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Numerical Analysis of Inviscid Compressible Flows about Wing-Fuselage

Combinations based on the Euler Equations*

Tomiko ISHIGURO**, Satoru OGAWA**
and Keiko OGUCHI**

ABSTRACT

A numerical procedure based on the Euler equations for analyzing the compres-
sible inviscid transonic flow about a wing-fuselage combination is presented in this
paper. In order to treat precisely boundary conditions on the combinational surface
and at infinity, the exterior of the wing-fuselage combination in physical space is mapped
into a rectangular parallelepiped in a computational space and then a uniform grid is
generated there. The Euler equations are solved by the finite volume method using
the Runge-Kutta type scheme of the second order accuracy and the local time step
technique. Three examples are presented to show the utility of the numerical procedure.
Numerical results obtained by the procedure are compared with experimental results
and numerical results by the NAL utility code YOKUDO-P based on the full potential
equation, and it is shown that the obtained results are in good agreement with the ex-
perimental data.
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various aircraft configurations and flying condi-
I. INTRODUCTION tions. In the near future, these computations will
be made possible even for the complex configura-

In designing either transonic or supersonic  tjons owing to remarkable development of com-
aircrafts with the maximum efficiency under the puter performance. For numerical analysis of

minimum energy consumption there is a strong  fl5w ahout a wing-fuselage combination, several

lift, pressure distributions on surface, etc. for have been developed, but they have inherent

limitation that isoentropy property obscures the

* Received April 2, 1986 position and the strength of a shock wave. Then,
** Computer Center the numerical analysis based on the Euler equa-
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tions is regarded to be attractive. Favorably, re-
cent progress in computer performance has made
it possible to compute the flowfields about the
combinations by solving the Euler equations.

Rizzi®), Schmidt-Jameson-Whitfield®):5), and
Agarwal-Deese®) have solved the Euler equations
around the wing-fuselage combinations by the
finite volume method. In their analysis, artificial
viscosity of filter type is used in order to keep
the stability of computation, that is, to suppress
appearance of unwanted phenomena in the pro-
cess of capturing a flow discontinuity. Their re-
sults are equally better than that of full potential
equation with regard to the position and the
structure of shock wave. Their computations are
performed by using the grids made by Eriksson”?,
Yu®), and Chen-Caughey-Verhoffg), with num-
bers of grid points 64 X 14 x 14,80 x 16 x 16,
and 88 X 16 X 18, respectively. Those numbers
of the grid points are too poor to make sufficient
comparison with the experimental data of wind
tunnel. They have compared the pressure distri-
bution with experimental data only on wing
surface but not on fuselage surface.

In this paper we capture the flowfields about
the wing-fuselage combinations by solving the
three-dimensional Euler equations using the
finite volume method combined with the time
integration of Runge-Kutta type and the local
time step technique. Nature of artificial viscosity
added to the equations is the most essential
subject in solving the Euler equations. Consider-
ing that the dispersion term of filter type used by
Rizzi et al. makes the solutions too smooth, we
use the artificial viscosity of third order, which is
derived taking account of the eigenvalues of
amplification matrix of scheme, and the forth
order dissipative terms of filter type. We use
the computational grid of 176 X 24 X 32 points
generated by the NAL utility code YOKUDO-
G119 applying analytical mapping technique.
Numerical simulations are carried out for three
wing-fuselage combinations, and the obtained
pressure distributions are compared with the

results of full potential flow by the NAL utility
code YOKUDO-P?) and the experimental data
not only on wing serface but also on fuselage
surface.

This paper is a summary of Technical Report
of National Aerospace Laboratory TR-896 in .
Japanese, except that this paper includes numeri-
cal results of full potential flow in TR-881 for
comparisons.

II. GOVERNING EQUATIONS

The three dimensional Euler equations in con-
servative form are written in Cartesian coordinates
as follows.

oU/dt + OH*/ox + 0HY /oy + 0H?/3z = 0

(1)
where the variables U and the fluxes H* H7,
and H? are defined by

P pu
U= |P4| g |t

pv ’ puv ’

pw puw
pv pw

Hy = pvu Hz = pwu
pv> + pl”’ pwy
pwW pw* + p

The usual notations are used with u, v, and w as
the velocity components, p as the density, and
p as the pressure.

