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1. INTRODUCTION 
 
Earth observation data are required to support the 
activities of communities interested in the state of forest 
cover, carbon modeling and forest cover change. Earth 
observation has so-far failed to provide a realistic 
alternative to the labor-intensive methods by which the 
environmental or commercial value of this natural 
resource is assessed. In reality, both communities have 
approximately the same requirements: cost-effective and 
repeatable estimates of basic forest biophysical 
parameters such as timber volume. Forests are complex 
targets and it might be expected that only multi-band or 
multi-polarization data should be able to decouple the 
effects of variations in such characteristics as timber 
volume, tree density and species distribution. Furthermore, 
the impacts of soil and vegetation moisture need to be 
understood to decouple the signal and enable improved 
retrievals of forest parameters. 
 

2. AIMS AND OBJECTIVES 
 
By utilizing the dual polarized data, we aim to understand 
the potential for retrieval of forest properties of repeat-
pass ALOS PALSAR L-band SAR data. The retrieval is 
supported with field data and other secondary information. 
Recently developed tools and techniques are also 
becoming available to process and interpret the nature of 
polarized scattering at L-band. Techniques will be 
developed that utilize this extra information content for 
the estimation of useful biophysical parameters from 
forests.  This proposal has the following objectives: 
 
1) Analyze the temporal variations in the dual polarization 
signal over a four-year period of a tropical peat swamp 
forest in Indonesia. 
 
2) Plot relationships between polarimetric scattering 
intensity and coherence with physical attributes of forests 
(biomass, tree height, stocking volume etc.) to try and 
improve estimates of these parameters. 
 

3. DEVIATION FROM ORIGINAL PROPOSAL 
 
The intention of the original proposal was to investigate 
the ALOS PALSAR signal over a number of different 

forested ecosystems (boreal, temperate and tropical). Due 
to staffing changes and funding issues, the project 
eventually settled on making investigations of the signal 
over two regions of tropical peat swamp forest in 
Indonesia, located in C. Kalimantan and Sumatra. 
Although data for the Thetford (temperate) and Siberia 
(boreal) were requested, ordered and downloaded from 
JAXA, these data remain unused (they will be used to 
teaching). Once an appointment was made to a PhD 
position to work on the ALOS PALSAR data in Indonesia 
in 2008, this became the focus of the work and further 
orders for data orders were made in this region. The PhD 
student is now in the final year of their research and a 
significant component of their work includes the use of 
ALOS PALSAR. It is expected that a number of peer-
reviewed publications will be made towards the end of 
2011 that refer to results derived from PALSAR data. 
Acknowledgements will be made to JAXA. 
 
 

4. LITERATURE REVIEW 
 
Calculating the amount of carbon stored in a forest 
requires knowledge of the area covered by a forest and the 
amount of carbon contained per unit area. The latter value 
is usually calculated from sampling biomass in plots from 
which average wood volume per unit area is calculated 
using allometric equations. Wood volume (m3) is then 
multiplied by the oven dried wood density (g m-3) to give 
dry biomass (g) and finally this is multiplied by the 
carbon content of wood (typically ~0.5). There is a 
concerted effort to catalogue some of these variables, 
particularly carbon content and wood density which is 
species specific (see UNFCCC AFOLU good practice 
guidelines). Hence the values that are most often need to 
be measured in the field are forest area and forest volume. 
 

