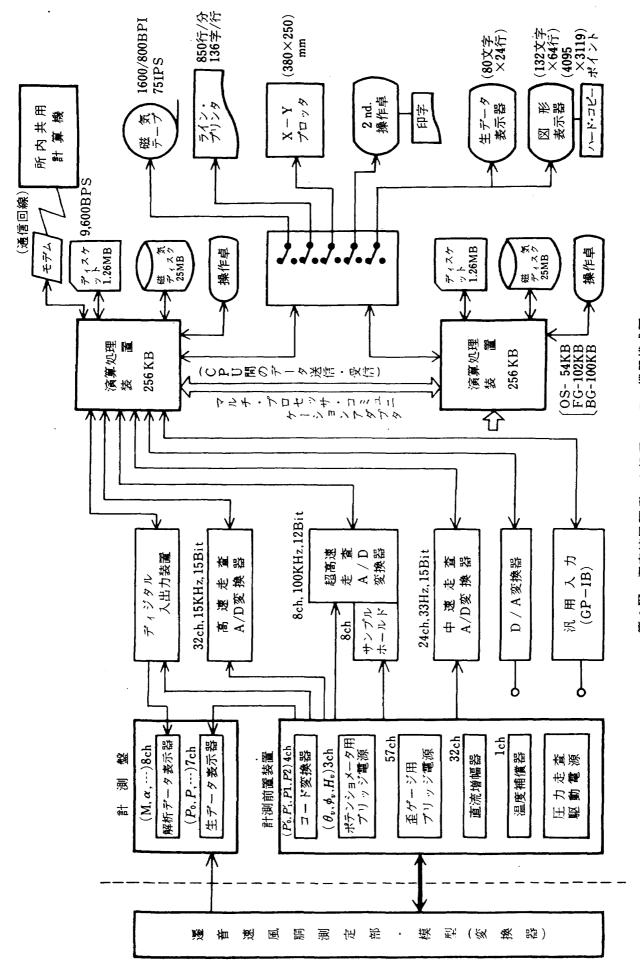
変換器のサンプルレート,入力チャンネル数と入 力電圧範囲は, 15KHz, 32ch, ±1.25V~±10V である。

③ 超高速走查 A/D 変換器

この変換器は、動的データの収集に使われる。

変換器のサンプルレート,入力チャンネル数と入 力電圧範囲は、100KHz,8ch,±10Vである。

以上に述べた3種類のA/D変換器の詳細な仕様 を第3表に記す。


2) 出力機器

ここでの出力機器には、次の4種類がある。

① 磁気ディスクと磁気テープ

A/D変換器によって,数値化されたデータを後 処理や保存の目的で磁気ディスクや磁気テープにバ イナリ形式のデータで格納する。

磁気ディスクや磁気テープの主要性能は、第2表

第2図 遷音速風胴データ処理システム機器構成図

7

A/D変換器 項目	中 速 走 査 A/D変換器	高 速 走 査 A/D変換器	超高速走査 A/D変換器
入力チャンネル数	24 ch	32 ch	8 ch
入力電圧範囲	$\begin{array}{c} \pm 2.5 \text{mV}, \ \pm 5 \text{mV} \\ \pm 10 \text{mV}, \ \pm 20 \text{mV} \\ \pm 40 \text{mV}, \ \pm 20 \text{mV} \\ \pm 40 \text{mV}, \ \pm 30 \text{mV} \\ \pm 160 \text{mV}, \ \pm 320 \text{mV} \\ \pm 640 \text{mV}, \ \pm 1.28 \text{V} \\ \pm 2.56 \text{V}, \ \pm 5.12 \text{V} \\ \pm 10.24 \text{V} \end{array}$	±1.25V, ±2.5V ±5V, ±10V	± 10 V
サンプル レート	33 Hz	15 KHz	100 KHz
入力抵抗	50 M.Q	10 M.Q	10 M <i>Q</i>
分解能	15 bit	15 bit (符号含)	12 bit
信号源抵抗	1 K <i>Q</i>	1 K <i>Q</i>	1 K <i>Q</i>

第3表 A/D変換器の仕様

の補助記憶装置の部に記載してある。

② 生データ表示器

数値化されたデータを電圧値に変換して,数値表 示器(80文字×24行)に、それを表示する。

生データ表示器の主要性能を第4表に示す。

③ 図形表示器

収集プログラムは,数値化されたデータを電圧値 に変換して解析処理し,ドリフト補正をほどこす前 の空気力係数を求める。これらの係数は図形表示器 に出力される。

図形表示器の主要性能を第4表に示す。

3-2 データ解析プログラムから見た入出力機 器

...

1)入力機器

入力機器は次の2種類である。

- •磁気ディスク
- ●磁気テープ

収集プログラムで処理された数値データが,これ らの入力機器にバイナリ形式で格納されている。

2) 出力機器

ここでの出力機器には次の3種類がある。

- •磁気ディスク
- ●磁気テープ
- ライン・プリンタ

解析プログラムで、ドリフト補正も含む解析処理

した空気力係数を,それぞれの出力機器に出力する。 ① 磁気ディスクと磁気テープ

解析プログラムにより処理された空気力係数化さ れたデータは,図形処理や保存の目的で,磁気ディ スクや磁気テープに格納される。

格納データの形式は,文字型のデータ(ASCII コード)である。主要性能を第2表に記載する。

② ライン・プリンタ

空気力係数化されたデータは,決められた書式で ライン・プリンタに印字出力される。

主要性能を第4表に示す。

3-3 図形処理プログラムから見た入出力機器1)入力機器

- / / / / / / / / / / / /
- ここでの入力機器は次の2種類がある。
- ●磁気ディスク
- ●磁気テープ

図形処理プログラムは,これらの入力機器から解 析プログラムで処理された文字型データを取り出し, 次の出力機器に出力する。

- 2) 出力機器
- ここでの出力機器には、次の2種類がある。
- 図形表示器
- X Yプロッタ
- 図形表示器

この表示器(グラフィック・ディスプレイ)の最

機器 名	項目	性能
生データ表示器	転送速度	9,600 ビット/秒
(ディスプレィー	表示文字数	1, 920 文字(80 文字×24 行)
	文字セット	ASCII 96 文字種
	転送速度	9,600 ビット/秒
図形表示器	支字数 表示 司用	最大 8448 文字(132 文字× 64 行)
(グラフィック・ ディスプレィ	夜 小 可視 ポイント	最大 (4096 × 3120)ポイント
	文字セット	ASCII 96 文字種
ハード・コピー	コピー時間	24 秒/枚
	コピー・サイズ	(19.1 × 14.5) センチ・メートル
	印字速度	850 行/分
ライン・プリンタ	印字桁数	136 文字 / 行
	文字セット	JIS 64 文字種
	最大ペン速度	X or Y方向 360 ミリ・メートル/秒
X ー Y プロッタ	作図範囲	(380 × 250) ミリ・メートル
A 17099	分解能	0.025 ミリ・メートル
	ペン個数	8 ペン

第4表 出力機器の主要性能

大作図範囲は, (4095 × 3119)可視ポイントである。 この表示器に付随してハード・コピー (19.1 × 14.5) cmにも出力できる。

② X - Yプロッタ

X-Yプロッタの最大作図範囲,分解能およびペン個数は,それぞれ(250×380)mm, 0.025mm, 8ペンである。

①と②の主要性能を第4表に示す。

4. データ処理

遷音速風胴データ処理システムでのデータ処理は, 3段階に分けて行なわれる。

第1段階では、次の事を行う。

(1) 風胴御定部の供試模型より送られてきた電気 信号を増幅器などで増幅し, A/D変換器を通して 数値化し,磁気ディスク内に決められた記録形式で 格納する。

(2) この格納された数値を電圧値に変換して生デ

ータ表示器に数値表示したり,ドリフト補正以前の 空気力係数を求めたり,図形表示器に表示する事を 行う。

(3) 最終データの収集後,保存の目的で磁気テープにも記録する。

この第1段階での処理をオン・ライン処理と呼び, 処理はデータ収集プログラムが行う。

第2段階では,第1段階で収集され格納された磁 気ディスクや磁気テープ内の数値データをもとにし て,収集数値データの平均化や各種の補正および解 析を行ない,空気力係数を算出する。また,このデ ータを記録形式の異なる2種類のデータ・ファイル として磁気ディスク内に格納する。

このデータ・ファイルは、以下に述べる使用の目 的で作られる。

• ライン・プリンタ出力用として使用する。

●第3段階での図形処理や保存の目的で磁気テー
 プ記録用として使用する。

この第2段階では,データ解析プログラムを用い て、オフ・ラインで処理する。

第3段階では,第2段階で解析処理され,磁気デ ィスクや磁気テープに格納されたデータをもちいて 6分力係数や翼断面の圧力分布などを図形表示器や X-Yプロッタに出力する。

第1段階から第3段階でのデータ・ファイルの記 録形式(4-1), カデータの解析処理(4-2)や 圧力データの解析処理(4-3)および図形処理 (4-4)のデータの最終形式を出力するまでの過 程を以下に述べる。

4-1 データの種類と格納形式

遷音速風胴データ処理システムにおけるファイル は、次の4種類に分けられる。

•試験前に作成するデータ・ファイル群

データ収集プログラムで作成するデータ・ファ
 イル群

データ解析プログラムで作成するデータ・ファ
 イル群

•保存用磁気テープ・データ・ファイル

このデータ・ファイルに含まれるファイルの一覧 表を第5表に示す。

4-1-1 試験前に作成するデータ・ファイル 群

通風を行う前に,データ収集に関する諸条件や模型と変換器などの諸定数を計算機操作卓のキー・ボ ードより決められた形式で入力し,ファイル名を付けて磁気ディスク内に格納する。

このファイル群は, GATHER. CD, ANALYZE. CD, SRTAXIS.CDの3つのファイルから構成さ れ, 64 語単位(128バイト単位)のバイナリ記録形 式をもつ。

バイナリ1データの内部表現については, 第3図 に示す。

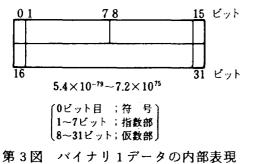
(1) データ・ファイル GATHER. CD

このデータ・ファイルには,各種A/D変換器のデ ータ収集諸条件が決められた形式で格納される。 ファイルの記録形式を第6表-(1)に示す。

No.	ファイル名	記 録 単 位 (バイト)	データ形式	内容
1	GATHER.CD	128	バイナリ	収集基準データ
2	ANALYZE.CD	"	"	力および圧力解析基準データ
3	UNSTD.DT	512	"	超高速走査 A/D収集データ
4	HSAD.DT	"	"	高速走査 A/D収集データ
5	MSAD.DT	128	"	中速走査A/D収集データ
6	LSAD.DT	"	"	汎用入力収集データ
7	SRTAXIS.CD	"	"	圧力解析基準データ
8	LPTWTF01.DT	132	文 字 型 (ASCIIコード)	力の最終処理データ (ライン・プリンタ出力用)
9	TWTF01.DT	85	"	力の最終処理データ (図形処理用)
10	LPTWTPO1.DT	132	"	圧力の最終処理データ (ライン・プリンタ出力用)
11	TWT PO1.DT	85	"	圧力の最終処理データ (図形処理用)

第5表 データ・ファイル名一覧表

1) 整数型のデータ


使用ビット数=16ビット(=1語=2バイト)

數值内部表現:

$$\begin{array}{c}
0 & 15 \\
\hline \\
-2^{15} \sim +2^{15} - 1 (-32,768 \sim 32,767)
\end{array}$$

2) 実数型のデータ(単精度)

数值内部表現:

(2) データ・ファイル ANALYZE. CD

このデータ・ファイルには, データ表示における 条件データ, 模型条件および変換器の変換係数など が, 決められた形式で格納される。

ファイルの記録形式を第6表-(2)に示す。

(3) データ・ファイル SRTAXIS.CD

このデータ・ファイルは, 圧力データ解析処理の ためのもので, これには図形表示や積分計算のため の翼型各断面ごとのデータ並び替えの数値データや 断面座標が決められた形式で格納される。

ファイルの記録形式を第6表-(3)に示す。

4-1-2 データ収集プログラムで作成するデ ータ・ファイル群

カデータや圧力データの電気信号は各種 A/D変 換器で数値化され、ファイル名を付けて決められた

6日,117717,10日申及先

第6表-(1) GATHER.CDの記録形式								
レコード番号	データ語数	データの内容説明						
1 - 2	128	モニタ用収集基準データ (MON)						
3 - 4	"	超高速 A/D収集基準データ(UNS)						
5 - 6	"	高速 A/D収集基準データ (HAD)						
7	64	中速A/D収集基準データ (MAD)						
8	"	汎用入力収集基準データ (LAD)						
9	"	無風時収集基準データ (NWI)						
10 - 12	192							

第6表-(2) ANALYZE.CDの記録形式

レコード番号	データ語数	データ	の内	容説明					
1	64	解析表示基準デ	- <i>9</i>	(PRG)					
2	"	表示基準データ		(DSP)					
3 - 15	832	データ分類基準	データ	(MSR,HSR)					
16 - 23	512	解析用基準デー	タ(1)	(AN1)					
24 - 31	"	"	(2)	(AN2)					
32 - 39	"	"	(3)	(AN3)					
40 - 47	"	"	(4)	(AN4)					
48 - 55	"	準備基準データ		(PRP)					
56 - 60	320								

レコード番号	データ語数		データの内容説	明
1	64	基準法	データ	
2	"	計算)	用基準データ	(PRS)
3 - 4	128	1断	面用並び替えデータ	(SR_1)
5 - 6	"	2	"	(" ₂)
7 - 8	"	3	"	(″ ₃)
9 - 10	"	4	"	(″₄)
11 - 12	"	5	"	(″ ₅)
13 - 14	"	6	"	(″ ₆)
15 - 16	"	7	"	(″ 7)
17 - 18	"	8	"	(″ 8)
19 - 20	"	9	"	(″ 9)
21 - 22	"	10	"	(" ₁₀)
23 - 24	"	ピト・	- 管用並び替えデータ	(SPT)
25 - 32	512	1156	面の静圧孔座標	(XY ₁)
33 - 40	"	2	"	(" 2)
41 - 48	"	3	"	(" 3)
49 - 56	"	4	"	(" 4)
57 - 64	"	5	"	(" 5)
65 - 72	"	6	"	(″ 6)
73 - 80	"	7	"	(" 7)
81 - 88	"	8	"	(" 8)
89 - 96	"	9	"	(″ 9)
97 -104	"	10	"	(″ ₁₀)
105 - 108	256	ピト	ー管の静圧孔座標	(XPT)
109 - 112	"			

第6表-(3) SRTAXIS.CDの記録形式

形式で格納される。

このファイル群は、UNSTD.DT、HSAD.DT、
MSAD.DT、LSAD.DTの4つのファイルから構成
され、64 語単位(128バイト単位)と256 語単位
(512バイト単位)のバイナリ記録形式をもつ。
(1) データ・ファイルUNSTD.DT
このデータ・ファイルには、超高速走査A/D変

換器により変換された数値データを格納する。

このファイルは、256語単位で記録する。

ファイルの記録形式を第6表-(4)に示す。

(2) データ・ファイル HSAD. DT

このデータ・ファイルには、高速走査A/D変換 器により変換された数値データを格納する。

このファイルは、256 語単位で記録され、圧力デ

ブロック番号	データ語数	データの内容説明
0	256	基準データ
1	256	超高速走査A/D変換器収集データ
		"
		"
N	256	"

第6表-(4) UNSTD.DTの記録形式

第6表-(5) HSAD.DTの記録形式

ブロック番号	データ語数	データの内容説明					
0	256	基準データ 1					
1	256	基準データ 3					
2	12288	高速走查 A/D変換器					
49	(48 × 256)	収集データ					
50	256	基準データ 3					
51	12288	高速走查 A/D変換器					
98	(48 × 256)	収集データ					
•	•	•					
•	•	•					
N - 48	256	基準データ 3					
N - 47	12288	高速走查 A/D変換器					
N	(48 × 256)	収集データ					

ータ収集用として使用される。

ファイルの記録形式を第6表-(5)に示す。

(3) $\vec{r} - \beta \cdot \nabla_r \eta MSAD. DT$

このデータ・ファイルには、中速走査A/D変換器により変換された数値データを格納する。

このファイルは、64 語単位で記録され、力やモ ーメントのデータ収集用として使用される。

ファイルの記録形式を第6表-(6)に示す。

(4) データ・ファイル LSAD. DT

このデータ・ファイルには, 汎用入力(GP-IB) インター・フェースを介して入力された数値データ を格納する。

このファイルは、64語単位で記録される。

ファイルの記録形式を第6表-(7)に示す。

第6表-(6) MSAD.DTの記録形式

レコード番号	データ語数	データの内容説明
1	64	基準データ 1
2	64	基準データ 4
3	1024	中速走查 A/D変換器
: 18	(16 × 64)	収集データ
19	64	基準データ 4
20	1024	中速走查 A/D変換器
: 35	(16×64)	収集データ
:	:	
N - 16	64	基準データ 4
N - 15	1024	中速走査A/D変換器
: N	(16 × 64)	収集データ

- 第 6 表 −(7) LSAD.DT の記録形式

レコード番号	データ語数	データの内容説明
1	64	基準データ
2	64	汎用入力収集データ
	•	•
:	÷	:
N	64	汎用入力収集データ

4-1-3 データ解析プログラムで作成する データ・ファイル群

ここで作成されるデータ・ファイルは,試験前に 作成されたデータ・ファイル群 (ANALYZE.CDお よび SRTAXIS.CD)の諸定数をもちい,データ収 集プログラムで格納された力や圧力データの数値デ ータ(MSAD.DTおよびHSAD.DT)をもとにして 空気力係数化の解析処理を行い,最終計算結果をラ イン・プリンタ出力用と図形処理のためのデータ・ ファイルとして磁気ディスクに格納する。

このファイルの記録形式は文字型(ASCIIコード)である。

カデータ解析処理のデータ・ファイルには、ライ ン・プリンタ出力用にLPTWTFO1.DTと図形処理 用としてTWTFO1.DTの2種類を作成する。 このデータ・ファイルの出力例や記録形式を第6 表の(8-1)から(8-5)と(9)に示す。

 E力データ解析処理のデータ・ファイルには、ラ

 イン・プリンタ出力用にLPTWTPO1.DTと図形処

 理用としてTWTPO1.DTの2種類を作成する。

このデータ・ファイルの出力例や記録形式を第6 表の(10-1)から(10-2)と(1)に示す。

4-1-4 保存用磁気テープ・データ・ファイ ル

磁気ディスク内の空き領域確保のために、次の試

		第6表-(8-	-1) 力解	析基準データ		
		MODĒ	L ; ONERA (M5)		
		CE LABORATOR	Y (TOKYO) 2	X2M TRANSONI	C WIND TUNNEL	SYSTEM
3+m	i+H+V			*	MACH= 0.6	
RUN		984(PM)		* * PHAI,P *	SAI,BETA= 0	o ; C 4 .C ; +-2 KG/C*++2)
CAS	SE NO. 3	÷ ·		* (SHORI		- ·
R 0U	JGHNESS				, NM1120(35)	
		OMENT TYPE		* NAME	SEIGOU.NAKAM	URA
	ING T-2.0"				4- 2-34	
CAR	RT OPEN RATIO	(20%)		* TIME	13:20:28	
***	**********	*********	*********		**********	******
******* PA	ESET PARAMETE	RS ******				
PRESSURE COREC	TION VALUE	P0+= -1.3	ຟີ.2 ປ	P*= -1.7J	.00	
CALIBRATION CO	DEF (FX,FY,FZ	,MX,MY,MZ)				
.01199	.00227	.00199		. J1820	.01715	
.01199	.00227	.00199	.05375	.01826	.01715	
INTERACTION 1.000C0	.00000	.00000	. 30200	.00000	.00000	
.063C6	1.00000	.00812	00435	.00725	08934	
.08840	.00383	1.00000	. 64335	.04592	.00892	
01394	-00413	.00287	1.00000	.01253	00334	
.03402	.00000	.03110	.07579	1.00000	.00000	
.00000 1.000CJ	01707 _J0000	.00000 .00000	03568 .00000	00615 .30000	1.00000	
.06306	1.00000	.00012	00435	.00785	09934	
.08840	.00383	1.00000	. 04338	.04592	.008°2	
01394	.00413	.00287	1.00000	.01253	00334	
.03402	.00000	.03110	. 07579	1.00000	.00000	
.00000 .2000J	01707	.00000	03568	00615 .00000	1.00000	
.00013	00029	.00000	.00000 .00000	. 00000	.01094	· -
.00049	00000	.00099	.00003	.00009	00000	
.00000	.00000	.00000	00081	00081	00000	
00003	.00000	00003	00022	.00662	.00000	
.00000	00000 00164	.00000 .00070	000C0 .00031	.00038 .0 <u>001</u> 9	00257	
.00032	.00006	00034	00093	00002	.00012	
00110	.00084	.00026	.00009	.00050	00031	
.00052	00039	00140	00091	00118	.00070	
.00131	00102	00020	00132	.00011	00201	
.00070	00164	.00006	.00313	.00032	.00085	
00224	00120	.00004	00012	0002100177	- 00407	
.01577	.00147	00004	00002	.00003	00089	
00224	.01183	.00004	00012	.00021	00407	
.02237	00243	00007	00027	00055	_00004	
00127	00054	.00065	00174	00003	00014	
-,06907	686 686	00015 00733	00102	.00002	00292	
.00035 .00131	.00021	00733	.00871	.00449	00061	

	:		C Ú D Ú D		P≖ 754.54	•••										
		.111216 1.904876	0		P0≖ 754.89		.KĞ-₹)			KG-M)				(W)	(W X X	
しつよ	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	Q	1934	20. =1AH5	(WV)	(KG.0R	.01	(/w)	(KG.04.KG-M)			270000-	-004471	. 200000	
力解析基準データ(00E 00 	000 1-	0 0 0	DATE(M/D/Y) 3/14/	00	-0045	.0652	=IAH9 0C	4 .0111	J .1623	7 .0067		7650C0	188690	000000	
8-2) 力解析	<pre></pre>	.0000000 .00 .478L,4,C1,C2,C	. C. J	118 DATE	23.6d THETA=	.01491887	.0493 -2.5837	THETAR		-0182 -3-086J	-01100367			.014908	.000000	
第6表-(8	(NB,N ,000 ,000 ,000 ,000 ,000 ,000	CH≡2.) D28270 (S,LR,AXUL,		3 TEST NO.=	TEMP.: 2	200	2.5112 .0	TEMP.: 38.37		3155	0016			.019974		
	ССССССССССССССССССССССССССССССССССССС	RE 270 ERENCE 41112	42 1	N0. #	,13:59: 3		-1.4388	,15:32:13	0110		- 0021 - 0421		.000C23 00C452	013077	-029633	•
	BALANCE EL .00000E SIING CALL .000 .000 Theta, Phai .20000	BASE PRESSUR .00252 .002622 .103000 .103000	0	ANALYZE + RUN	118) H:M:S		1.0267 -	182) H:M:S		1.1135	.0042	93.00000	νo		-000000	
	• • • •		SCUTAL SY	* OFF LINE ANA	N-DATA (NO.			R-DATA (NO.			(RD-ND)	I N) = .	DRIF TIME=	(XNC-CHECK)	(XRC-CHECK)	

航技研2m×2m遷音速風胴のデータ処理

15

:

;

i

		:					
			- - - - - -			- - - - - -	:
	* * * * * *					•	-
	23.6370 -5605 -5605 -5606 749.29 P= 749.56	23.6621 - 5005 - 5005 - 5005 - 5005 748.2591 P= 746.43	23.2513 2000 .0000 .0000 741.2598 P= 740.95	23.1024 2000 .CU00 .CU00 .0000 740.3339			1
	-4.3164 -0000 -0000 -0000 749.5595	-4.3036 -3039 -3039 -0369 -0369 -4792 746.85	7.0577 .0000 .0000 .0000 .0000 .0000 .740.9592 .741.27	3.0231 -000 -0000 -0000 -0000 739-9990 739-34		•	
いしょ)	-0510 -0000 -9000 -9000 -9137 -7445 -9137	- 0449 - 0000 - 0000 - 0000 - 0000 - 0000 - 751 - 7933 - 7448 - 7448	- 0516 - 0200 - 0000 - 0000 744 - 1539 - 744 - 1539	.0516 .0005 .0005 .0005 .0005 .743.2295 .7443 .2295		• • •	
貰データ(つ	9-9942 -0000 -00000 -00000 757-4792 (RAD.)= .1	9.9963 0020 0020 0000 756.4792 756.4792	- 9. 9976 - 90000 - 90000 - 748 8584 (RA0.) = - 1	-9.9939 0050 0050 747.9292 747.9292			:
力解析基準	- 0024 - 0000 - 0000 13.0000 13.0000 14ETAR	- 0025 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000		- CCCC - CCCC - CCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCCC - CCCCCCCC			·
(8-3)	1900 0000 .0000 6.0000 6.0000 6.) = 10.00	1910 .0000 .00000 6.00000 6.00000	1930 	1950 .0000 .0000 6.0000 6.)= -9.99			
第6表-	.0151 .9339 .0000 .0000 .0000 .239.0000	.0151 .9349 .0030 .0030 .0390 .239.90390 .1HETA(0E	- 0148 - 9182 - 0182 - 0000 - 0000 - 0000 - 1461A(06	-0147 -0146 -0146 -0020 -0020 -0020 840-0000 E40-0000 FHETA(DE		•	
	-0231 -0002 -9000 -9000 -7.423 [KG3		- 0234 - 0234 - 0002 - 0002 - 0002 - 0002 - 0000 - 00000 - 0000 -	- 023U - 0203 - 02003 - 02000 7 00000 835-0000	·		
	- 0135 - 0139 - 00390 10.0000 10.0000	- 0134 0042 0042 10.0000 10.0000	- 0129 - 0161 - 0000 10.0000 1.0000	0134 -0134 -0160 -0000 10-0000 1-0000	: • •		
	- 2778 - 0801 - 900 - 900 - 900 - 900 - 119	- 2777 - 0607 - 0606 - 0606 - 0606 - 0606 - 0606 - 0606 - 120		1856 0019 .0000 .0000 .0000			4
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	* * * * * * * * * * * * * * * * * * *	* * * * * 4	× + + + + + + + + + + + + + + + + + + +			
	- 					ļ	

