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On the Convergence of the Finite Element Solution of

a Nonlinear Crack Type Problem in Finite Elasticity*

by

KUNIHIKO OHTAKE**

SUMMARY

In this paper we consider the crack type problem in a hyperelastic body. The ma-
terial is assumed to be isotropic, incompressible, and to have a special nonlinear consti-
tutive equation under large deformation. This body is subjected to shear deformation
under the action of body force. The problem leads to the nonlinear boundary value
problem. The analytical solution of this problem exhibits the singularity at the crack
tip. We investigate the convergence rate of the Galerkin approximation solution by
introducing the weighted Sobolev space in functional analysis technique. The results
show the convergence rate || u - Uy || w hé for the singularity grad u ~ rs
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§0. Introduction

Fracture under large strain becomes important
engineering problem. The investigations are re-
quired in many industrial fields, such as fracture
of rubber based materials in aerospace field,
creep fracture in atomic or chemical plant field.

On the other hand, owing to the rapid devel-
opment of large scale digital computer, the finite
element method becomes very effective analytic-
al tool for many continuum mechanics boundary
value problems, such as solid and fluid mechanics,
heat conduction, and electro-magnetic field prob-
lems.[11121 Naturally this method has been ap-

* Received June 11. 1985.
** First Airframe Division

plied to the fracture mechanics.

The origin of fracture mechanics comes from
Griffith’s investigation of energy release rate in
brittle materials. Within this couple of decades,
application of fracture mechanics to engineering
problems becomes very popular.l?] In the view-
point of strength of materials, failure of the
structural member is described by the stress or
strain in the material. In fracture mechanics, on
the other hand, the failure of the member is asso-
ciated with the special parameters determined by
the stress or strain distribution field near the
crack, which is assumed to be involved in the
member. Thus, the concept of the fracture
mechanics is based on the modern reliability
engineering idea.

In fracture mechanics, estimation of those
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fracture mechanics parameters under the speci-
fied load condition is important. Usually the
gradient of the unknown of boundary value
problem is necessary in order to calculate such
parameters. But it is well known that there exists
singularity at the crack tip, and finite element
solution near crack tip is disturbed by this singu-
larity. This fact is deeply investigated from ex-
periment and theoretical analysis.I8] Moreover,
many engineers succeeded in recovering the ac-
curacy of finite element solution near crack
tip.[°] Most of these investigations have been
forcused to the linear problem. What have been
done in the nonlinear crack problem?

In contrast to the linear problem, few know-
ledges were accumulated in nonlinear crack prob-
lem, especially under large strain condition.
Theoretical study of finite element method
under large strain crack problem, such as error
estimate, is under holizon.*

After Rice-Rosenl!0l and Hutchinson!!!] in.
vestigated the singularity analysis for elasto-
plastic materials in infinitesimal condition, Wong-
Shield, {15 Knowles— Sternbergl 1211131 4pnq
Knowles!!®] studied about the crack singularity
of rubber-like materials under large strain. On the
other hand, the application of monotone opera-
tor theoryl!9 ~123] to the nonlinear finite elas-
ticity problem(2] ~ 16} js undertaken, for instance,
by Oden and Wellford.[16]

Now the background for the study of numeri-
cal analysis for our problem has been arranged.
In this report, we’ll first study the crack singu-
larity of rubber-like materials under a special
loading condition. After that we’ll investigate the
convergence rate of finite element Galerkin ap-
proximate solution of the problem, applying
monotone operator theory with the aid of
weighted Sobolev spacel18(26] and finite ele-
ment interpolation theory.[22) These investiga-
tions will be very helpful to the through under-
standing of finite element method for crack-type
problem.

