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by
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ABSTRACT

The natural dynamic stability of a single stage to orbit (SSTO) National Aerospace
Laboratory Spaceplane Configuration is evaluated at seven refence points on a
super-to hypersonic and constant dynamic pressure ascent trajectory. It is shown that
dynamic instability occurs in the longitudinal and lateral motion during wide parts of
the regarded trajectory. To counteract these instabilities a simple output feedback
control is introduced to achieve a pole assignment of the dominant modes according to
handling quality criteria commonly used for conventional aircraft. The sensitivity of
augmented stability parameters to deviations in the feedback gain constants is
evaluted.

The dynamic behaviour of stability augmented Spaceplane is investigated by
numerical simulation of its longitudinal motion during an ascent in standard clear air
turbulence. Results indicate the sufficient performance of the control design. The
controlled elevator deflection angles remain small despite the severe natural instability

which occurred during wide parts of ascent trajectory.

Keywords : Spaceplane, flight control, stability
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1. INTRODUCTION

The concept of national Aerospace Laboratory
Spaceplane (NALSP) aimes for a fully reusable
single-stage-to orbit (SSTO) space transporta-
launch mode.
with

airbreathing engines, the Spaceplane 1s sched-

tion system with a horizontal

During atmospheric ascent, powered

uled to cross the Mach number range up to
Mach 12.

location,

Due to its far aft center of gravity
NALSP

severe flight mechanical problems in the high

is expected to experience
Mach number and low angle of attack range
because of longitudinal and lateral static insta-
bility in this flight range. In this paper the
super- and hypersonic ascent (Mach 1.33-12)
along a constant dynamic pressure trajectory,
which is proposed in the literature (ref. 1) and
Is derived again In this paper, serves as refer-
ence condition for the analysis of NALSP's
dynamic stabihty in and hypersonic
flight.

After an evaluation of the dynamic character-

super-

istics of the unaugmented rigid Spaceplane a

linear output feedback control law for the
longitudinal and lateral motion is introduced. In
a first step, the feedback design achieves a pole
assignment to fixed locations inside a region of
the complex plane marked ‘desired’ according to
commonly used handling quality criteria. In a
second step the feedback design allows a pole
location within a region marked only ‘accepta-
ble’ but moreover aimes to minimize the sum
of squares of the feedback gain constants to
achieve minimum control surface deflections.
For both feedback designs, the sensitivity of
the pole locations to changes in the feedback
gain constants is evaluated.

of Spaceplane in the

Finally the ascent

longitudinal plane is simulated considering

vehicle dynamics and the influence of standard

atmospheric turbulence.

2. DESCRIPTION OF NATIONAL AERO-
SPACE LABORATORY SPACEPLANE

The geometry of Spaceplane (fig. 1), considered
in this paper, has a double vertical tail wiht 60°
dihedral and a retractable canard (ref. 2). Impor-

tant geometrical data and mass properties are:

total length — 64m
center of gravity location
assumed during considered

ascent phase — 68% length from

nose
wing span b — 29.8m
mean aerodynamic
chord ¢ — 17.6m
wing reference area S — 532.5m?
take-off wieght —  350tons

moments of inertia at take-off (ref. 3):

A
I, -
L -

571-10° kg m?
3.77-10" kg m?
4.21-10° kg m®

3. REFERENCE ASCENT TRAJECTORY

3. 1 Description of considered ascent trajec-
tory phase

According to ref. 1 and sketched in fig. 2,
after take-off Spaceplane will climb with a
(phase 1)
towards a constant dynamic pressure trajectory
{phase 2.)

Seven points on this constant dynamic pressure

constant flight path angle of 3°

trajectory will serve later as reference points for a
small perturbation analysis of Spaceplane dynamic
stability during super- and hypersonic ascent.
Phase 2 covers the Mach number range from
Mach 1.33 towards Mach 12.

The value of constant dynamic pressure

assumed in this paper (85 kPa) results from

This document is provided by JAXA.
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Fig. 1. Geometry of NAL Spaceplane (from ref. 2) (The model sizes are normalized
by the body length and shown in %)

re~-burning on orbit
'

climb up coasting
with rocket
phase 2:
ascent along constant
dynamic pressure trajectory

phase 1:
ascent with
constant climb angle

Mach=12

Mach=133
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Fig. 2. Schematic diagram of Spaceplane ascent trajectory

scaling down the value proposed in ref. 1 Spaceplane concepts. According to the under-
(100kPa) according to the lower mass of lying similarity law (see for ex.: GAINER, T.G,;
Spaceplane assumed here (350 tons) conpared to SHERWOOD, H.; NASA SP-3070, 1972), if N is
545 tons in ref. 1. The downscaling of Q was the scale factor for geometric length, then N° is

done to maintain the dynamic similarity of both the scale factor for the vehicle mass, v/ N is the

1) The lower mass of Spaceplane was chosen in accordance with more recent Spaceplane
concepts (ref.4)
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one for the velocity and N the one for Q.

3. 2 Computation of reference ascent trajec-
tory
Considering Spaceplane as a mass point, the
reference trajectory is described by the velocity
V, the flight path angle v (see fig. 3) and the
flight altitude h.

for constant dynamic pressure Q throughout the

Because of the requirement

considered trajectory phase, it is convenient to
use the dynamic pressure as a state variable
instead of the altitude. For a given flight
velocity, the dynamic pressure and the flight
altitude are connected by the altitude depen-
dent air density. By employing Q as a state
variable and because of Q = 0, the differential
equation for the altitude h is equivalently
replaced by an a algebraic expreésion.

The trajectory control variables are the angle
of attack a and the thrust T. Assuming an
ascent in a longitudinal plane and eastward

along the equator, the equations of motion are:
. T 4
V=—cosa——gsmu———Q SCo (1
m m

. T . g Vv
yo=— smd———cosu+?cosv

my vV
Q
+mVSCL (2)
. ‘/ hd
Q:—'h—QSinV+PVV:0 (3
. T
= — 4
" Ispg ()

Eqn. (4) describes the time dependency of
Spaceplane’s mass.

The drag and lift coefficients (Cp and C.) are
functions of the angle of attack (@) and Mach
number (M).  The thrust (T) and
impuls (Isp) are functions of the altitude (h) and

specific

Mach number.

The thrust vector is assumed to be aligned
with the body-fixed x-axis (for the coordinate
system see fig. 3). R is the radius of the
earth.

Introducing the following models for the
altitude dependent airdensity ¢ (ref. 26) and
atmospheric pressure p (ICAO Standard Atmo-

sphere, NASA rep. 1235), (h in [km}):

p=pyexp (—h/h) hy = T7.092km (5)

p=p, (1 —0.0226k)5%° h<1lkm (6)

p=p,1.26343 exp (—.1578 A) A >1lkm

(s and P, are the atmospheric density and
pressure on the ground, here assumed to be 0,
= 1.225kg,/m°® p» = 10° N/ m?

and regarding the following formulas for the

Mach number M and the dynamic pressure Q:

M=V/sqrt (tp/p) n
Q=1/2pV? @)
x,T

AN NN\ NN

e
—

%—ﬂd

nosetip
19% 1 2

(view from top) /—1
X

Fig. 3. Body-fixed coordinate system
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where 7 is the ratio of specific heats (v =
C,/C,, for air: = = 1.4), from eqn. (7) and (8)
the following formula for Q can be derived:

Q=1/2Mp (9

which, by use of eqn. (6), leads to two equa-
tions for the altitude h(in [km]):

h=4425]1- <T2r%2_) EL o

(A <<11km)

2Q )
1.26343 M?7 p,

h=—6.341n( (1D

(h >11km)
Besides the requirements of:
Q= 85kpa and Q=0

valid for the entire super- and hypersonic
ascent trajectory (phase 2 in fig. 2), the initial
conditions (index T) of phase 2 are decfined by

the end conditions of phase 1:

M; = 1.33
v,=3% v;=0
m; = 332.5 ton

The initial condition v = 0 results from the
requirement for a smooth transition between
the constant flight path angle trajectory (phase
1) and constant dynamic pressure trajectory

(phase 2).

From these given initial conditions and the
initial values for the altitude and air density
from eqn. (10) and (5), the initial values for the
thrust and angle of attack can be computed
from eqn. (1) and (2) by using eqn. (3) for the
initial value of V.