16

航空宇宙技術研究所報告 811 号

1

1

								P= 711-11		
	* * * * *	9 P= 729.94	* * * * * * * * * * * * * * * * * * * *	2 P= 728.93		1 P= 712.08		P.0= 711-44		
	23.2799 - C090 -	J ÞÚ≡ 730.23	23.3296 5000 50000 50000 50000 729_3198] PC= 729.3	22.8043 - 0006 - 0000 - 0000 - 0000 712.4492) PÚ= 712.4'	22.8046 . CUOC . 0000 . 0000 711.4390	CKG.OR.KGMJ	.6214 .0000 .0000 .0000 .5991	- 4742 - 0000 - 0000 - 7999
	15	[KG.0R.Ku-M]	94 - 3119 100 - 000 100 - 0000 100 - 0000 100 - 0000 100 - 229 - 279 - 2	[KG.0P.KG-M]	199 3004 100 - 2005 200 - 0003 200 - 0003 200 - 0003	EKG.OR.KG-M	7C - 3674 000 - 0000 000 - 0000 000 - 0000 000 - 0000	661136	3232 22 .0000 .0000 .0000 .0000	3131 22 .0000 .0000 .0000 248.3999 248
- タ (つづき)	0156 90.13 0000 00 0000 000 0000 000	683400	.0131 90.12 .0000 .00 .0000 .00 .0000 .00	- \$09562	.0165 -90.15 .0000 .00 .0000 .00 .0000 .00 .0000 .00	638991	-0140 -90-15 -0000 -00 -0000 -00 -0000 -00 -0000 -00	- • • • • • • • • • • • • •	C144 - C000 - 0000 - 0000 - 759 - 5000	- 6162 - 6000 - 6000 245 - 8000
力解析基準デ	0645 0000 13.0000 13.0000 737	725568	Co4. . cu00 . cu00 13.0000 13.0000 736	705564	.0746 .0000 13.0000 13.0000 719	- 581094	.0744 .0000 13.0000 13.0000 13.0000 .0300 .0300 .719	.054048	025 .0150 000 .0000 000 .0000 000 .0000 000 .0000	038 .0024 000 .0000 000 .0000 000 252.6299
ž - (8-4)	- 2291 - 0000 - 0000 - 0000	-143162 HAIR= 1.573	- 2280 - 0000 6 0000	.141965 •HAIR± 1.573	2249 -0000 -0000 -0000	014754 Phair= -1.574	72243 12000 0 6.0000 0 6.0000	29.142000 PHAIR= -1.574	56.20 -1953 -0000 -0000 -0000 -13.0	48.40 1939 1939 0000 0000 0000 0000 0000 0000 0000 0000 0000
第6表	533	29.192210 .)= .003 P	527 .0519 663 .9214 000 .0000 000 .0000 000 .2220000	29.113430 .)= .303 P	490 - 5234 002 - 9001 000 - 0000 000 - 0000 000 - 944.0000	29.150090 .)=002 F	487 .023 563 .900 000 .000 500 844.000	29.730450 .)=002 I	56.60 P= 7 .0144 .8927 .0000 .0000 845.0000	4 2 80 P= 2 0145 0000 847.0000 847.0000
	2001 0005 0000 0000 0000 7.0 0000 839.0	29-838210 THETARCRAD	2597 -2 0098 -0 0000 70 0000 70 0000 839.0	29.79529J) THETAR(RAD	3 - 2 0 - 2 0 - 2 0 - 2 0 - 8 3 9 - 0	29.653920 9 THETAR(RAD		27.737060 7 THETAR(RAD	7) PJ= 7 60002 00002 00000 7.0000 0 839.0000	3 0 0 2 4 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0
	0593 0855 0000 .0000 2	(NU. 123) DEG.)= 90.132	- 0590 - 0863 - 0000 - 0000 - 0000 - 0000 - 3	(N0. 124) DEG.)= 90.129	- 0570 - 0861 - 0000 - 0000	(NO. 125) Deg.)=-90.15	- 0569 - 0855 - 0000 - 0000 - 0000	(NO. 126) DEG.)=-90.15	TA (NO. 12 314012 808002 000000 000 10.000 000 6.000	TA C NO. 12 347 - 012 810 - 001 000 10.000 000 8.000
		Y-DATA PHAI(Y-DATA PHAIC		Y-DATA Phal(Y-0ATA PHAI(₹0000 4 - 1 + 1 + *	

航技研2m×2m遷音速風胴のデータ処理

17

* *	 4 4<	0703C [PODY-AXIS] U0103 [PODY-AXIS] U0103 [Stag-Axis] 00153 [wind-Axis] 5.50		55409 60054 100023 100023 100023 100023 100023 1000-AXIS2 14.85 1000-AXIS2	80061 10.60 10.60 10.60 10.60 10.60 EVIND-AXISJ CPONT-AXISJ CP	***** ***** ***** 16643 [<u>8007-AXIS]</u> 00054 [utno-AXIS]
676	. CUDC . CUDD . CUDD . CUDD 5 & 8. C991	TC= 32. CN6= 1. CN5= 1. CN5= 1. CN5= 1.	33,5541 .0000 .0000 .0000 .2793		НТ 1 4 1 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1	55.1664 55.1664 -0000 -0005 584.0000 584.000 584.000 584.000 584.10 -005 51.11 -11 -11 -11 -11 -11 -11 -11 -11 -11
5902	- 2000 - 0000 - 0000 - 0000 - 164	461.3994 13571 13571 13571 13571 02222	9484 0000. 0000.00.000.0000.0000.00000.000000	460.5801 - 19245 - 19245 - 19245 - 19245 04907	4 0000 00000 00000 00000 4 00 00000 4 00000 4 1121 1 125 1 125 1 251 1 251	-1.4871 -0000 -00000 458.5000 458.5000 458.5000 -222490
777	0000 0000 0000 0000 0000 0000 0000 0000 0000	991 2336 233 233 20 233 20 20 23 20 20 20 20 20 20 20 20 20 20 20 20 20	9.549 .000 .000 .549 .549	+74.62 792 255 255 255 2255 CC7 P	9.4543 -0000 -0000 586.7000 5889 -76.8193 889 -76.8193 889 -76.8193 2335 C.MBH 2335 C.MBH 2335 C.MBH 2335 C.MBH	9.3384 9.3384 00000 585.9897 585.9897 585.9897 219.000 219.000 885.2849 219.000 885.2849 219.000 885.2849 219.000 218.85 219.000
500	0000 0000 0000 0000 0000 0000	PC= 588.2 CLB= -00 CLS= -00 CLW= -00 CLW= -00 THEP -1.99	050 -000 -000	-161.7084 -161.7084 -015.4 000 CLE=00 CLN=00 CLN=00 THER01 THER01	5,09990 -0000 -00000 -00000 -104.8779 -104.8779 -104.8779 -1000 -1.000 CLEE 000 CLEE 000 CLEE 000 CLEE 000 CLEE 000 CLEE 000 CLEE 000 CLEE 000 CLEE 000 CLEE 000 	19.0327 00000 00000 464.1895 -108.3578 -108.3578 -100 CLE= 584.7 -00 CLE= -00
- 002 - 0		.949721 .U2906 .U2404 .02404 U4599				-0076 -0000 13.00000 -1140 -934521 -00826 -00826
.381 100		ບ <u>ດ</u> ບ 4 ບ		- M C C F F F F F F F F F F F F F F F F F F		
24	.0000 .0000 .4314	вн ₁ епн • • • • • •		••••••••••••••••••••••••••••••••••••••		
	339	8.229 M 00191 CN 00191 CN 00191 CL 00191 CL	5767 - 5767 - 0000 - 0000 - 2000 - 200 - 2000 - 2000 - 2000 - 2000 -	n O	- 7426 - 7426 - 0000 833-0000 833-0000 833-0000 833-0000 833-0000 833-0000 3-923 00097 00097 00097 00007 00007 0155 00007 0155	- 9000 - 9000 839-0000 111-9073 9-996 00096 00096 00095
603 603		5	0000 0000 0000 0000 0000	15.7	P C C C C C C C C C C C C C C C C C C C	CU30 7059 10. 0000 37. 0000 37. 0000 37. 0000 37. 0000 57. 1569 67. 1569
4.4		129 - 02773 - 02271 - 02271 - 194501		N 4000F	-2738 -0000 -0000 -0000 -0000 -01728 -01728 -01728 -01728 -01728 -01728	- 2245 - 5245 - 6531 - 0000 - 0000 - 132 - 1346 - 00669 - 034886
* * * * * *	* * * * *	C 2 0 1 = + C 0 1 = + C 0 1 = + C 0 1 = + C 0 1 = +	* * * * * *	# i	H H H H H H H H H L H L H H H H H H H H	C C C C C C C C C C C C C C C C C C C

18

航空宇宙技術研究所報告 811 号

	1 1	0	20	3	0	4	0	5	0	đ	50 	7	70	80	85	× 41
1	MOD	EL(2	20) [20A2]				C	CONFG (20) [10A4					ן	(4)	3	
2	DATE(4					STING(5) [5A4]			R	ЭНS C5	(5) A4]		[8×]			
3	NRUN E I 10 J	NCAS		I OPT				[54X]								
4	IEXNO [110]	Q		M [F10.4]	RE [F10		P([F10	-	F [F10			0 0.4]	Γ.	4X]	┨	
5	CA [F10.5]	CY [F10.1	5][CN [F10.5]	C A [F 10		-	. B 0.5]		4 B 0.5]		n B 0,5]	۲	//]	7	
6	CD1 [//]	CY [//	ו	CL [//]		CDF1		.s ′]	СМS [//]		1	NS /]	۲ [//]		
\bigcirc	CD [//]	CY1 [//]	ונ	CL [//]	CD [//			.w נ׳		w נ ׳		NW 7 j	جــــــــــــــــــــــــــــــــــــ	//]	×	
8	ALPHA [F1 0.4]	PSAI	1	F1 0. 43	PHAI [F10				PHA [F1 6		HI CF1		÷	//]	×	
9	CNP [F10.5]	CB		C B 1	СВ	2	IM	ID	ΙY	ΙA	ΙB	IC	k	//]	*	
	以下	() LI) —	- (9 n	縁い) je	Ŀl	- ۲	t .							
	_		ד א	= 85 × 15×1+1	11					<u>a){(</u>	015	5 ₈ >]			

第6表-(9) TWTFO1.DTファイルの記録形式

験前に収集データ・ファイルや解析処理結果のデー タ・ファイルを消去するので、保存の目的でこれら を磁気テープに移す。

この場合, データ・ファイルは記録形式の異なっ た2種類のものからなるので(バイナリ記録形式お よび文字型記録形式), これらを2本の磁気テープ に、それぞれ記録する。

本システムでの磁気テープの記録形式を第6表-(12に示す。

4-2 カデータの処理

カデータの処理では、4-1項で述べたデータ・ ファイル群の中のANALYZE.CDとMSAD.DTを磁 気ディスクまたは磁気テープより読み取り、これを もとにして第4図に示すデータ処理の流れにそって 全機模型の6分力空気力係数を算出する。その過程 を以下に述べる。

4-2-1 収集数値データの平均化と電圧値変 換

データ・ファイルMSAD.DT内には、クオーツ圧 カセンサー、中速A/D変換器および高速A/D変換 器の出力をn回サンプリングしたデータが納められ ている。

通常はn=10とっている(このサンプリングnは,
 第6表-(6)基準データの24番目のデータとして納められている)。

n回サンプリングのデータを1測定とし,1測定 による力データの収集配列を第7表に示す。

処理出力データとして,この1測定データの平均 値をもちいる。

この平均化されたデータをもとにして, クオーツ 圧力センサーの出力を[mmHg], 中速A/D変換器 の出力を[mV], 高速A/D変換器の出力を[V] に変換する式を以下に述べる。

航空宇宙技術研究所報告 811 号

20

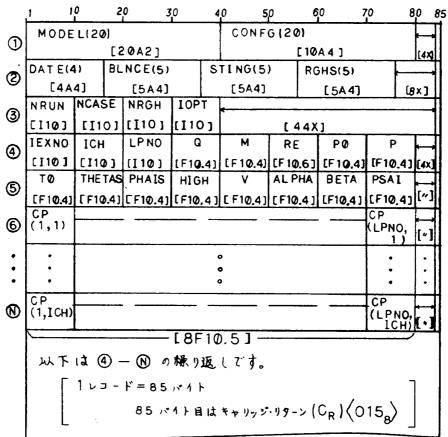
KP= 39.79539 PWR= 460.70 PWC= 588.20

.0256

ZERO

CAL* 3.2295

.0256


REF≡

1-CHANNEL

									1						-			
		61307 18650 .07192 72001	83.20		41382	44312 08624	89.20		62596	- 47558	89.20		38791 38791 05161 05248	0230			, 1999-1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1	
		- 61290 - 33656 - 33656 - 22796 - 77335	PWC= 5		- 13561	01366	PWC= 54	· · · · · · · · · · · · · · · · · · ·	62509	- 45671	PHC= 5		32995 32945 05246	+05172	-1.811			••• •••
	- 6 -	61598 61598 27783 27783 30728	WR= 460.70	-6-	-14282 -26140	50901 26826 .05254	WR= 46C.7C	-6-	.59288 40961	-16729 -45480 -05213	WR= 460_70	Ĩ	.06013 -05322 -05328	.05279 .05146	8 -1 961	1	- 7	• • •
б — ;	= 80 1	53705 44292 46775 74522 43758	.38701 P	1 80 1		53574 - 43667 - .05264	٩		51000	06069 46585 35214			- 13517		232 -2-138	-1-30	- 92	69
タと圧力デ	-1-	. 60365 - 43078 - 42189 - 42189 - 48139 - 48089	KP# 45	-2-		54555 39380 05380	KP= 42.	-2-	i i	- 63551 - 43219 - 4	KP= 43	- 2 -	22927 16222 05203		-2-	22.2	32	290 .7
圧力解析基準デー	-9-	, 1	0.0322	-9			00456	- 9 -	969 -	202	0736*- 0	-9-	-23439 .2 -12018 .1 -05360 .0	••	*** 	1	-764	•
) 圧力解	4 5		3413 ZER	45	• •		9880 ZER	- 5- - 5-	• •	11	8372 ZER	,	•		* 7	- 973 - 587 1.645 -1	.776 .039	1.142 -
- (10-2)		1.095 485 - 101 - 132 - 479	CAL= 2.	-3-			CAL= 2.				CAL= 2.	-34	5 1.09541 610142 905350		8	85 67 67	177 275	-1.301 -
第6表-	-2-		.0322	-2-		69229 .27982 .25926	0456			32734 30612 4504	0840		1.09305 	•••	2/14/	.384 .111 .304	-866 -767	
	-1-	00000	REF=	- 1 -	.05326 27296	72701 12585 23076	A FF =	•	-54801.	197C0 .86712 49727	REF=	: :	-05241 -05245 -05163	.05185 .05173	3.256	-1.371 626 -2.633	2.863 -660	-1.422 .189
	-0-	PRINT - 5995 - 1083 - 1283 - 1283 - 1283	2-CHANNEL	+ 0 1	TA PRINT * -00030 42465	74845 30035 .18904	3-CHANNEL	-0-		-20687 -19863 49355	4-CHANNEL	-0-	ATA PRINT * .00000 -280222 .05167	.05217	40. 97 *	111	:	-1.538 478
	PORT	 (CP) DATA 		PORT	* (CP) DATA			PORT	* (CP) DAT			PORT	+ (CP) DA		***** TEST	-1.487 -1.112 -3.152	51	-1.775 936
					andrasis in the second second			:				·					, 1 , 12 , 12 , 12 , 12 , 12 , 12 , 12 ,	

航技研2m×2m遷音速風胴のデータ処理

21

第6表-(1) TWTPO1.DTファイルの記録形式

第6表-(12) 磁気テープの記録形式

レコード番号	データバイト数	データの内容説明				
]	510	バイナリ・データまたは ASCIIコード・データ				
	4	ファイル番号 ^{*)}				
2	510	バイナリ・データまたは ASCIIコード・データ				
2	4	ファイル番号				
•	•	•				
•	•	•				
N	510	バイナリ・データまたは ASCIIコード・データ				
14	4	ファイル番号				
EO	Fマーク					
1	510	バイナリ・データまたは ASCIIコード・データ				
	4	ファイル番号				
••	•	•				
•	•	•				
EOFマーク						
EOFマーク						

・) 0~99の数

 (1) クォーツ圧力センサーの出力を[mmHg] に 変換する式

クオーツ圧力センサーのデータは、5桁のBCD 出力である。

この出力を P_c とすれば、変換出力データ P_1 [mm Hg]は次式により求まる。

 P1 = 0.1 · Pc
 [mmHg] (1)

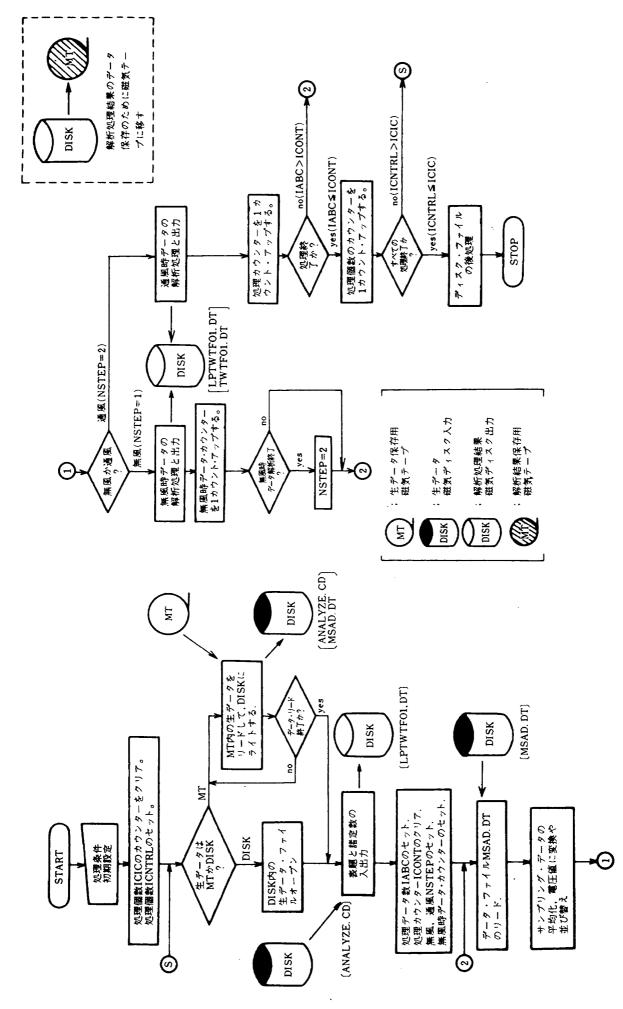
 (2) 中速走査 A/D変換器による出力数値データを電圧値に変換する式

 $V_m = 2.5 \cdot 2^{(13 - IG_m)} \cdot V_{mc} / 2^{14} \quad [mV] \quad (2)$

ただし、 V_m :電圧値データ[mV]

Vmc :数値データ

IG_m :ゲイン番号(第8表−(1)を参照) (ゲイン番号は第6表−(6)基準データ4の48番目 に納められている。)


(3) 高速走査 A/D 変換器による出力数値データ を電圧値に変換する式

 $V_{s} = 1.25 \cdot 2^{(3-IC_{s})} \cdot V_{sc}/2^{15} \qquad [V] \quad (3)$

ただし、*V*。:電圧値データ[V]

V_{sc} :数値データ

IG_s:ゲイン番号(第8表-(2)を参照)

This document is provided by JAXA.

第7表 1測定による力データの収集配列

データ番号	データの内容説明
	P1 ;水銀マノメータによる測定部静圧の出力
2	P2 ; // による集合胴総圧の出力
3	P' ; クオーツ圧力センサーによる測定部静圧の出力
4	P'0 ; " による集合胴総圧の出力
5	FX ;第1素子の出力
6	FY ; 第 2 素子の出力
7	FZ ; 第3素子の出力
8	MX ; 第4素子の出力
9	MY ; 第5素子の出力
10	MZ ; 第6素子の出力
11	θ_{v} ; ピッチ角測定値出力
12	<i>φ_v</i> ; <i>u</i> - <i>u</i> 角測定値出力
13	H _v ; ストラット高さ測定値出力
14	T1 ; 温度センサーの出力
15	P _b 1 ; ベース圧力の出力
16	P _b 2 ; "
17	P _b 3 ; "
18	<i>T_{mv}</i> ;集合胴温度出力
19	HM1 ;ヒンジ・モーメントの出力(付加物有の場合のみ)
20	HM2; " (")
21	HM3; " (")
22	HM4; " (")
23	HM5; " (")
24	HM6; " (")
25	HM7; " (")
26	HM8 ; " (")
27	HM9; " (")
28	HM 10 ; " (")
29	HM11; " (")
30	HM 12 ; " (")
31	HM 13 ; " (")
32	HM14; " (")
33	HM 15 ; " (")
34	HM 16 ; " (")
35	HM17; " (")
•	以下はデータ番号1~35の繰り返しである。
•	(通常は繰り返し回数を10とする。)
1024	
	L

ゲイン番号 <i>1G</i> m	フル・スケール 電 圧(V)	ゲイン番号 <i>IG</i> m	フル・スケール 電 圧(V)
1	± 10. 24	8	± 0. 08
2	± 5.12	9	± 0. 04
3	± 2.56	10	± 0. 02
4	± 1.28	11	± 0. 01
5	± 0.64	12	± 0. 005
6	± 0.32	13	± 0. 0025
7	± 0.16		

第8表-(1) 中速走査A/D変換器のゲイン番号 とフル・スケール電圧の関係

第 8 表 - (2) 高速走査 A / D変換器のゲイン 番号とフル・スケール電圧の関係

ゲイン番号 IGs	フル・スケール電圧 (V)
0	± 10. 0
1	± 5.0
2	± 2.5
3	± 1.25

(ゲイン番号は第6表~(6)基準データ4の50番目に納められている。)

4-2-2 マッハ数,温度,動圧,レイノルズ 数および風速の算出

風胴試験における基準となる圧力として、クオー
 ツ圧力センサー(クオーツ圧力センサーの性能を第
 9表に示す。)により測定部静圧 P'[mmHg]と集合
 胴総圧 P'₀[mmHg]を測定する。

測定値の零点補正値を P^{*}, P^{*}₀(基準圧を用いた 較正により定める。単位mmHg)とすれば測定部一 様流静圧 P および集合胴総圧 P₀は次式により求まる。

 $P = 0.133322 \cdot (P' + P^*)$ [KPa] (4)

 $P_0 = 0.133322 \cdot (P'_0 + P'_0)$ [KPa] (5)

 $P^* \ge P_0^*$ の値は,第6表-(2)に記載したデータ・ファイル ANALYZE.CD解析用基準データ(AN1) に納められている。

一様流マッハ数Mは,次式により求まる。

第9表 クォーツ圧力センサーの性能

項	Ē	3	性能
E :	力範	囲	0 ~ 147. 1 KPa
精		度	0. 03 %
応	答 速	度	100 Hz
出		カ	デジタルBCD 5桁
個		数	$2 (P, P_0)$

 $M = \sqrt{5 \cdot \{ (P_0/P)^{2/7} - 1 \}}$ (6)

集合胴温度 T_0 [K]は、集合胴に設置された銅ー コンスタンタン熱電対の出力を T_{mv} [mV]として次 式により求まる。

$$T_{1} = 25.9563 \cdot T_{mv} - 0.69045 \cdot T_{mv}^{2}$$

$$[^{C}] (7-1)$$

$$T_{0} = T_{1} + 273.15$$

$$[K] (7-2)$$

ここで, (7-1)式は銅-コンスタンタン熱電対 の出力電圧値をもとにして求めた近似式²⁾である。

動圧 Q[KPa], レイノルズ数 R_e および風速U[m]/sec]は, 次式^{3)*}により求める。

$$Q = 0.7 \cdot M^2 \cdot P_0 \cdot (1 + 0.2 \cdot M^2)^{-7/2}$$
[KPa] (8)

25

^{*}レイノルズ数計算式(9)において使用した粘性係数は 理科年表に記載のものを用いた。

$$R_{e} = \frac{6.247 \cdot k \cdot P_{0} \cdot (117 + T_{0} + 23.4 \cdot M^{2}) \cdot M \cdot L_{m}}{T_{0}^{2} \cdot (1 + 0.2 \cdot M^{2})^{5/2}} \cdot 10^{6}$$
(9)

ここで、 P_0 として単位 [mmHg]を使用した場合 はk=1とし、単位 [KPa]を使用した場合はk=7.50064とする。 L_m はレイノルズ算出の基準長(単 位m)である。

$$U = 20.045 \cdot M \cdot \sqrt{\frac{T_0}{1 + 0.2 \cdot M^2}}$$

[m/sec] (10)

4-2-3 模型の姿勢設定角度計算

模型はスティング・ストラットにより支持され, 模型の姿勢および位置はスティングのピッチ角,ロー ル角および上下位置で決められる。

この模型の姿勢および位置を示すデータは,高速 走査 A/D変換器により数値化されている。この数 値データをサンプリング数により平均化し、4-2 -1(3)項の(3)式をもちいて電圧値 [V]に変換した データをもとにして,模型姿勢ピッチ角 θ_s [rad], ロール角 ϕ_s [rad]および上下位置 H_s [mm]を算出 する方法を以下に述べる。

(1) ピッチ角 θ_s [rad]の算出 $\theta'_s = k_\theta \cdot \theta_V + d\theta$ [deg] (11-1) $\theta_s = 1.74533 \cdot \theta'_s \cdot 10^{-2}$ [rad] (11-2) ただし、

θ_{v}	:(3)式により算出された電圧(値 [V]
kθ	:較正された変換係数	[deg/V]
d heta	:較正されたオフセット値	[deg]
θ_s	:模型姿勢ピッチ角	[rad]
(Koł	dθ は第6表-(2)に記載した:	データ・ファ
イルANA	ALYZE.CD解析用基準データ	(AN1)に納
められて	いる。)	

(2)	ロール角¢ _s [rad]の算出	
d	$V = 1$, $\phi + 1\phi$	ر ا

$\varphi_{s} = k_{\phi} \cdot \varphi_{V} + d\varphi$	$\lfloor \deg \rfloor (12-1)$
$\phi_s = 1.74533 \cdot \phi'_s \cdot 10^{-2}$	[rad] (12 - 2)
ただし,	

ϕ_V	:(3)式より算出された電圧値	[V]
kφ	:較正された変換係数	[deg/V]
dØ	:較正されたオフセット値	[deg]
ϕ_s	:模型姿勢ロール角	[rad]

 $(k_{\phi} \ge d_{\phi} \ t \ \mbox{i} \ \mbox{f} \ \mbox{f}$

(3) 上下位置の算出

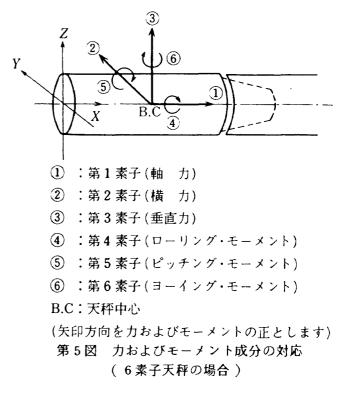
$$H'_{s} = k_{H} \cdot H_{V} + d_{H} \qquad [mm] (13-1)$$
$$H_{s} = H'_{s} \cdot 10^{-3} \qquad [m] (13-2)$$

ただし,

 k_H :較正された変換係数 [mm/V]

$$d_H$$
:較正されたオフセット値 [mm]

*H*s: 模型姿勢上下位置 [m]