*Recently some basic numerical investigation is exe-
cuted by Babuska.[17]

§1. Fornmulation of anti-plane crack problem in
finite elasticity theory

Let us consider the isotropic, homogeneous,
incompressible elastic body which occupies re-
gion §2, in the unstressed state. After deforma-
tion this body moves to the position. [Fig. 1]

X, Q,
P < P
X
> 14
iy Q,
Ny~
e i X,
X3
Fig. 1 Deformation of the body
y=y(x)=xtulx) xef, (1)

where x is the position vector in §2,, y the posi-
tion vector in the deformation imageNQ, of Q,,
and y is the displacement vector. The deforma-
tion gradient tensor atx is

Fx)="ry (2)

the geometrical response of the deformation of
the body is described by this deformation tensor

§=E@ & )

For the physically admissible deformation, de-
terminant of the deformation gradient tensor

J = det F (4)

should be positive. In addition, incompressibility
requires that

J=1 Vxeq, (5)
Let
G=FFT (6)

be the left Cauchy —Green tensor!'®) for the de-

formation. Then the three elementary principal
invariants of G are
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aN
X3 /> /
n
gy ds
dSa
X\
X2
Fig. 2 Surface and force
1
11 = TrQ [2 = 5[(Tr,€)2 "Tr(g)z] }
(7)

13=det§=12=1

The strain energy density function can be written
as W= W (I, I,) under the incompressible condi-
tion.

Let us define d/V as the surface force vector
on the infinitesimal surface element ds which has
the direction n after deformation. The stress vec-
tor after deformation is defined as
@ (8)
We introduce the stress vector which is defined
per unit area before deformation as

t =

r, = 2
~  ds,

)

where suffix r denotes reference state position.
Obviously

tds =1,ds, (10)
Next relation is used afterwards

nds = (E") n,ds, (1
Let us introduce Cauchy’s stress tensor T as

t=1In (12)
Similarly Piola — Kirchhoff’s stress tensor 2 as

,=2n, (13)

then from Eq. (10) and Eq. (11)

L= T (14)

The body in static equilibrium state obeys Eu-
ler’s rulel*

,/:an,tds +f bpdv =0

where b is the body force density vector per unit
mass. Using Egs. (10), (13) and the principle of
mass conservation, pdv = p,dv,, and applying
Green—Gausse formula to Eq. (15)

fnr(divz+2prdvr) =0

(15)

(16)
Now we get the Cauchy’s principle of motion
vy = f (17)

where f= -bp, and assumed to be independent of
X;. Cauchy’s stress tensor for incompressible
elastic body is assumed to be ([3] §86)

ow

=203 G+ aI 0

in Qr

-G)G) - PL(18)

where 1 is the unit tensor, scaler P is static pres-
sure component, Eq. (14) and Eq. (16) leads to

~

L= 2050 F + 5 (h1-OF)

- P (19)

In case that energy density W is described by I,
alone, Eq. (19) is simplified as

L= 2Wd)F - p(FTY!

where W' denotes 0W/dl,.

Let us consider the cylindrical body which has
a uniform cross section in X3 direction. This
body has a crack in the plane perpendicular to
X, - X, plane. The crack is in X, = 0 plane and
the crack tip is located at X; = 0. (Fig. 3) Now
we will consider the antiplane shear deformation

(20)

Y1 =Xy, Y2=Xa, Y3=x3+tu(x;, xp) (21)

We will assume that there acts no body forces in
X, and X, direction. In addition ¥ = 0 for all
boundary, including crack surface. In many en-
gineering problem, the crack surface is assumed
free from external forces. Here we consider the
above boundary condition for the numerical
analysis purpose. However, this condition has the
same singularity property as the Knowles’ free
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0 X

Fig. 3 Cylindrical body with antiplane crack

surface crack problem near crack tip region. This
will be shown in the Appendix. This means that
the two different conditions are equivalent with
respect to the singular boundary value problem.

Now our boundary condition on the crack
surface can be written in terms of the component
Tij ofg and u as

Tiz = T2 = 0
22
) } (22)

u -
For the deformation given by Eq. (21)

1 00 1 0 u,
F=1010 G=10 1 wu,
u,lu,zl U,; uU,, 1+| Vul

2
where | Ful|l = u, u

sollrg = U1 U,y T UU,, and

2
I, =3+|ful (24)
where ,, indicates 9/0 x

Next we’ll show that, when the deformation is
of the type described by Eq. (21), equiliblium
equation (17) is represented by single equation in
x5 direction, which include only but not 2 with
the aid of boundary constitions (23). Let the
component of % be ;. Then from Eqs. (18), (20)
and (23)

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-872T

030 = 2W'(]1)u,a = T3a 003 =pu,a
033 =2w’(]1)—p
Oap = [2W'(11) - Pl 845 = 7,4

o= ], 2 (25)
from Eq. (25) boundary condition is rewritten
in terms of g4 as

0y = 0y = 0 u=20 (26)

The condition previously endowed to fis written
as

1= 1(0,0,f(x1,x2)) (27)

Then the equations of motion (17) can be re-
written as

[2W'(]1)—p] o T Pay =0
LW )ugls “f(x1,x2)=P,;3

In the second equation of (28), left side is in-
dependent of x3, so P should be linear function
of x;.