The FAO has collected forest resource assessments 
since 1948. However the accuracy of these statistics have 
been called into doubt due to problems of declining data 
quality and changes in methodology. Hence recent 
estimates of forest cover have most often been performed 
using remote sensing techniques. Estimates of the area 
covered by tropical forests range from 1116*106 ha [1] to 
1768*106 ha [2]. 
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Estimates of the carbon content of tropical forests are 
beset with difficulties because of the problems of 
measuring forest area and estimating carbon content over 
large areas. No current remote sensing system can 
produce direct measures of forest biomass so estimates of 
forest area must be combined with work done at a much 
smaller scale in experimental plots to produce estimates 
of carbon content. There is currently a very poor 
understanding of the factors controlling the variation in 
biomass across large areas such as the Amazon River 
basin. Different estimates often provide estimates that are 
diametrically opposite in their description of biomass 
spatialisation [3]. This is further complicated when 
measures of dead (litter) biomass and below ground 
biomass (roots) are included. These are usually calculated 
as additional percentages of the live woody biomass, but 
such blanket estimates are often overly simplistic. Soils 
also contain carbon but are only occasionally included in 
estimates of tropical forest carbon content. Values given 
for the carbon content of the Amazonian rainforest vary 
from 39-93 Pg [3], 86 +/-20 Pg ([4] both including 
estimates of below ground and dead biomass) to 93+/-23 
Pg excluding roots and dead biomass for [5]. 

 
The majority of global peatlands (90% by area) are 

found in the boreal zone where they are maintained by 
low temperatures as well as waterlogged soils. However 
peatlands also occur in poorly drained areas of the tropics 
where they are maintained purely by water logging. 
Seventy per cent of tropical peatlands occur in SE Asia 
mainly in Malaysia, Indonesia and Papua New Guinea 
where they support a forest type called peat swamp forest 
(the remaining 30% of tropical peatlands are scattered 
through Africa, Central & South America). Peat swamp 
forests function in largely the same way as other types of 
forest with the exception that instead of decaying, the 
dead plant material remains intact due to the anaerobic 
conditions within the high water table of the swamp. 
Peatlands can build up into large and, if left intact, stable 
stocks of carbon, with maximum recorded peat thickness 
in SE Asia of up to 20m [6], much thicker than boreal 
peatlands. Estimating the total area and amount of carbon 
stored in tropical peatlands is difficult as peat thickness 
requires intensive ground survey, though a conservative 
estimate of 55 Gt is give by [7] with a relatively large 
uncertainty of +/- 10 Gt. A larger value of 65.2Gt (or 15-
20% of the global peat carbon pool) is estimated making 
tropical peatlands a globally significant pool of carbon. 

 
Peat swamp forest also provide benefits other than 

carbon storage such as water storage and regulation and 
biodiversity, being both a refuge for endangered species 
such as the Orangutan and many other species endemic to 
peat swamp forests. However, peat swamp forests are 
threatened by selective logging, clearing for plantations 
(mainly of Elaeis guineensis for palm oil and Acacia sp. 

for wood pulp) and drainage for agriculture. These threats, 
particularly drainage, lower the peatland water table 
leading to oxidation of the peat [8] and an increased risk 
of fire. Both of these processes result in the release of 
CO2 into the atmosphere from tropical peatland. Fires in 
particular lead to a rapid loss of forest cover, 
accumulation of dead wood and an increased likelihood of 
further fires [6]. 

 
Prior to the 1960s, although there had been large scale 

degradation of peatlands in peninsular Malaysia due to 
plantations associated with the colonial period, the insular 
peatlands in Borneo and Sumatra had remained relatively 
untouched, largely due to the agricultural practices of the 
indigenous populations which were confined mainly to 
alluvial soils along river channels. Undisturbed forests are 
resistant to degradation and disturbance by fire occurs 
only very rarely. However policies of transmigration of 
human populations by the Indonesian government 
resulted in a large scale loss of forest cover in Kalimantan 
with significant fire events starting to occur in the 1980s 
[9]. Degraded peatlands are vulnerable to fire particularly 
in years of below average rainfall associated with ENSO 
variations [10] when the level of water tables become 
greatly reduced. A strongly non-linear relationship 
between burnt area and the length of the dry season in 
degraded peatlands has been shown by [11] in Kalimantan 
with fires occurring further away from drainage canals in 
drier years. This was further exacerbated during the 1990s 
when the Mega Rice Project (MRP) was begun in Central 
Kalimantan and drainage canals were constructed over an 
area of 1,000,000 ha. Fires during the 1997 El Nino year 
have been estimated to have released 0.81-2.75 Gt of C 
from the peat to the atmosphere equaling 13-40% of fossil 
fuel emissions in the same year [12]. Major fires also 
cause thick smoke haze which affects the health of local 
populations and lowers surrounding sea surface 
temperatures by intercepting solar radiation [13]. Because 
tropical peatlands represent such a large pool of carbon 
their continuing degradation represents a significant input 
into the increasing levels of atmospheric CO2. Of course 
forests even in an apparent steady state are only in a 
dynamic equilibrium between photosynthesis and 
respiration, growth and decay. Anthropogenic 
disturbances to this balance have caused forests to act as 
both large sinks and sources of CO2 to the atmosphere.    
 

