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1. INTRODUCTION 

 

ALOS (Advanced Land Observing Satellite) is, as the 

name suggests, primarily aimed at land observation, but it 

is also expected to take an important role in monitoring 

marine environment. In the present paper, applications of 

ALOS-PALSAR (Phased Array L-band Synthetic 

Aperture Radar) to monitoring the coastal waters are 

described with special emphasis on (1) detection of small 

ships by a novel technique based on CFAR (Constant 

False Alarm Rate) applied to multi-look cross-correlation 

coherence images, (2) detection of underwater laver 

cultivation areas by polarimetric entropy, and (3) 

waveheight estimation of range-traveling ocean waves 

using the polarization ratio. 

 

2. SHIP DETECTION BY CFAR ON MLCC 

 

For surveillance of piracy and ships responsible for oil 

pollution, as well as fishing control and navigation, 

several algorithms have been developed to detect, classify, 

and identify ships by SAR [1]-[5]. In the previous paper 

[6], we proposed a ship detection method from coherence 

images derived by cross-correlating multi-look SAR 

images. One of the problems in this MLCC (Multi-Look 

Cross-Correlation) algorithm is that it is difficult to set an 

appropriate threshold coherence value. The problem is 

overcome by applying CFAR to the MLCC coherence 

image.  

 

2.1 Algorithm 

 

The MLCC-CFAR algorithm is illustrated in the block 

diagram of Fig.1. An inter-look coherence image is first  

produced by cross-correlating look 1 and 2 images from 
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using a moving window, where C is the inter-look 

correlation coefficient, A1 and A2 are look 1 and 2 image 

amplitudes respectively, and the angular brackets indicate 

taking an ensemble average. The size of the window for 

averaging depends on the size of ships of interest. For the 

present study, it was found the optimum size was 9 x 9 

pixels.  

  The probability density function (PDF) which fits best to 

the coherence image is then sought based on the Akaike 

Information Criterion (AIC) [7], and the parameters of the 

PDF are calculated by the maximum likelihood estimation 

(MLE). Numerical integration is then carried out to decide 

the threshold value, and using this threshold value the 

coherence image is classified into 2 classes.  

 

2.2 Experimental Description 

 

To test this new algorithm, we carried out the experiments 

by cruising 3 different fishing boats of their lengths 

ranging from 8 to 15 m simultaneously with PALSAR 

observation in the Tosa Bay, Kochi, Japan during the 

Cal/Val period in 2006. The cruising speed was 8 knots 

(4.1 m/s) and the cruising direction is close to the range 

direction (8 degrees off-set from the range direction). The 

data were acquired in FBS 21.5, FBS 34.3, FBD 41.5, and 

PLR 20.5, where FBS, FBD, and PLR stand respectively 

for the Fine Beam Single, Fine Beam Double, and 

PoLaRimetric modes with the numbers indicating the off-

nadir angles. The first 2 sets of data, where all 3 boats 

were visible, were used for the present study. The azimuth 

and slant-range resolution cells were 4.1 m and 4.7 m 

respectively. 
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Fig. 1 Block diagram for MLCC-CFAR algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The images (a) and (b) correspond respectively 

to the amplitude and coherence image after applying 

MLCC to the FBS 34.3 data. 

 

The weather condition was such that the significant 

waveheights were 0.49 m and 0.35 m at the FBS 21.5 and 

34.3 data acquisition times with the corresponding wind 

speeds 2.0 m/s and 1.0 m/sat the 10 m height. 

 

2.3 MLCC Coherence Images 

 

Fig.2 (a) and (b) show the HH-polarization amplitude 

image of the FBS 34.3 data and its MLCC coherence 

image respectively, where the white circles marked Ib, IIa, 

and IIa  indicate the types of boat of length 14.6 m, 10.7 

m, and 8.0 m respectively. The image marked “CR” at the 

centre-right is a triangular trihedral corner reflector of 

short-sided size 1.98 m (the theoretical Radar Cross 

Section (RCS) of 30.6 dB) placed on the beach for the 

purpose of PALSAR calibration. The image size of Fig.2 

(a) is approximately 3.8 km in range direction, and 2.1 km 

in azimuth direction. 

