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Application of Jameson’s T ypé Nonlinear Artificial

Dissipation to the Two-Dimensional Navier-Stokes Computation*

Nobuhiro K AWAI'**

ABSTRACT

In the present report, Jameson’s nonlinear artificial dissipation model is studied so
that the combination and modification of Jameson’s type artificial dissipation model
and Steger’s one can be applied to Beam-Warming-Steger’s implicit approximate factori-
zation scheme for the Navier-Stokes equations.

Stability analysis is described for the algorithm where the combination of the
explicit second-difference and fourth-difference artificial dissipation terms are added to
the right-hand side and the implicit second-difference dissipation term is added to the
left-hand side so that the system of equations can result in block tri-diagonal equations
instead of penta-diagonal equations. And the details of the formulation of the artificial
dissipation models, including the boundary approximation of the artificial dissipation,
are described.

Numerical computations were made for transonic and low-speed flows, and the
results show that the present formulation is appropriate. The effects of the artificial
dissipation models are evaluated.
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tions. IAF scheme has been extended from two-
dimensional flow problems to three-dimensional
The implicit approximate factorization (IAF)  flow problems, and it is widely applied to various
scheme was devised by Beam and Warmingl) and flow problems in many fields.
established by Steger,?) and it was a breakthrough Various attempts have been done for the
of the computation of the Navier-Stokes equa-  improvement of the IAF scheme in efficiency,
accuracy or robustness. One of the most excel®
lent improvements of the IAF scheme has been

1. INTRODUCTION
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recently done by Pulliam.®). He has explained
that many of modifications of the IAF scheme
fall in the same category, namely, the use of a
central difference approximation to the spatial
derivatives and the addition of some form of
artificial dissipation. And he has clarified how to
apply Jameson’s type nonlinear artificial dis-
sipation to the IAF scheme. His formulation,
however, results in the problem of solving penta-
diagonal equations, which are inconvenient to
handle.

The main purpose of the present report is to
make the formulation where the inclusion of
Jameson’s type nonlinear artificial dissipation
results in the problem of solving block tri-
diagonal equations.

For this purpose, first, von Neumann stability
analysis is made for the model equation which
excludes a fourth-order dissipation term from the
left-hand side. Next, so-obtained stability con-
straint is applied to the Navier-Stokes equations.
Finally, the computations are done to verify the
method of applying the stability constraint to
the practical equations and to evaluate the merits
and demerits of Jameson’s type nonlinear artifi-
cial dissipation.

2. STABILITY ANALYSIS OF
DISSIPATION OPERATORS
FOR AN IMPLICIT ALGORITHM

Since it is very hard to analyze the stability of
the Navier-Stokes equations, let us consider the
linearilized one-dimensional scalar model equa-
tion as follows.

Urtcuy =Puyx (1)
Implicit difference form of Eq. (1) is

(1+A8 —uvA) @™ —u™)

= ASu" +uvau" )
where N\ = cAt/Ax, u = vAt/(Ax)*, and §,
V and A are central, backward and forward

difference operators, respectively. Adding artifi-
cial dissipation to Eq. (2), we get

(1+A8 —uVA —a,VA

+ay (VAY) (™ - u")

=—ANou" +uvVA U™ +8,VA U"

— B (VA)? u" 3)
where a,, a4, B, and B4 are coefficients of the
artificial dissipation terms. Pulliam®) has analyzed
the case where 4 = 0 and 8, =0 in Eq. (3). In
the present report, we retain u and , but set
a4 = 0. For simple description, we put

a=a, tpu 4)

b=§, +u (5)
Then Equation (3) becomes

(1426 —aVa) @™ —u7)

= - uj +bVA ui — s (VA)? u]’.' (6)

In order to apply the well-known von Neumann
stability analysis, we let w denote (the wave
number) X (Ax) and i denote the imaginary unit,
and we define the amplification factor as

— 0
g = u /u]. @)

We get the following relation from Eq. (6).

_ 142 (a—b) (1—cos w) —4p4 (1-cos w)’
1+2a(1 —cosw)+itsinw
(8)

Derivation of Eq. (8) from Eq. (6) is described in
Appendix A.

To avoid complex diécussion, we ignore the
imaginary part of Eq. (8) by putting

sinw = 0 %)
Then, Equation (8) changes to

_142(a— b) (1—cos w) — 4B, (1—cos w)?
£ 1+2a(l - cosw)
(10).

As described in detail in Appendix A, the absolute
value of the right-hand side of Eq. (10) is greater
than or equal to that of the right-hand side of
Eq. (8). Therefore, the stability condition for
Eq. (10) is satisfactory condition for the stability
condition for Eq. (8).

We rewrite Eq. (10) as

(1 —cosw)
1+2a(1 —cosw)

g=1-2b
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1 — cos w)?
+(2 a(l- c<))s w) (an
Since it is difficult to examine the magnitude of
g in the form described by Egs. (10) or (11), we
rewrite Eq. (11) as follows.

—454 1

g=1-2by—4f,z (12)
where
x
- 1
Y 1+2ax (13)
and
2
_ X
2 " T+2ax (14)
with
x=1-cosw (15)
From Eq. (15), we find
0 £ x K2 (16)
From Eq. (13), we find
dy ____ 1 __ 5 o a7

dx (1+2ax)
fora> 0 and x 2 0. From Eq. (14), we find

dz _2x(1+ax)

dx (1+2ax)?
for a 2 0 and x > 0. From the inequalities (17)
and (18), we find that y and z are both mono-
tonically increasing functions of x. Therefore, by
the range of x, that is the inequality (16), and by
Egs. (13) and (14), we find the following ranges
of y and z.

20 (18)

0<y<

2
1+4a (19)

0<z < (20)

4
1+4¢
Note that y and z become minimum at the same
time (x = 0), and that y and z become maximum
at the same time (x = 2).

(Further note) x = O meanscos w=1andx =
2 means cos w = —1. And they correspond to
sin w = 0, namely, to Eq. (9). At that moment,
Equation (10) coincides with Eq. (8).

Assuming b > 0 and 4 = 0O, and substituting
the ranges which are expressed by the inequalities
(19) and (20) into Eq. (12), we get the following
range of g. '

_4b 16
[+4a  1+4a

The von Neumann’s stability criterion requires

I <g<l (21)

the following constraints.

—1gg<1 (22)
One of the inequalities, g < 1, of Eq. (22) has
already been satisfied by Eq. (21). The other
inequality, —1 < g, of Eq. (22) requires the
following inequality from Eq. (21).

4b 16 B4

1Sl T+4q (23)
which can be rewritten as

1 1

zb + 28, g'4—+ a (24)

Substituting Eqgs. (4) and (5) into the inequality
(24), we get

S Bt 2B St ut (25)

2 =4 2
The inequality (25) is the von Neumann stability
constraint of the model equation (1) in the
implicit form written by Eq. (3) with aq = 0.
The coefficients, a,, §, and B4 are assumed
constant.