The majority of studies of tropical data have been 
performed at a decadal scale using optical satellites ([1]; 
[14]). However optical systems are of limited use for 
more frequent monitoring of the tropical  forests (as is 
required for REDD) as they are frequently obscured by 
persistent cloud cover and smoke haze. Hence it is 
necessary to wait for an occasional cloud free scene or to 
composite multiple images together to produce useful data. 
Despite these limitations most of the current literature 
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concerning the implementation of REDD suggests the use 
of optical systems (e.g. IFCA methodology, [15]) for 
monitoring purposes. Another current limitation is that the 
highest resolution freely available satellite imagery (from 
Landsat 7) is currently degraded by the failure of its scan 
line corrector. 

 
Detecting the degradation of forests using remote 

sensing is challenging due to the scale at which it occurs 
[16]. It has been estimated that including estimates of 
selective logging doubles the amount of forest estimated 
to be affected by human activity. Remote sensing studies 
of forest degradation are few and use either very high (e.g. 
IKNONOS, [17]) or heavily processed medium resolution 
optical sensors (e.g. Landsat [18]; [19]). Applying such 
measures on a catchment wide scale would be extremely 
computer intensive. 

 
Active microwave remote sensing (also known as 

radar) is not hampered by cloud cover since water vapor 
does not absorb the frequencies used. Being an active 
system it is also able to gather information both day and 
night and is not complicated by differences in 
illumination angle that can complicate multi-date optical 
imaging. Radar energy also penetrates into forest canopies 
rather simply reflecting, with longer wavelengths 
penetrating furthest. This allows radar remote sensing to 
measure structural variables of forests. For example, radar 
remote sensing has been shown to correlate well with 
forest volume in Siberia ([20], >80m3/ha using a dual 
sensor technique), with forest cover [21] and with canopy 
height ([22], again using a dual sensor technique). 
However detecting the biomass of tropical forests directly 
is made difficult by the tendency of the radar returns to 
saturate at relatively low biomass levels compared to 
mature forest [23]. Civilian space borne applications of 
radar remote sensing are still at a relatively early stage 
and yet to become widely utilized outside of specialist 
remote sensing. However the potential for obtaining 
regular mapping of both forest area and structure makes it 
an area of growing interest for forest conservation. 

 
The ALOS (Advance Land Observation Satellite) was 

launched in 2006 by the Japanese space agency (JAXA). 
It carries a Phased Array L-band Synthetic Aperture 
Radar (PALSAR) instrument which is the longest 
wavelength space borne radar instrument currently 
operational. 
 