Moreover P,, (a=1,2) is independent of x3, be-
cause of the first of Eq. (28).

These imply that

} (28)

P(xy,Xx2,%x3) = dox3 t P1(xy, x3) (29)
Then from (28)
p, =2W'(]1) + dou + dl (30)

where dy and d, is integral constant. Substitut-
ing Egs. (29) and (30) into the forth of Eq. (25),
we conclude that dy and d, should be zero in
order that og,, equals zero for any x; at the
crack surface. At the same time, the first of Eq.
(28) is automatically satisfied by do = d, = 0.
After all, the governing equation for our prob-
lem is

2W'd)uglg -f=0 (31)
or

. _ 8031 6032 _ .

divg = 51 + Sxy f in§ (32.1)
with the boundary condition

u=0 onaf2 (32.2)
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In the following we will consider the energy den-
sity function

Wi = = ({142 @ -3) -,

b,v>0 (33)

where b, v denote material constants.
Then the required stress components for Eq. (32)
are

ayn = v[1 +%| Vulz] u, a=1,2 (34)
Knowles solved the free surface crack problem
for energy density (33) and give the closed form

singuler solution near the crack tip. We’ll show
that the same order singular solution

u~r*v@ asr->0 (35)

where r =/ x} + x5 exists under the boundary
condition (32.2).

Appendix I

Let us consider the equation

003, + 003,
ax1 aX2

=f (1)

where

O3y = v[l+%i Ful’lu, a=1,2 ()

with the boundary condition on the crack sur-

face

u=20 3)
substituting Eq. (2) into Eq. (1) and we’ll get
nonlinear equation

3 1
[1+5bui + 5

2 bu)%] u:ll

+ 2bu, u, U,

3
+ [1+—127—u,f S bui] u,n=f (4)

Assume that the asymptotic solution of Eq. (4)
near crack tip as

u=r"v@ asr->0 -n<6<n (5)

We are interested in whether there is a solution
of the form (5) in the range 0 <m<1.(If m2 1,
the singularity caused by the crack tip won’t in-
fluence severely to the accuracy of gradient u in
f.e.m. solution. If m < 0, then the solution as-
sumes that u — o near crack tip, which contra-
dicts to our physical instinct.)

Substituting Eq. (5) into Eq. (4) and comparing
the lowest order term w.r.t. (with respect to) r,
we will get the following asymptotic equation.

(PV) + m(3m-2)PV = 0 (6)
where
. d
- 2 2 e ) =—0
P=V?+mV? [ 53

Boundary condition (3) is now written as
V() =0 : (7)
Let us introduce the following change of variable

mV = §(8) sin ¥ (6)

V = £(8) cos ¥ () ®
Then from compatibility of Eq. (8) yields
£ (6) sin W (0) + ¥ £(8) cos ¥ (6)
-mg(6) cos ¥ (8) = 0 9)

Substituting Eq. (8) into Eq. (6), we will get
3é cos ¥ - \i!g’sin ¥ + (3m-2)Esin ¥
=0 (10)

Deleting .E from Egs. (9) and (10) and dividing
the resulting equation by £

V[2+cos¥] - [3m-1+cos2¥] = 0
(1)

We will show ¥ > 0. Multiplying ¥ to Eq. (6),
PVV + PVV + m(Bm-2)PV =0 (12)

Using that pprp, = PVV + PVV + PV?, Eq.(12)
becomes

PVV-PV2 +m(3m-2)PV2=0 (13)

Integrating Eq. (13) with respect to 6 from -m to
m,
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prv| T =0-= m(3m-2)f PV2de
-f PV?df
That is
j PV2dg
m(3m-2)= " >0 (14)
f PV?de
2
So m>—3-. On the other hand from Eq. (11)
cd¥ _ 3m-1+cos2¥
V=38 T 2tcos2v (15)