 $(k_H \ge d_H \text{ t } \# 6 = (2)$ に記載したデータ・ファ イル ANALYZE. CD解析用基準データ (AN1)に納 められている。)

4-2-4 6分力天秤出力の空気力係数化

モーメント検出型天秤の出力データに平均化およ び電圧化の操作を加えられたデータをもとにして空 気力係数化するまでの過程を以下に述べる。

(1) 6分力天秤素子

モーメント検出型天秤の6素子の力およびモーメ ント成分の対応を第5図に示す。図の座標軸X,Y, Zは模型機体軸に対応し,X方向は機体軸のそれと は逆に風ベクトルの向きに正の向きをとる。Z方向 は、やはり機体軸のそれと逆に鉛直上方に正の向き をとる。

天秤 6素子のうち,第1素子から第3素子までは, それぞれX,YおよびZ方向の力の成分を検出し, 又,第4素子から第6素子までは,それぞれモーメントのX,YおよびZ成分を検出するのに使われる。

モーメントの成分の正負は機体軸に参照してきめ られるので, X軸まわり(ローリング)および Z軸 まわり(ヨーイング)のモーメントの向きは, それ ぞれの軸の向きと反対になっている。

(2) 励起電圧補正

天秤の受感素子に働く力は,ホイートストンプリ ッジ回路(受感素子にはられた4ゲージ)の抵抗変 化をもたらし,これはブリッジ回路の非平衡電圧と して検出される。

ブリッジ回路の非平衡電圧と受感素子に働く力は ほぼ直線関係にあり、また励起電圧に比例する。

較正時と通風時の励起電圧の差は以下に述べる方 法で補正することができる。

K: を通風時に対する較正時の励起電圧の比とし, 各素子の出力を*V*: [mV]とすれば,較正時に換算し た出力*XV*: は,次式により求まる。

XV_i = *K_i* · *V_i* [mV](14) ただし, 添字 *i* は, 1, 2, …, 6 で, それぞれ第 1, 2, …, 6 素子に対応する。

(以下, 添字 i をこの意味で使う。)

(3) 解析処理における基準データ

最終的な出力を算出するさいに基準となる各素子の零点*XN*_i[mV]は,通風前に模型の姿勢を水平にした状態でえられた出力に励起電圧補正を加えたものとする。この時の時刻を t₀[min]とする。

(4) ドリフトの補正

通風時には、気流の温度上昇により各素子が加熱 されるため、その抵抗値が変わり零点が移動するこ とがある。各素子の温度変化は時間の関数であり、 したがって零点の移動量も時間の関数である。普通 これは、わずかな量であるので、基準時刻 t_0 から測 定時刻 t_1 までの時間間隔の1次関数として零点の 移動量を算出する⁴⁾。

したがって、ドリフト補正係数は次式により算出 する。

$$\left[\frac{\Delta x}{\Delta t}\right]_{i} = \frac{XR_{i} - XN_{i}}{t_{r} - t_{0}} \qquad [mV/min] (15)$$

ただし,

XR_i:通風後の模型水平状態での励起電圧補正 された出力 「mV]

t.	:	XR: のデー	タ収集時刻	[min]
<i>cr</i>	•	Any of	ノ水木町刻	C 11 11 1 1

XN_i: 通風前の模型水平状態での励起電圧補正 された出力 [mV]

そこで,通風中の時刻 t₁(分に変換したもの)に おける励起電圧補正された天秤出力を*XV*1_iとすれ ば、真の天秤出力*XV*2_iは、次式で求められる。

$$XV2_{i} = XV1_{i} - \left[\frac{4x}{4t}\right]_{i} \cdot (t_{1} - t_{0}) - XN_{i}$$

$$[mV] (16)$$

(5) 干涉補正

(16式で求められた天秤各素子の出力*XV*2;は,各 素子に作用する力およびモーメントの,ドリフトと 零点が補正された出力である。

実際には, 天秤の構造上各素子相互間に干渉があ るので, 試験前に行った天秤較正によって求められ た各素子相互間の干渉係数をもちいて干渉補正をお こなう必要がある。

 $XV 2_j$ によって i 要素に現われる 1 次干渉係数 $\left[\frac{dX_i}{XV_j}\right]$, 2 次干渉係数 $\left[\frac{dX_i}{(XV_j)^2}\right]$ および複合荷重 による干渉係数を $\left[\frac{dX_i}{XV_j \cdot XV_k}\right]$ と表わすと、干渉補 正後の出力 $XV 3_i$ は、次式により求まる。

$$XV3_{i} = XV2_{i} - \sum_{j \ge i} \left[\frac{\Delta X_{i}}{XV_{j}}\right] \cdot XV3_{j}$$
$$- \sum_{j=1}^{6} \sum_{k \ge j} \left[\frac{\Delta X_{i}}{XV_{j} \cdot XV_{k}}\right] \cdot XV3_{j} \cdot XV3_{k}$$

[mV] (17)

(1)式の右辺第2項以下が干渉による補正項である。 この式の右辺に逐次代入を行い繰り返し計算により 収束させて XV3;を定める。

現在のデータ処理プログラムでは 10 回まで繰り 返しを行っている。

遷音速風胴現有の6分力天秤については,これに より十分に収束した解が得られることを確認してい る。

干渉係数の配列要素一覧表を第10表に示す。

K		····	r		· · · · · · · · · · · · · · · · · · ·		
素子	Δ	⊿ X 1	∆ X 2	∆X₃	∆×4	∆X5	∆X6
	i	1	2	3	4	5	6
X 1	1		$\Delta X_2 / X_1$	$\Delta \chi_3 / \chi_1$	6×4/×1	∆X5/X1	∆Xô/X1
X2	2	$\Delta X_1 / X_2$		$\Delta X_3 / X_2$	1×4/×2	1 X5/X2	1×6/×2
X 3	3	$\Delta X_1 / X_3$	$\Delta X_2 / X_3$		$\Delta \times 4/\times 3$	$\Delta \chi_5 / \chi_3$	$\Delta X_6 / X_3$
X.4	4	$\Delta X_1 / X_4$	1×2/×4	$\Delta \chi_3 / \chi_4$		$\Delta X_5 / X_4$	$\Delta \chi_6 / \chi_4$
X 5	5	$\Delta \chi_1 / \chi_5$	$\Delta X_2 / X_5$	$\Delta \chi_3 / \chi_5$	1×4/×5		$\Delta X_6 / X_5$
X 6	6	$\Delta X_1 / X_6$	∆X 2/X 6	$\Delta X_3 / X_6$	4×4/×6	$\Delta X_5 / X_6$	
$(X_{1})^{2}$	7	$\Delta X_{1}/(X_{1})^{2}$	$\Delta X_2/(X_1)^2$	$\Delta X_3/(x_1)^2$	$\Delta x_4 / (x_1)^2$	$\Delta x_5/(x_1)^2$	$\Lambda \chi_6/(\mathbf{x}_1)^2$
$(X_2)^2$	8	$\Delta X_1/(X_2)^2$	$\Delta X_2/(X_2)^2$	$\Delta X_3/(X_2)^2$	$\Delta X 4 / (X_2)^2$	$\Delta x_5/(x_2)^2$	$\Delta x_6/(x_2)^2$
$(X_3)^2$	9	$\Delta x_1/(x_3)^2$	$\Delta x_2/(x_3)^2$	$\Delta X_3/(X_3)^2$	$\Delta X_4/(X_3)^2$	$\Delta x_5/(x_3)^2$	$\Delta X_6/(X_3)^2$
$(X_{1})^{2}$	10	$\Delta X_1/(X_4)^2$	$\Delta X_2/(X_4)^2$	$\Delta x_{3/}(x_{4})^{2}$	$\Delta X_4/(X_4)^2$	$\Delta x_5/(x_4)^2$	$\Delta x_6/(x_4)^2$
$(X_5)^2$	11	$\Delta x_1/(x_5)^2$	$\Delta X_2/(X_5)^2$	$\Delta x_3/(x_5)^2$	$\Delta X_4/(X_5)^2$	$\Delta x_5/(x_5)^2$	$\Delta \times 6/(x_5)^2$
$(X_{6})^{2}$	12	$\Delta x_1/(x_6)^2$	$\Delta x_2/(x_6)^2$	$\Delta X_3/(X_6)^2$	$\Delta X_4/(X_6)^2$	∆×5/(×6) ²	$\Delta x_6/(x_6)^2$
X1•X2	13	$\Delta x_1/(x_1, x_2)$	$\Delta x_2/(x_1 \cdot x_2)$	$\Delta x_3/(x_1 \cdot x_2)$	$\Delta X_4 / (X_1 \cdot X_2)$	$\Delta x_{5}/(1 \cdot x_{2})$	$\Delta x_6 / (x_1 \cdot x_2)$
X1 • X3	14	∆×1/(X1•X3)	∆x2/(x1-X3)	Δx3/(X1-X3)	$\Delta X_4/(X_1 \cdot X_3)$	1×5/(×1·×3)	$\Lambda \times 6/(X_1 \cdot X_3)$
X1+X4	15	1×1/(×1-×4)	1×2/(×1·×4)	∆×3/(×1·×4)	$\Delta X_{4}/(X_{1}-X_{4})$	$\Delta x_{s} / (x_1 \cdot x_4)$	
X1 • X5	16	⊿X1/(X1•X5)	∆× ₂ /(x1•×5)	$\Delta X_3 / (X_1 \cdot X_5)$	$\Delta X_4 / (X_1 \cdot X_5)$	$\Delta x_5/(x_1 \cdot x_5)$	$\Delta x_6/(x_1 \cdot x_5)$
X1•X6	17	1×1/(×1·×6)	ΔX2/(X1·X6)	$\Delta X_3 / (X_1 \cdot X_6)$	$\Delta X_4 / (X_1 \cdot X_6)$	$\Delta x_5/(x_1 \cdot x_6)$	$\Delta x_{6}/(x_{1}\cdot x_{6})$
X2•X3		1×1/(x2•×3)	Δx ₂ /(x ₂ ·x ₃)	∆×3/(×2·×3)	1×4/(x2·x3)	$\Delta x_{5}/(x_{2}\cdot x_{3})$	$\Delta x_6 / (x_2 \cdot x_3)$
X2•X4	19	∆×1/(×2·×4)	∆x ₂ /(x ₂ •x4)	$\Delta X_3/(X_2-X_4)$	$\Delta X_4/(X_2 \cdot X_4)$	1×5/(×2·×4)	5×6/(X2·X4)
X2•X5	20	∆x1/(x2•X5)	$\Delta x_2 / (x_2 \cdot x_5)$	∆x3/(x2·x5)	1×4/(x2·x5)	∆x5/(x2·x5)	$\Delta x_6/(x_2 \cdot x_5)$
X2•X6	21	1×1/(×2·×5)	∆x2/(x2·x6)	∆x3/(X2·X6)	\$X4/(X2·X6)	$\Delta x_5/(x_2 \cdot x_6)$	Axe/(x2.xe)
X3•X4	22	$\Delta X_1 / (X_3 \cdot X_4)$	$\Delta X_2 / (X_3 \cdot X_4)$	$\Delta X_3/(X_3 \cdot X_4)$	$\Delta X_4 / (X_3 \cdot X_4)$	$\Delta x_5/(x_3 \cdot x_4)$	AX6/(X3·X4)
X3•X5	23	∆x1/(x3.x5)	∆x ₂ /(x ₃ ·x ₅)	$\Delta X_3 / (X_3 \cdot X_5)$	$\Delta X_4/(X_3 \cdot X_5)$	$\Delta X_5/(X_3 \cdot X_5)$	4×6 (x3·25)
		$\Delta x_1/(x_3 \cdot x_6)$					
		$\Delta x_1 / (x_4 \cdot x_5)$					
		d×1/(×4·×6)					
		∆x1/(x5·x6)					

第 10 表 干渉係数の配列要素 DXQ(i, j) 一覧表

干渉係数は, 第6表-(2)に記載したデータ・ファ イル ANALYZE.CD解析用基準データ (AN1とAN 2)に納められている。

(6) 物理量への変換

(17)式で求めた*XV*3_i[mV]を物理量の大きさ*XX*_i

[NまたはN-m]に変換するには次式による。

 $X_i = XH_i \cdot XV3_i$ [kg $\pm t t kg - m$] (18) $XX_i = 9.80665 \cdot X_i$ [N $\pm t t t N - m$] (19)

ここで、 XH_i は、変換係数(風胴試験に先立って

行われる天秤較正は,通常の場合1種類の天秤と模

型を使用した風胴試験のシリーズについて1回行う) である。

XH₁, XH₂ およびXH₃の単位は [kg/mV]である。 XH₄, XH₅ およびXH₆の単位は [kg·m/mV]であ る。

 XX_1, XX_2 および XX_3 の単位は[N]である。

XX4, XX5 およびXX6の単位は [N·m] である。 変換係数XHi は, 第6表-(2)に記載したデータ・ ファイル ANALYZE.CD解析用基準データ(AN1) に納められている。

(7) 天秤およびスティングのたわみとねじれによる設定模型角および気流に対する迎角と偏揺角の補正

模型を支持しているスティングは剛体と考えることができず、また天秤も空気力を受けて変位するので、模型姿勢角に対してこの効果を補正する。

まず, ローリング・モーメントによるねじれを考 える。ローリング・モーメントを*XX*4[N・m]とし, 単位モーメントに対するロール角のねじれ角を*ERM* [rad/N・m]とすれば, ねじれによる補正角 40は 次式で求まる。

*A*Ø = *ERM* · *XX*₄ [rad](20) ここで, *ERM* は第 6 表 −(2)に記載したデータ・ ファイル ANALYZE. CD解析用基準データ(AN1) に納められている。

(12-2)式で求めた設定ロール角 Øs [rad]と20式 で求めた ΔØ[rad]を加えたものが、真の設定ロー ル角Ø[rad]である。

 $\phi = \phi_s + 4\phi$ [rad](21) この時の気流に対する迎角 α_s [rad]と偏揺角 ψ_s [rad]は、次式により求まる。

 $\psi_s = \sin^{-1} (-\sin \theta_s \cdot \sin \phi) \quad [rad] (22)$ $\alpha_s = \sin^{-1} (\sin \theta_s \cdot \cos \phi / \cos \psi_s)$

[rad] (23)

次に、天秤およびスティングのたわみを考える。 垂直力 XX_3 [N]および横力 XX_2 [N]による単位 力に対するたわみ角をFNN[rad/N]およびFYY[rad/N]とし、ピッチング・モーメント XX_5 およ びヨーイング・モーメント XX_6 による単位モーメン トに対するたわみ角をEPM[rad/N·m]およびEYM[rad/N·m]とすれば、たわみによる増分 $d\alpha$ [rad] と 4ψ[rad]は、次式により求まる。

 $\Delta \alpha = FNN \cdot XX_3 + EPM \cdot XX_5 \quad [rad] (24)$

 $\Delta \psi = FYY \cdot XX_2 + EYM \cdot XX_6 \quad [rad] (25)$

ここで, FNN, FYY, EPMおよび EYMは第6 表-(2)に記載したデータ・ファイル ANALYZE.CD 解析用基準データ(AN1)に納められている。

気流に対する迎角 α [rad]は、 四式で求めた $\Delta \alpha$ [rad]を α_s に加えたもので、偏揺角 ψ [rad]は、 四式で求めた $\Delta \psi$ [rad]を ψ_s に加えたものである。

- $\alpha = \alpha_s + \Delta \alpha \qquad [rad] (26)$
- $\psi = \psi_s + \Delta \psi \qquad [rad] (27)$

(8) 自重補正係数

天秤出力は,無風時に模型姿勢が水平にある状態 を基準としている。模型が水平状態にない時は,そ れぞれの力方向における自重の成分が水平状態と異 なるので,その効果を補正する必要がある。

a. 第1素子の自重補正係数

無風時においてロール角を0[rad], ピッチ角を ある角度θに設定して, その時のドリフトや干渉の 補正を行なったのちの出力を*XX*₁とすると, 自重補

正数 $\left(\frac{\Delta XX_1}{\Delta \theta}\right)$ は、次式により求まる。

$$\left(\frac{\Delta X X_1}{\Delta \theta}\right) = X X_1 / \sin \theta \qquad [N] (28)$$

通常は, θにつき正負4種類のデータを収集し, 自重補正係数は, その平均値により定める。

b. 第2素子から第6素子の自重補正係数

無風時においてピッチ角を θ [rad], ロール角を ϕ [rad]に模型姿勢を設定し、その時の出力をドリ フトや干渉の補正をおこなったのちの第2素子、第 3素子、…、第6素子の出力を $XX_2, XX_3, ..., XX_6$ とすると、自重補正係数($\frac{dXX_i}{d\theta}$)は、次式により 求まる。

$$\left(\frac{dXX_2}{d\theta}\right) = XX_2/(\cos\theta\cdot\sin\phi) \quad [N] (29)$$
$$\left(\frac{dXX_3}{d\theta}\right) = XX_3/(1-\cos\theta\cdot\cos\phi) \quad [N] (30)$$

$$\left(\frac{dXX_4}{d\theta}\right) = XX_4/\sin\phi \qquad [N \cdot m] (31)$$
$$\left(\frac{dXX_5}{d\theta}\right) = XX_5/(1 - \cos\theta \cdot \cos\phi)$$

 $[N \cdot m]$ (32)

$$\left(\frac{\Delta X X_6}{\Delta \theta}\right) = X X_6 / (\cos \theta \cdot \sin \phi)$$
[N·m] (33)

通常は、ピッチ角を0[rad],ロール角を±1.5708 [rad](=±90[deg])に設定して、各ロール角に ついて2回、合計4回のデータを収集し、自重補正 係数は、その平均値により定める。

(9) 空気力の算出

零点補正, ドリフトおよび干渉補正を加えて物理 量に変換された天秤出力を*X2*; とすれば, 真の空気 力*X3*; は, 28式~63式で求めた自重補正係数をもち いて次のように与えられる。

$$X3_1 = X2_1 - \left(\frac{\Delta XX_1}{\Delta\theta}\right) \cdot \sin\theta \qquad [N] (34)$$

$$X3_2 = X2_2 - \left(\frac{\Delta XX_2}{\Delta \theta}\right) \cdot \left(\cos\theta \cdot \sin\phi\right)$$
[N] (35)

$$X3_{3} = X2_{3} - \left(\frac{\Delta XX_{3}}{\Delta \theta}\right) \cdot (1 - \cos \theta \cdot \cos \phi)$$
[N] (36)

$$X3_4 = X2_4 - \left(\frac{dXX_4}{d\theta}\right) \cdot \sin\phi \quad [N \cdot m] \quad (37)$$

$$X3_{5} = X2_{5} - \left(\frac{\Delta XX_{5}}{\Delta \theta}\right) \cdot \left(1 - \cos\theta \cdot \cos\phi\right)$$
[N·m] (38)

$$X3_{6} = X2_{6} - \left(\frac{\Delta XX_{6}}{\Delta \theta}\right) \cdot \left(\cos \theta \cdot \sin \phi\right)$$
[N·m] (39)

a. 機体軸系の力およびモーメント

通常の風試模型は機体軸を天秤軸と一致させて取 りつけられるので機体軸系の力は,天秤軸で測った 力に等しい。

ただし, ローリング・モーメントとヨーイング・ モーメントに関しては下記のように座標とは逆の向 きをとる((1)参照)。

軸力(後方を正)	$: FX = X3_1$	[N](40)
横力(右方を正)	$: FY = X3_2$	[N] (41)
垂直力(上方を正)	$: FZ = X3_3$	[N] (42)
ローリング・モーメ	ント(右翼下げ	を正):
$MXB = X3_4 - Z_l$	$\cdot FY + Y_l \cdot FZ$	
	[N⋅m] (43)
ピッチング・モーメ	ント(機首上げ	を正):
$MYB = X3_5 - Z_l$	$\cdot FX - X_l \cdot FZ$	

 $[N \cdot m] (44)$

$$= - 1 \sim 0' \cdot \epsilon - \star \sim t (右機首振りを正):$$

 $MZB = X_{3_6} - Y_{1} \cdot FX - X_{1} \cdot FY$

 $[N \cdot m]$ (45)

ただし,

- X_l: 天秤中心を基準にモーメント基準点の前後 方向のずれ(前方を正とする)。 [m]
- *Y_l*: 天秤中心を基準にモーメント基準点の左右 方向のずれ(右方を正とする)。 [m]
- **Z_i: 天秤中心を基準にモーメント基準点の上下** 方向のずれ(上方を正とする)。 [m]

 X_{l}, Y_{l}, Z_{l} の値は, 第6表 – (2)に記載したデー タ・ファイルANALYZE. CD解析用基準データ (AN 1)に納められている。

垂直力と横力の着力点 XC_p , YC_p は、次式により 求められる。

- $XC_{p} = MYB/FZ$ [m] (46) $YC_{h} = MZB/FY$ [m] (47)b. 安定軸(飛行軸)系の力およびモーメント 軸力: $FD1 = FX \cdot \cos \alpha + FZ \cdot \sin \alpha$ (48)構力: FY = FY(49) 揚力: $FL = FZ \cdot \cos \alpha - FX \cdot \sin \alpha$ (50)構揺れモーメント: $MXS = MXB \cdot \cos \alpha + MZB \cdot \sin \alpha \quad (51)$ 縦揺れモーメント: MYS = MYB(52)偏揺れモーメント: $MZS = MZB \cdot \cos \alpha - MXB \cdot \sin \alpha \quad (53)$ c. 風軸系の力およびモーメント
- 抗力: $FD = FD1 \cdot \cos\psi + FY \cdot \sin\psi$ (54)
- 構力: $FC = FY \cdot \cos \psi FD1 \cdot \sin \psi$ (55)
- 揚力:FL = FL (56)

横揺れモーメント:

 $MXW = MXS \cdot \cos \psi - MYS \cdot \sin \psi$ (57) 縦揺れモーメント:

 $MYW = MYS \cdot \cos\psi + MXS \cdot \sin\psi$ (58) 偏揺れモーメント:

$$MZW = MZS \tag{59}$$

(10) 空力諸係数は、次式により求められる。

$$CA = \frac{FX}{Q \cdot S} \cdot 10^3 \tag{60}$$

$$CY = \frac{FY}{Q \cdot S} \cdot 10^3 \tag{61}$$

$$CN = \frac{FZ}{Q \cdot S} \cdot 10^3 \tag{62}$$

$$CD1 = \frac{FD1}{Q \cdot S} \cdot 10^3 \tag{63}$$

$$CL = \frac{FL}{Q \cdot S} \cdot 10^3 \tag{64}$$

$$CD = \frac{FD}{Q \cdot S} \cdot 10^3 \tag{65}$$

$$CC = \frac{FC}{Q \cdot S} \cdot 10^3 \tag{66}$$

$$C \mathcal{L} = \frac{MXB}{Q \cdot S \cdot \overline{C_1}} \cdot 10^3 \tag{67}$$

$$C_m = \frac{MYB}{Q \cdot S \cdot \overline{C}_2} \cdot 10^3 \tag{68}$$

$$C_{\pi} = \frac{MZB}{Q \cdot S \cdot \overline{C}_3} \cdot 10^3 \tag{69}$$

$$C\ell_s = \frac{MXS}{Q \cdot S \cdot \overline{C}_1} \cdot 10^3 \tag{70}$$

$$C_{ms} = C_m \tag{71}$$

$$C_{ns} = \frac{1000}{Q \cdot S \cdot \overline{C}_3} \cdot 10^3 \tag{72}$$

$$C \mathcal{U}_{w} = \frac{MXW}{Q \cdot S \cdot \overline{C}_{1}} \cdot 10^{3}$$
(73)

$$C_{mw} = \frac{MYW}{Q \cdot S \cdot \overline{C}_2} \cdot 10^3 \tag{74}$$

 $C_{nw} = C_{ns} \tag{75}$

ただし,

S :翼投影面積
$$[m^2]$$
 \overline{C}_1 :平均主翼弦長1(Cl) $[m]$ \overline{C}_2 :平均主翼弦長2(Cm) $[m]$ \overline{C} :平均主翼弦長2(Cm) $[m]$

 C_3 :平均王翼弦長 3 (C_n) [m]

(定数 10³は動圧 Qを単位 [KPa] で与える事に よる。)

(1) 底面圧力による底面抗力係数および底面圧力 係数

底面圧力を*P*_b[KPa],底面積 S_b[m²]とし,一 様流の圧力を*P*[KPa]とすれば,底面抗力係数*CD*_b と底面圧力係数*C*_{bb}は,次式により求まる。

$$CD_b = \frac{(P - P_b) \cdot S_b}{Q \cdot S} \tag{76}$$

$$C_{pb} = \frac{P_b - P}{Q} \tag{77}$$

ただし, S:基準面積[m²]

forebody 抗力係数をCDFとすれば、次のように求められる。

機体軸系軸力係数:

$$CAF = CA - CD_b \tag{78}$$

安定軸系軸力係数:

$$CDF1 = CAF \cdot \cos \alpha + CN \cdot \sin \alpha$$
 (79)
風軸系抗力係数:

$$CDF = CDF1 \cdot \cos\psi + CY \cdot \sin\psi \quad (80)$$

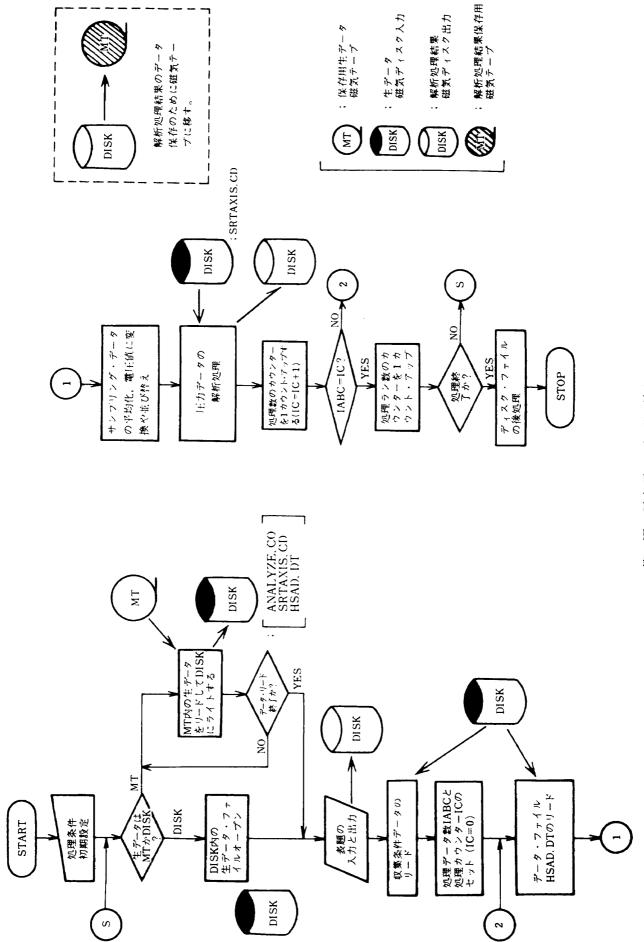
4-2-5 カデータ解析処理結果の出力

これまでに述べた(1)式~(80)式により算出された結 果を収納するため、4-1-3項で述べたデータ・ ファイルの記録形式に従い2種類(ライン・プリン タ出力用と図形処理用)のデータ・ファイルを磁気 ディスクに作成する。