 

 Fig.3 (a), (b), and (c) are the enlarged coherence images 

classified with threshold parameter N=2, 4, and 6 

respectively, where N is defined by 
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<C > is the mean coherence magnitude, and C is the 

standard deviation. It can be seen from Fig.2 (a)-(c) that 

the noises surrounding the images of boats decrease with 

increasing N, but the image of Type IIIa boat is 

thresholded out when N = 6. The best threshold may then 

be considered as N = 4 or 5. Thus, it is difficult to 

automatically determine the optimum threshold parameter 

for individual sub-scenes. To overcome this problem, the 

CFAR technique can be applied to the MLCC coherence 

images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The image (a), (b), and (c) are the enlarged 

coherence images after thresholding with the 

threshold parameter N=2, 4, 6 respectively. The image 

(d) is the coherence image after MLCC-CFAR. The 

white circles indicate the detected boats, while the 

white square implies an undetected boat. 

 

2.4 Results of MLCC-CFAR  

 

The new technique of MLCC-CFAR was applied to the 2-

look coherence images of FBS 21.5 and 34.3 data 

following the steps shown in Fig.1. It was found that, for 

both the data sets, the amplitudes of individual multi-look 

images follow Weibull distribution [8], and the coherence 

image is described by the gamma distribution [9] 
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where b is the shape parameter, and  is the gamma 

function. This result was found empirically and 

theoretical derivation is a subject of further research. The 

threshold coherence value can be found by setting the 

initial false alarm rate (FAR) in the following integral. 
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The FAR value was set as 1x10
-4

 and 5.0x10
-3

 for the FBS 

34.3 and 21.5 data respectively. The former FAR value 

was smaller than the latter because the FBS 34.3 image 

was less noisy than the FBS 21.5 image. Using this 

threshold value, the coherence image is classified as 

shown in Fig.3 (d) for the FBS 34.3 data as an example.  

 In order to compare the results in a more quantitative 

manner, FAR is computed in the MLCC-CFAR images as 

shown in Table 1. As can be seen in the table, the FAR in 

MLCC-CFAR images decreased in comparison with the 

simple threshold coherence images. It should be noted 

that for the FBS 21.5 data, the comparison should be 

made with MLCC with N=2 where all boats were visible 

as in the MLCC-CFAR image. The mean signal to 

background noise ratio over all three detected boats also 

improved to 56.8 dB for N=4 from 23.4 dB for N=0; and 

further improved to 66.0 dB after MLCC-CFAR. 

Similarly, for FBS 21.5, it increased to 27.1 dB for N=2 

from 16.2 dB for N=0; and increased further to 34.9 dB 

after MLCC-CFAR. 

 

Table 1 False Alarm Rate (Number of boats detected) 

 

 

 

 

 

2.5 Summary 

 

The technique of MLCC for ship detection is based on the 

strong correlation between the multi-look images of 

deterministic targets, i.e., ships, and weak correlation of 

inter-look surrounding noise. It can extract images 

embedded in noise, but it is difficult to determine the 

correct threshold values. To overcome this problem, a 

simple technique is described to automatically determine 

the threshold value and to increase the accuracy of 

extracting ships by applying CFAR to the MLCC 

coherence images. ALOS-PALSAR data containing 3 

small boats were used to test the proposed theory, 

yielding substantial improvement in FAR.  Currently, a 

project is underway to integrate the several ship detection 

algorithms by SAR including the MLCC-CFAR with 

ground-based X-band radar equipped with the automatic 

identification system (AIS) in the Tokyo Bay, Japan.  

 

3.  DETECTION OF UNDERWATER OBJECTS BY 

POLARIMETRIC ENTROPY 

 

Laver (Porphyra), which belongs to the algae group, is a 

popular seafood, particularly in Japan and Asia, and since 

it is rich in protein, dietary fiber, and vitamins, laver is 

also a source of mineral extract in medical industry. Laver 

cultivation is generally made in coastal waters, and 

monitoring such aquaculture is necessary for farming 

control, yield prediction, and damage assessment. 

 The attempts were made to extract and estimate the 

underwater laver cultivation nets using PALSAR PLR 

21.5 images around the coastal waters of Futtsu Horn in 

Tokyo Bay, Japan. The principle of imaging underwater 

nets is the difference of surface roughness which depends 

on the water depth. Under low to moderate wind speeds, 

the water surface over the underwater nets placed at 10-20 

cm below becomes smooth as the water is “effectively 

shallow”, but the surface of “deep” water without nets is 

rough. This difference is difficult to detect by L-band 

SAR amplitude images as will be shown later. However, 

the polarization entropy can enhance the difference 

because of little backscatter from the smooth surface, 

resulting in the image composed of random system noise, 

that is, high entropy; while the backscatter from the deep 

sea is due to single-bounce surface scattering, i.e., low 

entropy. In the following, a TerraSAR-X image of the test 

area is illustrated to show the difference in amplitude 

images of different wavelengths. Entropy analysis of 

PALSAR polarimetric data is then described, followed by 

the application of CFAR to the entropy images to estimate 

the area of cultivation nets.  