Under the condition m >% , Eq. (15) implies
that ¥ > 0 in the interval -7 < 8 < . This means
that function ¥ is monotone strictly increasing
on its interval of definition. This fact makes an
important role in the following discussion. From

Eq. (15)

do 3(1-m)

LT |
dv 3m -1+ cos 2¥ (16)

integrate Eq. (13) w.r.t. ¥ with the condition
V¥ (-m) = 0, which is indicated by the boundary
conditions (7) and (8). Then

3(1-m)

vV 3m(3m -2)

[tan™! (——"3\/’:7'2 tan ¥)] Y (17)
(1]

From the boundary condition at 6 = 7 and the
fact ¥ > 0, we will conclude that

n+6=V¥+

¥ (m) = im (i : positive integer)

In addition, as the second term in the right side
of Eq. (16) is positive, § must increase when ¥
increases. From these two condition the term in
the parentheses of Eq. (14) should be nw (n 2 1)
at 0 = m# Now the compatibility condition for
both side of Eq. (17) at 8 = 7 requiresi= 1, and
the minimum value for m is given by

3(l-m) _
V3im(G3m-2) I (18)

this gives
-3
m = - (19)
Substituting Eq. (19) into Eq. (17)
tan @ = tan [V + tan™! (—:1;’- tan ¥)] (20)

or

-2cos 0 -V 4 cos’f + 3 sin20
3sin 8

tan ¥ =

2y

Care should be paid that only the positive sign
can be permitted before the root of Eq. (21) in
the interval

From Egs. (8) and (21)

m2cos()-\/4cosze+3sin20
sin 0

4
Vo (22)

After integration

V() =
el , 0 (2\/s2+s+1 +ts+2
cos‘—
2 "2V s +s41 -5+
(23)
0 3
= 2— - —
where s = tan > and m 3

The term in the parenthes of Eq. (20) is well
defined in the interval [-m, 7], positive bounded
for all interval except both ends, and V (xn) = 0.

The eigenvalue m =—i— is the same as Knowles’

solution for the free crack surface problem.

§2. The Interpolation Theorem for the function
with singularity

In the previous section, the nonlinear bound-
ary value problem

dive=f inl, wu=0 ondfd

has the asymptotic solution u ~ r% V(6) near
crack tip. This implies that grad u has the singu-
larity of order r-%. Our main subject is to investi-
gate the convergence rate of the approximate so-
lution of the boundary value problem, which is
obtained by Galerkin finite element method. In
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this section, we will introduce some mathemati-
cal concept and Babuska’s finite element interpo-
lation theorem!18] for singular function. These
are necessary for the error estimate of the next
section.

We will consider the bounded set 2 in the two
dimentional Euclidian space. The boundary of §2
is denoted by 39 and Q = QU3Q. We will use
multi-index notation x = (x;, x,), | x II> =x3 +
x5, dx = dx,dx,, iy,i; >0 li t=i; +i,. The class
of infinitely differentiable function on £ will be
denoted by C™(£), and the subspace of such
functions with compact support in Q will be de-
noted by c Q).

Lebesque space and its norm is defined as

La(@)={u: Ilullsz(m=L lu Pd <)
(1)

Let us introduce the Sobolev spaces W5 with
k = 0, an integer, with the norm

k
2 =
i k) = & 1ulys ) (2.1)

where

P ey = 2 fn [Du))*dx  (2.2)

and

3 lil
D= ———— (2.3
x| ax?

The space WX is understood to be the comple-
tion of C”(2) w.r.t. the norm (2.1). In the same
way fv’;(ﬂ) C WX will be the completion of
C” () w.r.t.norm (2.1).

In order to deal with singularities which are
induced by the crack tips, we will introduce the
weighted Sobolev Space.

Let OF be the circles with the centers in the
verticles Py, ..... P, of polygonal curve and radii
K>0,ie.

= {x:lIx-PlI<k}

in addition we shall assume that the circles 01.2"
are disjoint.

Pi

Fig. 4 Domain with corners

Let a vector § = (B, B2, ....., B,) , B; real be
given.
we shall write g2 Yif §; 2 vi fori= 1, ... ».