記録形式(図形処理用)の詳細は,第6表の(9)を 参照のこと。

更に保存の目的で磁気ディスク内のデータ・ファ イルを磁気テープに記録する。磁気テープの記録形 式は、第6表-102を参照のこと。

4-3 圧力データの処理


圧力データの処理で4-1項で述べたデータ・フ τ イル群の中のANALYZE.CD, SRTAXIS.CD およびHSAD.DTを磁気ディスクまたは磁気テープよ り読み取り,これをもとにして処理を行う。

圧力データの種類には, 翼および胴体表面の静圧 分布, エンジン・ポッド内の総圧および静圧, 翼後 流の総圧分布等がある。

第6図に示すデータ処理の流れにそってここでは, 翼面上の圧力係数とそれに基づく空気力係数を算出 する過程を以下に述べる。

4-3-1 収集データの平均化と電圧値変換 模型翼面上の静圧は,模型内に取り付けられた圧 力変換器により電気信号に変換される。この信号を 高速走査 A/D変換器により n 回サンプリングし, そのデータをデータ・ファイル HSAD. DT 内に収納 する。

この圧力測定は48ポートをもつ走査型圧力切換

データ番号	データの内容	データ番号	データの内容
1	エラー・コード	•	
2	水銀マノメータの出力(P ₁)	•	
3	" (P ₂)	•	
4	クオーツ圧力センサーの出力(P′)	11777	エラー・コード
5	" (P ₀ ')	11778	水銀マノメータの出力(P ₁)
6	CH1, ポート1の測定値出力	11779	" (P ₂)
	СН2, "	11780	クオーツ圧力センサーの出力(P')
		11781	" (P'_0)
•		11782	CH1, ポート 47 の測定値出力
•	•	11783	СН2, "
ZZ	<i>CH_m</i> , ポート1の測定値出力	•	
•	<u>(6~ZZ)をn回サンプリング</u>	•	
•		ZZ	<i>CH_m, ポート 47 の</i> 測定値出力
256		•	<u>(11782~ZZ)をn回サンプリング</u>
257	エラー・コード	•	
258	水銀マノメータの出力(P ₁)	•	
259	" (P ₂)	12032	
260	クオーツ圧力センサーの出力(P')	12033	エラー・コード
261	" (P ₀ ')	12034	水銀マノメータの出力(P ₁)
262	CH1,ポート2の測定値出力	12035	" (P ₂)
263	СН2, "	12036	クオーツ圧力センサーの出力(P′)
•	•	12037	(P' ₀)
•	•	12038	CH1, ポート 48 の測定値出力
	·	12039	СН2, "
ZZ	<i>CH_m</i> ,ポート2の 測定値 出力	•	
•	<u>(262~ZZ)をn回サンプリング</u>	•	
•		ZZ	<i>CH_m, ポート 48 の</i> 測定値出力
512			<u>(12038~ZZ)をn回サンプリング</u>
•		•	
•		12288	

第11表 1測定による圧力データの収集配列

走査型圧力変換器1台につき48ポートの場合

 $ZZ = 256 \cdot (P_t - 1) + M \cdot (n - 1) + m + 5$

- ただし, M:使用総合数
 - m:チャンネル数(1~M) n:サンプル数 (1~n) P_l:ポート数 (1~48)

器(スキャニ・バルブ)1台につき差圧型変換器1 個とを組合わせて行う。圧力孔数に応じで,この組 合わせを数台(mとする。)使用する。

1 測定における出力データは,第6表-(5)に記載 した基準データ3と高速走査A/D変換器収集デー タである。基準データ3には,模型姿勢や収集条件 等が納められている。

高速走査A/D変換器収集データには,48×mの 圧力測定点数の各々をn回サンプリングしたデータ とクオーツ圧力センサーの出力データが納められて いる。

この1測定分のデータの配列を第11表に示す。

処理出力データとして, サンプリング n 回の平均 値をもちいる。通常はサンプリング数 n = 10 回と とっている。

電圧値変換する式は, 4-2-1(3)項の(3)式を使 用する。

4-3-2 マッハ数,温度,レイノルズ数,風 速および模型姿勢の算出

風胴試験における基準となる総圧(P₀)と一様流 静圧(P)は, 第 11 表に記載した各ポート毎のクオ ーツ圧力センサーの出力 48 データの平均値を P'₀, P'とし, 4-2-2項の(4)式と(5)式で算出する。 この値を(6)式に代入してマッハ数を求める。

風胴の温度および模型姿勢のデータは,第6表-(5)の基準データ3に納められている。

温度,動圧,レイノルズ数,風速および模型姿勢 は、このデータをもとにして,力データ処理で使用 した式(式番号については,以下を参照。)をもちい て求める。

a. 温度(T₀[K]) :(7)式

b. 動任(Q[KPa]) :(8)式

c. レイノルズ数(R_e):(9)式

d. 風速(U[m/sec]):(10)式

e. 模型姿勢($\theta_s, \phi_s, \alpha, \psi$ [rad])

: (1)式, (12式, (26)式, (27)式

4-3-3 走査型圧力切換器出力の圧力係数化 走査型圧力切換器(48ポート/台:1ポート=1 データ)の出力を圧力係数化するまでの過程を述べ る。

(1) 走査型圧力切換器1台分のデータ配列

差圧型変換器の基準圧として,一様流の静圧を使 用する。サンプリング n回の平均によりえられたデ ータの配列を第 12 表に示す。

差圧型圧力変換器の出力を[KPa]に変換する変 換係数を求めるためにポート1~ポート4で一様流

データ番号	データの内容
1	P'' ; クオーツ圧力センサーの出力 Pr [V] (一様流静圧)
2	P ₂ "; " " ["]
3	P" ; クオーツ圧力センサーの出力 P _{cc} ["] (集合胴総圧)
4	P ["] ₄ ; " " ["]
5	<i>P</i> ["] ₅ ;翼面圧力1の測定出力 <i>P</i> ["] ₁ ["]
6	P_6'' ; " 2 \mathcal{O} " P_2''' ["]
7	$P_{7}''; " 3 O " P_{3}''["]$
:	:
48	P ₄₈ ;翼面圧力 44 の測定出力 P ^{'''} [〃]

第12表 走査型圧力切換器1台のデータ配列

34

静圧と集合胴総圧を測る。

基準圧測定の信頼性を確保するため,一様流静圧 と集合胴総圧は分岐しそれぞれ静圧はポート1,2 および集合胴圧はポート3,4で測定する。通常は, ポート2の出力を一様流静圧,ポート4の出力を集 合胴総圧とする。

ポート5よりポート48の圧力配管においては, 相隣るポート間に圧力差が大きくならないように配 管する。

(2) 差圧型圧力変換器の出力としての一様流静圧 と集合胴総圧

ー様流静圧と集合胴総圧は,クオーツ圧力センサ ーで測られるが,これを分岐して差圧型圧力変換器 にも送る。

この差圧型圧力変換器からの出力としての一様流 静圧 *P*_r [V]と集合**胴**総圧 *P*_{cc} [V]は, 次式により 定める。

$P_r = P_2''$	[V] (81)
$P_{cc} = P_4''$	[V] (82)

(3) 出力データの零点

差圧型圧力変換器の基準圧としては,一様流静圧 をもちいている。従ってポート1,2の一様流測定 時には差圧型変換器にかかる差圧は零である。この 出力を零点とする。

零点 $P_{z}[V]$ は、(81)式で求めた $P_{r}[V]$ と等しい。 $P_{z} = P_{r}$ [V](83)

(4) 翼面上圧力データの零点補正

翼面上の圧力データ $P_5' \sim P_{48}'[V]$ は、 $P_z[V]$ を 基準とした値に補正する。

- 真の出力 P'''~ P'''[V]は, 次式により求める。
 - $P_{i-4}^{\prime\prime\prime} = P_{i}^{\prime\prime} P_{z}$ [V] (84)
- ただし, *i*=5~48
- (5) [V]から[KPa]への変換係数

クオーツ・マノメータで測定した一様流静圧P[KPa]および集合胴総 E_{P_0} [KPa]と,差圧型圧 力変換器の出力より求めた P_r [V]と P_{cc} [V]をも とに, [V]から[KPa]への変換係数 K_p を次式に より求める。

翼面上の静圧を P_{wi} [KPa], 圧力比 (P/P_0)を $P1_{wi}$, 圧力係数を C_{pwi} およびマッハ数を M_{wi} とす れば, [84]式で求めた P''_i [V]をもとにして, これら は、次式により求められる。

$$P_{wi} = K_{p} \cdot P_{i}^{\prime\prime\prime} + P \qquad [KPa] (86)$$

$$P1_{wi} = P_{wi} / P_0 \tag{87}$$

$$C_{pwi} = K_p \cdot P_i''/Q \tag{88}$$

$$M_{wi} = \sqrt{5 \cdot \{ (P_0/P_{wi})^{2/7} - 1 \}}$$
(89)

ただし, *i*: 1~44

(7) 圧力係数 C_bに基づく空気力係数の算出

圧力分布から空気力を算出する場合は,次のよう にしている。

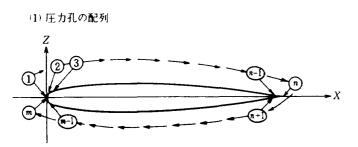
(7-1) 各翼幅位置における翼弦方向断面ごとの圧力データ並び替えおよび断面の座標

各断面ごとの並び替え用のデータや各断面座標 (*x*, z)は, 第6表-(3)に記載したデータ・ファイ ルSRTAXIS.CDの中に納められている。

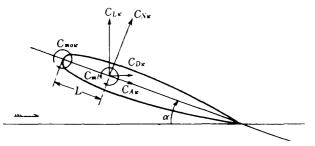
第6表-(3)の $SR_1 \sim SR_{10}$ が各断面ごとに圧力デ ータを並び替えるためのデータであり、 $XY_1 \sim XY_{10}$ が各断面の座標(x, z)である。

現行のデータ処理システムでは,1断面の最大デ ータ数は128点で,最大断面数は10である。

(7-2) 空気力係数


ここでは、1つの翼幅位置における断面の空気力 係数を求めるまでの過程を述べる。

圧力孔の順序は,前縁を1番目とし翼上面回りで 後縁をn番目,次は翼下面回りで前縁(m)にもど るとする。圧力孔の配列を第7図(1)に示す。


この時の圧力データを C_{p1} から C_{pm} とし, 翼座標 を $(X_1, Z_1) \sim (X_m, Z_m)$ 〔(x, z)の座標は, 局所 翼弦長 C で無次元化してあるものとする。〕とすれば, 力およびモーメントは、次式により求まる。

$$C_{Nw} = -\frac{1}{2} \sum_{i=2}^{m} (C_{pi} + C_{pi-1}) \cdot (X_i - X_{i-1})$$
(90)

$$C_{Aw} = \frac{1}{2} \sum_{i=2}^{m} (C_{pi} + C_{pi-1}) \cdot (Z_i - Z_{i-1})$$
(91)

- ただし、〇内は圧力孔番号 $C_{p_i} = C_{p_m}, X_1 = X_m = 0$ (前縁), $X_n = 1$ (後縁) $Z_1 = Z_n = Z_m = 0$ (XとZの座標はx/cおよびz/cとする。)
- (2) 力およびモーメント成分の対応

第7図 圧力孔の配列と力およびモーメント 成分の対応

$$C_{mow} = \frac{1}{2} \left\{ \sum_{i=2}^{m} (C_{pi} \cdot X_i + C_{pi-1} \cdot X_{i-1}) \\ \cdot (X_i - X_{i-1}) + \sum_{i=2}^{m} (C_{pi} \cdot Z_i \\ + C_{pi-1} \cdot Z_{i-1}) \cdot (Z_i - Z_{i-1}) \right\}$$
(92)

翼の迎角を α [rad]とすれば、その断面における 揚力 C_{Lw} 、抗力 C_{Dw} および前縁からの距離L(後方 を正とする。)の基準点回りのモーメント $C_{m/w}$ は、 次式により求まる。

$$C_{Lw} = C_{Nw} \cdot \cos \alpha - C_{Aw} \cdot \sin \alpha \tag{93}$$

$$C_{Dw} = C_{Nw} \cdot \sin \alpha + C_{Aw} \cdot \cos \alpha \tag{94}$$

$$C_{ml} = C_{mow} + L \cdot (C_{Lw} \cdot \cos \alpha)$$

$$+ C_{Dw} \cdot \sin \alpha$$
 (95)

カおよびモーメント成分の対応を第7図(2)に示す。 (8) 圧力データ解析処理結果の出力

これまでに述べた(81)式~(90)式により算出された結 果を収納するため、4-1-3項で述べたデータ・ ファイルの記録形式に従い、ライン・プリンタ出力 用として LPTWTPO1.DTと、図形処理用として TWTPO1.DT の二つのデータ・ファイルを磁気デ ィスクに作成する。

保存の目的で磁気ディスク内のデータ・ファイル を磁気テープに記録する。

4-4 図形処理

図形処理データ・ファイルには、力データ図形処 理用としてのTWTFO1.DTと圧力データ図形処理 用としてのTWTPO1.DTがある。

これをもちいて本システムが現在提供できる代表 的な図形処理の種類と作図例を次に示す。

4-4-1 カデータの図形処理

(1) 横軸に迎角または横すべり角をとり, 縦軸に 6分力係数の1つをとって図形を画く。

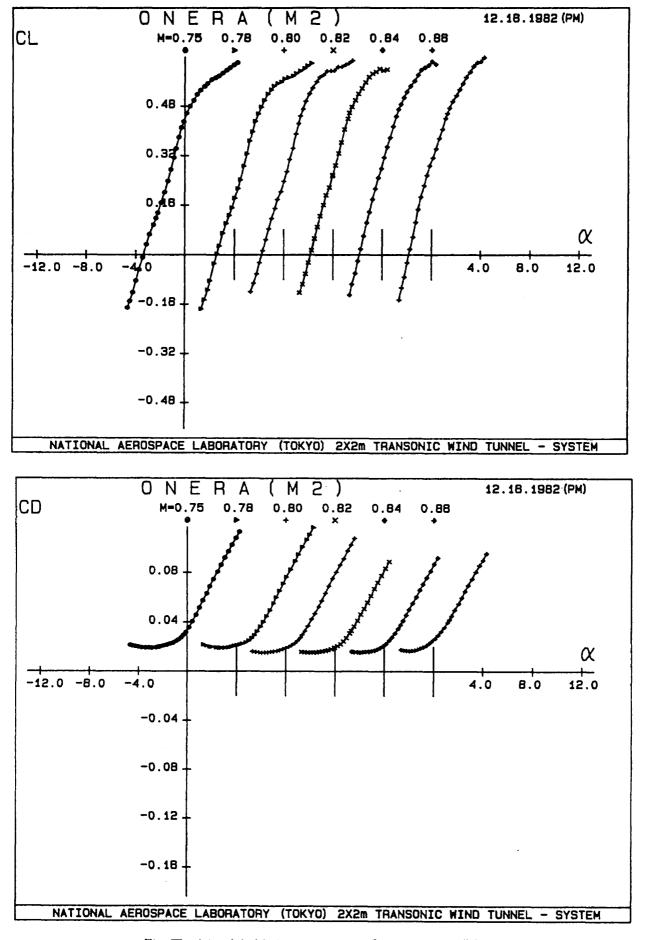
1枚のシートにマッハ数6種類の図を画くことが できる。この図形を画くプログラムは, X-Yプロ ッタ用とグラフィック・ディスプレィ用の2種類が ある。

横軸に迎角,縦軸に揚力係数または抗力係数をとった場合について,X-Yプロッタによる作図例を 第8図-(1)に,グラフィック・ディスプレィによる 作図例を第8図-(2)に示す。

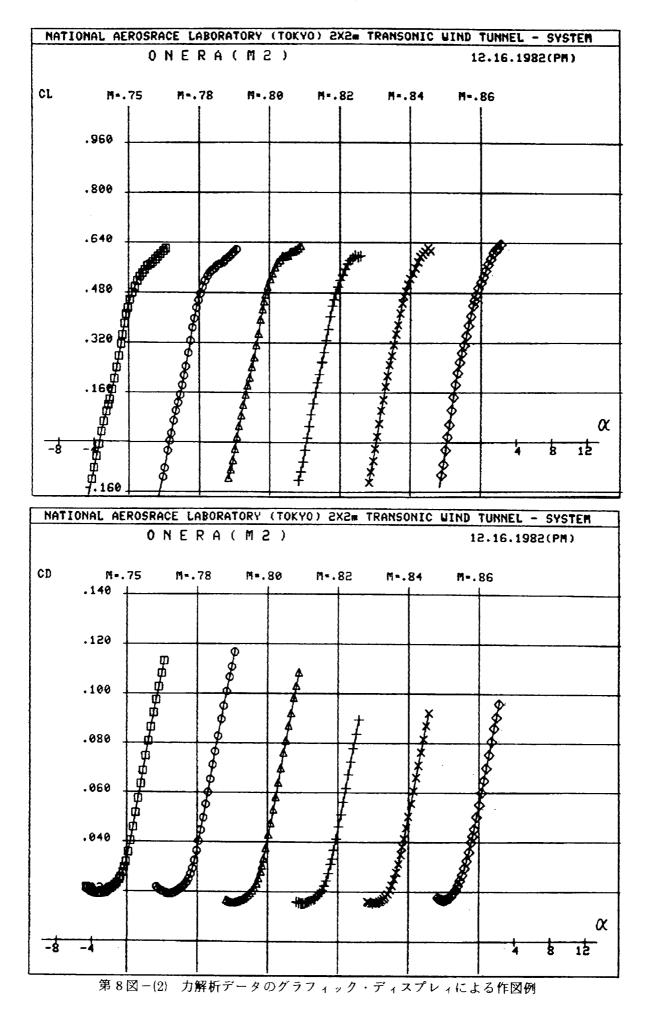
(2) 1つのマッハ数について,縦軸を揚力係数と
 し、横軸に抗力係数またはピッチング・モーメント
 または迎角とした図形を画く。併せて、C_L=0.0、
 0.2、0.4 に対応する各分力および分力の傾斜を計算したデータを数値表示する。

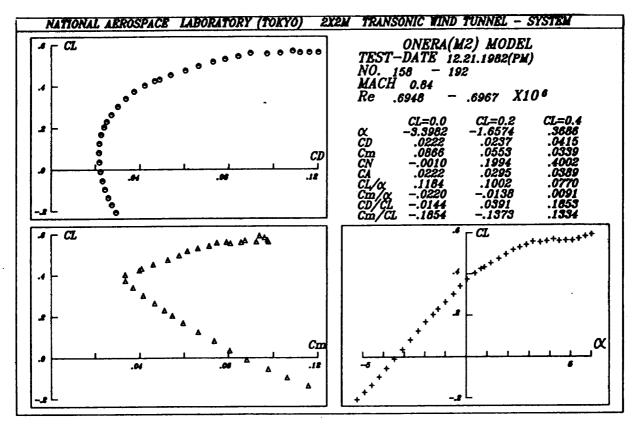
分力の傾斜は,その点の分力および前後1点づつ とった合計3点から2次曲線当てはめにより求める。 この図形の作図例を第9図に示す。

(3) 各分力の迎角または横すべり角に対する変化 を同時に表示する図形を画く。

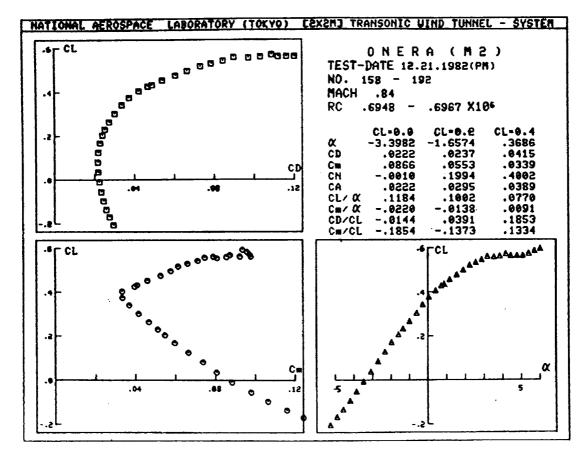

横軸に迎角または横すべり角,縦軸に各分力(最 大6種類)をとる。

この図形の作図例を第10図に示す。


4-4-2 圧力データの図形処理


(1) 横軸に局所翼弦長で無次元化された弦長方向 座標をとり,縦軸に圧力係数または翼面静圧と集合 胴総圧の比をとった図を画く。

併せて, 圧力分布から算出された各断面空気力係 数を数値表示する。表示する断面数は, 3つである。 この図形を画くプログラムは, X-Yプロッタ用



第8図-(1) 力解析データのX-Yプロッタによる作図例

(1) X-Yプロッタによる作図

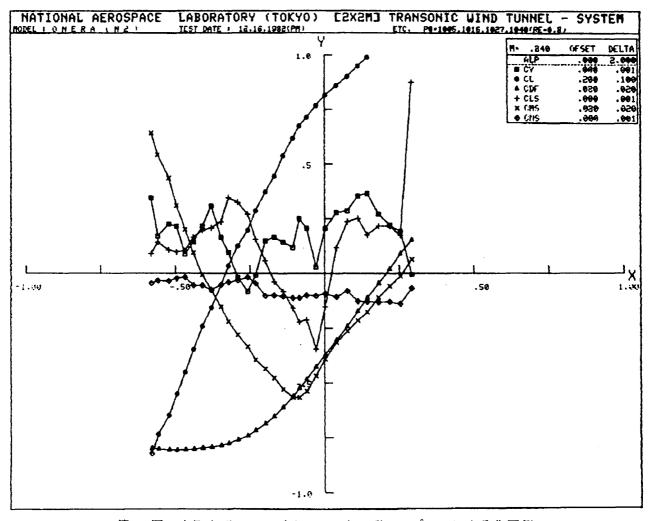
(2) グラフィック・ディスプレィによる作図

第9図 力解析データの作図例

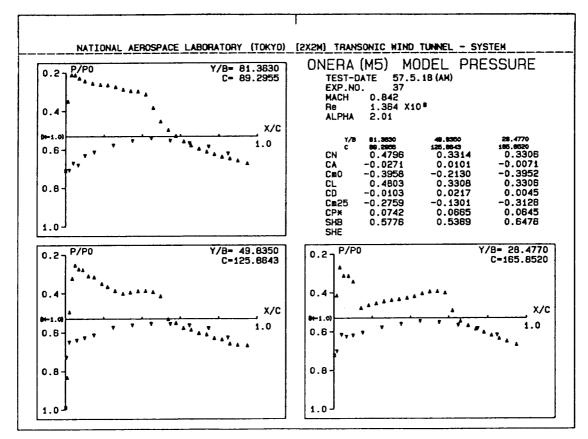
とグラフィック・ディスプレィ用の2種類がある。 この図形の作図例を第11図に示す。

(2) 1つの翼弦方向断面における圧力分布を翼断 面形状に合わせて図形を表示する。

この図形の作図例を第12図に示す。


5. まとめ

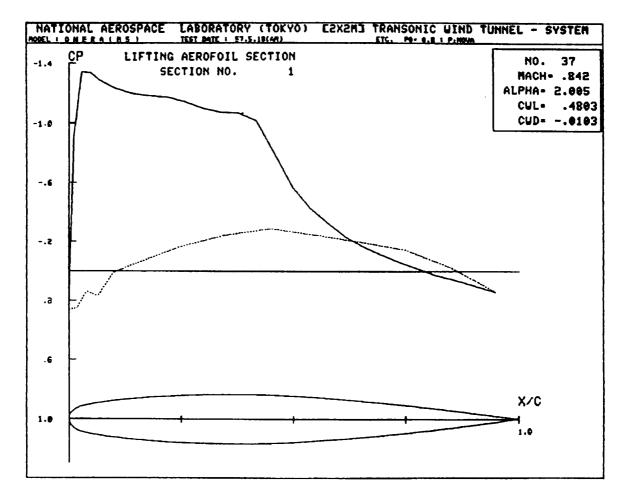
以上に述べたデータ処理システムは,当所計算セ ンターにおける中央計算機の更新に伴い昭和57年2 月に遷音速風胴計測部門に導入された専用計算機 ECLIPSE S/140 を十分に利用して,現状にお ける最良のデータ処理システムを整備すべく努力を 重ねてきた結果であって,担当者の能力が限られた ものであるため改善すべき余地は多く残されている と思われるが,それは今後引続いて努力を傾けるこ ととし,整備の作業が一段落したのを機会に,利用 者の便を図るためにここに報告することにした。こ のシステムに移行する以前は,磁気テープを計算セ ンターまで運んでデータ処理を行っていたのであるが, このシステムになってからは専用計算機と会話しな がら処理をすすめることができるようになり,処理 能力が格段に向上している。

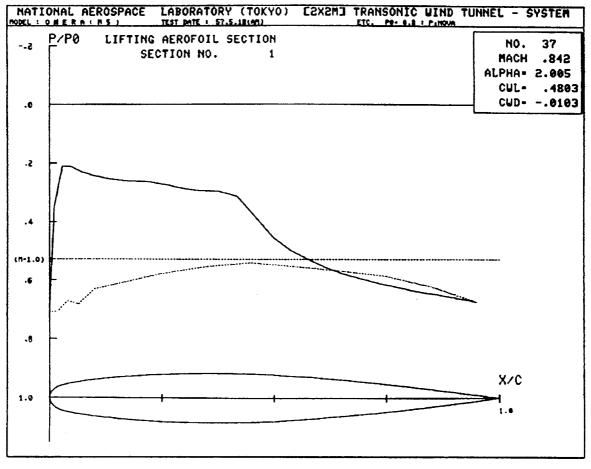

最近の遷音速風胴で実施される試験の内容は多岐 にわたり,本稿で述べた6分力天秤による力以外の カデータの解析や図形表示,作図の要求が日増しに 多くなってきた。今後は,このような多様な要求に 応じられるデータ処理プログラムの開発を計ってい く予定である。

6. 参考文献

- 1) 航空技術研究所;航空技術研究所2m×2m遷
 音速風胴の計画と構造,航空技術研究所報告
 TR-25(1962).
- 2) 東京天文台;理科年表, 丸善株式会社 (1977).
- 3) 日本航空宇宙学会;航空宇宙工学便覧,丸善株 式会社(1983).

第10図 力測定データのグラフィック・ディスプレィによる作図例




(1) X - Yプロッタによる作図

(2) グラフィック・ディスプレィによる作図

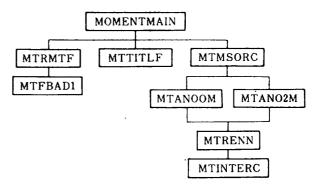
第11図 圧力解析データの作図例

第12図 圧力解析データのグラフィック・ディスプレィによる作図例

4) 鈴木弘一,中村正剛,藤田敏美;2m×2m遷 音速風胴における内挿式天秤の零点移動量の修 正法,航空宇宙技術研究所資料 TM-432 (1981).