 

3.1 TerraSAR-X Data 

 

An aerial photograph of the cultivation area in Tokyo Bay 

is shown in Fig.4 where the underwater nets appear as 

dark rectangular patterns. The size of a single cultivation 

net is 123.0 x 8.3 m. These nets are placed in October at 

approximately 10-20 cm below the sea surface with 

supporting floats. Laver spores attached to the nets grow 

during winter, and the grown laver is harvested in April in 

the following year. 

 Fig. 5 is the TerraSAR-X SpotLight mode image 

acquired at 02:52 (UT) on December 26, 2008. The image 

size is approximately 5 x 5 km, and the resolution is 3.2 x 

1.2 m in azimuth and slant-range directions respectively 

with incidence angle 21.2 degrees at the scene center.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Aerial photograph of the waters around the 

Futtsu Horn laver cultivation area taken on the 30th 

of November 1999. The photograph was provided by 

the Hydrographic and Oceanographic Department, 

Japan Coast Guard. 
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Fig. 5 TerraSAR-X HH-polarization image of the laver 

cultivation area. The dark patches correspond the the 

underwater laver cultivation nets. 

 

 

 

 

 

 

 

 

 

Fig. 6 The mechanism through which the underwater 

nets are imaged by SAR. 

 

 The significant waveheight of 0.6 m was  provided by the 

Nationwide Ocean Wave information network for Port 

and HArbourS (NOWPHAS) acquired at a station located 

at approximately 3.8 km west from the cultivation area. 

The wind speed of 5.8 m/s was obtained at a station at 

approximately 9 km northeast from the observation site, 

and was supplied by the Japan Weather Association 

(JWA).  

 The process of imaging the underwater nets is illustrated 

in Fig.6. Since the cultivation nets are placed at 10-20 cm 

below the surface, the water is effectively “shallow”, so 

that small-scale waves do not develop, and little radar 

backscatter is expected from this smooth surface. On the 

other hand, there is a certain amount of backscatter from 

“deep water” without nets. For a quantitative assessment, 

we define the mean contrast  
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where Amax and Amin are the maximum and minimum mean 

amplitudes respectively. For the TerraSAR-X image the 

mean contrast was found to be 0.31 as shown in Table 2. 

The reason for this fairly good visibility is partly because 

of fine spatial resolution, but more importantly because 

the difference in radar backscatter between the smooth 

and rough surfaces is large at X-band as illustrated in 

Fig.6. The visibility should then be lower in ALOS-

PALSAR images since  for L-band the open sea surface is 

“effectively” smoother than at X-band. 

 

Table 2 Mean image contrast of amplitude and 

entropy images of underwater cultivation areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 ALOS-PALSAR PLR 21.5 HH-polarization 

amplitude image of the laver cultivation area.  

 

 

3.2 PALSAR PLR Data 

 

Fig.7 shows the PALSAR HH-polarization amplitude 

image acquired at 01:20 (UT) on November 24, 2008. The 

images corresponding to the laver cultivation areas are not 

so clear as those of TerraSAR-X shown in Fig.5 with the 

mean contrast of 0.25 (ALOS-PALSAR (1) in Table. 2). 

 The amplitude PDF of the net area was found to be the 

Rayleigh distribution which is well-known to describe 

speckle amplitude fluctuations, and that of the deep water 

obeys Weibull distribution which is also known to 

describe sea clutter. The average RCS of the net area was 

approximately -22 dB. This value is close to the system 

noise of -23 dB. It can then be considered that the images 

of the net areas are composed predominantly by the 

random system noise, and those of the deep water by the 

single-bounce surface scattering. Polarimetric entropy 

may then be a good measure to show the difference in 

these scattering processes and hence to improve the image 

visibility. 

 Since the mathematical formulation of polarimetric 

entropy is well described [10]-[12], we present only the 

result of entropy image shown in Fig.8. Comparison with 

Fig.7 shows considerable improvement in image visibility. 
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Fig. 8 Entropy image of PALSAR PLR data in Fig.7. 

 

Indeed, the image contrast is more than twice the 

amplitude image as in Table 2 (ALOS-PALSAR (1)). 