Let us introduce the function p# with the fol-
lowing property

v
(1) p=1onQ- U O

=1
() p(x) = (r;(x)k~') onQNOK?
where r; (x) = [l x - P ||

(3) 0<c@<pEx)< 1 on Q-U P

i=1
_ v
(4) p has all derivativeson Q- U P,
i=1
With above preparations, we will define the
weighted Sobolev space with the norm

k
il =Y luf & (3.1)
Wis %0 Wap@)
lul? Wk = > {D"u(x)2 pﬁdx} 3.2
2,8 i=8 Jo

The space W" 28 will be denoted to be the com-
pletion of C=(£) in the norm (3. l) Similarly
W" 5(§) will be the completion of C™ (1) under
norm (3.1). Sometimes we will write Hg instead
of W; 5(82).

Next we will triangulate the domain §2 by a
finite number of arbitrary triangles such that any
two triangles are either disjoint or have a com-
mon vertex and/or common side. Let us denote
by I, (2) the space of all continuous function on
which are piecewise linear on each triangle 7 and
vanish on 9§, where ~ denotes the meshsme
parameter, 0 < h < 1. Obviously T, C W2 The
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following interpolation theorem in weighted
Sobolev space is given by Babuska.[18]

Theorem 1 The function u(x) is defined on the
domain £ such that

hull, <0 4.1
2»“s
where
Oy
Kg 2(2-—2——s ..... ,2-—2—-s) 4.2)

then for +; +% +1- %2 0, there exist a func-
tion v € I',(§2) such that

'y - <
7 vIlHﬁ S CQomv (5.1)

where

8

u= min (1,7, + +1-ﬂ)>0 (5.2)
,~ 2 2

B=(B,..... ,B)

and Cis a constant independent of A.

Proof We will need the meanings of 7,,6;, 0; of
Eq. (5.2) in the next section. We will introduce
the outline of the proof given by Babuska here.
The proof is devided in a few steps. We will con-
sider the single corner case only.

(1) Let A, (r) € C(0, ) be such that

N ={1 for 0 r<p
p 0 forr>2D

(2) for h sufficiently small and ¢ > 0, let us in-
troduce the function u;, = AcppYu. Let us esti-
mate the norm | u , where

Nt g

B = (B:,0.....,0). Wehave

Il up ”Hﬁ(n)

ou ou
f2cn (G- ") (a—h)2 +up’) pPdx
X 2

0 +
écl{fofﬂ[(—z,x—“l)z (o)) oP*

F+2
+f02Chu2p ! 7dx} (6)

1

where g = [8;, - 2,0, ....., 0]

then
la Wy < G (el o
2
F e o) (7.1)
where
Ky = (2-04,0,....,0)
(4-0,,0, ....0) (72)
and
_B
U=yt _% (8)

(3) Taking C large enough and denoting uj, =
u(l - \cn)PY, we may construct a piecewise line-
ar function vE€T’,, which coinsides with 4y, in the
vertices of 7’s. Obviously u;, - ¥ = 0 in a neigh-
bourhood of the vertex P;. So we need not worry
about the neighbourhood of crack tip in estimat-
ingll u, - v and we will get the estimate

Ha ()
- v 1, S C: 08" 9)
where
w=min (1,7, +B—21+ 1 -2 (10)

(4) Adding estimates (7) and (9) with the aid of
triangular inequality, we will get estimate (5), i.e.

ho"u- v

= 1 AcnpTu + up” - Nenpu- v IIHﬁ

S Wt lygy + Wit = vy

= Ch*

where u=min (l,——+ vy + 1 -%‘—

Now we will consider the value of u which gives

the maximum convergence rate under the condi-
tion v = 0. When u < 1, the minimum possible
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value of g, gives maximum w. In our problem
u ~ r*, so taking into account of Eq. (7.2) mini-
mum o, which gives meaning to estimate (7) is

01=;—+e e>0 (11)

§3. Error estimate for the Finite Element Galerkin

Approximation.