However, if we apply Eq. (25) to practical
computation, we have to consider that the non-
linear instability may occur since the Navier-
Stokes eqhations are genuinely nonlinear, and
that the coefficients of the artificial dissipation
terms, s, 8,2, Bs, may vary in space and time.
Therefore, we should allow for the stability
margin, and we set

@ = By + 2 B, (26)
Equation (26) satisfies the inequality (25), and
is actually applied for the computation in the
present report. The application of Eq. (26) to
Jameson’s type nonlinear artificial dissipation
is described in Chapter 4 for the Navier-Stokes
equations.
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3. OUTLINE OF THE IMPLICIT
APPROXIMATE FACTORIZA-
TION SCHEME

The two-dimensional Navier-Stokes equations
in general curvilinear coordinates where ¢ = £
(x, ») and n = n (x, »), can be written in a con-
servative form as

R R 1 . .
a,Q+a£E+anF=§ (@R+09,5) (27)

where 9;, d¢ and 3, are differential operators
with respect to ¢, £ and n respectively. In Eq.
(27), the first term is an unsteady term, the
second and third terms are convection terms, and
the fourth and fifth terms are viscous terms. For
the thin-layer approximation, we neglect the
fourth term and the cross-derivative parts of the
fifth terms.
If we define the Jacobian matrices

. 9E . 9dF . @R

43¢ 8750 N "o

.S

M = 20 (28)

then the implicit approximate factorization
scheme says that Equation (27) can be trans-
formed to

[[+At3; A" — (At/Re) dN™ — D;| ¢]

X [[+ At 3, B" — (At/Re)3,M" — Dj| 5 ]

X (Q‘n+1 _ Qn)

= — At (3 E™ +3,F™) + (At/Re)

X @eR™ +9,8") +De | ¢ +De | (29)
where D; and D, denote artificial dissipation
terms in the implicit and explicit parts respective-
ly, and | ; and |, indicate the directions of £ and
n respectively.

In the case of Steger’s artificial dissipation,
they can be written as

Dele=—ee AtJV (VAP J Q" (30)

Deln=—€ At (VoY J Q7 31

Dile=eAtJ ' Vi AeJ 32)

Diln=€AtJ 'V ApJ (33)

where Ay and V¢ denote forward and backward

difference operators in the § direction respective-
ly, and A, and V,, denote forward and back-
ward difference operators in the n direction
respectively. The coefficient €, is chosen to be
O (1) and €; = 2 €, in accordance with Eq. (26).

When we use Steger’s artificial dissipation, the
differential operators 9; of the convection terms,
which are 34" and 3:£” in Eq. (29), are ex-
pressed by first-order-accurate upwind difference
operator at a few points just before the shock
wave in order to suppress shock capturing
oscillation. And 9¢ is expressed by second-order-
accurate central difference operator otherwise.
The differential operator 9, is always expressed
by second-order-accurate central difference oper-
ator, since we are interested in low speed or
transonic flow in the present report.

The cross derivative parts of 851\7" and a,,n‘{ "
are neglected so that the operators in each pair
of the brackets, [ ], of Eq. (29) be in one
direction.

Boundary conditions are given as follows.
Along the far field boundary, the values of all
the components of Q are fixed at the uniform-
flow condition. Along the downstream boundary,
the value of pressure is fixed at the uniform-flow
condition, and the values of the other primitive
variables are linearly extrapolated. Along the
airfoil boundary, the velocity components are
determined physically, namely, # =¥ = 0, and the
numerical boundary conditions are determined
by the continuity equation (for density) and the
energy equation (for energy).

Baldwin and Lomax’s algebraic turbulence
model® is used. As for boundary-layer transi-
tion, the present code for computation has four
options, The first is a ““fully laminar’ case
where turbulence model is not used. This option
is rarely used since we are interested in high
Reynolds number flow. The second is a “fully
turbulent” case where the boundary layer is
At the third option,
Baldwin and Lomax’s criterion® of transition is

turbulent everywhere.

used. At the fourth option, Michel’s criterion®
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of transition is used.

4. PRACTICAL FORMULA OF ARTIFICIAL
DISSIPATION FOR THE IMPLICIT
SCHEME

Jameson’s type nonlinear artificial dissipation
is described below. And the result of the linear
stability analysis described in Chapter 2 is
applied to Jameson’s type artificial dissipation
in order to determine the form of D; |¢ in Eq.
(29).

Pulliam® has explained that first-order-
accurate upwind difference is equivalent to a
central difference plus second-difference artificial
dissipation. Jameson’s type nonlinear artificial
dissipation - consists of second-difference and
fourth-difference artificial dissipation terms.
Since second-difference artificial dissipation
suppress shock capturing oscillation in place of
first-order-accurate upwind differencing, we
should use central differencing to the convection
terms of Eq. (29) when we employ Jameson’s
type artificial dissipation. The detail explanation
for the present paragraph is made for a simple
case in Appendix B.

For preparation, we define

Qik = Jjk Qj,k (34)

Xik=Ve A Qik=Qjr,k — 205k + Qi1 k
(35)

Yik =V An Ok =COjk+1 — 20k + Oj k-1
(36)

Then, the explicit part of Jameson’s type non-
linear artificial dissipation can be written as

follows.
-1
Delg = Vt(;nk ]+1k JkJ]k)
(2)
X (€% Asz,k_ej,k Asz,k) 37
with

6;'%() = Ka At

X max (Tj+2,k’ Tiy i Tj o T -1, %) (38)
and
e](."’;() = max (0, kg At — € },2k)) (39)

where typical values of the constants are k, =
1/4 and k4 = 1/100.

Equation (38) is slightly modified from
Pulliam’s formula in order to keep symmetry
with respect to the index j: Since the center of
the mdex; for 6(2) isj+1/2, €; (2) should have
the components w1th indecies (j + 1 ,j)or(j+2,

]+1’],]-—1)0r(]+3,]+2,]+1,], —11]_2)
or ..... Therefore, another candidate for the
definition of eﬁ) can be written as

€D = ky Armax (T}, 4, T; ) (40)

The coefficient T i at the point (j, k) is de-
fined as
2Pk 2pjk * Dj_1k | (1)
Wk \piakt 2Dk t Dioy k|
where p denotes the pressure. The term of Eq.

(37), 0 k> is the spectral radius of the matrix
A and is defined as

0k=lU1+a Vgxz*'syz (42)

where U is the £ component of the contravariant
velocity and « is the sonic speed. Equation (42)
is modified from the Pulliam’s formula, since he
defined 04 as the sum of the spectral radii of
Aand B

To determine the implicit part of Jameson’s
type nonlinear dissipation, we utilize the result
of Chapter 2. Comparing Eq. (37) with Eq. (3),
we find the following correspondence.

_ i @)

By = Oy kTt Gk i) Gk (43)
_ i 4)

Ba = Oy kT t Ok i) G K (44)

By substituting Egs. (43), (44) into Eq. (26), we
get the following correspondence.

_ 1 -1
@ = (0, 1 ikt 9k dik)
X (6(2) + 2 e(“)) (45)

Therefore, the implicit part of Jameson’s type
nonlinear artificial dissipation can be written as
Dilg =V (0+1k ]+1 Ok ],k)

(i)
X € AE Jik (46)

This document is provided by JAXA.