 The analysis can be advanced a step further to classify 

and estimate the area of the cultivation nets. To do this, 

we applied CFAR to the entropy image. The procedure is 

the same as that shown in Fig.1 except that the coherence 

image is replaced by the entropy image. The PDF of the 

entropy image shown in Fig.8 was computed and found to 

follow the generalized extreme value (GEV) distribution 
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and μ, m ( >0), and s are the location, scale, and shape 

parameters respectively. This distribution is often used in 

risk analysis to describe rare meteorological events [13], 

and extreme fluctuations in share prices and foreign 

exchange rates in the field of economics [14]. For the 

entropy image in Fig.8, the MLE yielded μ=0.40, m=0.09, 

and s=-0.03. The threshold entropy of 0.389 was then 

calculated using the numerical integration of Eq.(4) by 

setting FAR=0.7. The initial FAR setting was again found 

empirically. Using this threshold entropy, the image of 

Fig.8 was classified as shown in Fig.9. The average area 

per single cultivation net computed from this classified 

image was 1096 m
2
; while the “true” area was 1020.9 m

2
, 

so that the accuracy was 93%. The same process was 

applied to the PALSAR PLR data acquired on the 12th of 

October 2009 (not shown in this paper) to yield the GEV 

distribution as the best-fitted distribution with μ=0.28, 

m=0.11, and s=0.11. By setting FAR=0.7, the threshold 

entropy was found as 0.268, and the estimated area par 

single net was 1163 m
2
 with the accuracy of 86%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Classified entropy image. 

 

3.3 Summary 

 

The polarimetric entropy was shown to be an effective 

parameter to extract the underwater laver cultivation nets, 

because the surface of the corresponding “shallow” water 

is smooth, and the image is dominated by the random 

process of system noise. Entropy is high in these areas as 

compared to the low entropy of deep sea surface from 

which the radar backscatter is dominated by the single-

bounce surface scattering. Further details can be found in 

[15]. The principle can be applied to other oceanic 

phenomena such as classification of the surfaces covered 

by oil slick.  

 

4. WAVEHEIGHT ESTIMATION BY 

POLARIMETRIC RATIO 

 

 Waveheight estimation of ocean waves by SAR is 

considered as very difficult due to several different 

imaging mechanisms depending on the look direction 

relative to wave propagating direction. To the authors’ 

knowledge, the first attempt of waveheight estimation was 

by Thomas [16] who measured the waveheight of range-

traveling waves from the difference in local incidence 

angle estimated using the composite-surface model in 

SEASAT-SAR HH-polarization RCS data in North 

Atlantic, resulting in overestimation by 20% due mainly 

to non-linear modulation by range bunching [17]. Since 

then, several models have been proposed, most of which 

are rather complex to use in practice (e.g., [18]).  

  In this paper, we propose a new simple technique to 

estimate the waveheight of range-traveling waves based 

on the dependence of the polarization ratio HH / VV on 

the local incidence angle, where HH  and VV are the RCS 

at HH- and VV-polarizations respectively. The 

polarization ratio was originally used to estimate ocean 
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wind, and several empirical and semi-empirical models 

were proposed [19]-[22]. However, this relation can also 

be applied to estimate waveheight from its dependence of 

local incidence angle on the polarization ratio. The 

proposed method has an advantage over the previous 

methods (e.g., [18]) for its simplicity and also over the 

single-polarization RCS method [16] since the non-linear 

multiplicative modulation by range bunching disappears 

by taking the radio, leaving only the RCS modulation 

(excluding hydrodynamic modulation).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Illustrating the areas used for the experiment. 

 

4.1 SAR data and Polarization Ratio 

 

The SAR data used in this analysis were acquired by 

ALOS-PALSAR at PLR 21.5 mode at 01:22 (UT) on 

September 5, 2006 over the waters south of Izu Peninsula, 

Japan as shown in Fig.10. The images were in the Level 

1.1 processed by the Japan Aerospace Exploration 

Agency (JAXA). The spatial resolution is 5.5 m in 

azimuth and 23 m in ground-range directions. At the 

acquisition time, the typhoon 0612 was present in the 

Pacific Oceans about 1,000 km away from the northwest 

coast of Japan, and in the PALSAR images shown in 

Fig.10 there are substantial amount of wave images 

propagating predominantly in range direction. 

 First, we need to check the relation between the 

polarization ratio and incidence angles. The mean RCS 

was measured by averaging over the pixels in azimuth 

direction at a same range, and the polarization ratio was 

estimated as shown in Fig.11. It was found that this 

measured polarization ratio did not fit to any existing 

relations including those of Thompson et. al. [20] Vachon 

and Dobson [21],  Kudryavtsev et. al. [22], and Mouche et. 

al. [23]. The discrepancy may well be because those 

previous formulations were based on C-band data.  

 Since no existing formulas were available, we computed 

the polarization ratio HH / VV which fits best to our data. 