The initial thrust evaluated in this way is

lower than the maximum thrust available at the

initial altitude and Mach number according to
the thrust model (ref. 5,6) used in this paper:

T max=AB9.63 (N) (12)
A=(=190% +8000) / (0.012Ah%+ 1)

B=—-122TM*+ 25.7TM?+ 12.0

Isp=CD/3000 (s) (13)
C= -0.035h° + 0.05h%+ 53 & + 2200

D= (666.7M + 2200) / (0.035M*- 1)

In this paper it is assumed that the thrust is
increased linear in time within 60 seconds to its
maximum value given in eqn. (12) and later

always assumes its maximum possible value:

T:T]‘*‘ t/6OS(Tmax_Tl>,
(0s2 t<60s) (14)
T=Tmas, (1 >60S)

By that assumption, the number of trajectory
control variables is reduced to one, ie. the
angle of attack.

Because of the requirement of Q = 0 throu
ghout the considered trajectory phase, eqn. (1)
and (3) can be combined to form an implicit
algebraic equation for the angle of attack
necessary to achieve constant dynamic pressure

for a given thrust:

. V
Q—‘O:—h—

Q sin v
N .

+-ﬂ1{ (T cos @ —QSCp— mg sinv)
m
(15)

The set of equations to be solved for the
computation of the reference trajectory finally
are the differential eqn. (1), (2) and (4) with the

initial conditions:

This document is provided by JAXA.
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Vl =462.1 m/s, Vy = 30, m; = 332.5to

and the algebraic equations:
. (10) or {11) for h
Eqn. (5) for o
(7)) for M
. (15) for a

Eqn. (15) can be written as follows:

Q
ph

+ g)sinv=T cosa—QSCp
(15")

S

Because of eqn. (14), in eqn. (15°) the angle
of attack a is the only independent variable.
The left side in eqn. (15°) and the drag-coeffi-
cient (Cp) are always positive, therefore, for
certain combinations of thrust and flight path
angle, there might be no solution for the angle
of attack to fulfill eqn. (15), i.e. to maintain
constant dynamic pressure. The only way out
in this case would be to increase the thrust.
The employment of a thrust model as assumed
in eqn. (12) and (14) is therefore only possible if

the maximum thrust curve as a function of

Mach number and altitude has a shape which
always allows a solution for the angle of attack
in eqn. (15"). The thrust model used in this
paper shows to have this property.

The aerodynamic data (lift and drag) used
during the trajectory computation are polyno-
mial expansions with coefficients depending on
the angle of attack and Mach number (tab. 1
from ref. 2). These coefficients are derived
from windtunnel measurements carried out in
the National Aerospace Laboratory at the Mach
numbers 1.5, 2, 2.5, 3, 3.5, 4 and 7.1. The
coefficients for the Mach numbers 10 and 12
are gained by extrapolation.

During trajectory computation the measured
drag coefficients listed in tab.l are increased by
10 precent to compensate for the neglecting of
the engine intake area during the windtunnel

tests.

3. 3 Reference ascent trajectory results
From eqn. (10) the initial altitude for phase 2

is computed to:

h; = 3057 m?

Table 1 Coefficients of polynomial expansions for Cp and C. (ref.2)

Cp = Ay + RAya + RAja?; Cp = By + Bya + Bja?; (a in degree)

1.5 0.0380 |[-.000496| .000765§ .00565 0.0431 |-.000110Q
2 0.0335 |[-.000718] .000664] .00102 0.0363 |-.000075
3 0.0250 |-.001238| .000569%-.00285 0.0271 .000029
4 0.0211 |-.001900| .000576}3-.00832 0.0228 .000141
7.1 0.0201 [-.002130| .000500%-.00245 0.0120 .000440
10*) 0.0200 |-.002200| .000500}-.00245 0.0085 .000440
12*) 0.0200 |-.002250| .000500§-.00245 0.0080 .000440

*) COEFFICIENTS GAINED BY EXTRAPOLATION

2) This value differs from the one given in ref. (1) because of the different value of constant

dynamic pressure used in this paper.
altitude would be 1760 m

For Q = 100 kpa (as used in ref.l) the initial

This document is provided by JAXA.
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The Initial values for the angle of attack and

thrust are:
a; = 1. 53 cieg
T = 2366 kN

The system of differential equations (eqn. (1),
(2) and (4)) was solved by a Runge-Kutta-Feh-
Iberg method (ref. 7). Fig. 4 (a)-(g) shows the
result of the trajectory computation (phase 2) in

various state- and system variables.

GAMMA (DEG)

i
o

0. 200. 400. 609,
s TIME (SEC}
<
~
=3
s N
=
=
0. 200. 400. 600.
TIME (SEC)

Fig 4. Ascent trajectory simulations results
(a) Flight velocity, climb angle
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4. DYNAMIC STABILITY OF UNAUGME-
NTED SPACEPLANE DURING SUPER-
SONIC AND HYPERSONIC ASCENT
ALONG REFERENCE TRAJECTORY

4. 1 Method of analysis

In this paper the dynamic stability is de-
scribed by the eigenvalues of the characteristic
motions due to small perturbations from seven
reference points defined on the above described
reference trajectory at the Mach numbers M =
1.5, 2, 3,4, 7.1, 10 and 12°

Assuming a flat earth model and neglecting
the time dependency of Spaceplane’s mass and
moments of inertia*, the equations of motion
the flight attitude of the rigid

Spaceplane at each reference point are:

describing

@a=q—(pcosa+7sina) tan f

+ (cos a/ mu) (F,cosd— F;sina)
,ézﬁsindvf cos @+ (cos« cos i/ mu)

(Fy cosf—Fxcosasinf

—F, sind sinf)

u=F,/m—(qutana— r tan f/cos @)
(2} =" ({Mh—{ehs x ) (o))
®=p+qgsin®tanf+7cos® tan 0

f=qcos@—7sin® (16)

The index ‘b’ indicates the bodyfixed coordi-
nate system. u is the velocity component in
bodyfixed w-direction and B is the angle of
{Q} , is the vector of

velocities with the components: roll-rate (p),

sideslip. angular

pitch-rate (q) and yaw-rate (r). @ Is the bank
angle, 6 is the pitch angle (for definition of the
angular velocities and the bank- and pitch-an-
gle, see fig. 5).

[I] is the matrix of Spaceplane’s moments of
inertia with respect to the body-fixed coordin-
ate system.

The moments of inertia at the different
reference points are gained from a linear
interpolation between the values assumed for

the take-off- and landing-condition (ref. 3).

F. F, and F; are the forces in direction of
the body-fixed axis aerodynamic
(M), i1s the

vector of aerodynamic moments with respect to

including

forces, thrust and gravity forces.

the body-fixed axis consisting of the compone-
nts: rolling moment (L), pitching moment (M)
and yawing moment (N). The formulas for the

forces and moments are:

Fig. 5. Definition of angular velocities
and rotation angles

3) The reference point Mach numbers M=1.5 to M=T7.1 correnspond to the Mach numbers

investigated in the windtunnel.

4 ) This simplification is justified because the time constants of the regarded characteristic
motions are small compared with the time constants of the change in mass and moments

of inertia.
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F:=QSCx— mgsinf cos®+ T

Fy=QSCy + mgsin®

F:=QSC, +mgcos § cos® an
L=QSbC,
M=QS8cC,
N=QSb(C,

Q is the dynamic pressure, S the wing
reference area, ¢ the mean aerodynamic chord
and b the wing-span. T is assumed to be

aligned with the body-fixed x-axis.

The set of non-linear equations of motion
(eqn. (16)) was linearized at the above mention-
ed non-equilibrium reference points® (acceler-
ated flight during ascent) by application of the
small- perturbation method (see for ex. ref. 12).

In the proximity of any reference point, the
aerodynamic coefficients Cx, Cy, Cz C,, C. and
C. are represented by the following perturbation

series:
Cx=Cx,0+tCxq 42+ Cx, 4q
Cy=Cy, o+ Crp 88+ CypdP+ Cyr dr+ Cysa 40,
+ Cysr 46,
C,=Cgz, 0+ Crqgdad+ Czq 46+ Cz4 49+ Cz5. 48,
Ci=Ci,otCipdB+Cipdd+Cy, 47
+ Ciga 40, + C15, 40, (18)
Con=Cm, 0+ Cng 48+ Crmg dd + Cpq 49
+ Cmae 40,
Ca=Cn,0F CugdB + Cnp 4D+ Cns 47

+ Cu&a 1150 +Cn6r 46,

The index 0 indicates the value at the
reference point and the letter /\ the perturba-

tion form this reference point.