6 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1015T

with

](’l) = 6(2) + 26(4) (47)

Equations (46) and.(47) are the main result of
the present Chapter. Strictly speaking, the above
derivation does not assure the stability, since the
discussion of Chapter 2 is based on linear theory
with constant coefficients while the right-hand
sides of Eqs. (43), (44) and (45) are variable
coefficients. However, this kind of generalization
is adequate for many practical problems.6) We
have made ‘computation to verify Egs. (46) and
(47), and the stability is achieved for the Navier-
Stokes equations as discussed in Chapter 6, 7 and
8.

The above discussion deals with the artificial
dissipation in the ¢ direction. So let us discuss
Jameson’s type nonlinear artificial dissipation
in the i direction. The development of equations
about the n-direction dissipation is the same as
the above discussion, and only the resulting equa-
tions will be described below.

The explicit part of Jameson’s type nonlinear
artificial dissipation can be written as

Dely =V (0; k+1 ] k+1 gi,k‘]j,_kl)
~(2) =(4)

Xk An ik =€k A 1) (48)
with

5?2) = Kk, At

xmax (¥ 0. T T 0 T y) @49
and

E}"}Q = max (0,kq Af — € ;}g) (50)

Another candidate for é'ﬁ) can be written as
5}(’33 = k, A? max (T s T ) (51)
The coefficient ’Y‘] X is defined as

,T\'k _ 1 Pjk+r — 2PjktPjk—1] (52)
7 | Pjk+r + 2Pjk Y Dj k-1 |

Ok is the spectral radius of the matrix B and is
defined as

= VitaVn2+n} (53)

9k

where V is the n component of the contravariant
velociy. The implicit part of Jameson’s type non-
linear artificial dissipation in n direction can be

written as
D,' =V (0]k+1 ]k+1 ;k ]k)
g (D)
x &R A Ty (54)
with
ci) = g2) ~(4)
€k =€kt 2€; (55)

When we use Eqs. (48) through (55) in com-
puting the Navier-Stokes equations, there is no
problem of stability or convergence, but there
is a problem of accuracy. Since Equation (48)
includes second-difference artificial dissipation
and this artificial dissipation behaves like actual
viscosity, the computed viscosity is actual
viscosity plus the spurious viscosity caused by
the second-difference artificial dissipation.
Maybe this detrimental effect of the artificial
dissipation can be improved by factoring M? to
the right-hand side of Eq. (48), where M denotes
local Mach number. But the author has not
tried it yet. .

Instead of using Jameson’s type nonlinear
artificial dissipation in n direction, we use
Steger’s type artificial dissipation in n direction
with slight modification. By using the definition
(36), Equation (31) becomes

—1
DI, =—fe,AtJ LV A Y, (56)

where f is a modification factor and is usually
taken as f = 1. To reduce the effect of artificial
dissipation as small as possible, we define the
modification factor as

u? + v?

f =W (57
where u and v are velocity components in Carte-
sian coordinates, and the subscript e indicates
the edge of the boundary layer. Since it costs
considerable computation time to seek the
edge of the boundary layer, we employ Eq.
(57) only when we use Michel’s criterion of

boundary-layer transition. Because we seek the
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boundary-layer edge when we use Michel’s
criterion. QOutside the boundary-layer edge, f
is always set to f= 1.

5. BOUNDARY APPROXIMATION FOR
ARTIFICIAL DISSIPATION

Since fourth-difference artificial dissipation
consists of five-point values of Q; i, it encounters
difficulty at the points adjacent to the boundaries.
Because one of Qj x’s goes out of the domain of
interest. Therefore, we have to approximate
fourth-difference artificial dissipation at the
points adjacent to the boundaries. And the
approximation have to be stable.

Seeing Eqs. (37) and (48), we find that
fourth-difference artificial dissipation requires
the boundary values of X;x and Yjx. In other
words, the second difference of Xj g or Yj i at
the point adjacent to the boundary requires the
boundary value of Xjx or Y;g. Let us explain
it concretely. Letting the indices take the
values as j = 1, j = jmax, k = 1, k = kmax at the
boundaries, we find by definition, Eq. (35),
that

Xl,k = Qz,k - 2Ql,k + Qo,k (58)

But Qo,k is a physical quantity at a fictitious
point (f = 0), and so X 1.k cannot be rigorously
determined.

Pulliam®) asserts, in our notation, that the
formula

X ;=0 (59)

gives the least detrimental effect on the accuracy
for practical computations. Equation (59) means
that Qo, x and Qz,k are symmetrical with regard
to the point Ql,k' On the other hand, the
reflective condition can be written as

O (60)
or
Xk = 2@ — Q1) (61)

There are many possible approximations besides
Eqgs. (59) and (61). For example, X , =X, ,

and X Lk S X 2k 2T€ the candidates of the
boundary approximation for the fourth-difference
artificial dissipation. In the present report, we
employ the following boundary approximation.

Qok = Ql,k (62)
or
Xk @i — Qi (63)

Equation (63) is the intermediate approximation
between Eqs. (59) and (61), and seems to give
the least detrimental effect on the accuracy.
Similarly, we employ the following approxima-

tions.
Ximax,k = Qjmax—l,k - Qjmax'k (64)
Vi =82 -9, (65)
Yj,kmax= jkmax—1 Qj,kmax (66)

To examine the stability nature of the bound-
ary approximations described by Egs. (63), (64),
(65) and (66) for the artificial dissipation, we
consider the model equation

du;jdt = ~VAX, 67)
X]. = VA u; (68)

for j=2 ton—1. Herej= 1 and = n indicate the
boundary points, and A and ¥ are forward and
backward difference operators respectively.
Boundary approximation of X f corresponding
to Egs. (63), (64), (65) and (66) can be written

as

Xy = uy —uy (69)
X, = U, | — u, (70)
Therefore
VA X2 = (u4—2u3+u2)— 2 (u3—2u2+u1)
+(uy — uy)
= —3U| +6U2 —4![3 + U, (71)
and
VA Xn—l = (un—l - Zun—z +"‘n—a)

~2(@u, —2u,  tu

+ (un—l - un)

= —Bun + 6“n_1 — 4un_2 tu, .
(72)
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As a matter of course
sy, —4u.  t6u, —4u, tu,
VA Xi=u;_,—4u; , 6u’ 4u u

155 Wiy £7)
(73)
forj=3ton—2. Weneglectu, andu, as
u, =u, =0 (74)
because u#, and u, do not change their values

temporarily when we solve model equation (67)
with Eq. (68), that is, the perturbations of the
boundary values, u, and u,, are temporarily
zero. Then substituting Eqgs. (71), (72), (73) and
(74) into Eq. (67), we get a vector-matrix form

as
dufdt = Au (75)
where
(uy ]
Us
u-= ; (76)
| “n—1
and
[ 6 -4 1 O]
-4 6 -4 1
1 -4 6 -4 1
A= - 1 -4 6 -4 1
1 -4 6 -4 1
1 -4 6 -4
. O 1 -4 6]
a7
We will discuss the stability of Eq. (75) in the
following paragraphs.