There is a linear relation between the polarization ratio 

and the incidence angles with the following regression 

expression. 
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where  is the incidence angle. This relation is used to 

estimate the local incidence angle from the polarization 

ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Measured polarization ratio as a function of 

incidence angles. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 Flowchart of estimating ocean waveheight using 

the polarization ratio. 

 

 

4.2 Estimation of Waveheight 

 

The process of estimating the waveheight is illustrated in 

the flowchart of Fig.12. In principle, the spatial 

distribution of surface level can be computed by 

integrating over the spatial distribution of surface slope 

from the polarization ratio on a pixel basis. However, this 

approach did not have sufficient precision because of the 

large variations of polarization ratio. Therefore, we 

calculated the sea surface level in the HH-polarization 

image, and carried out the quantitative evaluation of the 

surface slope of range-propagating waves by computing 
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average maximum slopes, and approximating the swell 

images by a sine (or cosine) waves.  

 First, the intensity images of size 130 x 130 pixels (3 km 

x 3 km) consisting of predominantly range-traveling wave 

images in HH- and VV-polarization were selected. The 

polarization ratio was then calculated on a pixel basis, and 

from this ratio, local incidence angles were computed 

using Eq.(8). Local slopes were derived by subtracting the 

angle of incidence on the flat surface from the local 

incidence angles. These slope values contain fluctuations 

due to noise and local variation of actual wave slopes.  

 While, wave images of wavelengths between 100 m and 

1,000 m were extracted by band-pass filtering the HH-

polarization image. The pixels of largest HH (5.75% of 

130 x 130 pixels = 971 pixels) were then selected. These 

pixel positions correspond to largest surface slopes facing 

the radar. The slope values, max, at these positions were 

found from those previously computed on the pixel basis. 

Note that the dominant wavelength was approximately 

400 m, and the ground-range pixel spacing was 23 m; and 

hence the pixels 23/400 (6%) of largest slopes were 

selected from all pixels.  The average surface slope 

< max> was defined as the median value of max. Since the 

dominant wavelength, L, is known from the image 

(through FFT spectral analysis), the dominant waveheight 

can be computed from 

 

                                                                                       (9) 

 

which can easily be derived from Fig.13. 

 We split the image into 3 km x 3 km areas and calculated 

the significant wave height for each area as shown in the 

upper image of Fig.14. In the lower of Fig.14 show the 

distribution of the estimated significant wave height, H1/3, 

and wavelength. The estimated waveheight ranged from 0 

m to 7 m, and the mean waveheight was 3.62 m. There 

exist some negative waveheight values because in these 

areas there are several wave patterns propagating in 

different directions.  

 The significant waveheights measured by the wave gauge 

of NAWPHAS in Shomoda and Habu were 1.5 m and 4.5 

m respectively at the time 01:20 (UT) which is close to 

the PALSAR data acquisition time of 01:22 (UT). The 

JWA data showed the significant waveheight of 3.2 m in 

the offshore of Shimoda, and it was 4 m in the wave map 

by JWA. Thus, good agreement was obtained between the 

estimated waveheight and “sea truth” data. 

 

4.3 Summary 

 

The proposed technique of waveheight estimation appears 

to be promising for its simplicity with no effect of the 

non-linear range bunching modulation. The technique is 

limited to ocean waves traveling mainly in range direction, 

since the highly non-linear velocity bunching starts to 

take effect as the propagation direction tends to become 

azimuth. Further tests with more data may be required for 

the practical use of the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Illustrating the ocean wave of a cosine (or sine) 

function, where y and z are the ground-range and 

vertical directions respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Estimated significant waveheight (upper) and 

distributions of estimated waveheight and wavelength 

(lower). 

 

5. CONCLUSIONS 

 

In this paper, examples of ALOS-PALSAR applications 

to coastal waters were presented, which included small 

ship detection by MLCC-CFAR, detection and estimation 

of underwater laver cultivation nets by polarimetric 

entropy, and estimation of waveheight of ocean waves 

propagating in the directions around range by polarimetric 

ratio. All results showed good to reasonable agreement 

with sea truth data. As to the ship detection, further 
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experiments are being carried out in Tokyo Bay in order 

to develop a ship detection and identification system by 

integrating SAR, ground-based maritime radar and AIS. 

Polarimetric entropy was found to be an effective 

parameter to classify the underwater marine cultivation 

nets through the changes in surface roughness. The 

approach can also be used to monitoring other oceanic 

phenomena such as oil slicks. The technique of 

waveheight estimation by polarimetric entropy is 

particularly useful in coastal waters where the 

measurements by radar altimeters are difficult to use 

because of the coarse spatial resolution.  
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