The complete sets of aerodynamic derivatives
for each reference point together with the
system- and state variables defining the non-
equilibrium reference conditions are given in

appendix 1.

The static aerodynamic derivatives at the
considered seven reference points are derived
form the above mentioned windtunnel tests
(ref. 2 and unpublished NAL data) and were
extrapolated for the Mach numbers 10 and 12.

The rotary derivatives are computed by
application of piston Theory (ref. 8) to a three
dimensional panel model of Spaceplane geome-

try (see appendix 2).

The 0; -derivatives considered in eqn. (18) in
formulas for C; and C, are estimated by ap-
proximating Spaceplane by a delta-wing and
applying a simple formula given in ref. 9 based

on potential theory.

The control derivatives for the elevator are
derived from windtunnel measurements availa-
ble up to Mach 7.1 and are extrapolated for the
Mach numbers 10 and 12.

rudder-derivatives at supersonic and hypersonic

for the aileron-and

speeds, measured data for Spaceplane were not
available. Therefore, as a rough approximation,
aileron- and rudder derivatives of the HIMES
research model (ref. 10,11) (see fig. 6) are used,
which have been measured up to a Mach

number of 5. These values were inter- and

5) The application of the small—perturbation method is not restricted to equilibrium reference

conditions.
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Fig. 6. Geometry of HIMES research model

extrapolated for the purpose of this paper.
The control-derivatives are not used in the
unaugmented stability analysis but will be

necessary later for the design of stability
augmentation.
Finally, the linearization leads to the following

set of linear e.o.m.:

{x}) = [4] (=} + [B]{5) (19)

where {X}

from the reference point state variables:

1s the vector of perturbations

(x}7={4a, 48, 4w 4b, 44, 47, 46, 40}

(20)

and {6}

the control variables from their condition at the

is the vector of the perturbations of
reference point. {0} consist of the perturba-
tion deflections of the elevon (Ad.), aileron
(A\G,) and rudder (/Ad,) and of the perturbation

of thrust T:

{0} ={ 48.,464,48,,4T) 21)

[A] 1s the characteristic system matrix and
[B] is the control matrix. The eigenvalues of
the matrix [A] in eqn. (19) describe the
dynamic stability of the characteristic motions

(see for ex. ref. 12), which are:

— short period motion| longitudinal

— phugoid motion characteristic motions

— dutch-roll motion o
. lateral characteristic
— roll-motion .
motions

— spiral motion

Because of the symmetric reference condi-
tions (8 = 0) assumed in this paper and because
of the absence of coupling terms in the expres-
sions for the aerodynamic forces and moments
and in the inertia matrix [I]longitudinal and

lateral characteristic motions can be treated

This document is provided by JAXA.
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separately.
4. 2 Unaugmented stability results

Fig. 7 shows the eigenvalues of the charac-
teristic longitudinal and lateral motions at the
regarded reference points. The conjugate
complex eigenvalue ® consisting of a real part
(Re) and an imaginary part (Im), @ = Re £ |
Im, can be expressed by a undamped natural
frequency w, and a damping coefficient { by

employing the following relation:
w=—(w,+ twg/ 1 —¢?

wo=V Re? + Im’ ,

— Re
{ =
VRe?+ Im?
Phugold
o Im [1/s}
0024 O,Huch 15
22
38
0,011 %t
O with canard ..7:10
@ without canard 12
0 T T
-0,01 - 0,005 0
Re [1/s]
Short Perlod Mode
\\\ . #Moch 15 |4
AY
N\ N Im [1/s)
\ \\
N . o2 3
N Ay
Osi CoN N
esign goa \ \ N
£3-SNAN , * tonard
desired \,/' 20\ ®3 oxith
pole reg. 7 \
s \
t
// acceptable /'d3 -1
/  poleregion Y
/ P4 12
/4 nwn P 4 7,110‘6
-2 1 Rejissy® 1
Fig. 7. Unaugmented stability results

{a) Phugoid, short period mode

a real eigenvalue (Re) may be expressed by a

time constant T by use of :

T=1/Re

Within the stepsize of the considered refer-
ence Mach numbers, for M >3 the short period
solution has a component with positive real part
because of the static longitudinal instability
(Cwe > 0). For the Mach numbers 7.1, 10 and
12, negative directional stability C, leads to an
unstable and non-oscillatory dutch-roll motion
and to an unstable spiral mode.

The influence of the canard on the short
period and phugoid eigenvalues is shown for the
Mach numbers 1.5, 2, 3 and 4. Because of the

Spiral Mode
cceeptable 1m [1/8)
4 Moch 3J215 12 1 u
-0,02 - 0,01 Re [1/s) 0 0,01
Roll Mode
acceptable Im [1/s)

Dutch-Roll
S Mach'
gesired J, e 15\ L3
pole reg. |
\\ 20} Im {t/s]
\‘\ \“
VoL 2
v
designgoal | !
9 9:..0 ‘\\ H
o3 ek
T A
// -
Il /'
o/ 1/ A N own
42 -08  -0A 0 0k 08 12
Re [1/s)

(b) Spiral mode, roll mode, dutch-roll

This document is provided by JAXA.



12 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR—1128 T

location of the canards far in front of the
center of gravity and for the canard-setting
assumed during the windtunnel tests (2° incli-
nation to the body-fixed x-axis in the sense of
producing a pitch-up moment) the canards lead
to a decrease in the longitudinal static stability
(shift of C.. to positive values). Consequently
the short period frequency is considerably lower
than for the Spaceplane without canards. The
slight increase of short period damping is due
to the small increase of pitch-damping Cg..
The calculations show that the influence of the
canards on the lateral stability can be neglected
despite a small increase in the amount of
roll-damping C,, and rolling-moment due to

sideslip Ci;.
5. STABILITY AUGMENTATION

In order to achieve a stable flight of Space-
plane during the whole considered ascent phase
an output feedback control system is imple-
mented. In contrast to a complete state
feedback, output feedback means the feedback
of not all but only a few selected state varia-
bles. The determination of the feedback gain
constants is done in two steps. In the first step
the eigenvalues of the characteristic system
matrix are assigned to {fixed pole locations
within a region of the complex plane marked
‘desired’. In the second step locations of poles
within a region marked only ‘acceptable’ are
regarded sufficient. The additional freedom in
control design in the second step approach,
resulting from allowing the poles to lay within a
region of the complex plane rather than deman-
ding a fixed location like in the first step, is
used to minimize the sum of squares of the
feedback gain constants to achieve low control
The definition of the

ratings ‘desired’ and ‘acceptable’ for Spaceplane

surface deflections.

handling is based on common handling quality

criteria given in the hterature (ref. 13, 14, 15).

Because of the assumption (eqn. (18)) that
the control surfaces only have effect either on
the longitudinal motion (elevator) or on the
lateral motion (rudder, aileron), that means there
1s no coupling stipulated by the control system,
longitudinal and lateral motion again can be
treated separately.

The dynamic behaviour of the control surface
actuators i1s neglected for simplicity.

Only Spaceplane configuration without canards

1s considered in the following investigation.

5. 1 Longitudinal motion stability augmenta-
tion
The angle of attack and pitch rate are fed

back to control the elevator:
46, = K, da+ K, 4q (22)

Because of the number of fed back state
variables is two, only one of the two conjugate
complex poles (short period or phugoid) can be
assigned.

Because the dynamics of the longitudinal
motion is dominated by the short pertod motion
which also is the critical one due to its natural
instability at high Mach numbers, the eigenvalues
of the short period motion were assigned.

In the first design approach (‘step 1’) the feed
back gains are computed to achieve desired
eigenvalues (‘design goal' in fig. Ta) according
to handling quality criteria given in ref. 13.