In this paragraph, we show the well-known
fact that if we can diagonalize A and if the real
part of any of the eigenvalues of A is negative,
then the solution of Eq. (75) tends to zero
vector. It is well known (See Appendix C) that

u = exp (47) (78)

is a particular solution of Eq. (75). If we assume
that we are able to diagonalize 4 as

ST AS = A (79)
then Eq. (78) becomes (See Appendix C)

u = exp (Af) = Sexp (A §™! (80)
Letting Ay, As, Aayeeeu A, be the eigenvalues

of matrix A, we can express exp (A7) by the
following formula (See Appendix C).

[exp (A2 1) O
exp (Asf)
exp (At) =

O exp (}\n__lt) |

(81)
Substituting Eq. (81) into Eq. (80), we obtain
[exp (A7) O]
exp (As?)

O exp (A, _,0)

i I )
as a particular solution of Eq. (75). Therefore,
if any of the real part of the eigenvalues, A,,
A3yeees Ny gs

tends to zero vector as ¢ increases, since § is a

of the matrix A is negative, u

constant matrix.

It is almost impossible to analytically find
eigenvalues of the matrix 4. Instead, we form
the matrix A for a specified value of n (we take
the values as n = 10, 22, 62, 72, 82 for example),
and use computer software to compute the
eigenvalues numerically. In any case the author
has tried, the numerically computed eigenvalues
of matrix A are real, negative and distinct.
Therefore, the assumption made on Eq. (78)
hold true, and the vector u is numerically shown
to tend to zero vector. That is to say, the model
equation (67) with Eq. (68) is stable when we
use the boundary approximation described by
Egs. (69) and (70).

The above discussion is not rigorous for a
few reasons. The assumption described by Eq.
(74) is not rigorous especially when it interacts
with boundary condition. The model equation
(67) with (68) does not include convection term
nor viscous term. The practical equations are

This document is provided by JAXA.



Application of Jameson's Type Nonlinear Artificial Dissipation 9

nonlinear, though the above discussion is linear.
However, the above discussion is useful as a
guideline. That is, the application of the bound-
ary approximation (69) and (70), namely, Egs.
(63), (64), (65) and (66), is used successfully for
practical computations, and the solution is stable
with these boundary approximations.

6. RESULT FOR NACA 0012 AIRFOIL

The main part of the present method is the
formulation of the implicit part of Jameson’s
type nonlinear artificial dissipation. And it is
expressed by Eqs. (46) and (47). We also use
Steger’s artificial dissipation described by Eqgs.
(30) and (32) for comparison. In the 7 direction,
howevér, we use the slightly modified Steger’s
artificial dissipation described by Eqgs. (33), (56)
and (57) except for the computation shown in
Fig. 6.

To verify the present method and to compare
the present artificial dissipation (Jameson’s type)
with Steger’s artificial dissipation, the computa-
tion was done for the transonic flow around an
NACA 0012 airfoil. The flow condition is
chosen as; free stream Mach numbers of 0.75 and
0.8, an attack angle of 2 degree, and a Reynolds
number of 20 million. The grid is composed of
241 points in the £ direction and 65 points in the
n direction. The minimum grid space in the n
direction is 1.0 X 10~ when the chord length is
set to be unity. The grid near the airfoil (20
points in the n direction) is generated algebraical-
ly so that the grid near the airfoil be exactly
orthogonal to the surface of the airfoil. This
orthogonality improves the numerical accuracy.
The rest of the grid is generated by the method
of elliptic equations.

First let us discuss the case of M_, = 0.75.
Figures 1, 2 and 3 are the results computed
by the present method. That is, we use Eqgs.
(37), (38), (39), (41), (42), (46) and (47). The
coefficients of the artificial dissipation terms are
set as; Kk, =0.25,k4 =0.01,¢,=2.0 and €= 4.0
for Figs. 1 and 2, and k, = 0.35, k4 =0.014, ¢, =

2.0 and ¢; = 4.0 for Fig. 3. Figures 4 and 5 are
the results computed by using Steger’s artificial
dissipation in both &- and n-directions. The co-
efficients of the artificial dissipation terms are set
as; €, = 4.0 and ¢; = 8.0 for Figs. 4 and 5. (a) of
Figures 1 through 5 indicates the pressure co-
efficient distribution, and (b) of these figures
indicates the skin friction coefficient distribu-
tion. Figures 1 and 4 are the results computed
by using Michel’s criterion of boundary-layer
transition. Figures 2 and 5 are the results com-
puted by the condition of fully-turbulent bound-
ary layer, and Figure 3 is the result computed by
using Baldwin-Lomax’s criterion of boundary-
layer transition. When Steger’s artificial dissipa-
tion was used with Baldwin-Lomax’s criterion of
boundary-layer transition, the numerical solution
burst.

Figures 1, 2 and 3 show that the computation
with the present method for the artificial dissipa-
tion is stable and reliable. On one hand, Figures
la, 2a and 3a show that there is no spurious
overshoot of the pressure coefficient distribu-
tion just before the shock wave when we use
Jameson’s type nonlinear artificial dissipation
with the present method. On the other hand,
Figures 4a and Sa show that there is a spurious
overshoot of the pressure coefficient distribution
just before the shock wave when we use Steger’s
artificial dissipation in both §- and n-direction.
We also find that Jameson’s type artificial dissi-
pation (Figs. 1a, 2a, 3a) gives sharper shock wave
than Steger’s artificial dissipation (Figs. 4a, 5a).
The undershoot of the pressure coefficient
distribution just after the shock wave appears in
Figs. 1a and 4a, since the boundary-layer thick-
ness is thin when we use Michel's criterion of
boundary-layer transition.

In computing the result of Fig. 6, we use
Jameson’s type artificial dissipation in both
¢- and n-directions. That is, we use Egs. (48)
through (55) (except for Eq. (51)) to examine
the effect of Jameson’s type artificial dissipation
in the n direction. Although we cannot find

This document is provided by JAXA.
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(b) Skin friction coefficient distribution.