附録 データ処理プログラムについて

現用の遷音速風胴データ処理システムにおける六 分力データ解析プログラムと圧力データ解析プログ ラムの概略は以下のようなものである。なお本プロ グラムは、JIS 7000 レベルのフォトラン5で記述さ れている^{*)}。


1 カデータ処理プログラム

カデータ処理プログラムのプログラム名と概要を 第13表に、ブロック構成図を第13図に示す。

なお,プログラムの流れ図を第4図に,実行例を 第14図にそれぞれ示す。

第13表 カデータ処理プログラム名と概要

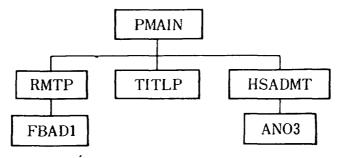
プログラム名	概	要
MOMENTMAIN	メイン・プログ (ドリフト補正 (ラム 系数の算出を含む)
MTRMTF	磁気テープより <u>4</u> ワーク・ファイノ	
MTFBAD1	整数型データを3 する。 (磁気テー	文字型データに変換 - プ・リード用)
MTTITLF	試験内容入力・と	出力用。
MTMSORC	収集データの平均	匀化。
MTANOOM	無風時収集データ	タの解析処理。
MTANO 2M	通風時収集データ (空気力係数化	
MTRENN	収集データのドリ	リフト補正処理。
MTINTERC	天秤干渉の補正好	0.理。

第13図 カデータ処理プログラムの ブロック構成図 2 圧力データ処理プログラム

圧力データ処理プログラムのプログラム名と概要 を第14表に、プログラム構成図を第15図に示す。

なお, プログラムの流れ図を第6図に, 実行例を 第16図にそれぞれ示す。

*) 参考文献


日本・データゼネラル株式会社FORTRAN5 Programmer's Guide(RDOS)(マニアル 番号093-000227-00) 第14表 圧力データ処理プログラム名と概要

プログラム名	概	要
PMAIN	メイン・プログラ.	4
RMT P	磁気テープより生 ワーク・ファイル	
FBAD1	整数型データを文字 換する。(磁気テーン	
TITLP	試験内容入出力用。	
HSADMT	収集生データの平均	与化。
ANO 3	データの解析処理。 (空気力係数化)	,

A INIT NTO Я NONENTHAIN * \$LPT (OUTPUT-FILE-NAME) = LPTWTF01.DT * DATA ?? (1= DISK, O= MT) = 0 * START MT NO. 35 * SHOAI KOSU 1 * DRIFT (0=Time, 1=Zero (N), 2=Zero (A), 3=Temp.) = 0 * BASE PRESSURE (0= AVE., 1=+, 2=ZERO) = 0 * A - Data (1=YES, O=NO) = 1 * PHAI AXIS HENKAN (1=YES, O=NO) ≈ 0 * 2 JI SHORI OUTPUT FILE (1=YES, 0=N0) = 1 * OutPut File Name = TWTF01.DT Model Name (Max.40 Characters) =ONERA (N5) Test Date (Max. 16 Characters) = 3.14.1984 (PM) AUN NO. (INTEGER) = 3 Roughness Confg. (MaX.20 Characters) Case No. (INTEGER) = 3 Cart Open Ratio (INTEGER) = 20 Model Confg. (Max.40 Characters) = B+W+H+V Balance Name (Max.20 Characters) =660H MOMENT TYPE Sting Name (Max.20 Characters) =T-2.0" NO.5 (Max.40 Characters) =0.6 --- 0.85 Mach Alpha (Max.40 Characters) =-2 --- 6 ; 0 --- 4 Phai, Beta, Psai (Nax.40 Characters) = 0.0 : +-5** Your Name (Max.20 Characters) =SEIGOU.NAKAMURA **P0** (Max.20 Characters) =0.8 (KG/CN**2) Read MT Name-No. (Nax.10 Characters) =NM1120 (35)

******** GOKUROUSAN ******* R RELEASE NTO R

第14図 力データ処理実行例

第15図 圧力処理プログラムのブロック構成図

```
A
INIT MTO
R
PMAIN
** $LPT (OUTPUT-FILE-NAME) = LPTWTP01.DT
??? (1=DISK, 0=MT) = 0
 ?? START MT NO. (0--93) = 14
                      = 1
 ?? SHOAI KOSU
 ?? RAW-DATA PRINT ONLY ( 0=YES , 1=N0 ) = 1
                      = 1, 1, 1
 ?? (ISS, ITT, IAA)
 ** INTEGRAL ( 1=ARI . O=NASI )= 0
 * TEST NO. (XXXX, XXXX) = 0,9999
 ** DISK OUTPUT FILE ( 1=ARI, O=NASI) = 1
     ?? DISK OUTPUT FILE NAME = TWTP01.DT
                                      Model Name
                 (Max.40 Characters) =ONERA (M5)
 Test Date
                 (Max.16 Characters) =2.14.1984 (PM)
 AUN NO.
            (INTEGER)
                               =2
 Roughness Config. (Nax.20 Characters) =
 CASE NO. (INTEGER)
                               =2
 Cart Open Ratio (INTEGER)
                               =20
 Model Config.
                 (Max.40 Characters) =B+W+H+V
                 (Max.20 Characters) =2" KAC
 Sting Name
 Mach
                 (Max.40 Characters) = MACH = 0.6 --- 0.8
                 (Max.40 Characters) = ALPHA = -1 --- 2
 Alpha
                                              0.0
Phai, Beta, Psai
                 (Max.40 Characters) =BETA =
****** GOKUROUSAN ******
A
RELEASE MTO
```

R

第16図 圧力データ処理実行例

3 カデータ処理のソース・プログラム

```
С
      ******* FILE NANE ( MOMENTNAIN.FA )
                                                 ******
С
      ******** T - FUDO DATA REDUCTION PROGRAM ******
      ..... NOMENT - TYPE BALANCE (12.1982 S.N) ....
С
С
      ..... FORCE DATA ONLY
                                                   . . . . . .
      COMMON
     * /TITEL/ NRUN, NCASE, NRGH, IOPT, AGHS (5), DATE (4), BLNCE (5), STING (5), CONFG (10)
     ×
             , MODEL (20)
     * /LBAN1/ NWCNT, NSTEP, AN11 (256), AN21 (256), AN2 (256)
     * /LBHED/ IHED1 (64), IHED4 (64), MSDT (1024)
     * /LBSOT/ A (50)
     * /CONST/ ICNTRL (20), NNT, NDISKA, NDISKM, NLP, NWFL
С
      С
     DIMENSION
     * IABC (3), XXX (8), XRC (6), XRO (6), XC1 (6), X2O (6), XHM (6), XHP (6), DXT (6)
     *, DXTO (6), XNC (6), INAMEF (10), ILNAME (10)
С
С
                             EQUIVALENCE
     * (A (7), THETA), (A (8), PHAI), (A (9), HIGH), (A (10), TO)
     *, (A (43), TIMEO), (A (44), TIME), (A (49), P), (A (50), PO)
      EQUIVALENCE
    * (AN11(1), XHN(1)), (AN11(7), XHP(1)), (AN11(174), PS), (AN11(175), POS)
     * , (AN2 (25), DXT (1)), (AN2 (49), DXTO (1)), (AN2 (73), XNC (1))
     * , (AN2 (121), XRC (1)), (AN2 (145), XRO (1)), (AN2 (169), XC1 (1))
С
С
         ..... $LPT/OUTPUT >> FILE/OUTPUT .....
       WRITE (10, 1)
       FORMAT (1H , '* $LPT (OUTPUT-FILE-NAME) = '. Z)
1
       READ (11, 2) ILNAME
2
       FORMAT (10A2)
       CALL CFILW (ILNAME, 2, IER)
       IF (IER.NE.1) STOP '?? SLPT CFILW ERROR ?????'
       NLP= 6
       OPEN NLP, ILNAME, ATT='P'
С
      ..... CONSTANT DATA
       D0 10 I=1, 20
       ICNTAL(I) = 0
10
       CONTINUE
       NMT = 1
       NDISKA= 2
       NDISKM= 3
       NWFL = 4
       ICIC = 0
       ACCEPT ** DATA ?? ( 1= DISK, O= NT ) = ", ICNTRL (1)
       IF (ICNTAL (1) .EQ. 1) GO TO 45
       ACCEPT "* START NT NO. ", ICNTRL (2)
```

```
ACCEPT ** SHORI KOSU *, ICNTRL (3)
        GO TO 50
45
        ICNTAL(3) = 1
50
        CONTINUE
        DO 52 I= 1, 256
          AN11(I) = 0.0
          AN21(I) = 0.0
          AN2(I) = 0.0
52
        ICIC = ICIC + 1
         IF (ICIC.GT.ICNTAL (3)) GO TO 9999
        ACCEPT '* DRIFT ( O=Time, 1=Zero (N), 2=Zero (R), 3=Temp.) = ', ICNTAL (4)
                                                                   = ', ICNTRL (5)
= ', ICNTRL (8)
        ACCEPT '* BASE PRESSURE (0= AVE., 1=+, 2=ZERO)
                                                                       , ICNTAL (6)
        ACCEPT '* R - Data ( 1=YES, O=NO )
                                                                    = ', ICNTRL (7)
        ACCEPT '* PHAI AXIS HENKAN ( 1=YES, O=NO )
                                                                    = ', ICNTRL (8)
        ACCEPT '* 2 JI SHORI OUTPUT FILE ( 1=YES, O=NO )
         IF (ICNTRL (6) .EQ.0)
                                  ICNTRL(4) = 1
         IF (ICNTAL (8).EQ.0)
                                  GO TO 58
С
         ******* OUTUPT FILE ( OPEN, CFILW ) *******
        WRITE (10.54)
        FORMAT (1H, 10X, ** OutPut File Name = *, Z)
54
        READ (11.2)
                        INAMEF
        CALL CFILW (INAMEF, 2, IER)
         IF (IER.NE.1)
                            STOP "??? CFILW Error ?????"
        CALL OPEN (NWFL, INAMEF, O, IER)
         IF (IER.NE.1) STOP "??? File Open Error ?????"
                               GO TO BO
         IF (ICNTAL (1) .EQ. 1)
58
       *** WORK DISK FILE ALLOCATE & OPEN ***
С
60
        CONTINUE
        CALL CFILW ('DPO: SNWORK01.DT', 2, IER)
         IF (IER.EG.1) GO TO 62
         IF (IER.NE.12) STOP ' ?? CFILW (SNWORK01.DT) ERROR ????'
        CALL DFILW ('DPO: SNWORK01.DT', IER)
         IF (IER.NE.1) STOP ' ?? DFILW (SNWORK01.DT) ERROR ?????
          GO TO 60
62
          CALL OPEN (NDISKM, 'DPO: SNWORK01.DT', 2, 128, IER)
         IF (IER.NE.1) STOP ' ?? OPEN (SNWORKO1.DT) ERROR ?????'
          GO TO 100
С
80
          CONTINUE
        CALL OPEN (NDISKA, "DPO: ANALYZE.CD", 1, 128, IER)
         IF (IER.NE.1) STOP "??? (ANALYZE.CD) Open Error ?????"
        CALL READR (NDISKA, 16, AN11(1), 8, IER)
                           STOP "??? ANALYZE.CD (AN1) Read Error ?????"
         IF (IER.NE.1)
        CALL READR (NDISKA, 24, AN21(1), 8, IER)
         IF (IER.NE.1) STOP '??? ANALYZE.CD (AN2) Read Error ?????'
```

CALL CLOSE (NDISKA, IER) IF (IER.NE.1) STOP "??? (ANALYZE.CD) File Close Error ?????" CALL OPEN (NDISKN, "DPO: MSAD.DT", 1, 128, IER) IF (IER.NE.1) STOP "??? (DPO: NSAD.DT) Open Error ?????" С 100 CONTINUE ICONT = 0NPRI = 13NCPRI = 4С IF (ICNTRL (1) .EQ. 1) 60 TO 120 С ECLIPSE (MT READ ----- DISKWK STORE) CALL NTRMTF С С SUBA. (TITLF) DATA INPUT/PRINT 120 CONTINUE CALL NTTITLF С С TITLE OUTPUT IF (ICNTRL (8) .EQ.0) 60 TO 190 NODEL, CONFG WRITE (NWFL. 130) × , DATE, BLNCE, STING, AGHS NRUN, NCASE, IOPT ¥ 130 FORMAT (20A2, 10A4, 4X/19A4, 8X/3I10, 54X) С С FORCE DATA REDUCTION 190 IRECC = 1CALL READR (NDISKN, IRECC, IHED1, 1, IER) IF (IER.NE.1) STOP ' ?? IHED1 READ ERROR ???' IRECC = IRECC + 1IABC(1) = 11IABC(2) = (IHED1(20) - 1) / 17 - 12IF (ICNTRL (1) .EQ. 1) IABC (2) = (IHED1(10) - 1)/17 - 12IABC(3) = 1NSTEP=1 NWCNT=2 IABC (1) = IABC (1) + 3500 CALL READR (NDISKN, IRECC, IHED4, 1, IER) IF (IER.NE.1) STOP ' ?? IHED4 READ EAROR ???' IRECC = IRECC + 1IEXNO=IHED4 (2) TYPE "EXNO.", IEXNO С С DATA READ CALL READR (NDISKN, IRECC, MSDT, 16, IER) IF (IER.NE.1) STOP ' ?? MSDT READ ERROR ???' IRECC = IRECC + 16

```
CALL NTNSORC
         A (44) =FLOAT (IHED4 (6) ) *60.0+FLOAT (IHED4 (7) )
         IF (NWCNT.EQ.2) A(43) = A(44)
         A(42) = A(44) - A(43)
С
      ****** WIND OR NOT XX *****
          IF (NSTEP.EG.2) 60 TO 700
С
С
      ***** NOWIND DATA ANALYZE *****
        NWCNT=NWCNT+1
          IF (NWCNT.EQ.12) NWCNT= NWCNT + 1
      CALL MTANDOM
          IF (IABC (1) .EQ.NWCNT)
                                      NSTEP = 2
С
                 IF (NWCNT.NE.3)
                                GO TO 500
          IF (ICNTRL (6) .EQ.0)
                                   GO TO 520
       JJ = IABC(1) + IABC(2)
       JJ=JJ-3
       IRECC= JJ \times 17 + 2
      CALL READR (NDISKM, IRECC, IHED4, 1, IER)
          IF (IER.NE.1) STOP ' ?? IHED4 READ ERROR ???'
        IRECC = IRECC + 1
      CALL READR (NDISKM, IRECC, MSDT, 16, IER)
         IF (IER.NE.1) STOP ' ?? MSDT READ ERROR ???'
      TINDR=FLOAT (IHED4 (6)) *60.0+FLOAT (IHED4 (7)) -A (43)
      CALL NTMSORC
520
        CONTINUE
      IHOUR=IHED4 (6)
      MIN5 = IHED4(7)
      ISEC = IHED4 (8)
      TO= A (10) ×25.956342 - 0.6904485×A (10) ××2
С
      DO 522 I=1,6
       XAC(I) = XC1(I) \times A(I)
       XXX (I) = XRC (I) - XNC (I)
        XRO(I) = XRC(I) * XHP(I)
         IF (XAC(I).LT.0)
                               XRO(I) = XRC(I) \times XHM(I)
522
      CONTINUE
        AN2(127) = A(11)
        AN2(128) = A(12)
        XXX(7) = AN2(127) - AN2(79)
        XXX(8) = AN2(128) - AN2(80)
        A(7) = A(7) \times AN11(161) + AN11(165)
        A(8) = A(8) \times AN11(162) + AN11(166)
C
      WRITE (NLP. 524)
                           IHED4 (2), IHOUR, MIN5, ISEC, TO, A (7), A (8)
                     , XRC, AN2 (127), AN2 (128), XRO
     ¥
      FORMAT (1HO, 'R-DATA ( NO. ', 15, ' ) ', 3X, 'H: N: S , ', 12, ': ', 12, ': ', 12
524
```

' TEMP.: ', F6.2, 5X, 'THETA=', F6.2, ' PHAI=', F6.2/ ¥ 1H0, 15X, 6F10.4, 1H , 15X, 6F10.4, (NV) */1H , 15X, 2F10.4.* ¥ (v) ·/ ¥ (KG.OR.KG-N) ') WRITE (NLP. 526) XXX 526 FORMAT (1H0, '(RD-ND)', 8X, 6F10.4/1H, 15X, 2F10.4) IF (ICNTRL (4) .NE.0) 60 TO 550 DO 528 I=1,6 DXT(I) = (XRC(I) - XNC(I)) / TINDAXRC(I) = 0.0528 CONTINUE AN2(31) = (AN2(127) - AN2(79)) / TIMDRAN2(32) = (AN2(128) - AN2(80)) / TINDRС · • • WRITE (NLP, 542) TINDR, DXT, AN2 (31), AN2 (32) , XNC, AN2 (79), AN2 (80) ¥ ¥ , XRC, AN2 (127), AN2 (128) FORMAT (1H , 'TIME (DNIN) =', F12.6/1H , ' DRIF TIME=', 6F12.6, 5X 542 , '(MV/MIN) ' /1H , 12X, 2F12.6/1H , '(XNC-CHECK) ¥ 6F12.6, 3X, '(NV) '/1H , 12X, 2F12.6, 3X, '(V) '/1H , "(XRC-CHECK) * 6F12.6, 3X, '(NV) '/1H , 12X, 2F12.6, 3X, '(V) '/) ¥ ¥ 60 TO 598 ******* С 550 IC = ICNTAL(4)GO TO (560, 570, 580, 580), IC 560 DO 562 I=1.6 DXT(I) = 0.0XRC(I) = 0.0562 CONTINUE AN2(31) = (AN2(127) - AN2(79)) / TINDRAN2(32) = (AN2(128) - AN2(80)) / TINDRWRITE (NLP, 542) TINDR, DXT, AN2 (31), AN2 (32) ¥ , XNC, AN2 (79), AN2 (80) ¥ , XRC, AN2 (127), AN2 (128) GO TO 598 С 570 D0 572 I=1.6 DXT(I) = 0.0XNC(I) = 0.0572 CONTINUE IF (ICNTRL (6) .EQ.0) GO TO 574 AN2 (31) = (AN2 (127) - AN2 (70)) / TINDA AN2 (32) = (AN2 (128) - AN2 (80)) / TINDA GO TO 576 574 AN2(31) = AN2(32) = 0.0576 CONTINUE

WRITE (NLP, 542) TINDR, DXT, AN2 (31), AN2 (32) . XNC, AN2 (79), AN2 (80) ¥ ¥ . XRC, AN2 (127) , AN2 (128) GO TO 598 С 580 TYPE "??? DRIFT [ICNTAL (4)] ERROR ?????" С 598 CONTINUE WRITE (NLP, 599) 599 FORMAT (1H1) С IRECC = 19NPAGE1= IABC(2) / 4 NPAGD1= IABC(2) - NPAGE1*4 NPAGE= NPAGE1 + 4 IF (NPAGD1.GT.O) NPAGE = NPAGE + 1 600 GO TO 500 С ***** WIND DATA ANALYZE ***** 700 IF (NPRI.LT.4) GO TO 720 CALL FGTIME (IHH, INN, ISS) WRITE (NLP, 710) IHH, IMM, ISS, NRUN, NCPRI, NPAGE 710 FORNAT (1H1/1H, 4X, '***** NATIONAL AEROSPACE LABORATORY (TOKYO)' * , ' 2X2N TRANSONIC WIND TUNNEL SYSTEN', 5X, "(", I2, ": ", I2, ": ", I2, ")", 5X * . 'RUN NO.', 16, ' P-', 12, '/', 12) NPHI = 0NCPRI= NCPRI + 1 720 CALL NTANO2M NPAI= NPAI + 1 ICONT=ICONT+1 IF (ICONT.EG.IABC (2)) GO TO 5000 GO TO 500 С **5000 CONTINUE** CALL CLOSE (NDISKN, IER) IF (IER.NE.1) STOP "?? (SNWORK01.DT.Or.MSAD.DT) CLOSE ERROR ????" IF (ICNTAL (1) .EQ. 1) GO TO 5100 CALL DFILW ("DPO: SNWORKO1.DT", IER) IF (IER.NE.1) STOP "?? (SNWORK01.DT) DFILW ERHOR ?????" 5100 IF (ICNTRL (8) .EQ.0) GO TO 50 CALL CLOSE (NWFL, IER) IF (IER.NE.1) STOP ' ?? OPTPUT-FILE CLOSE ERROR ???' GO TO 50 С **** NORMAL END ******* 9999 STOP ******** GOKUROUSAN ******** END

```
******* FILE NAME ( MTRMTF.FR ) *******
С
      SUBROUTINE MTRMTF
        ****** NT READ ----- ECLIPSE DISKWK STORE ******
С
      ..... NT ; NMT MTO: ?? REC. (64W), BLK. (256W)
..... GATHER.CD ; READ - JUMP
С
С
      ..... ANALYZE.CD : COMMON // AN11 (256), AN21 (256)
С
      ..... UNSTD.DT ; READ - JUMP
С
      ..... HSAD.DT
                          ; READ - JUNP
С
      ..... NSAD.DT ; NDISKN (SNWORKO1.DT) RCD.64 W
..... LSAD.DT ; READ - JUNP
С
С
      ..... SATAXIS.CD ; 7-FILE (READ - JUMP)
С
      ..... 11.1982 (S.N) .....
С
      COMMON
     * /LBAN1/ NWCNT, NSTEP, AN11 (256), AN21 (256), AN2 (256)
     * /CONST/ ICNTAL (20), NMT, NDISKA, NDISKM, NLP, NWFL
     * /LBHED/ IHED1 (64), IHED4 (64), MSDT (1024)
С
С
        DIMENSION IIA (64), IIB (256), INAME (2), MTNAME (4)
С
        DATA NTNAME/ 'MT', 'O:', '', '', '/
С
      CALL MTFBAD1 (ICNTRL (2), INAME)
        MTNAME (3) = INAME (1)
        MTNAME(4) = INAME(2)
С
      ******** GATHER.CD FILE READ JUNP *******
С
      CALL OPEN (NMT. MTNAME, 2, IER)
        IF (IER.NE.1) STOP ' ?? SUBR. (RMTNOY) MT (GATHER.CD) OPEN ERROR ???'
       READ BINARY (NMT, END=20, ERR=15)
10
                                             IIA
          GO TO 10
        STOP '?? NT (GATHER.CD) READ ERROR ?????'
15
С
С
      ******* ANALYZE.CD FILE READ *******
20
      CALL CLOSE (NNT. IER)
                          STOP ' ?? MT (GATHER.CD) CLOSE EAROR ?????'
         IF (IER.NE.1)
        ICNTAL(2) = ICNTAL(2) + 1
      CALL MTFBAD1 (ICNTRL (2), INAME)
        MTNAME(3) = INAME(1)
        MTNAME(4) = INAME(2)
      CALL OPEN (NNT, MTNAME, 2, IER)
                        STOP ' ?? SUBR. (RNTNOV) NT (ANALYZE.CD) OPEN ?????'
         IF (IER.NE.1)
      DO 21 I=1.15
        READ BINARY (NNT, ERR=23)
                                       IIA
21
      CONTINUE
         GO TO 24
      STOP ' ?? MT (ANALYZE.CD) READ ERROR ?????'
23
```

```
24
       READ BINARY (NNT. ERR=23)
                                      AN11
       READ BINARY (NNT, ERR=23)
                                      AN21
26
         READ BINARY (NNT, ERR=23, END=50)
                                              IIA
         60 TO 26
С
      ******** UNSTD.DT NT READ *******
50
      CALL CLOSE (NMT. IER)
                            STOP ' ?? MT (ANALYZE.CD) CLOSE ERROR ?????'
          IF (IER.NE.1)
         ICNTAL(2) = ICNTAL(2) + 1
      CALL NTFBAD1 (ICNTRL (2), INANE)
        NTNAME(3) = INAME(1)
        NTNAME(4) = INAME(2)
      CALL OPEN (NNT, NTNANE, 2, IER)
         IF (IER.NE.1) STOP ' ?? MT (UNST.DT) OPEN ERROR ?????'
      READ BINARY (NNT, ERR=52, END=100)
51
                                             TTR
         60 TO 51
      STOP ' ?? NT (UNST.DT) READ ERROR ?????'
52
C
      ******* HSAD.DT NT READ *******
      CALL CLOSE (NNT, IER)
100
                            STOP ' ?? NT (UNST.DT) CLOSE ERROR ?????'
         IF (IER.NE.1)
        ICNTRL(2) = ICNTRL(2) + 1
      CALL NTFBAD1 (ICNTRL (2), INANE)
        MTNAME(3) = INAME(1)
        NTNAME(4) = INAME(2)
      CALL OPEN (NNT, NTNANE, 2, IER)
                           STOP ' ?? NT (HSAD.DT) OPEN ERROR ?????'
         IF (IER.NE.1)
120
      READ BINARY (NNT, ERR=125, END=200)
                                             IIB
         60 TO 120
        STOP ' ?? NT (HSAD.DT) READ (1) ERROR ?????'
125
C
C
      ******* MSAD_DT NT READ *******
200
      CALL CLOSE (NNT. IER)
         IF (IER.NE.1)
                            STOP ' ?? NT (HSAD.DT) CLOSE ERAOR ?????'
        ICNTRL(2) = ICNTRL(2) + 1
      CALL NTFBAD1 (ICNTRL (2), INANE)
        MTNAME_{(3)} = INAME_{(1)}
        MTNAME(4) = INAME(2)
      CALL OPEN (NNT. NTNANE, 2, IER)
         IF (IER.NE.1)
                           STOP ' ?? NT (NSAD.DT) OPEN ERHOR ?????'
       REWIND NDISKM
      READ BINARY (NNT, ERR=255, END=300)
250
                                              IIA
      WRITE BINARY (NDISKN, ERR=260)
                                         IIA
        60 TO 250
255
      STOP ' ?? NT (NSAD.DT) READ (2) ERROR ?????'
      STOP ' ?? DISK (NSAD.DT) WRITE ERROR ?????'
260
```

```
С
С
       ******** LSAD.DT NT READ JUNP *******
      CALL CLOSE (NNT, IER)
300
         IF (IER.NE.1) STOP ' ?? MT (MSAD.DT) CLOSE ERROR ?????
        ICNTRL(2) = ICNTRL(2) + 1
      CALL NTFBAD1 (ICNTRL (2), INANE)
        NTNAME (3) = INAME (1)
        NTNAME (4) = INAME (2)
      CALL OPEN (NNT, NTNANE, 2, IER)
         IF (IER.NE.1) STOP ' ?? MT (LSAD.DT) OPEN ERROR ?????'
      READ BINARY (NNT, ERR=325, END=400) IIA
320
         60 TD 320
325
      STOP ' ?? NT (LSAD.DT) READ ERROR ?????'
        ******* SHTAXIS NT READ *******
С
400
      CALL CLOSE (NMT, IER)
        IF (IER.NE.1)
                        STOP * ?? MT (LSAD.DT) CLOSE ERHOR ?????*
        ICNTRL(2) = ICNTRL(2) + 1
      CALL NTFBAD1 (ICNTRL (2), INANE)
        MTNAME(3) = INAME(1)
       NTNAME(4) = INAME(2)
      CALL OPEN (NNT, NTNANE, 2, IER)
         IF (IER.NE.1)
                        STOP " ?? NT (SRTAXIS.CD) OPEN ERROR ?????"
420
      READ BINARY (NNT, ERR=425, END=500) IIA
        60 TO 420
425
        STOP " ?? NT (SATAXIS.CD) READ ERROR ?????"
500
     CALL CLOSE (NNT. IER)
                          STOP " ?? MT (SHTAXIS.CD) CLOSE ERHOR ?????"
        IF (IER.NE.1)
С
     ******
9999
        ICNTRL(2) = ICNTRL(2) + 1
       AETURN
        END
```

ſ

Ξ.