The energy equation is, assuming steady flow
of total enthalpy constant.

p = {(-1Mp[1/2+1/{(-DM2}~(1/2)q*].
Here 7 is the specific heat ratio (= 1.4), and the
following relations are used:

q2 =u2 t V2 +W2>q§(u» v’ W),

¢ =Tp/p,M=qfc, Cp = 2{p —1/(YM2)},
where M is the Mach number, ¢ the sound veloc-
ity, and Cp the pressure coefficient, respectively.

The subscript (o) denotes the value of free-
stream.
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The governing equations of our computation
by the finite volume method are the following
ones in integral form deduced by the Gauss diver-
gence theorem from Egs. (1).

©/00) [ffy UdV + [f¢ (H*n) dS =0 (2)

where H = (H*, H” | H*), Hn = H*n* + P W
+ H*n?, and n = (n*, n”, n?). The V, S, and n
denote the volume of an arbitrary cell, the closed
surface of the cell, and the unit outer normal
vector of the surface, respectively.

M. COMPUTATIONAL SPACE

A grid is generated by the code YOKUDO-G,
which is based on the analytical technique and is
constructed by a series of mappings; the con-
formal mapping proposed for flow in a wind
tinnel by Caughey, x +i0 = 1n {1—cosh (¢ +in) }
(see reference'V for detail), is used as a main
mapping. Let us consider a symmetrical wing-
fuselage combination, and locate its symmetrical
plane on x-y plane of z = 0 in physical space (see
Fig. 1). Since we treat only the case without
biased flow, the computations are performed
only in z > 0 region. In order to treat precisely
the boundary conditions on the wing and fuse-
lage surface, symmetrical plane, and at infinity,
a computational grid is generated to fit to those

Fig. 1

boundaries. Fig. 1 shows the correspondence be-
tween the physical space and the computational
space. The computational space is defined so
that the integer values of coordinate point (X ,Y,
Z) coincide with the coordinates of grid space
(I, J, K). Now, our problem to calculate flow
about the wing-fuselage combination under the
provided Mach number M_ and angle of attack a
is summarized as follows: Obtain an asymptoti-
cally steady solution of Eqs. (2) that satisfies the
whole boundary conditions (slip condition, in-
finity or far field condition, and cyclic condi-
tion) on the surface of rectangular parallelepiped.

IV. NUMERICAL PROCEDURE

The three-dimensional Euler equations are
solved by finite volume method combined with
the time integration of Runge-Kutta scheme and
the local time step technique. Here, we briefly
describe the numerical methods used in the
following (see reference'? for detail).

Numerical Scheme

For each hexahedronal grid cell in physical
space, the governing equations (2) are appro-
ximated using the mean value theorem as

Vijk QU0 j g+ 8 [H-S)ijkx =0, ?3)

Correspondence between physical space and computational space

This document is provided by JAXA.



4 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-896T

5(H-S);jk=Hper,jk* St jk—Hrjk * STik

*Hiyoke Styvip—Hisk i1k

tH;jK+1° Szz,j,Kﬂ— K" Sfj,k

4)

where the suffices i, j, and k denote the positions

corresponding to X = I+1/2, Y=J+1/2,and Z =

K+1/2, respectively. V denotes the volume of

the cell, and SX, SY, and §% are the area vectors

in the direction of X, Y, and Z, respectively (see

Fig. 2). In the finite volume method, the value U

at the center of the cell is approximately cal-

culated by integrating Eqgs. (3) in time direction
with a method described in the next section.

The Runge-Kutta Integral Scheme

We use the following Runge-Kutta scheme®
of the second order accuracy. Let the solution of
N step, Uﬁlj,k, be known, then the solution of
N + 1 step is calculated with the following pro-
cedure.

UW=yN - (ayv)s [HN-S]

U@ =uN — (a2vy 6 [HY-S) +6 [HD- 8] }

OV =yN _ (at/2v) (s [HN-S] + 6 [HD- 5] }
)

4 (i+1,j.k)
-9

17T X

Fig. 2 Grid cell and area vectors in
physical space

where HO = H (UW), (L = 1,2), and HY =
HUM).