Fig. 1  Result for NACA 0012, M _,=0.75, a= 2°, Re =2 x 107,
Present artificial dissipation. Michel’s criterion of transition.
Ka =0.25,Kk4 = 0.01, €, = 2.0, el. =4.0,
CL =0.37281,Cp, = 0.01434, CM = 0.00097.
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Present artificial dissipation. Fully turbulent.
Ky =0.25,k4 =0.01,€,=2.0,¢ = 4.0,
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Fig 3 Result for NACA 0012, M_ = 0.75,a=2°, Re =2 X 107,
Present artificial dissipation. Baldwin-Lomax’s criterion of transition.
K3 =0.35,k4 =0.014, €, = 2.0, ¢; = 4.0,
C, =0.34296, CD =0.01602, C,, = 0.00616.
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Fig 4 Result for NACA 0012, M_, = 0.75, a=2°, Re =2 x 10”.
Steger’s artificial dissipation. Michel’s criterion of transition.
€, =4.0,¢ =8.0.
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much difference in the pressure coefficient dis-
tribution when we compare Fig. 6a with Fig. la,
we find significant difference in the distributions
of the surface skin friction when we compare
Fig. 6b with Fig. 1b. Jameson’s type artificial
dissipation in the n direction described by Eq.
(55) has second-order difference, and it behaves
like viscous term. The spurious viscosity which
comes from the second-order difference of
Jameson’s type artificial dissipation, becomes
noticeable and turbulent region of the boundary
layer becomes fictitiously large as seen in Fig. 6b.
That is why we do not employ Jameson’s type
nonlinear artificial dissipation in the n direction
except for the case shown by Fig. 6, but employ
the slightly modified Steger’s artificial dissipation
in the n direction,

This detrimental effect of Jameson’s type
nonlinear artifial dissipation in the n direction is
clarified by using Michel’s criterion of boundary-
layer transition. When we use Baldwin-Lomax’s
criterion of transition, the transition point is very
near the leading edge as seen in Fig. 3(b), and if
we use Jameson’s type artificial dissipation in the
n direction, the forward movement of the transi-
tion point is not clear. Since the eddy viscosity
of the turbulent boundary layer is large by
nature, the increase of viscosity which is caused
by the Jameson’s type nonlinear artificial dissipa-
tion in the n direction is not clear.

Next let us discuss the case of M, = 0.8 to
show that the present method is applicable to
the flow with stronger shock wave. Figures 7, 8
and 9 are the results computed by the present
method, where Jameson’s type nonlinear artificial
dissipation is used in the § direction and the
slightly modified Steger’s artificial dissipation is
used in the n direction. Figures 10 and 11 are
the results computed by using Steger’s artificial
dissipation in both §- and n-directions. (a) of
Figs. 7 through 11 indicates the pressure co-
efficient distribution. (b) of these figures in-
dicates the skin friction coefficient distribution.
Figures 7 and 10 are the results computed by

using Michel’s criterion of boundary-layer transi-
tion, Figures 8 and 11 are the results computed
by the condition of fully-turbulent boundary
layer, and Figure 9 is results computed by using
Baldwin-Lomax’s criterion of boundary-layer
transition. Here again, the numerical solution
burst when Steger’s artificial dissipation was used
with Baldwin-Lomax’ criterion of transition. So
we have the impression that Jameson’s type
nonlinear artificial dissipation gives robuster
numerical solution than Steger’s one.

Since there is no overshoot just before the
shock wave in the pressure coefficient distribu-
tions of Fig. 7a, 8aand 9a, we find that Jameson’s
type artificial dissipation is suitable to capture
shock wave. There is no undershoot just after
the shock wave in the pressure coefficient
distributions of these figures, either. Because
there is a separation bubble at the foot of shock
wave in each of these results, and the shock wave
interacts with the separation bubble. Figures 7b,
8b and 9b show that each of the upper distribu-
tions of the skin friction coefficient has the
region where the skin friction coefficient is
negative (about 67% chord length). This part
indicates a separation bubble, which is induced
by a strong shock wave. There is no overshoot
just before the shock wave in the pressure co-
efficient distribution of Fig. 10a, but there is
a small overshoot just before the shock wave in
the pressure coefficient distribution of Fig. 11a.
These facts imply that Steger’s artificial dissipa-
tion sometimes brings about a spurious overshoot
just before shock wave. The undershoot of the
pressure coefficient distribution just behind the
shock wave does not appear in any of these
figures, because there is a separation bubble as
seen in Figs. 10b and 11b, and the shock wave
interacts with the separation bubble.

The results of the present Chapter show that
the computation by the present method for
Jameson’s type nonlinear artificial dissipation is
successful and is adequate to capturing shock
wave. But if we employ Jameson’s type non-

This document is provided by JAXA.
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(b) Skin friction .coefficient distribution.

Fig. 6 Result for NACA 0012, M_ = 0.75,a=2°, Re =2 x 10",
Jameson’s type nonlinear artificial dissipation is used in both &- and -
directions. Michel’s criterion of transition.
Kq = 0.25, K4 = 001,
C, =0.35278, Cp, = 0.01558, C,, = 0.00528.
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Fig. 7 Result for NACA 0012, M__,=0.8, = 2°, Re=2x 107,
Present artificial dissipation. Michel’s criterion of transition.
K2 =0.25,k4 =0.01, €, = 2.0, €, =4.0,
CL = (0.45469, CD =0.03647, CM = —-0.04799,.
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Fig. 8 Result for NACA 0012, M =0.8,a=2°, Re=2x 10"
: Present artificial dissipation. Fully turbulent.

Ky =0.25, k4 = 0.01, €,= 2.0,€ = 4.0,

CL =0.39996, CD = 0.03660, CM = -0.03245.
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Fig. 9  Result for NACA 0012, M, = 0.8, a=2°, Re=2x 10".
Present artificial dissipation. Baldwin-Lomax’s criterion of transition.

K2 =0.40,k4 = 0.016, €, = 2.0, € = 4.0,
C, =0.38029,Cj, = 0.03533, C, = —0.02679.
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(b) Skin friction coefficient distribution.

Fig. 10 Result for NACA 6012, M__ =0.8, a=2°, Re =2 x 10,
' Steger’s artificial dissipation. Michel’s criterion of transition.
€,= 4.0, €; = 8.0,
CL = 0.39235, CD =0.03182, CM =-0.02778.
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Fig. 11 Result for NACA 0012, M, =0.8, a=2°, Re=2x 10”.
Steger’s artificial dissipation. Fully turbulent.
K, = 4.0, €= 8.0,
C, =0.37445,Cp = 0.03424, ), = —0.02347.
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linear artificial dissipation in the 7 direction, the
boundary-layer transition point moves forward
due to the spurious viscosity. To avoid this
defect of Jameson’s type artificial dissipation,
we employ Steger’s artificial dissipation in the
7 direction.

7. RESULT FOR GARABEDIAN-KORN
75-06-12 AIRFOIL

To show that the present method for the
artificial dissipation can be applied to so called
‘“shockless airfoil”’, the computation was done
for the transonic flow around Garabedian-Korn
75-06-12 airfoil. The flow condition is chosen as;
a free stream Mach number of 0.75, attack angles
of 0.5, 0.6, 0.7 and 0.8 degree, and a Reynolds
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Fig. 12 Pressure coefficient distribution for
Garabedian-Kom 75-06-12, M_, =
0.75, &= 0.5°, Re =2 X 107. Present
artificial dissipation, Michel’s criterion
of transition.
Ky =0.25, k4 =001, €, = 2.0, €; = 40,
¢, = 0.54992, €, = 0.00885,

CM =-0.12723.

number of 20 million. The parameter of bound-
ary-layer transition is chosen as Michel’s criterion.
The parameters for grid generation are the same
as NACA 0012 airfoil case. The grid is composed
of 241 points in the ¢ direction and 65 points in
the 1 direction. The minimum grid space in the
n direction is 1.0 x 1075,

Figures 12 through 15 show the pressure co-
efficient distributions computed under the
above conditions. Figure 12 is the result com-
puted under the condition that the attack angle
is 0.5 degree, and the computed lift coefficient
is 0.550. Figure 13 is the result computed under
the condition that the attack angle is 0.6 degree,
and the computed lift coefficient is 0.573.
Figure 14 is the result computed under the con-

-—2.0ij

Fig. 13 Pressure coefficient distribution for

Garabedian-Korn 75-06-12, M_, =
0.75,a=0.6", Re =2 X 107. Present
artificial dissipation, Michel’s criterion
of transition. ‘
Ky =0.25, k4 =0.01, €, =2.0, ¢, = 4.0,
C, =0.57306, C, = 0.00880,

CM =-0.12678.
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dition that the attack angle is 0.7 degree, and the
computed lift coefficient is 0.569. Figure 15 is
the result computed under the condition that the
attack angle is 0.8 degree, and the computed lift
coefficient is 0.621.