4. STUDY AREA AND DATA USED 
 
The focus of the research are the tropical peat swamp 
forests in Indonesia (Sumatra and Kalimantan). The 
Leicester team has conducted field work in the region. 
The region is of great interest to the international 
community because of the huge amounts of Carbon 

locked into the peat soil and above ground biomass. 
Furthermore, there are a number of REDD projects in the 
region as well as plantations of oil palm. In addition, there 
is a wealth of field data including high resolution digital 
aerial photography (Sumatra), information about forest 
biomass, height, biodiversity and density (Sumatra and 
Kalimantan) and also data on water table depth, soil 
characteristics and disturbance maps. Figure 1 shows the 
study area in Sumatra and Figure 2 shows the study area 
in Kalimantan. The Kalimantan field site is especially 
important as it is an area that is under regular disturbance 
from fire and drainage. In 2010, a full re-processing of the 
data already in our possession was granted following the 
discovery of the problem with the raw data processing 
being undertaken at JAXA that resulted in offsets being 
visible in the data between successive along track images. 
We are grateful to JAXA for undertaking this re-
processing step. 
 

 
  
Fig. 1 The test site in Sumatra (Kampar Peninsula) 
 
 

 
 

Fig. 2 The test site in Central Kalimantan (Block C) 
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The following data sets have been used in this study. 
 

 
 

Table 1. PALSAR data ordered for the Kampar Peninsula 
(date format is yyyymmdd) 

 
Kalimantan Kampar 

Track Date Track Date 
421 20070622 442/489 20070727 
2 scenes 20070807 2 scenes 20070911 
 20070922  20080729 
 20080509  20080913 
 20080809  20090616 
 20080924  20090801 
 20090627  20090916 
 20090812  20100619 
 20100630  20100804 
 20100815  20100919 
 20100930   
 20101115 443/488 20070628 
  3 scenes 20080630 
422 20070709  20080815 
3 Scenes 20070824  20090703 
 20071009  20100706 
 20080526  20100821 
 20080711  20101006 
 20080826  20101121 
 20081011   
 20090714 443_7190 20071113 
 20090829 1 scene 20071229 
 20091014  20080930 
 20100717  20090818 
 20100901  20091003 
 20101017  20071113 
 20101202  20071229 
    
423 20070610   
3 scenes 20070726   
 20090910   
 20080427   
 20080612   
 20080728   
 20080912   
 20090615   
 20090731   
 20090915   
 20100618   
 20100803   
 20100918   
 20101103   

 

 
The collection of in situ data on forest condition is 

essential in order to know what is represented in remotely 
sensed images. As detailed in the previous section forest 
assessment methodologies require information on the areas 
of forest being affected by degradation, but also the 
intensity of degradation. As remotely sensed images are 
easily georeferenced area is easily measured. Therefore the 
information which needs to be collected during ground 
surveys mainly concerns the intensity of degradation, or the 
change in the amount of biomass following a degradation 
event. Since degradation events are unpredictable both 
spatially and temporally we must content ourselves with 
measuring biomass in areas with different degradation 
histories. Areas with different histories can be identified 
from pre-existing data but also can also be approximated 
from field visits. Once we have selected areas describing a 
range of scenarios we can begin to sample the biomass in 
each of these areas. 

 
The basic plots are 1ha in size (100*100m). This has 

been chosen so that when each plot is identified on a 
remotely sensed image it will contain >5 pixels of a medium 
resolution satellite (e.g. Landsat, ALOS PALSAR, etc) 
image once edge effects have been removed. Plots are laid 
out using an initial GPS waypoint and then a distance of 
100m (as measured on the GPS) will be walked on a 
constant compass bearing before the next corner is marked 
as a waypoint. The next bearing is then walked at 90 
degrees to the original. Plots do not need to be permanently 
marked as they will not be used to measure changes through 
time (e.g. growth), but are intended to ‘give a snapshot’ of 
biomass. 