Local Time Step Technique

The aim of this paper is to obtain a steady
flow, and the local time step technique is applied
to increase the rate of convergence of a solution.
From the von Neumann’s analysis of stability for
the above scheme, the condition of stability for

an increment of time is given as, (see refer-
ence'?))

= (1+1/M (@5 +@Y+0%)2+ ((1-1/M) (@F+QY+Q%)* + (4c* /1) [S] Y12

(= A7),

where Of = |¢-S*|, (k= X, Y, Z), and [S] =
§Y.8X + §Y.gY + §2.8Z7 + 2(15X-8Y| +
ISY .82} + |§Z.8%X [). In the local time step
technique, for each grid cell AT is calculated and
At;jk = CaT X AT j i (the coefficient Caor ~
1) is used in Egs. (5).

Artificial Viscosity and Numerical Dissipative
Term

If computation for one step is repeated by the
above scheme, numerical oscillations may gener-
ate in regions of large gradients of physical
variables, such as a shock wave region. To damp
the oscillations we use the third order artificial
viscosity and the forth order numerical dissipa-
tive terms. Adding the artificial viscosity to
UM of Egs. (5), we obtain

oM = OV v (arax) W oazaxauXex1VauN/ax) (ax)y?

+ (at/a)\Ya/aY(aU a1V aUN/aY) (AY)? 6
+ (At/AZ) N 3/aZ(1dU%/0Z Y aUN/0Z) (AZY
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where )\X, 7\Y, and A are the coefficients of
artificial viscosity of O(1), and U* = (Ak/V)
x @S** + vS* + wsk?) (k = X,Y,Z). These
U¥ are the basic variables whose polynomials
constitute'?) the eigenvalues of amplification
matrix of scheme presented in the above section.
Finite difference approximation for a part of X
term in RHS of (6) is written as

{8/0X (1aUX/aX |aU/ax)} f‘; P~

X _ X _
{u Ul- I(Ui+1 i)

i+1

X X
— U} = U1 U; = U Yo g
Xx X X
Sije ~ WDGLT * STk

The other components in.Y and Z directions are
also approximated in finite difference forms
similar to the above.

Further we use numerical dissipative terms to
make the computation more stable. The numeri-
cal dissipative terms are added to the solution
VL o

UN+1 = U*N"'l . EX (a4UN/aX'4)(AX)4
— ¥ (3*UYar*) (AY)?
— & (*Usz*) (42)°,

where € (k = X,Y,Z) are coefficients and the
finite difference approximation such as the
following is used. "

(0*U/3X*); = (Upp — 4Ujsy + 6U; — 4U;
+ Ui_p)/(AX)*

In computation we set A* = 0.2, € = 0.01,
(k =X, Y, Z) from our experience.

Boundary Conditions

In the finite volume method, the boundary
conditions are included in the expression of the
flux H (Egs. (4)). Each cell has six faces, and if a
face is shared by two cells, then the value of H
on the face is given by the average of ones at the
center of two cells.

On the cell face coinciding with the body sur-
face or the symmetric plane, the vlaue of H+S¥
(k = Y or Z) is obtained from the slip condition;
for example on the face of K = 1, the flux in Z
direction is obtained as

0 VA4
pSZx S
H-$%= zy | » where st = |s%Y |,
pS SZZ
pSZz

from the condition q-SZ = 0. Here p is calcu-

lated by solving the following equation'?):

ap/oZ = (1/1S%1?) [0 {(¢- 35%/0X) (q-S¥)
+(g-38%3Y) (q-8Y)} — (8% -5%)op/ox
—(82-87)ap/ay]

As the singular line before the nose of fuselage
in physical space corresponds to a part of K = 1
plane in the computational space, on the cell face
coinciding with this, we impose H -8% =0.

A cell face on J = KY corresponds to either
the wing surface or an inner face in physical
space, and on the latter face the cyclic condition
is imposed and the flux is given by

[H'SY] iJ=KY .k (1/2) (H; j=Nv k

Y
+ Hivj=ny, k) Sig=kvk

where i* = KX+ 1 — i, and NY = KY — 1 (see
Fig. 1).