None of these distributions of the pressure
coefficient achieves a shockless super-critical
flow, although the computed lift coefficients are
near the design lift coefficient, 0.6. But this fact
does not mean the defect of Jameson’s type non-
linear artificial dissipation, because the results
which are computed using Steger’s artificial dis-
sipation are almost the same as the results shown
by Figs. 12 through 15. When we restrict grid
points in a way 131 points in the { direction and
45 points in the n direction, the computed distri-
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Fig. 14 Pressure coefficient distribution for
Garabedian-Kom 75-06-12, M_ =
0.75,a=0.7°, Re = 2 X 107. Present
artificial dissipation, Michel’s criterion
of transition.

Ko =0.25,k4 =0.01, €, =2.0,¢=4.0,
C; =0.59624, Cp, = 0.00897,

Cpp = —0.12652.

bution of the pressure coefficient looks like
shockless. This is because the numerical solution
was smeared around the shock wave by the large
truncation error due to coarse grid. We should
note that less-smeared numerical solution rarely
gives shockless super-critical flow for an airfoil
which is designed as shockless using hodograph
method but often gives two shock waves as seen
in Figs. 12, 13, 14 and 15. This situation is not
only true for numerical solutions of the Navier-
Stokes equations but also true for numerical
solutions of the potential equation.

The results of the present Chapter verify that
the present method for the artificial dissipation
can be applied to the transonic flow with small
shock waves.
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Fig. 15 Pressure coefficient distribution for

Garabedian-Korn 75-06-12, M_ =
0.75, =0.8°, Re =2 x 10”. Present
artificial dissipation, Michel’s criterion
of transition.

Ky =0.25, k4 =0.01, €, =2.0, ¢ =4.0,
C, =0.62082, C;, = 0.00986,

Cyy =—0.12704.
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8. RESULT FOR NACA 64,-015 AIRFOIL

In the present Chapter, we compare the com-
putational results with the experimental data.
Abbott and Doenhoff” give the drag polar
curves of NACA 64,-015 airfoil at low speed.
So, we compute the aerodynamic characteristics
of NACA 64,-015 airfoil at low Mach number.

Since the computational time becomes very
large with the Navier-Stokes computation as the
Mach number becomes small, we choose the
Mach number as 0.2. We choose the Reynolds
number as 6 million and the attack angle as 0.0
through 6.8 degree. We do not need negative
values of the attack angle, since the airfoil is
symmetric. As described at the Appendix D,
taking account of the leading edge radius, we
increase the points which depict the shape of the
airfoil near the leading edge and then we generate
a grid around the airfoil. The grid is composed
of 241 points in the ¢ direction and 65 points in
the n direction. The minimum grid space in the
n direction is 1.6 x 1073, which is larger than
that of the previous airfoils because the present
value of Reynolds number is smaller than that of
the previous cases. 20 points in the n direction
near the airfoil is generated algebraically so that
the grid near the airfoil be exactly orthogonal to
the surface of the airfoil. This orthogonality
improves the accuracy of computation especially
when we use Michel’s criterion of boundary-layer
transition. It is because Michel’s criterion requires
the momentum thickness, which is originally
defined along the line normal to an airfoil
surface.

Figure 16 shows the drag polar of NACA
64,-015 airfoil. The solid line indicates the
experimental data described by Abbott and
Doenhoff”, the symbols A and X indicate the
results computed using Baldwin-Lomax’s crite-

rion‘”

of boundary-layer transition, and the
symbols O and + indicate the results computed
using Michels criterion® of boundary-layer

transition. Moreover, the symbols A and O

:
C NACA64,~ 015 o
D 2 A
M,=0.2 A X
0.012} Re = 6 X 10° A X
Py X
A X
Pay X X o
a8 x o +
00101 RYE .
a s o ¢
&4 X
RHRR™ x _
0.008
0.006
A —— Experiment
o
0.004 A x Baldwin's
criterion of
transition
0.002 O + Michel’s
criterion of
transition
OL L . 1 i 4
0 0.2 0.4 0.6
Co

Fig. 16 Computational and experimental
drag polar of NACA 64,-015, M =
0.2, Re = 6 X 10%.

indicate the results computed using Jameson’s
type nonlinear artificial dissipation, and X and
+ indicate the results computed using Steger’s
artificial dissipation., Comparing computational
results with experimental data, we find that
Michel’s criterion is much better than Baldwin-
Lomax’s criterion and that the results computed
using Michel’s criterion are very close to the ex-
perimental data in the range where the lift
coefficient is small,

We should note that the results computed
using Jameson’s type artificial dissipation be-
come worse than the results computed using
Steger’s artificial dissipation as the attack angle
or the lift coefficient increases. The notable
difference of Jameson’s artificial dissipation from
Steger’s one is the second-order artificial dissipa-
tion, and it behaves like a viscous term. From
Egs. (48), (49) and (52), we find that the co-
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efficient of the second-difference artificial dissipa-
tion becomes large as the second derivative of the
pressure becomes large. That is, the spurious
viscosity produced by Jameson’s type artificial
dissipation in the ¢ direction becomes noticeably
large when the second derivative of the pressure
and the computed drag coefficient becomes
larger than the ordinary result. Although the
second-difference artificial dissipation works well
to capture shock wave, it becomes detrimental for
subcritical flow if there is large absolute value of
the second derivative of the pressure.

Figure 17 shows the distribution of the
pressure coefficient computed using Jameson’s
type nonlinear artificial dissipation. The attack
angle is 0.8 degree and the computed lift co-
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Fig. 17 Pressure coefficient distribution for
NACA 64,-015, M, = 0.2, a=0.8°,
Re = 6 X 10°. Present artificial dis-
sipation. Michel’s criterion of transi-
tion.
Ky =0.25,k4 =001, €, =2.0,¢ = 4.0,
CL =0.09471, CD =0.00463,

Cy = —0.00141.

efficient is 0.0947. This distribution is so smooth
that the absolute value of the second derivative
of the pressure is small. Therefore, the detri-
mental effect of the second-difference artificial
dissipation is negligibly small, and the resulting
drag coefficient is accurate enough as shown in
Fig. 16 (at C; = 0.1).