The desired location of the pole of the short
period motion (index: S.P.) in the complex plane
is (i =+ —1):

ws.p.=—2.660 + 2.713 (sec™ ')

Fig. 8 shows the results for the gain con-
stants K, and K, for this design for the seven
With

reference Mach numbers. increasing
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instability of the unaugmented Spaceplane the
amount of stabilizing input, i.e. the amount of
the feedback gain constants, increases. In
order to alleviate the amount of the gain
constants and so to decrease the corresponding
elevator deflection, in the second design ap-
proach (‘step 2’) any location of the short period
eigenvalues within the region of the complex
plane marked ‘acceptable’ (bounded by a dashed
line in fig. 7a) was allowed but additionaly it
was demanded to minimize the sum of squares

of the gain constants:

V K¢+ K —Min

The resulting gain constants are shown with
dashed lines in fig. 8. To obtain a feeling for
what the magnitude of the gain constants
means, fig. 9 shows for the seven reference

Mach numbers the controlled elevator deflection

Feedback gain constants-longitudi-
nal motion-feedback to elevator

amplitude which would occur during a short
period motion with an angle of attack amplitude
of 1° (solid line: ‘step 1’, dashed line: ‘step 2').
The elevator deflection amplitude is thereby

computed by the formula:

|5,|:‘{K3,K2, 0, O}T{X}S.P.l

(23)
where {x} sp. is the complex eigenvector of
the short period motion consisting of the

elements {Aa, 4q, du, Aﬁ} normalized so
that da is 1°.

Although the high elevator deflections at high
Mach numbers might worry, an ascent simula-
tion in clear air turbulence, carried out later in

this paper, shows, that the elevator deflection

Ase = Klaa + Kzaq
3
86, (deg)
20 - N
step 1 design
0 -
U .-
. stop 2 design
0 Y ”4”_1 1 1 L
0 152 3 4 7.1 10 12
Mach
Fig. 9. Controled elevator deflect for short

period motion of 1 deg amplitude
in angle of attack
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amplitudes to be expected during Spaceplane
super- and hypersonic ascent have a reasonable
magnitude.

The phugoid eigenvalues for the “step 1" and
the short period and phugoid eigenvalues for
the “step 2” are shown in Table 2 and 3
respectively.

In the ‘step 2’ design the phugoid becomes a
non-oscillatory motion with a weak unstable
part for the Mach numbers 7.1, 10 and 12.

The conputation of the gain constants for
both design steps was carried out using the
FACOM program library (ref. 16) minimization
routine MINF1.

the ‘step 1'-design was the distance of the

The costfunction minimized in

short period eigenvalue from the design goal, in
the ‘step 2° — design the sum of squares of the
gain constants superimposing an error if the
eigenvalue was located outside the acceptable

pole region.

Table 2 The phugoid eigenvalues for the
first design approach (step 1)

5. 2 Robustness of the longitudinal motion
control design
The sensitivity of the eigenvalue A to a
change in the feedback gain constants K,, ie.
the robustness of the control design, can be

obtained from the following expression (see
ref.17):

lﬂfﬁA/ngfi

T

i X

where z; and y are the right and left eigen-
vector of the closed loop system matrix belong-
ing to the eigenvalue A; and [dAdK|] is the
derivative of the closed loop system matrix [A]
When
multiplying eqn. (24) with the factor K,/ A; one

obtains the ratio of percentage change in the

with respect to the gain constant K;.

eigenvalue to the percentage change in the gain

constant, called S subsequently:

_di ] A

= 25
dK; /K (25)

S

If, for example, S = 0.7 then a 10% change

Mach phugoid [Sec—l] in K; leads to a 7% change in A. In tab. 4 Sis
1 1 given for the ‘step 1’ and ‘step 2’ controller
1.5 -0.11-10" t i 0.22-10 _
2. -0.73-10"2 + i 0.15-10"1 design and the Mach numbers 1.5, 3, 7.1 and
3. -0.39-1072 ¢+ i 0.9¢:1072 |y
4. -0.25-°10"2 & i 0.59:10° o
7.1 -0.38: 10"% + i 0.34 -10’% Only in two cases S is significantly lager than
ig :833 tig_z i i 8?9‘ '&8-2 1. This occurs for the sensitivity of the short
period imaginary part with respect to K, {(corre-
Table 3 The short period and phugoid eigenvalues for the second design
approach (step 2) (i = v—1)
Mach short period [sec"l] phugoid [sec"l]
1.5 -1.18 *+ i 3.90 ~0.11-10"% + i 0.22-107}
2. -0.74 % i 3.13 -0.74-10‘% £+ i 0.16-1071
3. -0.69 ¢ 1 2.20 -0.41-1072 ¢ i 0.11-10°1
4. -0.58 + i 1.13 ~0.24-1072 4 i 0.48°1 -2
7.1 -0.65 + i 1.08 -0.38-1072, +0.10°1077
10. -0.62 + i 1.09 -0.39‘10-3, +0.15°10"
12. ~0.69 + i 1.06 -0.33-1072, +0.12-10"2
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sponds to C,.) at the Mach numbers 7.1 and 12
and for the ‘step 2° — design.

The sensitivity analysis also gives information
about the effect of the different feedback gain
constants on the different characteristic modes
of motion. It can be seen, that the real part of
the short period eigenvalue (corresponding to
the damping) is almost not sensitive to K.
Except for the ‘step 2° —design at high Mach
numbers, the phugoid eigenvalues are almost

not sensitive to changes in K, and K..

5. 3 Lateral motion stability augmentation
In the lateral motion, the roll-rate and bank
angle are fed back to the aileron, the sideslip

angle and yaw-rata to the rudder.
40, = K3 4D+ K, 40 (26)

40, = K5 48 + K¢ 47 @7

That means, because of a feedback of all
four state variables, all four pole locations can
be assigned. analog to the control design for the
longitudinal motion, a ‘step 1’ pole assignment
towards fixed pole locations and a ‘step 2’
design aiming to minimize the feedback gain
constants by allowing the eigenvalues to be
located within a region of the complex plane
marked ‘acceptable’, was carried out.

Desired and acceptable regions of the dutch-
roll root locus are given in ref.13, 14. In the
‘step 1" assignment the location marked ‘design
goal’ in fig. 7 (b) is assigned.

The regions of desired and acceptable dutch-
roll pole locations are marked with a dashed
line in fig. 7 (b).

For the non-oscillatory rolling mode, recom-
mended time constants for the rolling motion
according to MIL-STD-1797 are given in ref.

Table 4 Sensitivities S of pole locations of longitudinal motion to changes

in feedback gain constants.

Index : S. P. = short period, Ph = phugoid

‘step 1’ design

'step 2' design

Mach 1.5 |Reg p |Img p | Repy | Impy fReg p |IMg p, | Repp | IMpp
K; |-0.009(-0.22 | 0.010| 0.044}-.0012(-0.007/0.0005/0.0023
K, | 0.587|-0.478|-0.003|-0.054} .078 |-0.005|-.0002|-.0029
Mach 3 |Reg p |Img p, | Repy | Impy jReg p |IMg p | Repy | IMpp
k; | 0.013| 0.636[-0.014|-0.054} .006 | 0.121/-0.013/-0.046
Ky | 0.834[-0.743[-0.003|-0.035{ .407 |-0.029|-0.002|-0.016
Mach 7.1 |Reg p |Img p | Repy | Impy fReg p |Img p | Repp | IMpy
x, | 0.007| 1.078| 0.020| 0.110f 0.005| 1.433/-2.065/-9.060

Ky 0.944|-0.890{-0.001|-0.001

0.800(-0.264|-0.004|-0.033

Reg p |Img p, | Repp

ImPh

Reg p (Img p, | Repp | Impp

K, | 0.005| 1.133] 0.017

0.172
Ko 0.969|-0.921|-0.001{-0.007

0.004| 1.781|-1.507}-4.938
0.894|-0.355(-0.004{-0.020
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15. In ‘step 1’ a time constant of 1 sec was
selected as design goal. A value of lower than
3 sec was regarded acceptable. Concerning the
definition of a desired location of the spiral
non-oscillatory root the relation of this pole
location to the Lateral Control Departure
Parameter LCDP (AADP), and the Dynamic
Directional Stability Parameter C,spyx, see for

ex. Weissman (ref. 18), were regarded.

Ca
LCDP:Cﬂﬁ*_Clﬁ*TZ (28)

Cnﬁ ,DYN = Cnﬂ*COSa—([z/[x )Clp*sinaf
29

where C,* and C,* are the augmented yaw-

ing - respectively rolling-moment due to sidesli-

p:
where Cap*=Crp + KsCus» (30)

and CIﬂ*=C1/9+K5C151 (31)

According to ref. 19, if both C.spyy Is positive
and LCDP is positive or greater than —0.0017
(deg™'), ordinary control laws can be adopted
for the lateral “directional flight control. LCDP
less than —0.0017 (deg™') may lead to aileron
reversal. A detailed discussion of these two
parameters and their relation to flight dynamic
behaviour i1s presented in ref. 19.