 
In order to measure biomass the 1ha plots are 

hypothetically divided into 25 20m2 subsampling plots each 
identified by a pair of co-ordinates. Plots are subsampled 
sequentially according to a pre-prepared list of random co-
ordinates which are located using the GPS. Once located the 
plots are laid out with the aid of a compass and delineated 
using 40m measurement tapes. The diameter of all living 
trees (i.e. displaying green leaves) >1.5m in height is 
measured at a height of 1.2m (dbh) using a tape measure. 
The height of tree is also measured using a 2m graduated 
height pole if under 4m or using an angle device and the 
distance from the base of the tree. In forests with high 
numbers of trees where this would be excessively time 
consuming tree height is classified as belonging to one of 
three categories (emergent, canopy and sub canopy; tropical 
forests are noted for this stratification). Average heights for 
these layers are then measured for each subsampled plot. 
The current number of sub sampled plots in each 1ha plot is 
currently three. Plot data will be used to calculate biomass 
using allometric equations, stem density and basal area per 
hectare. 
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4. RESULTS 
 
Multi-temporal observations of the Kalimantan study area 
is shown in Figure 3. The RGB combination is R=2009, 
G=2008 and B=2007 with HH intensity. The colors in the 
image demonstrate the changes that have occurred in the 
region mainly as a result of fire. Care has to be taken not 
to mistake change as a result of flooding. 
 

 
 
Fig. 3 The Kalimantan study area shown as RGB 2009, 
2008 and 2007 HH intensity 
 
 
The use of coherence and the HV polarized intensity as a 
source of information allowed us to understand the land 
cover in more details as shown in Figure 4. In this figure, 
located in the Kalimantan study area, areas of high 
coherence (shown in red) can be clearly seen against the 
green of intact tropical forest. The dark areas indicate 
regions of flooding. The PALSAR image is compared 
against a Landsat TM image. 
 
 
 
 
 
 
 
 

 

 
Fig. 4 ALOS PALSAR imagery (top) covering a region 
of C. Kalimantan, Indonesia. RGB = coherence, HV 
pol., HH pol. compared to a Landsat TM image with 
interpretations (bottom) 
 
 
In fact it appears as if the coherence derived from the 440-
day repeat pass interferometry shows great sensitivity to 
disturbed forest of varying degrees. This is shown in 
Figure 5 for the Kalimantan study area. 
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Fig. 5 ALOS PALSAR coherence image covering a 
region of C. Kalimantan, Indonesia. The values range 
from around 0.1 and 0.8 (upper) 
 
 
The data were also regressed against field data. 2355 trees 
were sampled in 17 plots across a gradient from intact 
forest to completely degraded forest in July and August 
2009 (Figure 6). 
 

 
 
Fig. 6 Biomass in metric tones per hectare measured 
across a gradient of degradation from intact forest on 
the left to completely degraded areas on the right. 
Means and standard deviation is given by the 
connected bars and one standard error is given 
 
 
Plots were located with aid of a hand held GPS. Mean 
sub-sampled biomass in each 1 hectare plot is shown in 
Figure 6. Note the increasing heterogeneity of biomass in 
the middle of the curve, areas that are partially degraded 
and undergoing regrowth. The backscattered radar 
intensity of the biomass was measured using 
georeferenced ALOS PLASAR FBD images. Backscatter 

was calculated using both HH and HV modes. 46 days 
coherence was also calculated. 
 

Figure 7 plots an average for each radar measure 
against an average of the pixels contained within each 
biomass plot.  The best correlations between radar and 
biomass are for the HV backscatter and the HH coherence, 
but both of these relationships appear to saturate as 
biomass approaches 100 tonnes per hectare. However this 
analysis can be further improved in the following was: by 
the inclusion of further high biomass sites (already 
sampled) on a separate image tile and by using a 
PALSAR image concurrent wit the time of sampling (the 
image used to produce the above graphs was acquired 6 
months before field sampling took place; concurrent 
images have now been obtained). 

 
a) 
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c) 

 

 
Fig. 7 Mean ALOS PALSAR backscatter in HH and 
HV polarizations (a & c) and 46 days coherence (b & 
d) 
 
 

As can be seen from the plots, the relationships 
between biomass and SAR derived parameters are 
encouraging. Further work is currently being undertaken 
to increase the number of samples and the understand the 
influence of soil moisture and water table depth on the 
SAR signal. 
 