Figure 18 shows the distribution of the pres-
sure coefficient computed using Jameson’s type
nonlinear artificial dissipation. The attack angle
is 3.4 degree and the computed lift coefficient
is 0.394. This distribution has a peak of the
pressure coefficient distribution on the upper
surface, and so the absolute value of the second
derivative of the pressure is very large at the
peak. Therefore, the detrimental effect of the
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Fig. 18 Pressure coefficient distribution for
NACA 64,-015, M, = 0.2, a=3.4°,
Re = 6 X 10°. Present artificial dis-

sipation. Michel’s criterion of transi-
tion,
Ky =0.25,k4 =0.01, €,=20,¢=4.0,
CL = 0.39405, CD =(0.00745,
Cyy =—0.00589.
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second-difference artificial dissipation is very
large, and the resulting drag coefficient is worse
than the drag coefficient computed using Steger’s
artificial dissipation as shown in Fig. 16 (at Cf =
0.4).

Now we have found that Jameson’s type non-
linear artificial dissipation produces spurious
viscosity and that it becomes spurious increase of
the drag coefficient. This defect becomes notice-
able as the peak of the pressure coefficient
distribution grows.

This defect of Jameson’s type artificial dis-
sipation is not fatal. One of the recipes for
overcoming this defect is to reduce the constant
coefficient of the second-difference term of this
dissipation, k,, to small value (for example, k5 =
0.05) or zero when we compute low-speed flow.
In the present report, we retain Steger’s artificial
dissipation in the two-dimensional Navier-Stokes
code, and we choose the appropriate one from
Jameson’s type and Steger’s artificial dissipations.

9. CONCLUSION

Stability analysis of Jameson’s type nonlinear
artificial dissipation is studied so that this arti-
ficial dissipation can be applied to the two-
dimensional Navier-Stokes equations within the
framework where the resulting system of equa-
tions to be solved is block tridiagonal equations.
And we have obtained the following conclusions.
(1) The von Neumann stability analysis is made

for the model equation. The stability con-
straint is obtained between the coefficients
of the artificial dissipation terms of the
model equation. (See Egs. (25) and (26).)
(2) This
Jameson’s type nonlinear artificial dissipa-

stability constraint is applied to
tion terms of the Navier-Stokes equations to
determine the implicit part of the artificial
dissipation. (See Eqgs. (46) and (47).) The
present method mainly consists of this deter-
mination of the implicit part of Jameson’s
type nonlinear artificial dissipation, and it is
the focus of the present report.

(3) The boundary approximation of the fourth-
difference artificial dissipation is shown (See
Egs. (63), (64), (65) and (66).), and its
stability analysis is shown.

(4) The results of the practical computation for
the flow around an airfoil verify the present
method of stability constraint and the
boundary approximation.

(5) From the evaluation of the computational
results, we find that Jameson’s type non-
linear artificial dissipation has a quantitative
defect: This dissipation produces spurious
viscosity. To avoid this defect, we employ
Steger’s artificial dissipation in the 7 direc-
tion. When the angle of attack is high, the
computed drag coefficient is overestimated
for low-speed flow. Therefore we do not
employ Jameson’s nonlinear artificial dis-
sipation in either £ or n direction for low-
speed flow.

If we pay attention to (5), the present method
is a convenient and powerful tool for the Navier-

Stokes computation, and is widely useful.
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APPENDIX A

Supplementary Description of Von Neumann
Stability Analysis

In the present Appendix, we describe the
detail derivation of Eq. (8) from Eq. (6), fol-
lowing the method of von Neumann stability
analysis, and we describe the validity of Eq. (10)
in detail.

We write Eq. (6) again as

(1+X18 -ava) (u;’+1 ~u)
= Nul+BVAU! — b, (VAP W (A)

and rewrite the definition (7) as

u]'.'+1 = gu} (A2)
First we put
u? =y elws (A3)

]
where w = (wave number) x (Ax) and i is the
imaginary unit. Equation (A3) implies that u
is expressed by a Fourier component. By Eq.
(A3), the movement of index is reduced to the
factorization of exponent as described by the

following formula.
Uexw(ﬁm) = elMw ypiw]

Yism =

= ey (A4)

Equation (A4) is valid for any real value of m,
but usually m takes integer value. Applying Eq.
(A4), central difference is expressed as

6u]. = (u].+1 — u]._l)/Z

eiw_ e~ Iw
=TTy 4 = yisinw (AS)

Similarly, second derivative is expressed as

VAu. = u. - .+ u.
u] u]+1 2u1 u}_1

= (eiw - 2+ e_iw)uj
= (2cosw — 2) u; (A6)
Fourth derivative is expressed as

VAYu.=u, . —4u. +6u.—4u.
(V4) U=, 4"1+1 6u] 4“]—1+“j—2
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- (eziu_ 4eiw +6— 4e w4 e—2iw) u/’
=(2cos2w — 8cosw + 6)u].
=(2(2cos’w — 1) — 8cosw + 6)u;

=(2 cosw — 2)? u; (A7)

Substituting Eqgs. (A2), (AS), (A6) and (A7)
into Eq. (A1), we get

[1+ixsinw — a(Qcosw —2)) (g~ l)u]’.’

=—(i7\sinw)u;.’ +b(2cos w— 2)u}1

— B4 (2 cos w—2)? u]'.’ (A8)
Rearranging Eq. (A8), we get

g [1+iXxsinw—a(2cosw-2)]

=1+ (b-a)(2cosw -2)

— B4 (2cos w —2)? (A9)
Rearranging Eq. (A9), we get the following equa-
tion.

_ 1+2(@-b)(1—cos w) — 484 (1—cos w)?
1+2a(1 —cosw) + iAsinw
(A10)
Equation (A10) is exactly Eq. (8). That means
that the derivation of Eq. (8) has been completed.

Denoting the numerator of Eq. (A10) as A4,
and the real part of the denominator as B, we can
rewrite Eq. (A10) as

: S
B+i)sinw

g (A11)

If we exclude the convection term from Eq.
(A11) by puting

A sin w =0 (A12)
then Equation (A11) changes to
_A
80 =g (A13)

To compare the magnitude of g and gy, we
compute the absolute values of Eqs. (A11) and
(A13), noting that A and B real by definition.

A’.’
|g| = \/B2 +A2 Sinzw (A14)
_ 141
0= 1L (A15)

Comparing Eqs. (A14) and (A15), we find

lgl < 18 | (A16)

Therefore, if go satisfy the stability bound

g | £ 1 (A17)
then g satisfies the stability bound

gl < 1 (A18)

as well. That means that we only have to ex-
amine the von Neumann stability constraint for
Eq. (A13). If we rename g, to g, Equation (A13)
becomes Eq. (10).

. APPENDIX B

Equivalence of Upwind Difference to Central
Difference Plus Artificial Dissipation

In the present Appendix, we show that the
first-order-accurate upwind difference is equiva-
lent to second-order-accurate central difference
plus second-differnce artificial dissipation.