Our problem is

Aw) =0 in (1)
u =0 on 02 2)

where A (u) = -divo(u) + f

In Galerkin form, instead of directly solving the
system (1) and (2), we are given the variational
boundary value problem of finding u € H such
that

<A@W), v>=0 Vver (3)

where H = W1 and < - , - > denotes bilinear form.

Eq. (3) is rewritten as
Vven
4)

Let us first show that the nonlinear operator A:
H - H* in Eq. (1) is hemicontinuous and strong-
ly monotone. Then we will investigate the con-
vergence rate of the Galerkin approximation
solution with the aid of these quantities.
Definition 1 A mapping A: H—> H ¥ is said to be
hemicontinuous at a point xo € D (4)if for any
vector x such that

<o(u),grad v >+<f, v>=0

X0 t+tx €D (A)and for 0 <t <a (@>0)
<A (xg ttx)-A(x9),y>, >0
ast >0 VyeH (5)

Definition 2 A mapping A: H - H*is said to be
strongly monotone if

<A(x+h)-A(x),h>
2 Ay (R (6)

for any x, x + h €D (4) where v (t) is a real val-
ued nonnegative function defined for 2 0 and

that y (£) > % as t > e gnd Y(t) =0 implies ¢ =0.
Example of such a function is ¥ (t)y=ct,c >0.
If the mapping A is hemicontinuous and
strongly monotone at every point of the domain,
then it can be shown that the system (1), (2) or
system (3) has a unique solution. (See Vainberg
[19]. §18.6). Now we will show that our operat-
or A satisfies both conditions.
[Hemicontinuity]
Let v =uqy +tu and

<A (up +tu) A (ug), w>

< +%|V v,

-(1 +% [V ug lz)uo,a, w, o >

< vxa —u()ra: W, a>

b

+?<H7vl2 V,o - Puo 2 Ug s W >

‘a

linear term is
<V, g ~Uosgy Wig > =f (tu, ,w,  )dx
Q
= 14
tfu,aw,adx—>0 weEH

For nonlinear term, we will replace

u - uxa v’a usd+v:a
Q 2 2
= Z,a+X,a
u} —v’ u’ +v!
v,, = o o« a o
2 2
=-Z,oatX q
Then

<|Vv|2 V,a—IVuOI2u0,a,w,a>

<( vrf + vyg)(_Z:l +le)
‘(uo,% +u0;§)(Z,l +X,1),w, >
+<(V:% + V,%)('Z,z +X,2)

_(UO)% + UO,g) (Z)'Z +X72): W,2 > 7

2 2 2 2
<_(v!1 + v:2 +u031 +u0)2)X;l: W;l >
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SA<Z X+ Za X0 X0, W, >
+<-(VT+ V5 +upl +ue 3z, w,,>
_4 <Z¥2X’% +Z’1X»1X’2’ w:2 >

rh

Now in our problem u,, ~ 7 " .so using.

fdxldxz =frdrd6

even in the nera crack region

t
lim (Z,ar'/‘) = lim (-—= u,ary‘) =0
t—0 t»0 2

Remaining term is, after multiplied by r* finite.
So

lim <A (UO + tll)-A (UO), w>=0

t—0
VweH (7)

This means that A4 is hemicontinuous.
(Monotonicity)

<AW)-A(v),u-v>
=<ow)-o(v), grad(u-v)>

=f {(l +% 1P ul®)u, olt,a
Q

—[2+%-(|Vu 41 Pul®)] 4y vra
+(1 +% lrvi® v, v,a)}dx

. b 2 = _vi?
linear term "fn (u,a - Vra) dx lu v'wlz(n)

nonlinear term

b

= 2wirudy -@iruderiend

(u,1V,1 +u’2 V,2)+(V’% + v.%)z
b 2412
=2 (fuirud-0i )

+2 Wl +ud) i+ v,3)

iU v, i Ay WUy v,y U, Y,0)

0 (s rud) -+ D

tirui+vivd)

{1 -7, + w2 -v.2)°} ]

So nonlinear term is positive over the whole
domain for b > 0. As a consequence

<oW)-o(v),grad(u-v)>
2 klu-vi, (8)

2

In case of Dirichlet problem where the boundary
condition ¥ = 0 on 9£2, the following Friedrich’s
inequality [24] holds.

f uidx < cf (grad u)?dx 9)
0 o

So we can conclude that
<o()-o(v),grad (u-vr)>
> _ 2
2 Kllu vnw12 (10)

From the hemicontinuity and strong mono-
tonicity of our operator A, we have shown that
the unique solution exists for our problem. In
addition, we can show that the solution u* is
bounded in W; sense as following.