2 ******* FILE NAME (MTFBAD1.FR) ******** 2 11.1982 (S.N) SUBROUTINE MTFBAD1 (IIN, IOUT) DINENSION IW (2), IOUT (1) IN= IABS (IIN)
<pre>IF (IN.GE.100) STOP ' * INPUT DATA OVERFLOW (SUBR.FBAD) ?????' IW(1) = IN/10 IW(2) = IN-IW(1) *10 IS= IW(1) IF (IS.EQ.0) IW(1) = IW(2) IW(1) = IW(1) + 60K IW(2) = IW(2) + 60K IW(2) = IW(2) + 60K IW(1) = ISHIFT (IW(1), 8) IF (IS.EQ.0) IW(2) = '<0>' IOUT(1) = IW(1) + IW(2)</pre>
IOUT (2) = '<0><0>' RETURN END

```
С
        ****** FILE NAME ( MTTITLF.FR ) *******
      SUBROUTINE MITTITLF
C
      ..... TITLE READ/WRITE ($LPT (NLP), CONMON) .....
      COMMON
     * /TITEL/ NAUN, NCASE, NACH, IOPT, ACHS (5), DATE (4), BLNCE (5), STING (5), CONFG (10)
     X
              , NODEL (20)
     * /LBAN1/ NWCNT, NSTEP, AN11 (256), AN21 (256), AN2 (256)
     * /LBHED/ IHED1 (64), IHED4 (64), MSDT (1024)
     * /CONST/ ICNTRL (20), NNT, NDISKA, NDISKN, NLP, NWFL
С
С
      DIMENSION IMACH (20), IALP (20), IPHBE (20), ID (3), IT (3)
               . UNAME (5) , PPO (5) , NTNAME (5) , DDXX (6, 27)
     ¥
С.....
      CALL FGDAY (ID(1), ID(2), ID(3))
С
      WHITE (10, 1)
1
      WRITE (10.2)
      FORNAT (1H , "Model Name
2
                                 (Max.40 Characters) =".Z)
        READ (11, 3) NODEL
3
        FORMAT (20A2)
      WRITE (10, 4)
      FORMAT (1H. "Test Date (Max. 16 Characters) =". Z)
4
        READ (11, 5)
                     DATE
5
        FORMAT (4A4)
      ACCEPT ' FUN NO. (INTEGER)
                                        = ', NRUN
      WRITE (10, 6)
      FORMAT (iH, "Roughness Confg. (Max.20 Characters) =", Z)
6
        READ (11, 7)
                     RGHS
7
        FORNAT (5A4)
      ACCEPT ' Case No. (INTEGER) = '. NCASE
ACCEPT ' Cart Open Ratio (INTEGER) = '. IOPT
8
      WRITE (10, 9)
     FORMAT (1H, 'Nodel Confg. (Nax.40 Characters) ='.Z)
9
      READ (11, 10)
                       CONFG
       FORMAT (10A4)
10
      WRITE (10.11)
     FORMAT (1H, 'Balance Name (Max.20 Characters) =', Z)
11
      READ (11, 7)
                     BLNCE
      WRITE (10, 12)
     FORNAT (1H, 'Sting Name (Nax.20 Characters) =', Z)
12
      READ (11, 7)
                     STING
      WRITE (10, 13)
13
     FORMAT (1H , 'Nach
                                   (Max.40 Characters) ='.Z)
        CALL FGTIME (IT (1), IT (2), IT (3))
```

```
READ (11, 14)
                         INACH
14
        FORNAT (20A2)
        WAITE (10, 15)
      FORMAT (1H , 'Alpha
15
                                     (Nax.40 Characters) ='.Z)
        READ (11, 14)
                          IALP
        WRITE (10, 16)
16
      FORMAT (1H, 'PHAI, BETA, PSAI (Nax. 40 Characters) =', Z)
        READ (11, 14)
                           IPHBE
      WRITE (10, 17)
17
      FORMAT (1H , "** Your Name
                                      (Max.20 Characters) =".Z)
        READ (11, 7)
                    UNAME
      WAITE (10, 18)
      FORMAT (1H, "PO
18
                                      (Nax.20 Characters) = . Z)
       READ (11, 7)
                        PP0
      WRITE (10, 19)
      FORMAT (1H, "Read NT Name-No. (Nax.10 Characters) =".Z)
19
       READ (11, 20)
                         NTNANE
20
       FORNAT (5A2)
C
      WRITE (NLP. 30)
                          NODEL
30
       FORMAT (1H1/1H0, 50X, 'N O D E L ; ', 20A2
     X *================*/
     * 1H, 30X, 'NATIONAL AEROSPACE LABORATORY (TOKYO) 2X2N'
         ×.
     WHITE (NLP. 31)
                           CONFG, INACH, IALP, DATE, IPHBE
                           , NRUN, PPO
     ¥
               (1H , 30X, 10A4, * * *, 10X, *NACH= *, 20A2/
X, * * , 9X, *ALPHA= *, 20A2/1H , 30X, *TEST DATE *, 4A4
* PHAI, PSAI, BETA= *, 20A2/1H , 30X, *RUN NO. *, 14
31
        FORMAT (1H , 30X, 10A4, * *
       1H , 70X, * * *
     ¥
       . 14X. "
     ¥
        , 26X, * * , 12X, *P0= *, 5A4)
     ¥
        WRITE (NLP, 32)
                          NCASE, RGHS, NTNANE, BLNCE, UNANE
        , STING, ID, IOPT, IT
FORMAT (1H, 30X, "CASE NO.", 15, 26X, "
     ¥
32
                                             **/1H , 70X * * (SHORI)*/
    * 1H , 30X, "ROUGHNESS , 5A4, 10X, *
* 1H , 30X, "BALANCE , 5A4, 10X, *
* 1H , 30X, "STING , 5A4, 10X, *
                                                     5A2/
5A4/
                                             NT NO.
                                             NANE
                                                      ', I2, '-', I2, '-', I2/
                                             DATE
      1H, 30X, "CART OPEN RATIO ( ", 12, " %) ", 17X, "
     ¥
                                                       ¥
                 ', I2, ': ', I2, ': ', I2/1H , 70X, ' *'/
     ¥
         TIME
     _ "****************************/)
     ¥
          DO 90 I=1.6
          DO 90 J=7.27
        IJ = (I-1) \times 21 + J - 6
90
        DDXX(I, J) = AN21(IJ)
С
       AN11(174) = 0.0
```

AN11(175) = 0.2C WRITE (NLP, 100) AN11 (173), AN11 (175), AN11 (172), AN11 (174) *, (AN11 (I), I=7, 12), (AN11 (I), I=1, 6), (AN11 (I), I=61, 96), (AN11 (I), I=25, 60) * , ((DDXX (I, J), I=1, 6), J=7, 27) * , AN11 (101), AN11 (102), AN11 (107), AN11 (108), AN11 (98), AN11 (100), AN11 (104) * , AN11 (106), AN11 (181), AN11 (97), AN11 (99), AN11 (103), AN11 (105), AN11 (180) * , (AN11 (I), I=161, 163), (AN11 (I), I=165, 167) * , AN11 (178) , AN11 (179) , AN11 (109) , (AN11 (I) , I=182, 186) * , (AN11 (I), I=187, 194) 100 * /1HO, 19X, 'PRESSURE CORECTION VALUE P0*='.2F6.2 * , 5X, 'P*=', 2F6.2/1H , 19X, * 'CALIBRATION COEF (FX, FY, FZ, NX, NY, NZ) '/1H , 19X, 6F12.5/1H , 19X, * 6F12.5/1H , 19X, 'INTERACTION'/33 (20X, 6F12.5/)/1H1//1H0, 19X, 'BALANCE' * , ' ELEMENT POSITION (NB, NC, YB, YC) '/1H , 19X, 4E12.5/1H , 19X, 'STING' * , ' CALIBRATION COEF. (FN, EN, FY, EY, DPH) '/1H , 19X, 5F12.5, 10X, ' (+) '/ * 1H , 19X, 5F12.5, 10X, ' (-) '/1H , 19X, 'THETA, PHAI, HIGH CALIB. COEF. * , 15X, 'ZERO'/1H , 19X, 6F10.5/1H , 59X, 'LOWH6'/ * 1H , 54X, 2F12.5/1H , 19X, 'BASE PRESSURE', 5X, ' (CH=', F2.0, ') '/ * 1H , 21X, 5F12.7/1H , 19X, '* NODEL REFERENCE * (S. LR. AXUL, AYRL, A' * , ', C1, C2, C3) '/1H , 19X, 12F10.6) C WRITE (NLP, 110) ICNTRL 110 FORMAT (1HO, 5X, '..... ICNTRL >> ', 2015, '') С RETURN END

```
С
         ****** FILE NANE ( NTNSORC.FR ) *******
       SUBROUTINE NTNSORC
       CONNON
      * /LBHED/ IHED1 (64), IHED4 (64), MSDT (1024)
      * /LBSOT/ A (50)
     * /XXXXX/ DUNY (4)
       IL=0
       ISTEP=1
       DO 10 I=1.4
   10 DUNY(I) = 0.0
      DO 20 I=1, 31
20
         A(I) = 0.0
С
   50 DO 100 I=1,4
       IL=IL+1
      DUNY(I) = DUNY(I) + FLOAT(MSDT(IL)) \times 0.1
  100 CONTINUE
         IL = IL + 31
         ISTEP = ISTEP + 1
         IF (ISTEP.LE.IHED4 (24)) 60 TO 50
         DO 110 I = 1. 4
         A(46+I) = DUNY(I) / FLOAT(IHED4(24))
110
         CONTINUE
С
         ****** A ( 1 ----- 31 ) *******
С
        D0 200 I = 1.31
         ILL = I + 4
         CONST = 0.0025 \times 2.0 \times (13 - IHED4(48)) / (2.0 \times 14)
         IF ((7.LE.I).AND.(I.LE.13)) CONST = 1.25 \times 2.0 \times (3-IHED4(50)) / (2.0 \times 15)
         DO 150 J = 1, IHED4 (24)
         A(I) = A(I) + CONST \times NSDT(ILL) / FLOAT(IHED4(24))
         ILL = ILL + 35
150
         CONTINUE
         IF ((I.LT.10).0R.(I.GT.13))
                                            A(I) = 1000.0 \times A(I)
         IF (I.EQ.7)
                          A(I) = 0.05 \times A(I)
         IF (I.EQ.8)
                          A(I) = 0.1 \times A(I)
         IF (I.E0.9)
                          A(I) = 0.01 \times A(I)
200
        CONTINUE
        A(32) = IHED4(24)
        A(33) = IHED4(25)
        A(34) = IHED4(45)
        A(35) = IHED4(46)
        A(36) = IHED4(48)
        A(37) = IHED4(50)
        A(10) = A(14)
        RETURN
        END
```

59

```
C
           ******* FILE NAME ( NTANOON.FR ) *******
       SUBROUTINE NTANOON
       CONNON
      * /TITEL/ NRUN, NCASE, NRGH, IOPT, RGHS (5), DATE (4), BLNCE (5), STING (5), CONFG (10)
                 , MODEL (20)
      ¥
      * /LBAN1/ NWCNT, NSTEP, AN11 (256), AN21 (256), AN2 (256)
      * /LBHED/ IHED1 (64), IHED4 (64), NSDT (1024)
      * /LBSOT/ A (50)
      * /CONST/ ICNTRL (20), NNT, NDISKA, NDISKN, NLP, NWFL
С
       DINENSION
      * X (6), XX (6), XHN (6), XHP (6), DXT (6), DXN (6, 6)
      *, DXP (6, 6), KTPHB (4), DTPHB (4), XC1 (6), XNC (6), XO (6)
      * , DX10 (4) , DX20 (4) , DX30 (4) , DX40 (4) , DX50 (4) , DX60 (4)
С
С
       EQUIVALENCE
      * (A (1), X (1)), (A (7), THETA), (A (8), PHAI), (A (9), HIGH), (A (10), TO)
      * , (A (44), TIME), (A (43), TINEO), (A (49), P), (A (50), PO)
C
       EQUIVALENCE
      * (AN11(1), XHM(1)), (AN11(7), XHP(1)), (AN11(97), FNM)
      * , (AN11 (98), FNP), (AN11 (99), ENN), (AN11 (100), ENP), (AN11 (101), NB)
      * , (AN11 (102), NC), (AN11 (103), FYM), (AN11 (104), FYP), (AN11 (105), EYM)
       EQUIVALENCE
      * (AN11 (106), EYP), (AN11 (107), YB), (AN11 (108), YC), (AN11 (109), CHNO)
      * , (AN11 (161), KTPHB (1)), (AN11 (165), DTPHB (1)), (AN11 (174), PS)
      * , (AN11 (175), POS)
С
       EQUIVALENCE
      * (AN2(1), XX(1))
      * , (AN2 (73), XNC (1)), (AN2 (97), XO (1)), (AN2 (169), XC1 (1))
      * , (AN2 (193), DX10 (1)), (AN2 (197), DX20 (1)), (AN2 (201), DX30 (1))
      * , (AN2 (205), DX40 (1) ), (AN2 (209), DX50 (1) ), (AN2 (213), DX60 (1) )
      * , (AN2 (217), DX1), (AN2 (218), DX2), (AN2 (219), DX3)
      * , (AN2 (220) , DX4) , (AN2 (221) , DX5) , (AN2 (222) , DX6)
С
         REAL KTPHB
С
         FUNCF(X1, X2, X3, X4) = X1 \times X3 + X2 \times X4
С
С
       ******** ENTRY *******
       PI18=0.1745329E-1
         THETA= THETA\timesKTPHB(1) + DTPHB(1)
         PHAI = PHAI \times KTPHB(2) + DTPHB(2)
         P = A(49) + PS
         P0= A(50) + P0S
```

```
DO 1 I=1.6
          XC1(I) = 1.0
1
        CONTINUE
          TO= A (10) *25.956342 - 0.6904485*A (10) **2
        GO TO (10, 20, 30, 40, 40, 40, 40, 50, 50, 50, 50, 60, 70, 80) , NWCNT
С
С
        XXXXXXXXX Z - DATA XXXXXXXXXX
    10 GO TO 1000
С
        XXXXXXXXXX K - DATA XXXXXXXXXX
    20 GO TO 1000
С
С
       XXXXXXXXX N - DATA XXXXXXXXXXX
30
       CONTINUE
          IHOUR= IHED4 (6)
          MIN5 = IHED4(7)
          ISEC = IHED4(8)
          AN2(79) = A(11)
          AN2(80) = A(12)
       DO 31 I = 1, 6
          XNC(I) = XC1(I) \times X(I)
          XO(I) = XNC(I) \times XHM(I)
           IF (XNC(I).GT.0.0)
                                      XO(I) = XNC(I) \times XHP(I)
       CONTINUE
31
       WRITE (NLP. 32)
                              NRUN. (IHED4(I), I=2, 5)
32
      FORMAT (1H0, '* OFF LINE ANALYZE *', 5X, 'RUN NO.=', IG, 3X
*, 'TEST NO.=', IG, 3X, 'DATE (M/D/Y)', I2, '/', I2, '/', I5)
       WRITE (NLP. 33)
                            IHED4 (2), IHOUR, NIN5, ISEC, TO, THETA, PHAI, PO, P
      ¥
                           . XNC, AN2 (79), AN2 (80), XO
      FORMAT (1H0, 'N-DATA ( NO.', I5, ' ) ', 3X, 'H: N: S , ', I2, ': ', I2, ': ', I2
* , ' TENP.: ', F10.2, 5X, 'THETA=', F6.2, ' PHAI=', F6.2, 3X, 'PO=', F7.2
33
      * , 3X, "P=", F7.2/1H0, 14X, 6F10.4, "
                                                    (NV) */
      * 1H 14X 2F10.4 (V) /1H 14X 6F10.4
                                                             (KG.OR.KG-M) ')
С
           60 TO 1000
С
С
       XXXXXXXXX X - DATA XXXXXXXXXX
40
       CALL NTRENN
         NS= NWCNT - 3
          F1N= FUNCF (XX (3), XX (5), FNN, ENN)
           IF (XX (3).GE.O.O) FIN= FUNCF (XX (3), XX (5), FNP, ENP)
          THETAR= THETA*PI18 + F1N
         DX10 (NS) = XX (1) / SIN (THETAR)
          THETB= THETAR/PI18
       WRITE (NLP. 41)
                              IHED4 (2), DX10 (NS), THETB, THETAR, PO, P
       FORNAT (1H , 'X-DATA ( NO. ', 15, ' ) ', F12.3, ' [KG] THETA (DEG.) =', F6.2
41
               THETAR (RAD.) =', F8.5, 3X, 'P0=', F7.2, 3X, 'P=', F7.2)
      ¥
        IF (NS.EQ.4)
                             WRITE (NLP, 42)
42
       FORMAT (1H1/1H0)
```

```
60 TO 1000
С
С
       ********* Y - DATA ********
50
       CALL NTRENN
         NS= NWCNT - 7
         F2Y = FUNCF (XX (2), XX (6), FYN, EYN)
          IF (XX (2) .6E.0.0)
                                   F2Y= FUNCF (XX (2), XX (6), FYP, EYP)
         THETAR= THETAXPI18 + F2Y
         PHAIR = PHAI*PI18
         DX20 (NS) = XX (2) / (COS (THETAR) *SIN (PHAIR))
         DX30 (NS) = XX (3) / (1.0-COS (THETAR) * COS (PHAIR))
         DX40 (NS) = XX (4) / SIN (PHAIR)
         DX50 (NS) = XX (5) / (1.0-COS (THETAR) * COS (PHAIR))
         DX60 (NS) = XX (6) / (COS (THETAR) *SIN (PHAIR))
С
С
       ******* FINISHED Y-DATA ACG. ? (NWCNT=11, YES) *********
          IF (NWCNT.LT.11)
                                   GO TO 53
         DX1 = 0.0
         DX2= 0.0
         DX3= 0.0
         DX4 = 0.0
         DX5 = 0.0
         DX6 = 0.0
С
       DO 51 I= 1.4
         DX1 = DX1 + DX10(I)
         DX2= DX2 + DX20 (I)
         DX3 = DX3 + DX30(I)
         DX4 = DX4 + DX40(I)
         DX5= DX5 + DX50(I)
         DX6= DX6 + DX60 (I)
51
       CONTINUE
        DX1 = DX1/4.0
        DX2 = DX2/4.0
        DX3 = DX3/4.0
        DX4 = DX4/4.0
        DX5 = DX5/4.0
        DX6 = DX6/4.0
                            IHED4 (2), DX1, DX2, DX3, DX4, DX5, DX6, P0, P
      WRITE (NLP, 52)
                           , PHAI, THETAR, PHAIR
     ¥
      FORMAT (1H0, 'Y-DATA (NO.', I5, ')', 6F12.6, 5X, '[KG.OR.KGM]'
, 3X, 'P0=', F7.2, 3X, 'P=', F7.2/1H, ' PHAI (DE6.)=', F7.3
52
     ¥
                , 2X, 'THETAR (RAD.) =', F7.3, 2X, 'PHAIR=', F7.3)
     ¥
С
С
      GO TO 1000
53
      WRITE (NLP, 54)
                            IHED4 (2), DX20 (NS), DX30 (NS), DX40 (NS), DX50 (NS)
```

```
, DX60 (NS), PO, P. PHAI, THETAR, PHAIR
FORMAT (1HO, 'Y-DATA ( NO.', 15, ' )', 5F12.6, 5X, '[KG.OR.KG-N]'
      ¥
54
                 , 3X, 'PO=', F7.2, 3X, 'P=', F7.2/1H , ' PHAI (DE6.) =', F7.3
      ¥.
                 , 2X, 'THETAR (RAD.) =', F7.3, 2X, 'PHAIR=', F7.3)
      ¥
       60 TO 1000
C
C
       ********* S - DATA ********
       WRITE (NLP. 61) IHED4 (2); PO, P. A
60
       FORNAT (1HO, "** S-DATA ( NO. ", I5, ' ) ', 5X, 'PO=', F7.2, 3X, 'P=', F7.2/
61
                (1H, 10F10.4))
      ×
        60 TO 1000
C
С
       XXXXXXXXXX T - DATA XXXXXXXXX
       WRITE (NLP, 71) IHED4 (2), PO, P, A
FORMAT (1HO, "** T-DATA ( NO. ', I5, ' ) ', 5X, 'PO=', F7.2, 3X, 'P=', F7.2/
70
71
               (1H, 10F10.4))
      X
        60 TO 1000
С
С
       XXXXXXXXXX U - DATA XXXXXXXXXX
       WRITE (NLP, 81) IHED4 (2), PO, P, A
FORNAT (1HO, "** U-DATA ( NO. ", I5, ' ) ', 5X, 'PO=', F7.2, 3X, 'P=', F7.2/
80
81
               (1H, 10F10.4))
      ¥
        60 TO 1000
С
       ********* NORNAL END ********
С
1000 RETURN
       END
```

```
С
        ****** FILE NANE ( MTANO2N.FA ) *******
      SUBROUTINE MTANO2M
      COMMON
     * /TITEL/ NRUN, NCASE, NRGH, IOPT, RGHS (5), DATE (4), BLNCE (5), STING (5), CONFG (10)
     ¥
             , MODEL (20)
     * /LBAN1/ NWCNT, NSTEP, AN11 (256), AN21 (256), AN2 (256)
     * /LBHED/ IHED1 (64), IHED4 (64), MSDT (1024)
     * /LBSOT/ A (50)
     * /COMNT/ ICBN
     * /CONST/ ICNTAL (20), NMT, NDISKA, NDISKM, NLP, NWFL
      DIMENSION
     * X (6), KTPHB (4), DTPHB (4), LOWHG (2), SB (5), CB1 (10), TPHAT (5), XX (6)
     *, PB (10), CP1 (10)
      EQUIVALENCE
     * (A (10), TO), (AN11 (97), FNM), (AN11 (98), FNP), (AN11 (99), ENM)
     * , (AN11 (100), ENP), (AN11 (101), NB), (AN11 (102), NC), (AN11 (103), FYM)
     * , (AN11 (104), FYP), (AN11 (105), EYM), (AN11 (106), EYP), (AN11 (107), YB)
     * . (AN11 (108), YC), (AN11 (161), KTPHB (1)), (AN11 (165), DTPHB (1))
     * , (AN11 (172), PS)
       EQUIVALENCE
     * (AN11 (173), POS), (AN11 (178), LOWHG (1)), (AN11 (180), DPHIN)
     *, (AN11 (181), DPHIP), (AN11 (182), SB (1)), (AN11 (187), S), (AN11 (188), LR)
     * , (AN11 (189), AXUL), (AN11 (190), AYRL), (AN11 (191), AA), (AN11 (192), C1BAR)
     * , (AN11 (193), C2BAR) , (AN11 (194) , C3BAR)
     EQUIVALENCE
     * (AN2 (217), DX1), (AN2 (218), DX2), (AN2 (219), DX3), (AN2 (220), DX4)
     * , (AN2 (221), DX5), (AN2 (222), DX6), (AN2 (1), X (1))
С
      .....
     REAL KTPHB, LOWHG, LR, MACH
С
      С
     ***** DEFINE FUNCTION FOR DEFLECTION *****
     FUNCF (X1, X2, X3, X4) = X1*X3 + X2*X4
С
      ICBN='CB'
С
      . . . . . . . . . .
                       С
     **** ENTRY ****
     PI18=0.1745329E-1
С
     ***** COMPUTE BASIC DATA - 1 *****
     DO 10 I= 1.3
       TPHAT (I) = KTPHB (I) \times A (I+6) + DTPHB (I)
   10 CONTINUE
       TPHAT (5) = A(10) \times 25.956342 - 0.6904485 \times A(10) \times 2
       TO=TPHAT (5)
        IF (ABS (TPHAT (2)).GT. 182.0) TPHAT (2) = 0.0
С
       С
     ***** COMPUTE BASIC DATA - 2 *****
       P = A(49) + AN11(174)
```

```
PO = A(50) + AN11(175)
         PP0=P0/P
          IF (PP0.LT.1.0)
                                PP0=1.01
         MACH = SQRT (5.0* ((PPO) ** (2.0/7.0) -1.0))
         Q = 0.7*MACH*MACH*PO*LOWHG(2) / (1.0+0.2*MACH*MACH) **3.5
         AE = 6.247*PO* (390.16+TO+23.4*MACH*MACH) *MACH*LA /
     * (273.16+T0) **2 / (1.0+0.2*NACH*NACH) **2.5
         V = 20.0449 \times MACH \times SQRT((273.16+T0) / (1.0+0.2 \times MACH \times MACH))
С
С
С
       ***** 6-ELEMENTS BALANCE *****
       CALL NTRENN
С
С
       ***** COMPUTE DEFLECTION DUE TO N AND Y FORCE ******
         THETA= TPHAT (1) *PI18
         PHAI = TPHAT(2) \times PI18
         XX(1) = X(1) - DX1 \times SIN(THETA)
         XX(2) = X(2) - DX2*COS(THETA)*SIN(PHAI)
         XX (3) = X (3) - DX3* (1.0-COS (THETA) *COS (PHAI))
         XX(4) = X(4) - DX4 \times SIN(PHAI)
         XX (5) = X (5) - DX5* (1.0-COS (THETA) *COS (PHAI))
         XX(6) = X(6) - DX6*(COS(THETA)*SIN(PHAI))
      F1N= FUNCF (XX (3), XX (5), FNM, ENM)
         IF (XX (3) .GE.0.0)
                               F1N= FUNCF (XX (3), XX (5), FNP, ENP)
      E1N = FUNCF (XX (2), XX (6), FYM, EYM)
         IF (XX (2).GE.O.O) EIN= FUNCF (XX (2), XX (6), FYP, EYP)
      F1NN= F1N
      E1NN= E1N
         F1N= F1NN*COS (PHAI) - E1NN*SIN (PHAI)
         E1N= E1NN*COS (PHAI) + F1NN*SIN (PHAI)
С
       ***** MAKE CORRECTION FOR THETA AND PHAI ANGLE *****
С
         THETA= (TPHAT (1) *PI18) + F1N
         PHAI = (TPHAT (2) \times PI18) + XX (4) \times DPHIM
         IF (XX (4) .GE.O.O) PHAI= (TPHAT (2) *PI18) + XX (4) *DPHIP
         PSAI = ATAN (-SIN (THETA) *SIN (PHAI) /SQRT (1.0- (-SIN (THETA) *
                  SIN (PHAI) ) **2) ) + E1N*COS (PHAI)
            •
     ×
         ALPHA = ATAN (SIN (THETA) *COS (PHAI) / (COS (PSAI) *SORT (1.0-
                   (SIN (THETA) *COS (PHAI) /COS (PSAI) ) **2)))
     ¥
С
С
       ***** MAKE CORRECTION FOR SELF-WEIGHT *****
       XX(1) = X(1) - DX1 \times SIN(THETA)
       XX(2) = X(2) - DX2 \times COS(THETA) \times SIN(PHAI)
       XX(3) = X(3) - DX3 \times (1.0 - COS(THETA) \times COS(PHAI))
       XX(4) = X(4) - DX4 \times SIN(PHAI)
       XX(5) = X(5) - DX5 \times (1.0-COS(THETA) \times COS(PHAI))
       XX(G) = X(G) - DXG \times (COS(THETA) \times SIN(PHAI))
С
                                  . . . . . . . . . . . .
       . . . . . .
С
       ***** COMPUTE BASE PRESSURE *****
```

```
NCH = 2
         CB1(1) = AN2(7) \times SB(1) / (0 \times S)
         CB1 (2) = AN2 (8) ×SB (2) / (Q×S)
        CB = CB1(1) + CB1(2)
          IF (ICNTRL (5).EQ.0)
                                  CB = CB / 2.0
          IF (ICNTRL (5) .EQ.2)
                                  CB^{1} = 0.0
С
                                               . . . . . . . . . . . . . . . . .
С
      ***** ABOUT BODY AXIS *****
      FN = XX(3)
      FA = XX(1)
      FY = XX(2)
      XMXB = XX(4) - AXUL*FY + AYRL*FN
      XMYB = XX(5) - AXUL * FA - AA * FN
      XMZB = XX(G) - AYRL*FA - AA*FY
С
       ******* PHAI HENKAN (??) *******
         IF (ICNTRL (7) .EQ.0)
                                GO TO 90
        PHAI1= 0.0
        SPHAI= SIN (PI18*PHAI1)
        CPHAI= COS (PI18×PHAI1)
        STHET= SIN (THETA)
        SISI = -SPHAI*STHET
        SISI = SISI / SORT (1.0-SISI**2)
        PSAI = ATAN (SISI)
        SICO = STHET*CPHAI / COS (PSAI)
        SICO = SICO / SORT(1.0-SICO**2)
        ALPH = ATAN (SICO)
        ALPHA1= ALPH / PI18
        SIPHAI= SIN (PHAI)
        COPHAI= COS (PHAI)
        FY1 = FN*SIPHAI + FY*COPHAI
        FN1 = FN*COPHAI - FY*SIPHAI
        XMYB2= XMYB*COPHAI - XMZB*SIPHAI
        XMZB2= XMZB*COPHAI + XMYB*SIPHAI
        FY = FY1
        FN = FN1
        XMYB =: XMYB2
        XMZB = XMZB2
С
С
      ***** ABOUT STABILITY AXIS *****
90
      FD1=FA*COS (ALPHA) +FN*SIN (ALPHA)
      FL=FN*COS (ALPHA) -FA*SIN (ALPHA)
      XMXS=XMXB*COS (ALPHA) +XMZB*SIN (ALPHA)
      XMZS=XMZB*COS (ALPHA) -XMXB*SIN (ALPHA)
С
          С
      ***** ABOUT WIND AXIS *****
      FD=FD1*COS (PSAI) +FY*SIN (PSAI)
      FC=FY*COS (PSAI) -FD1*SIN (PSAI)
      XMXW=XMXS*COS (PSAI) -XMYB*SIN (PSAI)
      XMYW=XMYB*COS (PSAI) +XMXS*SIN (PSAI)
```