As an example of first-order-accurate upwind
difference, we take backward difference and
analyze it as follows.

~ ~ A

5 = =1
Vb =B - B, =@, - By
1 - . .
- 7(1.’:"].+1 - 2E]. + E]._l) (B1)
By the definition of the difference operators,
Equation (B1) becomes
. . 1 .
VEEJ'_BEEJ'_';:_VEAEEJ' (B2)

If £ is the flux vector of the Navier-Stokes
equations, the following equation is valid®.

E=420Q (B3)
where
A=0EHRQ (B4)
Substituting Eq. (B3) into Eq. (B2), we get
A 1 L.
Vebj =85 -3V 8, 4,0, (BY)

We can replace A by its spectral radius o, which
is a typical norm of matrix, in approximate
sense. Then Equation (BS) can be approximated
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by

lyg A,o.Q.
2 ET kT
The last term of Eq. (B6) is second-difference
artificial dissipation. Equation (B6) shows that
first-order-accurate upwind difference is equiva-
lent to second-order-accurate central difference
plus second-difference artificial dissipation.

We should note that the right-hand side of
Eq. (B6) is more flexible than the left-hand side.
It is because we can modify the coefficient of the
artificial dissipation term,? to other constant or
variable, and because we can modify the form of
the artificial dissipation. One of modifications is
described as follows.

1 N
2Ve8¢9; 9

V. E =8 ,E, - (B6)

NL -1 g
2 Ve (07 )L AT, 0,

®7)

The right-hand side of Eq. (B7) is the basic form
of the second-difference part of Jameson’s type
artificial dissipation.

Although the- left-hand side of IAF scheme
is complex, its essential feature can be described
by

1 -1 g1 A
S Ve O Ty Yo ) A0

9 A 80 (BS)
for the convection term in the & direction.
Therefore, all the relations corresponding to the
above equations can be deduced by replacing

Eby A8 Q. From Eq. (B2), we get
Ved;00;=06,4,80;

1 R .
— g Veh4; 80, (BS)
Replacing A by its spectral radius o, we get the
following approximation,
Ved;00;=0,4;980

1 . )
-5V 8,080, (BIO)

The last term of Eq. (B10) is exactly the same as

the last term of Eq. (B6) and is second-difference
artificial dissipation. Therefore its modification
is described by Eq. (B7).

By Eqgs. (B6), (B10) and (B7), we find that we
should use central difference for the convection
terms, 0 EA § O and i} EE’ of the Navier-Stokes
equations in IAF scheme when we employ
Jameson’s type artificial dissipation.

General discussion on the equivalence of
upwind difference to central difference plus
artificial dissipation is described in Reference 3.

APPENDIX C

Particular Solution of du/dt = Au

In the present Appendix, we will show the
well-known solution of the following vector-
matrix equation.

d

Eu=Au (629

Here u is a m-component column vector, 4 is a
m X m matrix, and ¢ is a scalar,

Since exp (At) is defined by the sum of the
infinite series of (A¢)'/n! (n =0, 1, 3,...), the
following analysis is valid.
d/dt [exp (At)]
didt [I+At+(A1)?*[21+(Ar)3/31+ ... ]

= O0+A4 + A%t + A3221+ ...,

= A [I+At+ A22)21+ A383/31+...]

= A exp (A?) (C2)
From Eq. (C2), we find

u = exp (At) (C3)

is a particular solution of Eq. (C1).

It is difficult to find the property of the solu-
tion if the formula of the solution is written by
Eq. (C3). So, we assume that we are able to
diagonalize the matrix 4 as

S1TAS =A (C4)
Here A is a diagonal matrix and its diagonal
components, Ay, Az, As,..., A, are the eigen-

values of A. Using Eq. (C4), we can get the
following formula,
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exp (At)
=]+SAS 't +SASISAS /2!
+ SASTISASISAS 113V + ...
=[+SAS™ t+SA S /2!
+SA3S1AB/3+ ...
S [T+ At+(A2[21+(At)*[31+..]8!
S exp (A1) S™! (C5)

To examine what exp (At) is, we use the follow-
ing formulae.

1]

A O ¥ o
s A2
A= A? = ,
' 2
o A, o A
A 0
A2
A = (C6)
O 7\;

Substituting Eq. (C6) into the definition of
exp(At), we get

exp (A1) =T+At+ (A [21+(AD)? 31+ ...

-

] ol [ o)
1 A

— —— — m —
_ - - -
)\2 O 7\2 O
2 2 3
As 12 As A
FTRI N TR
o A, o A,

_exp 0¥Y)) O
exp (A21)
= . (C7)

O exp@,,0)

Equation (C7) gives us easy understanding
of exp(Ar), since exp(A;2), exp(Aa?),...,
exp(A,, ) are scalar. Substituting Eq. (C7)
into Eq. (CS5) and substituting the resultant
equation into Eq. (C3), we obtain

—exp 0¥%3) O
exp (A2 1)
. s! (C8)

O exp(A,, 1)

.

as a particular solution of Eq. (C1).

APPENDIX D

Curve Fitting near the Leading Edge of an Airfoil

Before we generate grid around an airfoil, as
input data we require many points which depict
the airfoil. Unless we have enough points of an
airfoil, we cannot depict the airfoil accurately,
and as a result we will get a bad pressure distribu-
tion. In the case of an NACA 00XX series airfoil,
we can get as many points as we need, since the
airfoil is described analytically. But an NACA 6-
series airfoil” gives us sparse points near the
leading edge, while it gives us a leading edge
radius. Therefore, to obtain good result for
an NACA 6-series airfoil, we have to make
use of the information of the leading edge
radius. We describe below one of the ways to
increase the points which depict approximately
the geometry near the leading edge of the airfoil
by taking account of the leading edge radius.

Let us approximate the curve near the leading
edge of an airfoil by the following fourth-order
polynomial.
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x=—ay' + b)? (D1)
Here we have assumed that the airfoil is sym-
metric with regard to y = 0 line and that the
leading edge is placed at the origin (x, ¥) = (0, 0).

The derivatives of Eq. (D1) are

x' = —4ay® +2by
x" = — 12ay* + 2b

(D2)
(D3)

If 7 denotes the radius of the leading edge at
the point (x, y) = (0, 0), we get

1. _x =25
T3 E

L b= 1/(27) (D4)

Letting the curve described by Eq. (D1) pass

through the specified point (x, y) = (x,, ¥,), we

get

_by? - x,
Ve

a (D5)

Here we have found that the constants, a and b,
become known.

If we want y to be a function of x, we apply
the formula of the roots of a second-order
polynomial equation to Eq. (D1). Then we get

2 _b— /b —4dax
Y 2a
Here we have selected the solution which satisfies

(x, ») = (0, 0). To improve the numerical ac-
curacy, Equation (D6) is rewritten as

(D6)

2 x
2 -
TNy
Equation (D7) with Egs. (D4) and (D5) is
actually used when we increase 8 points near the
leading edge of NACA 64,-015 airfoil to appro-
ximately form the geometry near the leading

(D7)

edge by takingaccount of the leading edge radius.
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