F lO,f > =K 1
rom (10) orIIuIIW.2 r Ilfllw2

<o), gradu>+<fiu>
ZKlully,, + <fiu>

2

Z Klullys = 0fl, Nlull, >0

2

but if u* is the solution of Eq. (4)
<o¥),gradv>+<f,v>=90

Compairing the above two conditions, we con-
clude that

hutlly, <7 =g 170, an

This implies that the magnitude of the solution
u depends on the data f.

From above discussion, if we take || u ”w‘ =
2

2 .
—K—N 7l Wi obviously

<A(u),ua> >0 (12)

Taking into account that the operator A4 is hemi-
continuous and strongly monotone, Inequality
(12) implies that our Galerkin system (= finite
element discrete equation) has also a unique solu-
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tion. [see Vainberg [19] Lemma 23.1, Remark
23.1}

Next, we will devide our region {2 into tri-
angular finite elements denoted by mesh para-
meter k. Let us consider the continuous function
which is linear in each triangular region. Such a
family of function I',, belongs to the finite di-
mensional subspace of the space H.

We will seek u;, € I';, which satisfies next
equation.

<o(uy),grad (Vy)> + <f, ¥V, > =0 (12)

This equation is a finite element Galerkin equa-
tion. Our main problem is to estimate the error
between u = u* of the solution of Eq. (4) and
uy, = uj of the solution of Eq. 1 (12) under some
suitable norm.

Let us introduce arbitrary W, € I, then
W, -u, €I} andif u, uy, is the solution of Eqgs.
(4) and (12), respectively we can derive the fol-
lowing

<o (u) -0 (up), grad (Wp -up)>=0
Vw,€D, (13)

From Eq. (13) and the monotonicity condition

(10),

Kllu-uplly,
< <o (u)-o0(uy), grad (u-up)>

= <o (u)-0(u), grad (u- w,)>

S§[3{1(§+ i +ui +uhi

+tuh}) Z,, W, |
+a41x32,w,|
+>|(% +u,l w3 rul o, +tup ) Za W, |
+41X32Z, W, l} dx

u+u,, Uu-up

WhereX=———2———,Z= D) , W=u-w,

Now we will apply Holder’s inequality and get
following results:

Kl =up 15

b 2
<SS {Grudrudvud ruday
x(Z31+23)
r16(xt 2} +X;‘Z§)}pﬁdx1"’=
: {f | pw 17 p-Bdx] %
a

Sgp w un) lu=up Il 1 Nl = wy, s

V wyp €Ty, (14)
Where
&g (, up)
_ { 2 2,2, 2 2 \2
Sup |(b +u,l+u72+uh’l+uh32)
+16 (X1 +X3) 17} % (15)
Slu- <
lu-uyll wh Cgp (U, up)
int |u-w, IIH.B (16)

Substituting the previous result, estimate (5) of
§2,

hu-un s < Cp (u,up) bt (17)

Where

= i -8 o
u—mm(l,3 +1-5) (18)
Estimate (17) gives the convergence rate of the
Galerkin approximation solution of our problem,
under the condition that gg in Eq. (15) is bound-
ed and u in Eq. (18) is positive. In Eq. (15)
B 21 is necessary for the boundedness of gg-In

§2 we know that o =L+ €, € > 0. So the maxi-

2
mum admissible g in Eq. (18) is
u=%-e, €e>0 (19)

The term —%in Eq. (18) is the penalty in the

interpolation error estimate, as the problem has
the singularity grad u ~ r%. On the other hand,.

the term -g- is the penalty in Galerkin approxi-
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mation which is due to the nonlinearity and
singularity coupled effect in the problem. Note
that in linear crack problem the convergence rate
of interpolation error is the same as Galerkin ap-
proximate error. But in nonlinear problem the
convergence rate becomes worse in Galerkin ap-
proximation than in interpolation. For this
point, careful investigation will be necessary by
numerical experiment.
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