The relation of the two parameters C.spyy and
LCDP to the spiral root locus of Spaceplane is
shown in fig. 10 for the Mach numbers 1.5, 7.1
and 12. Fig. 10 results from computing LCDP
and C,ovy for six different assignments of the
spiral root while the root loci for the dutch-roli
and the rolling motion are assigned to the
design goals described above.

Fig. 10 shows, that even for an unstable
(positive) spiral root of 0.05 sec™’ LCDP is
—0.0017 deg™' for the

greater than three

regarded Mach numbers. However, to provide
a safe distance from this critical value, the
design goal for the spiral root was set to —0.01
sec™ for all Mach numbers, values lower than 0
were regarded acceptable.

Eqn. (28-31) show that the parameters C.apys
and LCDP are affected by only one gain
constant, i.e. the gain constant for the feedback
of the sideslip angle to the rudder, K.

Because the aileron derivative C,, is assumed
to be zero in this investigation (see appendix
1), LCDP isdirectly proportional to the aug-
mented directional stability C,,*.

The desired pole location for the dutch-roll
(index:dr), roll motion (ro) and spiral motion (s)

in the complex plane are:

Spiral root locus:

29 & -0

o -005

SRS (75

Mach=15 ® 0.05

® 01

28
r“‘—\w
«10°2 | Lcop
11
Mach=71 Mach=12
oltdeg™) ‘ Cop,dyn

Fig. 10. LCDP vs. C,s4m for different

spiral root assignments
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dutch roll motion: wy, =— 0.5 + ¢ 1.25 (sec™ ")
(sec™ )

(sec™)

wroz_— ]0

=—0.01

roll motion :

spiral motion : (O}

In the ‘step 1’ -design, for the four desired
pole locations specified, the solution for the
corresponding four gain cnstants K; - Ks were
found by equating the coefficients of the
characteristic equation of the augmented system
matrix with the coefficients of the polynom

gained by the product:
I (® — wdesired)

The system of the four algebraic equations
was solved by the FACOM program library
routine NOLBR (ref. 16). In the

-design, the solution of the gain constants was

‘step 2
found by employing a minimization routine
20.

constants are shown in fig. 11, dashed lines

described in ref. Results for the gain
refer to the ‘step 2’ -design results begin at the
Mach
numbers the eigenvalues of the unaugmented

the

Mach number 4 because for lower

Spaceplane already are located within
acceptable region.
The

angles of the aileron and rudder, during a

corresponding maximum deflection

dutch-roll motion with an angle of sideslip
amplitude of 17, can be seen in fig. 12.

While the controlled aileron defelection in the
‘step 2’ -design is significantly smaller than in
the ‘step 1’ design, adplitude of the rudder
This can be
explained by regarding the above discussion on
the Lateral Control Departure
LCDP. With eqn. (28) and (30) and Cu. = 0

follows:

deflection angle remains large.

Parameter

MY

-0.5 -
siep 1 design
Ks (s)
Ke (=)
Y
0 152 3 4 71 10 12
Mach
Fig. 11.Feedback gain constants-lateral

motion
(a) feedback to aileron

-10

slep 1 design

N

0

1.52 3 4 7.4 10 12

Mach

(b) feedback to rudder
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Cnp + Ks Casr = LCDP>—0.0017deg™ "
(32)
Eqn.(32) shows the dependency of Ks on the

and C.. An

can only be achieved by

aerodynamic derivatives Cg
K;s

increasing the natural directional stability C,s or

alleviation of

by increasing the rudder effectiveness C., for
instance by use of a reaction control systems

(RCS). Theis might be necessary especially at

step 1 design

P

high Mach numbers where a severe decrease of
rudder effectiveness occurs. A yaw control by
purly aerodynamic means seems not to be
sufficient in this flight regime.

Tabel 5 summarizes the closed pole for the

“step 2” design.

5. 4 Robustness of the lateral control
Analog to chapter 5.2, the sensitivity of the
eigenvalues of the lateral motion to changes in

the feedback-gain constants have been com-

puted.
88, = Kjap + Kg02 Results are given in tab.6. Except two
66, = KgaB + Kgar cases, the sensitivities S (see eqn. {25)) of the
5 dutch- roll and roll mode in the ‘step 1’ design
are less than 1. The high sensitivities for the
! 6 6, (deg) spiral root locus result from its proximity to the
! & 8&p(deg) zero point in the complex plane. In this case a
o small absolute change in spiral root locus leads

to a high percental change.

The sensitivity analysis also gives information
about the influence of the different feedback
gain constants on the different characteristic
modes of motion. It can be seen that this
influence is not the same for the different Mach
numbers considered. For instance the feedback
gain constant K; has almost no influence on the

real part of the dutch roll eigenvalue at the

o ez Mach“ s " Mach numbers 1.5 and 3 but a remarkable
influence at the Mach numbers 7.1 and 12.
. One reason for that behaviour lies in the fact

Fig. 12. Controled rudder and aileron

deflections for dutch roll motion
of 1 deg amplitude in sideslip

that the relation K; : Ki : Ks : Ks of the feed-
back gain constants is not the same for the
Mach numbers 1.5, 3 and 7.1. For the Mach

angle
Table 5. The closed loop poles for the “step 2”.

Mach dutch-roll [sec‘l] roll [sec"ll spiral [sec"l]
4. -0.162 %+ i 1.035 -0.37 -0.401‘10‘;
7.1 -0.125 ¢ 1 0.700 -0.33 -0.614-10'3
10. -0.129 ¢t i 0.688 -0.33 —0.469'10"4
12, -0.177 + i 0.677 -0.34 -0.212-107
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Table 6. Sensitivities S of pole locations of lateral motion to changes in
feedback gain constants.
‘step 1’ design ‘step 2 design
Mach 1.5 Reqy, Img, Re_ Reg Regy, Img, Re ., Reg
K3 0.010] 0.006] 0.384| 0.498 - - - -
Ky 0.001] 0.001f 0.048] 4.90 - - - -
K¢ -0.840] 2.184) 0.974| 23.8 - - - -
Kg 0.281] 0.054| 0.026| 1.843 - - - -
Mach 3 Regy - Img, Re, o Reg Rey, Img, Re,q Reg
K4 0.015/-0.023} 0.652]|-0.680 - - - -
Ky 0. 0. -0.006] 0.588 - - - -
Kg -0.029/-0.376] 0.019} 0 . - - - -
Kg 0.598({-0.081{-0.013} O. - - - -
Mach 7.1 jReq, Img, Re ., Reg Redr Imy, Re, Resl)
K4 0.890]-0.1441-0.003 0. 0.507(-0.015|-0.021| 0.002
Ky 0.004} 0.494| 0.005}{ -0.94]1-0.018| 0.256| 0.129(=0.402
Kg 0.076] 0.066|-0.630] 55.5 0.561| 0.458(-3.190| 0.273
Kg 1-0.024({-0.002} 0.887 2.081-0.088|~-0.009} 0.634({-0.030
Mach 12 Req, Img, Re, o Reg Req . Imy, Re Resl)
K3 0.955(-0.153|-0.004| O. 0.940(-0.062|-0.112} .0001
Ky 0.002| 0.436] 0.006{-0.7073-0.004| 0.114| 0.104|-.390
Kg 0.176| 0.193|-1.263/108.7 0.494| 1.5401-2.787| .0556
Kg -0.014}-0.001} 0.933} 1.19 §-0.130({-0.002} 0.836|-.0114

1) pecause the spiral root locus is almost zero, instead of

(dA /i )/(dKj/Kj) the value of daA /dK,

]is

given

number 12 the relation is similar to the one at
Mach 7.1, therefore at these two Mach num-
bers the sensitivities of the eigenvalues to
changes in the feedback constants possess the
same tendency.

For the 'step 2'design the sensitivities are

slightly higher than for the ‘step 1" design.