For the Kampar region, a comparison with a land 
cover classification product derived from a SPOT 5 image 
was made. From this classification, mean intensity 
(backscatter coefficient) and coherence estimates were 
derived. The classification segmentation from the SPOT 
image is shown in Figure 8. The results of the comparison 
with radar parameters with each class are shown in Table 
2.  

 
 

 
 
 
 

Table 2. Mean coherence and intensity values computed for 
each class type (derived from a segmentation-based 

classification of a SPOT 5 image) 
 

Class 
Range of 
coherence 

(HH) 

Mean 
coherence 

(HH) 

STD 
coherence 

(HH) 

Mean 
int. 
HH 

Mean 
int. 
HV 

plantation 0.73 0.09 0.12 -12.3 -20.2 

medium 
degraded 0.77 0.11 0.12 -11.7 -19.8 

water 0.68 0.08 0.12 -14.7 -24.0 

heavily 
degraded 0.67 0.11 0.09 -11.3 -18.9 

open green 
area 0.47 0.10 0.08 -10.7 -18.6 

open bare 
ground 0.46 0.11 0.09 -11.0 -18.8 

tall forest 0.60 0.14 0.11 -11.5 -19.0 

low forest 
(type 1) 0.57 0.26 0.10 -11.1 -18.8 

lightly 
degraded 0.39 0.14 0.09 -10.4 -17.9 

Flooded 
forest 0.39 0.03 0.07 -16.6 -24.0 

low forest 
(type 2) 0.54 0.34 0.07 -11.3 -19.1 

 
 
 

 
 

Fig. 8 Kampar classification map derived from SPOT 
5 data 
 
 

The results show that there are no strong relationships 
between land cover types and mean coherence and 
intensity values. Furthermore, the range of coherence 
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values are considerable suggesting that there may be some 
differences in the information carried by the same class. 
More work is needed in relating the information derived 
from optical data and that carried in radar imagery. 
 
However, the information displayed in a false colour 
composite of HH coherence (red), HV intensity (green) 
and HH intensity (blue) clearly shows the development of 
forested areas for oil palm and paper pulp plantations. 
Although the signature of the mature phase of these 
plantations resemble natural forest the outlines of the 
zones can clearly be seen. This is shown in Figure 9.  
 
 

 
 
Fig. 9 ALOS PALSAR imagery covering a region of 
Kampar Peninsula, Sumatra, Indonesia. RGB = HH 
coherence, HV pol., HH pol. 
 
 
Of particular interest is the dome of the peat swamp forest 
that is displaying higher values of HH coherence than 
surrounding tropical forests. Figure 10, shown in the same 
false color combination as Figure 9 shows a zoom in of 
this region. Without knowing that this is a natural feature 
that results in forest cover of lower biomass, there may be 
mis-interpretations of the reason why the biomass is lower 
(forest deforestation/degradation). 
 

 
 
Fig. 10 ALOS PALSAR imagery covering a region of 
Kampar Peninsula, Sumatra, Indonesia. RGB = HH 
coherence, HV pol., HH pol. The top of the peat 
swamp forest dome is shown. This results in lower 
biomass, resulting in higher coherence values 
 
 
One of the implications of the natural peat swamp forest 
having similar backscatter values to mature plantations is 
that they both will be classified as forest in any 
unsupervised or validated land cover mapping exercise. 
Such a product at 10m resolution was developed and 
disseminated by JAXA (Figure 11). The authors urge 
caution with the use of this product and advise that 
various disclaimers are distributed with the product. The 
alternative is to be very strict with the definition of forest.  
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Fig. 11 JAXA 10m forest cover products of the 
Kampar Peninsula showing forest and non-forest 
cover 
 
 

6.  DISSEMINATION PLANS 
 
The work was presented at the joint JAXA-ESA ALOS 
meeting in Rhodes, Greece in November 2008. In addition 
every effort will be undertaken to publish the results in peer-
review journals. 
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