On the cell face of the upperstream boundary
the freestream condition H = H_ is assumed. For
the downstream boundary, the flux H is calcu-
lated by the following p and ¢, which are ob-
tained from the introduction of the Riemann
invariants (R) for a one-dimensional flow normal

to the boundary of grid after Jameson-Baker!®,

p=1{(Y—1) Re — R )/(4ce)}* O~V p,
q=qe* {(Re+Rw)/2—'7' geln
where

c2=(Y=1D[1+2/{(v- M2} -q}]/2,
Re=qe * 1 +2,/(Y— 1),
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R_=q-n —2./(Y-1),
~ X X
n = Skx jxl|SKkx,jkl

and the suffix (e) denotes the value extrapolated
from the interior cells adjacent to the boundary.

V. NUMERICAL RESULTS

Using the abovementioned procedure the
numerical experiments were successfully per-
formed for several wing-fuselage combinations
under various (a, M_) conditions, and it took
about 1.5 ~ 4 hours for each case on FACOM M-
380 computer. The grid was generated by the
code YOKUDO-G, and in order to increase the
efficiency of computation we prepared three
successively refined grids for each case. At first
the computation was performed in the coarse
grid under the initial condition of freestream
flow, and it was succeeded by the computation
in the medium grid. At last, using the results

ONERA-ME6 & CYLINDER
LOW-WING

GRID

CALCULRTION
176%24x32

ISOBARRIC CONTOURS

WING 4CP=0.075
CYLINDER ACP=0.04

---- SONICLINE

interpolated in the fine grid (176 X 24 X 32) as
the initial flow, the asymtotically steady solution
was obtained after several hundred cycles. In this
paper we show three numerical examples.

1) Combination of Cylinder and ONERA-M6

Wing

The computation was carried out for the
ONERA-M6!? wing attached to the lower part
of cylinder at M_ = 0.84 and a = 3.06°. The grid,
and the isobaric contours and sonic lines on the
surface of wing-cylinder combination are shown
in Fig. 3. The result of full potential computa-
tion is also shown to compare with that of the
Euler equations. The triple shock wave which is
the phenomenon peculiar to transonic flow
around a swept wing is captured by both equa-
tions, however, it is known that the forward
shock wave located in inner part of upper wing
surface, which is the oblique shock wave from

/

FULL POTENTIARL EQ.
EULER EGS.

=
[

AN

M.=0.84, ¢=3.06"

Fig. 3

Grid and isobaric contours on surfaces of cylinder and

ONERA-M6 wing combination
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Numerical Analysis of Inviscid Compressible Flows 7

supersonic to supersonic, is captured more clear-
‘ly in the result of the Euler equations than that
of full potential equation. The three-pronged
part of triple shock wave is also clear in the result
of the Euler equations.

2) RAE-W, B, (0)0 Wing-Fuselage Combination

The computation was carried out for the y-
symmetrical RAE-W4 B;(0)0 Wing-fuselage com-
bination at M_ = 0.8 and @ = 0°. The grid on the
surface of combination is shown in Fig. 4. Fig. 5
shows the pressure coefficients on surface of
wing, and the present results are compared
with the experimental data given by Treadgold
et al.,'S) and with the numerical results by the
full potential code YOKUDO-P. In this case the
good agreement between these results are ob-
tained by reason of no shock wave in flowfield.
Also, Fig. 6 shows the comparison among three
results with regard to the pressure coefficients on
the meridians of the fuselage surface. It is clear

ce"

-0.4f

Ce
o o
P q'..n---ﬁ-mh
-~ a.
/pr' ROOT -,
0.0 — 1 - ;Eh‘_;

\

w]

i ;..----...--o----
3 ..‘l--
3 -'ff/ﬁa I

[« 8
0.4# ( B
45 25.00% 2=0.45""
L

(= I

0.0

i
£

RAE-HgB, (010
M,=0.8, =0’

* PRESENT CALCULATION
(EULER E@S.)