6. SIMULATION OF AUGMENTED
SPACEPLANE ASCENT IN DIS-
TURBED ATMOSPHERE (motion in
the longitudinal plane)

The super- and hypersonic atmospheric

ascent is simulated considering three degrees of
The

simulation is divided into two parts, which are

freedom motion in the longitudinal plane.
dependent on each other. First, Spaceplane’s
vehicle dynamics is represented by the system
matrices at the seven reference Mach numbers
the

configuration

used in (Spaceplane

The
using the feedback

stability analysis

without canards). linear
output feedback control
gains from the ‘step 1’ control design shown in
fig.8 are incorporated. The feedback gains and
system matrices for any Mach number are

found by linear interpolation between the values

This document is provided by JAXA.



20 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-—1128 T

for the reference Mach numbers.

Second, the trajectory control itself, i.e. the
control of the constant dynamic pressure Q, is
achieved by a linear feedback of the deviation
of the dynamic pressure Q@ from its desired
value Q¢ (85 kPa) to generate a commanded

angle of attack a..
de=K (Qo— Q)+ dp-133 (33

ay-13 1S the angle of attack at the beginning
of the considered ascent trajectory phase where
Mach number M=1.33 and Q=Q..
the simple controller design of only proportional

Because of

type, a deviation of the dynamic pressure Q
from the desired value Qo is unavoidable. The
stability analysis of this trajectory control and
the determination of the factor K in eqn. (33)
The factor K
depends on the Mach number and takes the

1s described in appendix 3.

following values:

Mach K [deg, kPa)
1.5 .29
.47
.71
.95
7.1 1.25
10 1.33
12 1.70

The vehicle is assumed to be trimmed at the
commanded angle of attack ac.?

The ascent simulation considers the effect of
vertical gustvelocities w.. (frozen gust model)

occuring during standard clear air turbulence.

The magnitude and sign of the vertical gust
velocity w.. 1s given by a random number with
a root-mean-square intensity according to
USAF MIL Spec.8785 (ref.21, see fig.13). The
duration while w.s is kept constant is defined
by the actual flight velocity and by altitude
dependent horizontal scales of the gust model
The additional, disturbing

angle of attack due to clear air turbulence is

as given in ref.22.
approximated by:
42 pyrh = Wiyeh /V (34)

The equations of motion employed in the

trajectory simulation consist of the small
perturbation equations or the rigid body dynam-

1CS:

{A;‘}z [A]{Ax}+{b}45'+{c}daturb
(35)

{4x)'={ga, 49, 4u 46}  (36)

46¢=K1da+K2Aq (22)

> 10
"
; 9
E N
e
§§ ¢ H o
g s 1]
2 M
ob’ 4
o *
-
? k3
g

()

0o 1000 10,000 100,000

ALTITUOE ABOVE MEAN TERRAMN LEVEL A~FY

Fig. 13. Intensity of clear air turbulence

(USAF MIL Spec. 8785)

6) For the elevator deflection J. . necessary to trim Spaceplane, see appendix 1.

The trim

capability of the elevator might be augmented by bodyflap or center of gravity. The
different sign in C,. o and J. w= for Spaceplane with (6c = 2 deg) and without canards
result from the location of the neutral point before (with canard) or behind (without
canard) the center of gravity (68% length from nose).
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r (@SCLy QSCcCna
¢t = : , 4% 1, =0
{c} { oy . {ar}, (45)
QSCxq 0} (37) Fig.14 shows time histories of the state
m variables, the elevator deflection Ad. the
and of equations for the trajectory dynamics, additional angle of attack a., due to the air
considering Spaceplane as a mass point: turbulence and the Mach number M. The
T Ch M) elevator deflection angle does not include the
Uo=———mi—_cosd — &sinv portion needed to trim Spaceplane at the
commanded angle of attack. The dashed lines
_Q SCp (a* M) (38) indicate the reference trajectory computed
m without consideration of vehicle dynamics and
- T(h M) g N vV atmospheric guests in the same way as chapter
=== "7 gind — — cosV + —COsV
vy my sin v o) R 33
0 The results show that the ascent is dynami-
+7n—{/-SCL(a*, M) (39) cally stable and that the elevator deflection
angles necessary to counteract the disturbances
. V ) .
Q=" Q sinv + pVV, (3) .
o )
- - - - vi;hout vel;lctc syn;:!ic-
. h and atmospheric turbulence
m=— I.i(_lﬂ_)_ (4) A
se & 3 i
> L(S’ o
h=Vsinv (40) —_
c[ L
b
&
The index ‘0’ indicates that the respective I
variable describes the reference condition. A ——
3. 200. 400. 600.
: S TIME (SEC)
The state variables a, a* v, V and Q are S
defined as follows:
&= de+ dgy 41) 55
a*= a+ 44 turb (42) S
-
-
v=v,+ 46 — 4a (43) "
/
V=Vy+ du/cosa (44) i ) :
c. 200. 400. 600.
[
0=1/2 pV? (8) . T!Mt {SEC) . .
Fig. 14. Ascent trajectory simulation
The system of differential equations was results (under consideration of

vehicle dynamic and atmospheric
turbulence)
(a) Flight velocity, climb angle

solved by a Runge-Kutta-Fehlberg method
(ref.7). The initial conditions are those given in

chapters 3.2 and 3.3 and moreover:
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due to the clear air turbulence are small (less
than 0.3 degrees). The elevator deflections

remain small even at high Mach numbers
where the feedback gain constants are large.
This can be explained by the negligible small
disturbing angle of attack due to clear air
turbulence in the high altitude, high speed
trajectory phase.

The maximum deviation of the dynamic
pressure from the reference value of 85 kPa is

only about 1%.

] )
B 'ﬁfd~ﬂr,f/fu*u_*~
(5] 4V
s SV
= V{””
- A
a ¥
r'__’ )\ l rﬁ u/‘xf\/
] : wv&
a
- - - - without vehicle dynamics
and atmospheric turbulence
o4

9 200 400, 5C0.
TIME (SECH
o
~
o,
<
1 ////
o 2]
g~ rd
—
/ ;
. !
[=] + T -t
9 200. 400. 609.
TIME (SEC)

( b) Mach Number, angle of attack .

ALTITUBE (KM)

AL (DEG)
:S

AL-C
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ELEVATOR
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ALPHA-GUST

40
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7. CONCLUSION

Flight mechanical derivatives and system data
of NAL Spaceplane have been collected at
seven reference Mach numbers (1.5, 2, 3, 4, 7.1,
10, 12) on a constant dynamic pressure ascent
trajectory and a stability analysis of rigid
Spaceplane was conducted.

For the Mach number step-size considered,
small perturbation stability analysis shows that
the short period motion is unstable and non-
periodic at high Mach numbers beginning at
M=4. For the dutch-roll motion instability
begins at Mach number 7.1. The spiral motion
is unstable for the Mach numbers 7.1, 10 and
12. The roll motion and phugoid motion remain
stable throughout the considered trajectory.

Consequently a linear output feedback control
law was introduced to achieve stable flight with

favorable flight dynamic characteristics through-
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out the whole ascent trajectory as recommend-
ed by commonly used handling quality criteria.

The decrease of natural stability and control
effectiveness with increasing Mach number
results in large feedback gain constants at high
Mach numbers. Except for the yaw-axis
control, a remarkable alleviation of feedback
gain constants can be achieved if only ‘accept-
able’ instead of ‘desired’ handling qualities are
aspired during the feedback control design.
The gain constants for the yaw-axis control
remain high because of the very low rudder-ef-
fectiveness at high Mach numbers and the
condition that the Dynamic Directional Stability
Parameter has to exceed a limit value to ensure
effectiveness of ordinary lateral“directional
flight control methods. The permission of only
‘acceptable’ handling qualities by demanding
minimum feedback gain constants is however
accompanied by a higher sensitivity of the pole
locations to changes in the gain constants.
Hence, this controller design has a lower
robustness.

Simulation of Spaceplane’s ascent in the
longitudinal plane for the presence of standard
clear air turbulence and for a feedback control
law achieving ‘desired’ flight dynamic behaviour
shows, that the elevator deflection angles
necessary to stabilize Spaceplane and to control
the disturbances caused by the turbulence

remain tolerable.

Future work has to deal with a complete six
degree of freedom simulation of Spaceplane
ascent in disturbed atmosphere. Possibly,
measures to increase control effectiveness for
the vaw-axis control at high Mach numbers
might appear to be necessary.