C	
	***** COMPUTE VARIOUS COEFFICIENTS *****
Ĭ	QS=QXS
	CA=FA/QS
	CY=FY/QS
	CN=FN/QS
	CD1=FD1/QS
	CL=FL/QS
	CD=FD/QS
	CY1=FC/QS
1	CLB=XMXB/QS/C1BAR
	CMB=XMYB/QS/C2BAR
	CNB=XMZB/QS/C3BAR
	CLS=XNXS/QS/C1BAR
	CNS=XMZS/QS/C3BAR
	CLW=XNXW/QS/C1BAR
	CMW=XNYW/QS/C2BAR
	CAF=CA-CB
	CD1F=CAF×COS (ALPHA) +CN×SIN (ALPHA)
	CDF=CD1F*COS (PSAI) +CY*SIN (PSAI)
	CNP=XNYB/FN
C	
C	***** OUTPUT TO LINE PRINTER *****
	IEXNO=IHED4 (2)
	THETA=THETA/PI18
	PHAI=PHAI/PI18
	ALPHA=ALPHA/PI18
	PSAI=PSAI/PI18
	BETA=-PSAI
	WRITE (NLP, 100) (XX (I), I=1, 6), AN2 (7), AN2 (8)
	* , IEXNO, Q, NACH, RE, PO, P, TO
	* , CA, CY, CN, CAF, CLB, CMB, CNB
	* , CD1, CY, CL, CD1F, CLS, CMB, CNS
	* , CD, CY1, CL, CDF, CLW, CMW, CNS
	* , ALPHA, PSAI, THETA, PHAI, (TPHAT (I), I=1, 3)
	* , CNP, CB, (ICBN, I, CB1 (I), I=1, NCH)
C	
	100 FORNAT (1H , '*****', 8F10.4/
	* 1H , 3X, 'NO', 16, 9X, 'Q=', F9.3, 5X, 'M=', F9.6, 5X, 'A=', F9.6, 4X
	* , 'P0=', F9.4, 5X, 'P=', F9.4, 4X, 'T0=', F9.5/
1	* 1H , 3X, 'CA=', F9.5, 4X, 'CY=', F9.5, 4X, 'CN=', F9.5, 3X, 'CAF=', F9.5
1	* , 3X, 'CLB=', F9.5, 3X, 'CNB=', F9.5, 3X, 'CNB=', F9.5, 5X, '[BODY-AXIS]'/
	* 1H, 2X, 'CD1=', F9.5, 4X, 'CY=', F9.5, 4X, 'CL=', F9.5, 2X, 'CDF1=', F9.5
	* , 3X, 'CLS=', F9.5, 3X, 'CNS=', F9.5, 3X, 'CNS=', F9.5, 5X, '[STAB-AXIS]'/
	* 1H, " CD=", F9.5, 4X, "CC=", F9.5, 4X, "CL=", F9.5, 3X, "CDF=", F9.5, 3X
	* , "CLW=", F9.5, 3X, "CNW=", F9.5, 3X, "CNW=", F9.5, 5X, "[WIND-AXIS] '/
	* 1H , 2X, 'ALP=', F9.5, 3X, 'PSI=', F9.5, 3X, 'THE=', F9.5, 3X, 'PHA=', F9.5
	* , 3X, 'THER', F9.5, 3X, 'PHAR', F9.5, 3X, 'HIGH', F9.2/

.

.

1	<pre>* 1H , 2X, 'CNP=', F9.5, 4X, 'CB=', F9.5, 2 (3X, A2, I1, '=', F9.5)) IF (ICNTAL (8) .EQ.0) GO TO 3000 WRITE (NWFL, 1800) IEXNO, Q, MACH, RE, PO, P, TO</pre>
C C	**** END PROCESS ****
C C	***** NOAMAL END ***** OR RETURN END

Γ

	С	******* FILE NAME (MTRENN.FR) ******
	C	SUBROUTINE MTRENN
		COMMON * /LBAN1/ NWCNT, NSTEP, AN11 (256), AN21 (256), AN2 (256)
		* /LBSOT/ A (50) * /LBEHD/ IHED1 (64), IHED4 (64), MSDT (1024)
		* /CONST/ ICNTRL (20), NMT, NDISKA, NDISKM, NLP, NWFL * /INTE/ DX (6, 27)
		DIMENSION X (6), DXQ (6, 6), XX (6), XC1 (6), DXT (6), XNC (6) * .DXM (6, 6), DXP (6, 6), XHM (6), XHP (6), XAC (6)
		EGUIVALENCE * (A (1), XX (1)), (A (44), TIME), (A (43), TIMEO)
		× , (AN11(1), XHM(1)), (AN11(7), XHP(1)), (AN11(25), DXM(1,1)) × , (AN11(61), DXP(1,1))
		* , (AN2 (25), DXT (1)), (AN2 (169), XC1 (1)), (AN2 (73), XNC (1)) * , (AN2 (1), X (1)), (AN2 (121), XRC (1))
	С	WRITE (NLP, 1000) (A(I), I=1, 50)
	1000 C	FORMAT (1HO/(1H, "*****", 10F10.4, " *****"))
		XXXXX ENTRY XXXXX
		D0 10 I=1,6 X(I) = XC1(I) *XX(I) - DXT(I) *(TIME-TIME0) - XNC(I) - XAC(I) IF (X(I)) 100,110,110
	100	DO 20 J=1,6
	20	DXQ(J, I) =DXM(J, I) CONTINUE
	110	GO TO 10 DO 30 J=1, 6
	30	DXQ(J, I) =DXP(J, I) CONTINUE
	10 C	CONTINUE
		DO 400 I=1,6 DO 400 J=1,6
	400	DX (I, J) = DXQ (I, J) CONTINUE
		D0 420 I=1, 6 D0 420 J=7, 27
		$IJ = (I-1) \times 21 + J = 6$ DX (I, J) = AN21 (IJ)
	420	CONTINUE
L		

•

69

C	***** SOLVE AN EQUATION OF HEX-DEGREES ***** CALL MTINTERC (X)
с моо	D0 40 I=1, 6 IF $(X(I))$ 200, 210, 210 X(I) = X(I) * XHP(I)
	GO TO 40
210 40	X(I) = X(I) * XHM(I) CONTINUE
С	CB NEW SYSTEM D0 50 I=1,2
	AN2 (I+6) = A (I+10) - AN2 (I+30) × (TIME-TIMEO) - AN2 (I+78)
50	CONTINUE AN2(7) = -149.25373 * AN2(7) ; [60379] (L2) KG/N**2
C	AN2 (8) = 113.02627 * AN2 (8) ; [55836] (U2) KG/M**2
C C	AN2(7) = -154.84670 * AN2(9) ; [60387] (U1) KG/N**2 AN2(10) = -170.8984375 * AN2(10) ; [53391] (L1) KG/N**2
C C	AN2(11) = -122.0256253 * AN2(11) ; [55834] (M1) KG/M**2 AN2(12) = -120.3007518 * AN2(12) ; [55837] (M2) KG/M**2
	RETURN END

í

C	********* FILE NAME (MTINTERC.FR) *********
	SUBROUTINE MTINTERC (X) COMMON /INTE/ DX(6,27)
	DIMENSION X (6), XX (6), ELIN (6), ENL (6)
	DO 10 I=1,6 XX(I)=X(I)
	10 CONTINUE
	DO 40 I=1, 10
	DO 20 J=1,6 ELIN(J)=0.0
	ENL(J) = 0.0
	ELIN (J) = DX (J, 1) *X (1) +DX (J, 2) *X (2) +DX (J, 3) *X (3) +DX (J, 4) *X (4) 1 +DX (J, 5) *X (5) +DX (J, 6) *X (6) -DX (J, J) *X (J)
	ENL (J) =DX (J, 7) XX (1) XX (1) +DX (J, 8) XX (2) XX (2) +DX (J, 9) XX (3) XX (3)
	1
	1 + DX (J, 15) *X (1) *X (4) + DX (J, 16) *X (1) *X (5) + DX (J, 17) *X (1) *X (6)
	ENL (J) =ENL (J) +DX (J, 18) *X (2) *X (3) +DX (J, 19) *X (2) *X (4)
	1 +DX (J, 20) *X (2) *X (5) +DX (J, 21) *X (2) *X (6) ENL (J) =ENL (J) +DX (J, 22) *X (3) *X (4) +DX (J, 23) *X (3) *X (5)
	1 +DX (J, 24) *X (3) *X (6)
	ENL (J) =ENL (J) +DX (J, 25) *X (4) *X (5) +DX (J, 26) *X (4) *X (6) ENL (J) =ENL (J) +DX (J, 27) *X (5) *X (6)
	20 CONTINUE
	DO 30 K=1, 6 X (K) =XX (K) -ELIN (K) -ENL (K)
	30 CONTINUE
	40 CONTINUE RETURN
	END

•

4. 圧力データ処理のソース・プログラム

```
С
           ******* FILE NAME ( PNAIN.FR ) ********
С
      ***** T - FUDO DATA REDUCTION (MAG.TAP) PROGRAM ******
С
                      PRESSURE
       . . . . . . .
                                                           . . . . . .
      COMMON
     * /TITEL/ NRUN, NCASE, NRGH, IOPT, RGHS (5), DATE (4), BLNCE (5), STING (5), CONFG (10)
              , MODEL (20)
     X
     * /LBSRT/ IHEDP1 (256), IHED3 (256), ANP1 (256)
     * /LBSDT/ XP (48, 10), PX (48, 10)
     * /CONST/ ICNTRL (20), NMT, NDISKA, NDISKH, NDISKS, NLP, NWFL
     * /BUFEA/ IBUF (83)
     * /DBUEE/ CP (48, 10), PL (48, 10), RPL (48, 10), XM (48, 10)
С
      С
      DIMENSION
     * INAMEP (10) . ILNAME (10)
С
      DO 10 I=1.20
        ICNTAL(I) = 0
10
        CONTINUE
С
      ******* OUTPUT FILE ($LPT) OPEN *******
      WRITE (10, 20)
20
      FORMAT (*** $LPT (OUTPUT-FILE-NAME) = ", Z)
      READ (11, 22) ILNAME
22
      FORMAT (10A2)
С
      ******** CONSTANT DATA *******
       NMT = 1
       NDISKA= 2
       NDISKH= 3
       NDISKS= 4
       NLP = 6
       NWFL = 20
       ICIC = 0
      OPEN NLP, ILNAME, ATT="P"
      ACCEPT '??? ( 1=DISK , 0=MT ) = ', ICNTAL (1)
         IF (ICNTAL (1) .EQ. 1) GO TO 30
      ACCEPT '?? START MT NO. (0--99) = ', ICNTRL (2)
ACCEPT '?? SHORI KOSU = ', ICNTRL (3)
        GO TO 50
30
       ICNTAL(3) = 1
50
       CONTINUE
        ICIC = ICIC + 1
         IF (ICIC.GT.ICNTRL (3)) 60 TO 9999
      ACCEPT "?? RAW-DATA PRINT ONLY ( 0=YES , 1=NO ) = ", ICNTRL (4)
      IF (ICNTAL (4) .EQ.0) GO TO 55
ACCEPT '?? (ISS, ITT, IAR) = ', ICNTAL (5), ICNTAL (6), ICNTAL (7)
      ACCEPT *** INTEGRAL ( 1=ARI , O=NASI )= * , ICNTRL (11)
```

IF (ICNTRL (11).NE.1) ICNTRL(11) = 0ACCEPT ** TEST NO. (XXXX, XXXX) = *, ICNTRL (8), ICNTRL (9) 55 ACCEPT *** DISK OUTPUT FILE (1=ARI, O=NASI) = " . ICNTRL (10) IF (ICNTRL (4) .EQ.0) ICNTAL(10) = 0IF (ICNTRL (10) .EG.0) GO TO 100 WRITE (10,60) FORMAT (5X. "?? DISK OUTPUT' FILE NAME = ". Z) 60 READ (11, 22) INAMEP CALL CFILW (INAMEP, 2, IER) IF (IER.NE.1) STOP "?? OUTPUT FILE (CFILW) Error ?????" CALL OPEN (NWFL, INAMEP, O, IER) IF (IER.NE.1) STOP "?? OUTPUT FILE Open Error ?????" 100 CONTINUE IF (ICNTAL (1) .EQ.0) GO TO 200 С DISK ANALYZE.CD (I/O) CALL OPEN (NDISKA, "DPO: ANALYZE.CD", 1, 128, IER) STOP "?? (DPO: ANALYZE.CD) OPEN Error ?????" IF (IER.NE.1) CALL READR (NDISKA, 16, ANP1 (1), 8, IER) STOP *?? (DPO: ANALYZE.CD) Read Error ?????* IF (IER.NE.1) CALL CLOSE (NDISKA, IER) IF (IER.NE.1) STOP "?? (DPO: ANALYZE.CD) Close Error ?????" CALL OPEN (NDISKH, "DPO: HSAD.DT", 2, 256, IER) IF (IER.NE.1) STOP "?? (DPO: HSAD.DT) Open Error ?????" CALL OPEN (NDISKS, "DPO: SRTAXIS.CD", 1, 128, IER) IF (IER.NE.1) STOP "?? (DPO: SRTAXIS.CD) Open Error ?????" GO TO 500 200 CONTINUE CALL CFILW ("DPO: SNWORKO1.DT", 2, IER) IF (IER.EQ.1) GO TO 202 IF (IER.NE.12) STOP "?? CFILW (DPO: SNWORK01.DT) Error ?????" CALL DFILW ("DPO: SNWORKO1.DT", IER) IF (IER.NE.1) STOP "?? DFILW (DPO: SNWOAK01.DT) Error ?????" GO TO 200 202 CALL OPEN (NDISKH, "DPO: SNWORK01.DT", 2, 512, IER) IF (IER.NE.1) STOP *?? OPEN (DPO: SNWORKO1.DT) Error ?????* 204 CALL CFILW ("DPO: SNWORKO2.DT", 2, IER) IF (IER.EO.1) GO TO 206 IF (IER.NE.12) STOP "?? CFLIW (DPO: SNWORKO2.DT) Error ?????" CALL DFILW ("DPO: SNWORKO2.DT", IER) STOP "?? DFILW (DPO: SNWORKO2.DT) Error ?????" IF (IER.NE.1) GO TO 204 206 CALL OPEN (NDISKS, "DPO: SNWORKO2.DT", 2, 128, IER) STOP "?? (DPO: SNWORKO2.DT) OPEN Error ?????" IF (IER.NE.1) С ******* MAG-TAPE READ (SUBR.) ******* CALL RMTP С 500 CONTINUE

С	CALL TITLP
L *	
520 C	FORMAT (20A2, 10A4, 4X/19A4, 8X/4I10, 44X)
600	CALL HSADMT
с	CALL CLOSE (NDISKH, IER) IF (IER.NE.1) STOP "?? HSAD.DT WORK FILE CLOSE ERROR ????" CALL CLOSE (NDISKS, IER) IF (IER.NE.1) STOP "?? SRTA.CD WORK FILE CLOSE ERROR ????" IF (ICNTRL (1) .EQ.1) GO TO 5000 CALL DFILW ("DPO: SNWORKO1.DT", IER) IF (IER.NE.1) STOP "?? DFILW (DPO: SNWORKO1.DT) Error ????" CALL DFILW ("DPO: SNWORKO2.DT", IER) IF (IER.NE.1) STOP "?? DFILW (DPO: SNWORKO2.DT) Error????" IF (ICNTRL (10) .EQ.0) GO TO 50 CALL CLOSE (NWFL, IER) IF (IER.NE.1) STOP "?? (P) -FILE CLOSE ERROR ???" GO TO 50
C 9999	********* NORMAL END ********* STOP "******** Gokurousan ******** END

```
С
        ****** FILE NAME ( AMTP.FR ) *******
      SUBROUTINE RMTP
С
        ****** MT READ ----- ECLIPSE DISKWK STORE ******
С
               MT
                          ; NMT MTO: ?? REC. (64W), BLK. (256W)
С
               GATHER.CD ; READ - JUNP
C
               ANALYZE.CD : COMMON // ..., ANP1 (256)
                          ; READ - JUNP
С
          ... UNSTD.DT
С
                           NDISKH (SNWORKO1.DT) ACD.256 W
         ... HSAD.DT
                            READ - JUNP
C
          ... MSAD.DT
С
                           ; READ - JUNP
         .... LSAD.DT
С
              SRTAXIS.CD ; NDISKS (SNWORK02.DT)
         . . .
         . 6.1983 (S.NAKAMURA)
С
                                   . . . . . . . .
      COMMON
     * /LBSRT/ IHEDP1 (256), IHED3 (256), ANP1 (256)
     * /CONST/ ICNTRL (20), NMT, NDISKA, NDISKH, NDISKS, NLP, NWFL
С
С
        DINENSION IIA (64), IIB (256), INAME (2), NTNAME (4)
С
        DATA MTNAME/ 'NT', '0: ', ' ', ' ' /
С
      CALL FBAD1 (ICNTRL (2), INAME)
        NTNAME(3) = INAME(1)
        MTNAME(4) = INAME(2)
С
С
      ******** GATHER.CD FILE READ JUMP *******
      CALL OPEN (NNT, NTNANE, 2, IER)
                       STOP ' ?? SUBR. (ANTP) MT (GATHER.CD) OPEN ERROR ???'
        IF (IER.NE.1)
       READ BINARY (NNT, END=20, ERR=15)
10
                                             IIA
          GO TO 10
15
        STOP '?? NT (GATHER.CD) READ ERROR ?????'
С
С
      ******* ANALYZE.CD FILE READ *******
20
      CALL CLOSE (NNT. IER)
         IF (IER.NE.1)
                            STOP ' ?? NT (GATHER.CD) CLOSE ERROR ?????'
        ICNTAL(2) = ICNTAL(2) + 1
      CALL FBAD1 (ICNTRL (2), INAME)
        MTNAME(3) = INAME(1)
        NTNAME(4) = INAME(2)
      CALL OPEN (NNT. NTNANE, 2, IER)
         IF (IER.NE.1)
                        STOP ' ?? MT (ANALYZE.CD) OPEN ERROR ?????'
      DO 21 I=1, 15
        READ BINARY (NNT, ERR=23)
                                      IIA
21
      CONTINUE
         GO TO 24
23
      STOP ' ?? MT (ANALYZE.CD) READ ERROR ?????'
24
       READ BINARY (NNT, ERR=23)
                                     ANP1
```

```
26
        READ BINARY (NMT, ERR=23, END=50)
                                            IIA
         GO TO 26
С
      ******* UNSTD.DT NT READ *******
      CALL CLOSE (NMT, IER)
50
                           STOP ' ?? MT (ANALYZE, CD) CLOSE ERROR ?????'
         IF (IER.NE.1)
        ICNTAL(2) = ICNTAL(2) + 1
      CALL FBAD1 (ICNTRL (2), INAME)
        MTNAME(3) = INAME(1)
        MTNAME(4) = INAME(2)
      CALL OPEN (NMT, MTNAME, 2, IER)
         IF (IER.NE.1) STOP ' ?? MT (UNSTD.DT) OPEN ERROR ????"
51
      READ BINARY (NMT, ERR=52, END=100)
                                            IIB
         GO TO 51
52
      STOP ' ?? MT (UNSTD.DT) READ ERROR ?????'
С
      ******* HSAD.DT MT READ *******
100
      CALL CLOSE (NMT. IER)
         IF (IER.NE.1)
                            STOP ' ?? MT (UNSTD.DT) CLOSE ERROR ?????'
        ICNTRL(2) = ICNTRL(2) + 1
      CALL FBAD1 (ICNTRL (2), INAME)
        MTNAME(3) = INAME(1)
        MTNAME(4) = INAME(2)
      CALL OPEN (NMT, MTNAME, 2, IER)
                        STOP ' ?? NT (HSAD.DT) OPEN ERROR ?????'
         IF (IER.NE.1)
      REWIND
               NDISKH
      READ BINARY (NMT, ERR=125, END=200)
120
                                            IIB
      WRITE BINARY (NDISKH, ERR=126)
                                         IIB
         60 TO 120
125
        STOP ' ?? MT (HSAD.DT) READ (1) ERROR ?????'
      STOP ' ?? MT (HSAD.DT) WRITE ERROR ?????'
126
С
С
      ****** MSAD.DT MT READ *******
200
      CALL CLOSE (NMT. IER)
                           STOP ' ?? MT (HSAD.DT) CLOSE ERROR ?????'
         IF (IER.NE.1)
        ICNTAL(2) = ICNTAL(2) + 1
      CALL FBAD1 (ICNTRL (2), INAME)
        MTNAME(3) = INAME(1)
        MTNAME(4) = INAME(2)
      CALL OPEN (NMT, MTNAME, 2, IER)
         IF (IER.NE.1) STOP ' ?? MT (MSAD.DT) OPEN ERROR ?????'
250
      READ BINARY (NMT, ERR=255, END=300)
                                             IIA
        GO TO 250
255
      STOP ' ?? NT (MSAD.DT) READ (2) ERROR ?????'
С
С
       ******* LSAD.DT NT READ JUMP
                                         ******
```

```
300
      CALL CLOSE (NMT. IER)
         IF (IER.NE.1) STOP ' ?? MT (MSAD.DT) CLOSE ERROR ?????'
        ICNTAL(2) = ICNTAL(2) + 1
      CALL FBAD1 (ICNTRL (2), INAME)
      MTNAME(3) = INAME(1)
        MTNAME(4) = INAME(2)
      CALL OPEN (NMT, NTNAME, 2, IER)
         IF (IER.NE.1)
                          STOP ' ?? NT (LSAD.DT) OPEN ERROR ?????'
320
      READ BINARY (NNT, ERR=325, END=400)
                                          IIA
         6D TD 320
325
      STOP ' ?? NT (LSAD.DT) READ ERROR ?????'
С
        ******* SHTAXIS MT READ *******
400
      CALL CLOSE (NMT, IER)
                          STOP " ?? NT (LSAD.DT) CLOSE ERROR ?????"
         IF (IER.NE.1)
        ICNTRL(2) = ICNTRL(2) + 1
      CALL FBAD1 (ICNTRL (2), INAME)
        MTNAME (3) = INAME (1)
        NTNAME(4) = INAME(2)
      CALL OPEN (NNT, NTNAME, 2, IER)
         IF (IER.NE.1)
                           STOP " ?? NT (SRTAXIS.CD) OPEN ERROR ?????"
420
      READ BINARY (NNT, ERR=425, END=500)
                                            IIA
      WRITE (NDISKS, ERR=426)
                                 IIA
         60 TO 420
425
         STOP " ?? NT (SRTAXIS.CD) READ ERROR ?????"
426
      STOP * ?? NT (SRTAXIS.CD) WAITE Error ?????*
500
      CALL CLOSE (NNT. IER)
                           STOP " ?? MT (SRTAXIS.CD) CLOSE ERROR ?????"
         IF (IER.NE.1)
С
      *******
9999
         ICNTRL(2) = ICNTRL(2) + 1
        RETURN
        END
```

```
******* FILE NAME ( FBAD1.FR ) ********
С
С
                 11.1982 (S.N)
        . . . . .
                                                 . . . . .
      SUBROUTINE FBAD1 (IIN, IOUT)
        DIMENSION IW (2), IOUT (1)
        IN= IABS (IIN)
        IF (IN.GE.100) STOP ' * INPUT DATA OVERFLOW (SUBA.FBAD) ?????'
        IW(1) = IN/10
        IW(2) = IN - IW(1) \times 10
        IS= IW(1)
        IF (IS.EQ.0) IW(1) = IW(2)
        IW(1) = IW(1) + 60K
        IM(5) = IM(5) + POK
        IW(1) = ISHIFT (IW(1), 8)
        IF (IS.EQ.0) IW (2) = '<0>'
        IOUT(1) = IW(1) + IW(2)
        IOUT (2) = '<0><0>'
        RETURN
        END
```

e

	C XXXXXXX FILE NAME (TITLP.FR) XXXXXXXX							
	SUBROUTINE TITLP C							
	TITLE READ/WRITE (\$LPT (NLP), COMMON)							
1	* /TITEL/ NRUN, NCASE, NRGH, IOPT, RGHS (5), DATE (4), BLNCE (5), STING (5), CONFG (10)							
	* , MODEL (20)							
	* /LBSRT/ IHEDP1(256), IHED3(256), ANP1(256) * /CONST/ ICNTRL(20), NMT, NDISKA, NDISKH, NDISKS, NLP, NWFL							
	× / CONDI/ ICNIHE (CV), NHI, NUIDKA, NUIDKH, NUIDKD, NEP, NHE							
	DINENSION IMACH (20), IALP (20), IPHBE (20), ID (3), IT (3)							
	C CALL FGDAY (ID (1), ID (2), ID (3))							
	L FORMAT (1H , 38X, ": 1: 2: 3: 4") WRITE (10, 2)							
2								
	READ (11, 3) MODEL							
3	B FORMAT (20A2) WRITE (10, 4)							
4	FORMAT (1H, 'Test Date (Nax.16 Characters) =',Z)							
	READ (11, 5) DATE							
5	FORMAT (4A4) ACCEPT ' RUN NO. (INTEGER) ='. NRUN							
	WRITE (10.6)							
6	FORMAT (1H , "Roughness Config. (Max.20 Characters) =",Z)							
7	READ (11,7) RGHS							
 '	FORNAT (5A4)							
8	ACCEPT ' CASE NO. (INTEGER) =', NCASE							
	ACCEPT ' Cart Open Ratio (INTEGER) =', IOPT							
9	WRITE (10,9) FORMAT (1H , 'Nodel Config. (Max.40 Characters) =',Z)							
	READ (11, 10) CONFG							
1	0 FORMAT (10A4)							
	WRITE (10, 12) 2 FORMAT (1H , 'Sting Name (Max.20 Characters) =',Z)							
	READ (11, 7) STING							
	WRITE (10, 13)							
1	3 FORMAT (1H, 'Nach (Max.40 Characters) =',Z)							
	CALL FGTIME (IT(1), IT(2), IT(3)) READ (11, 14) INACH							
1	4 FORNAT (20A2)							
	WRITE (10, 15)							
1	5 FORMAT (1H , 'Alpha (Max.40 Characters) =',Z) READ (11,14) IALP							

.