—-—NAL YOKUDO-P
(FULL POTENTIAL EQ.)

o EXPERIMENT( TREADGOLD )

e ———

Fig. 5

that the present results agree well with the ex-
perimental results in almost all, however, in full
potential results the difference from the experi-
mental data near the leading edge spreads from
the junction of wing-fuselage to the symmerical
plane (8 = £90°). Treadgold et al.'®) have shown
five experimental data besides the present case,

CALCULATION
176%24%32

RAE-N,B,(0)0

Fig. 4  Grid of RAE W, B, (0)0 wing-fuselage
combination

Cp-distribution on wing surface of RAE Wy B, (0)0
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and our results by the present numerical pro-
cedure based on the Euler equations agree well
with the experimental data (see reference!?)).

3) NAL-720211 Wing-Fuselage Combination

In this section we have solved the flowfields
around the NAL-720211 wing-fuselage combina-
tion that is similar to the real aircraft at M_ =
0.792 and a = 2.462°. The grid is shown in Fig.
7. Figure 8 shows the isobaric contours on the
surfaces of wing and fuselage, where the triple

CALCULATION
 176%24%32

Fig. 7

NAL 720211
M,=0.792, =2.462"

ISOBRRIC CONTGURS
WING ACP=0.085
FUSELAGE ACP=0.0S

shock is observed on the upper surface of wing.
Figure 9 shows the result of present computation,
that by full potential code, and experimental
data of NAL'S® with regard to pressure distribu-
tions on the surface of the wing. From the
figure, the oblique shock wave near 20 ~ 40%
chord, which is the shock wave from supersonic
to supersonic, is clearly calculated by the present
procedure and is caught in experimental data but
cannot be caught by full potential code. For the
strong shock wave from supersonic to subsonic

Grid of NAL-720211 wing-fuselage combination

Fig. 8

Isobaric contours obtained by using the Euler equations
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Fig. 9  Cp-distribution on wing surface of NAL-720211
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Fig. 10 Flowfields of y-z velocity vectors, Iso-Mach contours,
or Isobaric contours on four cutting planes

near 50 ~ 80% chord, the pressure jump of our
result is larger than that of experimental data,
and this discrepancy is caused by the effect of
the separation of flow near the boundary layer.
The visualization of the result is the most im-
portant subject in the computation of three-
dimensional complex flowfield. By our com-
putational code the flowfield on an arbitrarily
cutting plane can be visualized, and Fig. 10
shows the projective velocity vectors, iso-Mach
contours, and isobaric contours on the cutting
planes defined by y axis and the broken lines.
From the figure we can easily observe a double
shock wave inside of a sonic line on the z =
constant plane and vortex flow on x = constant
plane in downstream region of the trailing edge,
etc.

VI. CONCLUSIONS

In this paper we have presented a numerical
procedure- to solve the three-dimensional Euler
equations around wing-fuselage combination in
transonic flow. The computational grid was

generated by the NAL utility code YOKUDO-G,
and the Euler equations were solved by the finite
volume method combined with the Runge-Kutta
time integral scheme of the second order accu-
racy and the local time step technique. The third
order artificial viscosity, which was derived tak-
ing account of the eigenvalues of amplification
matrix, was used to stabilize the numerical
oscillation.

We have executed the numerical experiments
for several wing-fuselage combinations under
various conditions to examine the validity of our
procedure, and in this paper the results of three
cases have been presented. It is clear that our
result in each case is adequate comparing with
the experimental data of wind-tunnel or the
numerical results of full potential equation. Es-
pecially, we have clearly captured the oblique
shock wave from supersonic to supersonic which
is obscure in the numerical calculation of full
potential equation.

Though we have shown the method to solve
the Euler equations, the Navier-Stokes equations
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12 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-896T

can be also solved by the similar procedure in-
cluding the viscosity terms and the equation of
total energy. As the grid was still coarse in our
computation, the detailed structure of vortices
near the wing tip could not be captured. How-
ever, in a year or two more precise computation
will be performed using a super computer, and
then the more detailed structure of flow around
such a large scale body as a wing-fuselage com-
bination will be easily analyzed. Considering the
scale of wing-fuselage combinations and the limi-
tation of computer advancement, the numerical
analysis based on the Euler equations will play a
very important role in the development of air-
crafts in the near future.
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