Future work also has to answer the question
to what extent handling quality criteria for

conventional aircraft are applicable to a new

generation super- and hypersonic transport

vehicle like Spaceplane.
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APPENDIX

Appendix 1 : Characteristic data at the consid-
ered seven reference points

1. Definition of aerodynamic coefficients and

derivatives

a) aerodynamic coefficients

Cx=X/Q S C=L/Q Sb
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Cy=Y/Q S Cm=M/Q Sc
Cz:=2/Q S C,=N/Q Sb
b)aerodynamic derivatives
CXaf = aCx/aa CXq = aC)(/a (qc/zv())
Cys = 0Cy/0f Crp=9Cy /8 (pb/2V,) Where:
CYT = aCy/a(rb/z]/o) CYﬁa:aCY/aaa

S=wing reference area
Cyar = aCY/aar .
c=mean aerodynamic chord

Czy=08C;/8 (ac/2Vy)
Czag = 6C2/66,

Czy = 0C; /0a
Czq = 0C2/0(qc/2Vy)

b=wing span

Vo=flight velocity at reference point
Cip=0C1/0 (Pb/2Vy)
ClBa = aCI/aaa

Cip = aC,/ 0B
Ci = 8C/ 3 (rb/2Ve)
Cis, = 0C,/ 99,

2. Reference conditions and aerodynamic deriva-
tives Reference conditions at the seven points
are shown in Table A. 1 and also aerodynamic
Cmiy = 0Cm/ 8 (@c/2Vy) derivatives in Table A. 2 and A. 3.

Cmse =0Cpn /00,

Cnmg = 0Cp/0a

Cmq = acm/a(qc/zvﬁ)
Cnﬂ = acn/aﬂ Cnp :aCn/a (.bb/ZVO)
Cpy = 0Cy/ 8 (78/2V) Capa =0C, /38,

Cn57 = aCn/aar

Table A. 1 Reference conditions and aerodynamic derivatives

Reference conditions:

(Time = 0 s for Mach = 1.33)

Mach 1.5 2 3 4 7.1 10 12
Time (s) 41 93 164 214 338 453 546

m (to) 327.5 320.9 312.6 307.6 292.6 276.6 262.7
I, (Nm?) 5.45-106 5.33-106 5.17-108 5.07-108 4.84 106 4.63-105 4.47-108
Tgy (Nm?) 35.90-105 35.10-108 | 34.00-10 33.30-10 31.70-10 30.30-10 29.10-106
12¥ (nm?) | 40.10-106 | 39.10 10 37.90-10 37.10-10 35.40-106 | 33.80-10% | 32.50-106
o (deg) 1.667 1.69 2.37 2.85 3.933 4.56 4.40

vy (deg) 7.33 6.16 4.23 3.10 1.233 0.572 0.333

vy (m/s) 527.1 700.8 1012 1310 2190 2971 3493

hy (m) 4935 8978 14190 17840 25130 29480 31740

Ty (kN) 3110 3240 3150 3190 3170 2770 2320
Lo 0.0726 0.0622 0.0614 0.0577 0.0516 0.0455 0.0412
cD:0 0.0416 0.0376 0.0277 0.0224 0.0214 0.0224 0.0218

Trim conditions (for Mach Numbers with windtunnel data available):
(center of gravity at 68% length from nose)

with canards (8§, = 2 deg}):

Mach 1.5 2 3 4
Cm,O 0.0198 0.0127 0.00624 0.00506
Se,trim (deg) 6.4 6.0 4.7 4.8

without canards:
Mach 1.5 2 3 4 7.1
Cn. o -0.00228 -0.00638 ~0.00768 -0.00753 -0.0041
Se:trim (deg)f -0.7 -3.0 -5.7 -7.2 -10.6
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Table A. 2 Aerodynamic derivatives of the spaceplane without canards
Mach 1.5 2 3 4 7.1 10 12
Cxa -0.01 -0.004 0.005 0.011 0.030 0.040 0.048
Cxq -0.044 -0.0399 -0.0288 -0.0236 -0.007 0.0029 0.0014
Cyp -0.613 -0.517 -0.413 -0.355 -0.329 -0.329 -0.329
Cyp -0.074 -0.062 -0.050 -0.045 -0.040 -0.038 ~0.036
Cyr -3.195 -g.194 -8.190 -8.201 -0.212 -0.212 -0.231
C 0 0 0
c§§; 0.069 0.061 0.042 0.025 0 0 0
Cpa -2.42 -2.04 -1.53 -1.24 -0.690 -0.565 -0.507
Cra -0.115 -0.103 -0.0589 -0.0230 -0.0038 -0.0014 -0.00078
C1q -0.0373 0.0546 0.1717 0.2558 0.3819 0.4213 0.4639
Crae -0.222 -0.141 -0.093 -0.065 -0.0184 -0.017 -0.016
C1p -0.0726 -0.0605 -0.030 -0.0161 -0.0081 -0.007 -0.0060
Clp -0.1933 -0.160 -0.117 -0.0967 -0.0616 -0.0466 -0.0419
iy 0.0652 0.0543 0.0407 0.0345 0.0224 0.0167 0.0153
Clsa 0.069 0.051 0.039 0.027 0.009 0.004 0.0035
Loz 0.0145 0.0110 0.0073 0.0054 0.0023 0.0012 0.0010
Cna -0.702 -0.437 -0.167 0.0131 0.0729 0.085 0.090
Crée 0.0054 -0.0036 -0.0078 -0.0060 -0.00145 -0.00062 -0.0001
Cng -4.367 -3.709 -2.899 -2.564 -1.953 -1.679 -1.636
Crse -0.1775 -0.121 -0.0767 -0.060 -0.0222 -0.02 -0.019
Chp 0.258 0.178 0.076 0.025 -0.0176 -0.030 -0.035
Crp 0.0652 0.0543 0.0407 0.0345 0.0224 0.0167 0.0153
gnr -8.713 -3‘620 -8.501 -8.457 -8.368 _8'324 -8.332
chee -0.038 -0.030 -0.0185 -0.013 ~0.0050 -0.0027 -0.0024
Table A. 3 Aerodynamic derivatives of the spaceplane with canards
Mach 1.5 2 3 4
Cxa -0.0124 -0.0134 0.0013 0.0062
Cxq -0.0446 -0.0399 -0.0288 -0.0237
Cyﬁ -0.613 -0.517 -0.413 -0.355
Cyp -0.074 -0.062 -0.050 -0.045
Cyr -0.196 -0.194 -0.190 -0.201
Cysa 0 0 0 0
Cyse 0.069 0.061 0.042 0.025
Coa -2.41 -2.08 -1.43 -1.28
Cg& -0.115 -0.103 -0.0589 -0.0230
CZq 0.2014 0.2507 0.3147 0.3736
C -0.222 -0.141 -0.093 -0.065
zZ8e
Cip ~-0.0726 -0.0605 -0.030 ~-0.0161
Clp -0.1969 -0.1620 -0.119 -0.0984
Cir 0.0652 0.0543 0.0407 0.0345
Cisa 0.069 0.051 0.039 0.027
Cisr 0.0145 0.0110 0.0073 0.0054
Cra -0.235 -0.151 -0.0566 0.0141
Cid& -0.0172 -0.0180 -0.0124 -0.0088
mq -4.806 -4.070 -3.165 -2.783
Cmée -0.1775 -0.121 -0.0767 -0.060
Cnﬁ 0.258 0.178 0.076 0.025
Cnp 0.0652 0.0543 0.0407 0.0345
Cnr -0.713 -0.620 -0.501 -0.457
Cnsa 0 0 ] 0
Cnsr -0.038 -0.030 ~0.0185 -0.013
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Appendex 2 Computation of rotary aero-
dynamic derivatives in the super-
and hypersonic flight regime with

Piston theory

To obtain an estimation of the rotary stability
derivatives of Spaceplane in the investigated
super-and hypersonic flight regime for the
purpose of flight dynamic analysis, Piston theory
was employed as an easy-to- use method.

A FORTRAN program was generated to
calculate the rotary stability derivatives of
Spaceplane with and without canards and for
the Mach numbers and angles of attack occu-
rring during the analysed ascent trajectory.

1. Description of the method

Piston theory assumes that the local pressure
on an surface is related to the local normal
component of the surface’s velocity relative to
the fluid like the pressure on the face of a
piston moving in a one-demensional channel is
related to the velocity of its motion.

The relative velocity of the surface relative to
the fluid may be due to the inclination of the
surface to the direction of the fluid flow or due
to a motion of the surface itself.