.

WRITE (10, 16) 16 FORMAT (1H, 'Phai, Beta, Psai (Max. 40 Characters) =', Z) **READ** (11, 14) IPHBE WRITE (NLP, 20) MODEL, DATE, NRUN, ID, IT , CONFG, NCASE, BLNCE, STING ¥ 20 FORMAT (1H1/1H0, 20X, 'M O D E L ; ', 20A2, 5X, 4A4, 4X * , 'RUN-NO.', I3, 3X, 'REDUCTION (', I2, '-', I2, '-', I2, ') '/1H , * 1H , 30X, '***** NATIONAL AEROSPACE LABORATORY (TOKYO)' *, ' TWT-SYSTEN *****', 5X, ' (', I2, ': ', I2, ': ', I2, ') '/
* 1H0, 30X, 10A4, 10X, 'C A S E - N0. ', I3/ * 1H0, 20X, 'BALANCE ', 5A4/1H , 20X, 'STING', 5X, 5A4) IF (NRGH.EQ.O) GO TO 25 WAITE (NLP, 22) RGHS 22 FORMAT (1H , 20X, 'HOUGHNESS (', 5A4, ') ') 25 WRITE (NLP. 30) IOPT FORMAT (1H, 20X, 'CART OPEN RATIO ', I3, ' %') 30 WRITE (NLP. 40) IMACH. IALP. IPHBE 40 FORMAT (1H0, 20X, 20A2/(1H, 20X, 20A2)) WRITE (NLP, 50) 50 FORMAT (10X. '.... С ******* ANP1 (1--256) DATA CHANGE ******* С ANP1(174) = 0.0ANP1(175) = 0.2С ANP1 (179) = 13.5951 С С WRITE (NLP, 100) ANP1 (173), ANP1 (175), ANP1 (172), ANP1 (174) ¥ , (ANP1 (I), I=161, 163), (ANP1 (I), I=165, 167) , ANP1 (178), ANP1 (179), (ANP1 (I), I=187, 194) ¥ 100 FORMAT (1H , 20X, ' ***** PRESET PARAMETERS *****'/ * /1H0, 19X, 'PRESSURE CORRECTION VALUE POX=', 2F6.2 * ,5X, 'P*=',2F6.2/ * 1H , 30X, 'THETA, PHAI, HIGH (CALIB.) COEF.' * , 15X, 'ZERO'/1H , 19X, 6F10.5/1H , 59X, "LOWHG"/1H , 54X, 2F12.5/ * 1H , 19X, '* MODEL REFERENCE * (S, LR, AXUL, AYRL, A' * , ', C1, C2, C3) '/1H , 19X, 8F10.6) С WRITE (NLP. 110) ICNTRL 110 FORMAT (1HO, '..... ICNTRL >> ', 2015, '') RETURN END

С	******** FILE NAME (HSADNT.FR) ********							
С	SUBROUTINE HSADNT CONNON * /LBSRT/ IHEDP1 (256), IHED3 (256), ANP1 (256) * /LBSDT/ XP (48, 10), PX (48, 10) * /CONST/ ICNTAL (20), NNT, NDISKA, NDISKH, NDISKS, NLP, NWFL * /BUFEA/ IBUF (83) * /DBUEE/ CP (48, 10), PL (48, 10), APL (48, 10), XN (48, 10) * /TITEL/ NRUN, NCASE, NAGH, IOPT, RGHS (5), DATE (4), BLNCE (5), STING (5), CONFG (10) * , NODEL (20)							
1	DIMENSION IHDT (256), IA (64) , WARK (50)							
C	EQUIVALENCE							
	* (ICNTAL (5), ISS), (ICNTAL (6), ITT), (ICNTAL (7), IAA)							
с	REAL ML							
	DO 1 J=1, 10							
	DO 1 I=1,48 XP(I,J)=0.0							
	PX(I, J) = 0.0							
	IFBLK=0 CALL RDBLK (NDISKH, IFBLK, IHEDP1, 1, IER)							
	IF (IER.NE.1) STOP ' ?? SUBR. (HSADNT) IHEDP1 READ ERROR ???' IFBLK = IFBLK + 1							
	IB= IHEDP1 (20) /49							
	IF (ICNTRL (1) .EQ. 1) IB= IHEDP1 (10) /49							
	IF (IB.EQ.O) RETURN IEND=IHEDP1 (20)							
	III = (IHEDP1 (23) - IHEDP1 (22) + 1) / 2							
	IF (ICNTRL (1).NE.1) 60 TO 30 IEND= IHEDP1 (10)							
20.	III= (IHEDP1 (13) - IHEDP1 (12) +1) /2							
30	CONTINUE IF (III.E0.0) GO TO 100							
	DO 50 I=1, III							
	DO 50 J=1,2 CALL ADBLK (NDISKH, IFBLK, IHED3, 1, IER)							
	IF (IER.NE.1) STOP ' ?? SUBR. (HSADNT) IHED3 (1) READ ERROR ???'							
F	IFBLK=IFBLK+1 50 CONTINUE							
C								
100	CALL RDBLK (NDISKH, IFBLK, IHED3, 1, IER) IF (IER.NE.1) STOP ' ?? SUBR. (HSADMT) IHED3 (2) READ ERROR ???'							
	IF (IHED3 (2) .GT. ICNTRL (9)) GO TO 5000							

.

```
IFBLK=IFBLK+1
       IPORT=IHED3 (89) - IHED3 (88) +1
       ICH=IHED3 (20) - IHED3 (19) +1
       MEAN=IHED3 (37)
         IF (MEAN.GT.10) NEAN=10
       CMEAN=FLOAT (MEAN)
       IFCH=IHED3 (19) +1
       ILCH=IHED3 (20) +1
С
       DO 400 II=1, IPORT
       CALL RDBLK (NDISKH, IFBLK, IHDT, 1, IER)
         IF (IER.NE.1) STOP ' ?? SUBR. (HSADMT) IHDT ERROR ???'
       IFBLK=IFBLK+1
         IF (IHED3 (2) .LT. ICNTRL (8) ) GO TO 400
       DO 200 IP=1, 4
         IZ=IP+1
         PX (II. IP) = FLOAT (IHDT (IZ)) *0.1+ANP1 (171+IP)
  200 CONTINUE
        IJ=0
       DO 300 JJ=1. ICH
         IJ=IJ+1
         DUMY=0.0
      DO 300 KK=1, MEAN
       MM=IJ+5+ (KK-1) ×ICH
       XP (II, JJ) = FLOAT (IHDT (MM))
      BR= 1.25*2.0** (3-IHED3 (25)) / (2.0**15)
         XP(II, JJ) = BR \times XP(II, JJ)
         DUNY= XP (II, JJ) +DUNY
         IF (KK.EQ.MEAN) XP (II, JJ) = DUNY/CMEAN
  300 CONTINUE
  400 CONTINUE
         IF (IHED3 (2) .LT. ICNTRL (8)) GO TO 100
С
С
       WRITE (NLP, 1000) (IHED3 (I), I=2, 8), ((XP (J, K), J=1, 48), K=1, ICH)
 1000 FORMAT (1H , "********/1H , '***** TEST NO. ', I4
     *, ******', 10X, 12, '/', 12, '/', 14
* ,5X, 12, 2 (': ', 12), ******'/4 (3X, 12F9.3/))
       WAITE (10, 2000)
                             IFBLK, IEND
2000
        FORMAT (5X, "******** *, 14, "/", 14, " **********)
          IF (ICNTAL (4) .EQ. 0) GO TO 4000
С
      CALL ANO3
С
4000
           IF (IEND.GT.IFBLK) GO TO 100
5000
      AETUAN
      END
```

```
С
         ****** FILE NAME ( ANO3.FR ) *******
       SUBROUTINE ANO3
       COMMON
      * /LBSRT/ IHEDP1 (256), IHED3 (256), ANP1 (256)
      * /LBSDT/ XP (48, 10), PX (48, 10)
      * /CONST/ ICNTRL (20), NNT, NDISKA, NDISKH, NDISKS, NLP, NWFL
      * /BUFER/ IBUF (83)
      * /DBUEE/ CP (48, 10), PL (48, 10), RPL (48, 10), XM (48, 10)
С
       DIMENSION
      * NP (10), IC (128), AX (128), ADT (5), IIA (64), AAX (32), KP (10), AXY (2, 128)
      *, CN (10), CNO (10), CA (10), CL (10), CD (10), CN25 (10), CD1 (100), PTP (100)
      * , CP1 (480)
                      , PL1 (480) , RPL1 (480) , XN1 (480)
      * . CP2 (100, 10) . PL2 (100, 10) . RPL2 (100, 10) . XN2 (100, 10)
      * . FRDT (4)
С
       EQUIVALENCE
      * (ICNTAL (5), ISS), (ICNTAL (6), ITT), (ICNTAL (7), IAA)
      * , (IBUF (1), IFCH), (IBUF (2), ILCH), (IBUF (3), IFCHP)
     * , (IBUF (4), ILCHP), (IBUF (5), IS), (IBUF (6), IT), (IBUF (7), IR)
      *, (IBUF (8), NSECT), (IBUF (9), NP (1)), (IBUF (19), NTP)
     * , (IBUF (29) , LREC)
     * , (CP (1, 1), CP1 (1)), (PL (1, 1), PL1 (1)), (APL (1, 1), APL1 (1))
     * , (XN (1, 1), XM1 (1))
     * , (ANP1 (188), LR), (ANP1 (179), LOWHG)
С
      REAL N. LR. NACH. KP. KPP. LOWHG
С
      DATA
     * FRDT / 10.0, 100.0, 1000.0, 1000.0 /
С
      ********** DEFINE FUNCTION FOR NACH NUMBER ********
      MACH (S0, S1) = SQRT (5.0 \times ((S0/S1) \times (1.0/3.5) - 1.0))
С
С
      ******** ENTRY ********
      DO 10 I=1.48
      DO 10 J=1.10
      CP(I, J) = 0.0
      PL(I, J) = 0.0
      APL(I, J) = 0.0
      XM(I, J) = 0.0
   10 CONTINUE
      DD 20 I=1, 100
      DO 20 J=1, 10
      CP2(I, J) = 0.0
      PL2(I, J) = 0.0
      APL2(I, J) = 0.0
```

```
XM2(I, J) = 0.0
   20 CONTINUE
С
                 THETA, PHAI, HIGH, TO .....
       . . . . . . . .
       D0 100 I=1.3
       RDT(I) = FRDT(I) * FLOAT(IHED3(I+100)) * 2.5/(2.0**15)
100
       CONTINUE
         NRANG= IHED3 (105)
          TO= FRDT (4) *0.0025*FLOAT (IHED3 (104)) * (2.0** (13-NRANG)) / (2.0**14)
         T0=T0*25.956342-0.6904485*T0**2
С
       T0 = 45.0
С
       . . . . . . .
      PI18= 0.1745329E-1
      PHAI= RDT (2) *PI18
      THETA= ADT (1) *PI18
      BET1= -SIN (PHAI) *SIN (THETA)
      BET2= BET1*BET1
      PSAI= ATAN (BET1/SQRT (1.0-BET2))
      BET3= SIN (THETA) *COS (PHAI) /COS (PSAI)
      BET4= BET3*BET3
      ALPHA= ATAN (BET3/SQRT (1.0-BET4))
      BETA= -PSAI
      THETA= THETA/PI18
      PHAI = PHAI/PI18
      ALPHA= ALPHA/PI18
      PSAI = PSAI/PI18
      BETA = BETA/PI18
      P=0.0
      P0=0.0
      LPN0=IHED3 (89) +1
      DO 150 I=1, LPNO
       P = P + PX (I.3)
       P0= P0+PX (I, 4)
  150 CONTINUE
      P = P / FLOAT (LPNO)
      PO= PO/FLOAT (LPNO)
      PKPA = 0.133322 \times P
      POKPA= 0.133322 * PO
      TOT = TO + 273.15
С
С
С
      ******** COMPUTE BASIC PRESSURE ********
      IF (P.GE.PO) P=P0-2.0
      M=NACH (PO, P)
      Q=0.7*M*M*PO*LOWHG/(1.0+0.2*M*N) **3.5
      IF (LR.EQ.0) LR=1.0
      REY=8.247*PO* (390.16+T0+23.4*N*M) *M*LR/
           (273.16+T0) **2/(1.0+0.2*M*N) **2.5
     ×
      V=20.0449×M×SORT ((273.16+T0) / (1.0+0.2×M×N))
      IEXNO=IHED3 (2)
```

```
ALP = ALPHA \times PI18
С
                   OUTPUT LINE PRINTER
       WRITE (NLP, 200) IEXNO, Q, N, REY, PO, P, TO, V, ALPHA, PSAI
                          '-----'/1H , 'NO. ', I5, 12X, 'Q=', F8.3
   200 FORMAT (1H0/1H .
      * , 7X, 'M=', F8.5, 6X, 'RE=', F12.7, 7X, 'P0=', F7.2, 7X, 'P=', F7.2/
* 1H , 'T0=', F7.2, 11X, 'V=', F8.2, 5X, 'ALP=', F7.2, 6X, 'PSI=", F7.2)
       ******** ACCESS SECOND SORTING AND X-Y AXIS FILE ********
С
С
                          READ PRESET DATA (FOR PRESSURE)
       CALL READR (NDISKS, 2, IIA, 1, IER)
                               STOP "?? SUBR. (ANO3) SHTAXIS.CD READ ERROR ?????"
          IF (IER.NE.1)
       DO 270 I=1.64
       IBUF(I) = IIA(I)
  270 CONTINUE
С
      * * * * * * * * * *
       WRITE (NLP, 280) (IBUF (I), I=1, 30)
   280 FORMAT (1HO, 10X, '***** IBUF (1-30) PRINT *****'/(1H , 5X, 1015))
С
       WRITE (NLP, 290)
  290 FORMAT (1H0/1H, 9X, '* AEROFOIL PRESSURE COEFFICIENTS *')
C
       ********* CONPUTE VARIOUS COEFFICIENTS *********
       IFCH=IFCH + 1
       ILCH=ILCH + 1
       K=0
       DO 500 I=IFCH, ILCH
       K = K + 1
       XHE = (XP(IS+1, I) + XP(IS+ISS, I))/2.0
       XCA= (XP(IT+1, I) + XP(IT+ITT, I))/2.0
       PWR = (PX(IS+1, 3) + PX(IS+ISS, 3))/2.0
       PWC = (PX(IT+1, 4) + PX(IT+ITT, 4))/2.0
       XZE= (XP(IR+1, I) + XP(IR+IAR, I))/2.0
       KP(K) = (PWR-PWC) / (XRE-XCA)
       DO 400 J=1, LPN0
       X1 = XP(J, I) - XZE
       CP(J, K) = X1 \times KP(K) \times LOWHG/Q
       PL(J, K) = X1 \times KP(K) + PX(J, 3)
       APL(J, K) = PL(J, K) / PX(J, 4)
       PPL = PL'(J, K)
       IF (PPL.GE.PO) PPL= P0-2.0
       XN(J, K) = NACH(PO, PPL)
  400 CONTINUE
       NCHAL= IFCH + K - 1
       WRITE (NLP, 401) NCHAL, XRE, XCA, XZE, KP (K), PWR, PWC
  401 FORNAT (1HO, 11X, 12, '-CHANNEL', 5X, 'REF=', F9.4, 3X, 'CAL=', F9.4, 3X
     * , 'ZERO', F9.4, 3X, 'KP=', F10.5, 3X, 'PWR=', F7.2, 3X, 'PWC=', F7.2)
       WRITE (NLP, 402)
  402 FORNAT (1H0/1H , 2X, 'PORT', 8X, '-0-', 6X, '-1-', 6X, '-2-', 6X, '-3-'
      * , 6X, '-4-', 6X, '-5-', 6X, '-6-', 6X, '-7-', 6X, '-8-', 6X, '-9-')
С
  410 WRITE (NLP, 411) (CP (J, K), J=1, LPNO)
```

```
411 FORMAT (1HO, 2X, '* (CP) DATA PRINT *'/5(10X, 10(2X, F9.5)/)/)
С
C 420 WRITE (NLP, 421) (PL (J, K), J=1, LPNO)
C 421 FORMAT (1HO, 2X, '* (P) DATA PRINT *'/5 (10X, 10 (2X, F9.3) /) /)
С
C 430 WRITE (NLP, 431) (RPL (J, K), J=1, LPNO)
C 431 FORMAT (1HO. 2X, '* (P/PO) DATA PRINT *'/5 (10X, 10 (2X, F9.5) /) /)
С
  440 WRITE (NLP. 441) (XM (J, K), J=1, LPNO)
С
С
  441 FORMAT (1HO, 2X, '* (MACH) DATA PRINT *'/5(10X, 10(2X, F9.5)/)/)
  500 CONTINUE
C
        IF (ICNTRL (9) .EQ.0)
                                  60 TO 600
      WRITE (NWFL, 550) IEXNO, K, LPNO, Q, M, REY, PO, P, TO, (RDT (I), I=1, 3)
                        , V. ALPHA, BETA, PSAI, ((CP (J, I), J=1, LPNO), I=1, K)
     ¥
      FORMAT (315, F10.4, 2F10.7, 3F10.5, 9X/7F10.5, 14X/(8F10.5, 4X))
550
С
      ******
600
        CONTINUE
С
      ******
         IF (ICNTRL (8) .EG.0) GO TO 1500
      NREC= 3
      KREC = 25
      IDEFF = 250 + (IFCH - 1) \times 48
С
          ******
      D0 1000 J=1. NSECT
С
С
С
           .... READ SECOND SORTING DATA TO N-SECTION
      CALL READR (NDISKS, NREC, IC, 2, IER)
         IF (IER.NE.1) STOP "?? (SRTAXIS.CD[1]) Read Error ?????"
  172
С
С
       ..... N-SECTION DATA (X, N)
      NPN = NP(J)
      DO 700 I=1. NPN
      CP2(I, J) = CP1(IC(I) - IDEFF)
      PL2(I, J) = PL1(IC(I) - IDEFF)
      APL2(I, J) = APL1(IC(I) - IDEFF)
      XM2(I, J) = XM1(IC(I) - IDEFF)
  700 CONTINUE
С
  710 WRITE (NLP. 711) J. (CP2 (K, J), K=1, NPN)
  711 FORMAT (1HO, 2X, '***** (CP DATA) SECTION NO.', 12, ' *****'//
     * 2(10X, 10F11.5/))
C
C 720 WRITE (NLP, 721) J. (RPL2(K, J). K=1, NPN)
C 721 FORMAT (1HO, 2X, '***** (P/PO DATA) SECTION NO.', I2, ' *****'//
С
     * 2(10X, 10F11.5/))
```

```
С
С
    730 WRITE (NLP, 731) J. (XN2 (K, J), K=1, NPN)
    731 FORMAT (1HO, 2X, '***** (MACH DATA) SECTION NO. ', 12, ' *****'//
С
C
       * 2(10X, 10F11.5/))
С
С
  740 WRITE (NLP. 741) J. (PL2(K, J), K=1, NPN)
  741 FORMAT (1HO, 2X, '***** (P DATA) SECTION NO. ', 12, ' *****'//
С
С
      * 2(10X, 10F11.4/))
C
       CN(J) = 0.0
       CMO(J) = 0.0
       CA(J) = 0.0
       CL(J) = 0.0
       CD(J) = 0.0
       CM25(J) = 0.0
C
С
       CALL READR (NDISKS, KREC, AXY, 8, IER)
                             STOP "?? (SRTAXIS.CD[2]) Read Error ?????"
          IF (IER.NE.1)
С
       DO 920 I=2. NPN
       CN(J) = CN(J) + (CP1(IC(I) - 250) + CP1(IC(I-1) - 250))
            * (AXY (1, I) - AXY (1, I-1))
      ¥
       CMO(J) = CMO(J) + (CP1(IC(I) - 250) \times AXY(1, I) + CP1(IC(I-1) - 250))
             * AXY (1, I-1)) * (AXY (1, I) - AXY (1, I-1))
     ¥
       ZXY= (CP1 (IC (I) -250) *AXY (2, I) + CP1 (IC (I-1) -250) *AXY (2, I-1))
           * (AXY (2, I) - AXY (2, I-1))
     ¥
       CMO(J) = CMO(J) + ZXY
       CA(J) = CA(J) + (CP1(IC(I) - 250) + CP1(IC(I-1) - 250))
            * (AXY (2, I) - AXY (2, I-1))
     ¥
  920 CONTINUE
       CN(J) = -CN(J)/2.0
       CMO(J) = CMO(J)/2.0
       CA (J)
             = CA(J)/2.0
       CL(J)
              = CN (J) \timesCOS (ALP) - CA (J) \timesSIN (ALP)
      CD (J)
             = CN (J) \timesSIN (ALP) + CA (J) \timesCOS (ALP)
      CN25(J) = CNO(J) + 0.25 \times CN(J)
C
      NREC= NREC + 2
      KREC = KREC + 8
 1000 CONTINUE
С
С
С
1500
             IF (IFCHP.LE.0) 60 TO 5000
С
С
      ***** PITO-KAN ATSURIYOKU *****
      CALL READR (NDISKS, 23, IC, 2, IER)
          IF (IER.NE.1)
                              STOP *??
                                          (SRTAXIS.CD[3]) Read Error ?????*
```

```
IFCHP=IFCHP + 1
      ILCHP=ILCHP + 1
      DO 2200 I=IFCHP, ILCHP
      KPP = (PO - P) / (XP(4, I) - XP(1, I))
      K=K + 1
      DO 2150 J=1. LPNO
      DPP=(XP(J, I) - XP(4, I)) \times KPP
      CP(J, K) = DPP + PX(J, 2)
      IF (CP(J, K) . GT. (P0+20.0)) CP(J, K) = P0
      IF (CP(J, K) . LE.P) CP(J, K) = PO
      PTP(J) = CP(J, K)
 2150 CONTINUE
 2200 CONTINUE
С
      WRITE (NLP, 2210) (PTP (I), I=1, LPNO)
2210 FORMAT (1HO, 10X, '** PITOT (P) DATA PRINT'//(1H, 10X, 10F10.3))
С
      DO 2220 I=1, 128
      CD1(I) = 0.0
2220 CONTINUE
С
COMMENT ***** PITOT-TUBE SECOND SORTING DATA *****
      CALL READR (NDISKS, 105, AX, 4, IER)
         IF (IER.NE.1) STOP "?? (SRTAXIS.CD[4]) Read Error ????"
С
C
      RM0=3.5* ((P0/P) ** (1.0/3.5) -1.0)
      DO 2320 I=1. NTP
      RM1=3.5* ((CP1 (IC (I) -250) /P) ** (1.0/3.5) -1.0)
      AM2=3.5* ((PO/CP1 (IC (I) -250)) ** (1.0/3.5) -1.0)
      CD1 (I) = 2.0 \times (CP1 (IC (I) - 250) / P0) \times (1.0 / 7.0) \times (P/P) \times (6. / 7.0)
            * SQRT (RM1/RM0) * (1.0- SQRT (1.0-RM2/RM0))
     ¥
2320 CONTINUE
С
      CDD=0.0
      DO 2330 I=2. NTP
      CDD=CDD + (CD1(I)+CD1(I-1)) * (AX(I)-AX(I-1))
2330 CONTINUE:
      CDD=CDD/2.0
С
  ***** OUT-PUT LINE PRINTER *****
С
      WRITE (NLP, 1410) CDD, (CD1(I), I=1, NTP)
 1410 FORMAT (1HO, 10X, '** PITOT (CD) DATA PRINT ... CD=', F10.5
     * //(1H . 10X, 10F10.5))
С
С
                 RETURN END .....
      . . . . . . . .
 5000 CONTINUE
      RETURN
      END
```

航空宇宙技術研究所報告811号

昭和59年5月発行

発 行 所	航空	宇 宙	技徒	衍 研	究 所
	東京都	8 調 布	市深	大 寺	町 1880
	電話武蔵	野三鷹(04	22)47-59	11(大代	表)〒182
印刷所	株式	会社	<u> </u>	興	印 刷
	東京都	新宿区	信 濃 町	12 三	河ビル

Printed in Japan