According to Ashley, ref. 8, “in general,
Piston theory may be employed for large flight
Mach numbers or high reduced frequencies of
unsteady motion, whenever the surface involved
is nearly plane and not inclined too sharply to
the direction of the free stream”. Because of
the low angle of attack during the considered
ascent trajectory and because of Spaceplane’s
body shape the restriction for the surface
inclination is fulfiled with the exception of
small areas near the tip of the fuselage.

Under the assumption that only simple waves
are generated and no entropy changes are
produced, the exact expression for the pressure

on the face of a piston moving with velocity w

in a channel containing perfect gas is according
to ref. 8 :

p w 2t/{t~1}
—-p::{l+1/2 (r—1) (Z)}
(A2—1)
T — ratio of specific heats (air : 7=1.4)
a=. — free stream speed-of-sound
P. — free stream static pressure

From eqn. (A2—1) and with

Poo Qoo ? W
—_— and M:—a—

pm:

(w. and P. are the velocity and airdensity of
the free stream) the pressure coefficient C, can
be written as :

o = PP

P72 b w?

{[1+ Tgl 3:—]<2m—u— I}

oo

2
T M?
(A2—2)

A surface element (fig. A—1) is defined by a
surface area A, the unit normal vector {n}
and a vector of length R and direction {7}
between the origin of the reference coordinate
This

surface element is located in an airflow, defined

system and the surface reference point.

{n}

Uful

surface
element

ng,]

reference.
coordinate sysftem xyz
Fig. A—1. Definition of a surface element
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by the velocity U and the direction {u} , and
rotates around an axis defined by the direction

{w} with an angular velocity Q. {7}, {u}
and {w} are all unit vectors.

The velocity w normal to the surface consists
of a static portion wg,. which is proportional to
the inclination of the surface to the direction of
the undisturbed airflow, and of a dynamic
portion wg, proportional to the relative velocity

induced by the rotation.
W= Wgtat + wdyn (A2“3)

The static portion wu«. can be written as :

wsiar=U{u} {n}=U s (A2—4)
where :
cos f cos«
{u}=1sing (A2—5)

coaf sina

a and B are the angles of attack and sideslip
of the body to which the surface element
belongs.

The dynamic portion wa, can be written as :

wdyn:QR({w}X{r}>T{”}
= 9Rs, (A2—6)

(‘x’ indicates the vector product)

Introducing a normalized angular velocity Q* :

L2

o R A2—17

U/l ref ( : )
where | is a reference length. The rotary

derivative Cp defined at Q* = is :
_0C, _ 0Cy oW dyn

Cpg = - *

0.0* awdyn 0Q 2%= ()

(A2—-8)

with eqn. (A2—6) and-(A2—2) follows :

R
= P35
Cre 2eref ?

(r+1}4( 1)
[1+182 (=1 ms, |
(A2-9)

(A2—9) with the

{n} , the rotary deriva-

After multiplying egn.
surface normal vector
tives of the aerodynamic forces in the bodyfixed

coordinate system can be obtained

Cxg
Cvo = Cpo{ 7}
Czo

(A2—10)

The derivatives of the aerodynamic moments

are .

/

Cig ,
Cmg :Cpn[”}X<R{’}“Ro{’}o)
Cns (A2—11)

where Ry {r} o defines the moment reference
point in the bodyfixed coordinate system.
The mark indicates, that the derivatives are
with respéct to one surface panel
in eqn. (A2—6) is

chosen to be aligned with the bodyfixed axis, 1.

If consequently {w}

e. the rotations are either pure rolling, pitching
or yawing motions, the rotary derivatives Cx,,
Cxe Cxiv Cyp oo+, Cu can be obtained.

The sum of the rotary derivatives for all
surface panels weighted with the respective
surface area A; leads to the rotary derivatives
of the whole body :

k
Cab = I/Afef ZCM".I Al‘
i5)

(A2—12)

where k is the number of surface panels.

The index 'a’ stands for one index out of X, Y,
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Z, !, m, n and ‘b’ for one index out of p, g, r.

A. is the vehicle reference area.

According to ref. 23 Piston theory results can
be improved by replacing the constant factor
(named C subsequently) of 2 in eqn. (A2—9) by
the normal force slope Cyx.. In this paper the
constant value of C=2 is replaced by a factor F

which is computed as

. N measured ((Z)

= (A2—13)
Npiston(c :1, d)

F

i‘\'Pnsmn(C: - 1 ’

force as computed by Piston-theory assuming

a) i1s the aerodynamic normal

a constant factor of C=1 instead of C=2.

Nireswed (@) Is the value of the normal force as
measured in the windtunnel. This means, the
factor F is chosen in a way, that the normal
force measured and the normal force calculated
by Piston-theory employing the factor F instead

of 2 in eqn.(A2—9) — assume the same value.

To avoid the large relative error in the

windtunnel results in the region of small
normal forces (i.e. at small angles of attack) F
is computed only once for each Mach number,

namely for the angle of attack of 5 deg.

The FORTRAN program installed allows the
treatment of aircraftbodies which surface is
defined by quadrangular panels” defined by the
coordinates of the four corner-points ( {r} .
1=1, 2.3.4) in the bodyfixed coordinate system.
The panel reference point is defined by the
mean value of the coordinates of these four

corner points (see fig. A—2):

(rh=1a({r Lo {rhes{r )t (7))

z
body- fixed coord. sys.

Fig. A—2 Definition of a quadrangular panel

The vector {n} normal to the panel and of

unit length is defined as :

(A2—15)

where the operator ‘x’ denotes a vector product
and ‘| .|’

The vectors

denotes the amount of a vector.

{z} 1 and {z} 2 are :

{zhi={rh={rh+{r}-{r}

(A2—16)
{2}2:{’"}3—{7’ }1+{’}4_{’}2
(A2—17)

2. Application of Piston Theory to a delta
wing

To obtain a feeling for the quality of Piston

theory results, fig. A-3 compares the damping

derivatives C., and Cu, of a delta wing com-

puted by Piston theory (F=2) and by two other

methods (ref.9, 24) which are more laborious

7) In the practical application of Piston theory to a panel element it has to be distinguished
whether the panel is wetted by the airflow from only one or from both sides. For
example panels belonging to the fuselage are usually wetted only from one side.
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than Piston theory and also more suitable for
lower Mach numbers.

Fig. A-3 shows, that even for a Mach
number as low as I. 4, the difference between
these results is small enough to take Piston
theory as an easy-to-use method for the
calculation of rotary derivatives for an applica-

tion on flight dynamic analysis.

3. Application of Piston theory to Spaceplane

Piston theory will now be applied to compute
the rotary derivatives of Spaceplane for M=1.5
to 12.

The body shape of Spaceplane is represented

¢

ch k.
‘ -
\ N
2t < =0
\\ 1, I 50
\ x x 2 panels
\\O Srows
1Sr \\ 10 panels/row
1 -
) 1l 1 -
1 2 3 Mach
‘ N e Miles, Ref. 9
15k \‘Q o Brune,Dusto, Ref 24
) \ —— Piston Th. (F=2)
-1k
-5 1 1 i
1 2 3 Mach

Fig. A—3. Comparison of Piston Theory
results with different compu-
tational methods

by the grid of quadrangular surface panels as
shown in fig. A-4.

The grid employed for this calculation of 918
panels (fuselage : 270 panels, right and left wing
each : 300 panels ; vertical tails each : 16 panels ;
winglets each : 8 panels (panels of vertical tails

and winglets are wetted from both sides))

Because of the symmetric flight conditions
investigated (8=0), the symmetry of Spaceplane
with respect to the x,z-plane and because of
the properties of Piston theory, rolling and
yawing motion only induce lateral forces and
moments while pitching motion only generates
Fig. A-5

rotary

longitudinal forces and moments.
shows Piston theory results for the
stability derivatives of Spaceplane for an angle
of attack a=0°. For comparison results ob-
tained with Newtonian Impact Theory (ref. 25)
are shown with a dashed line. Newtonian
Impact Theory gives good results at very high
Mach numbers.

Appendix 3 Stability

dynamic pressure trajectory contro

analysis of constant

]8)

Fig. A—4. Surface grid for computation of
Spaceplane rotary derivatives
with Piston Theory

8 ) A detailed discussion on the stability of a constant dynamic pressure, heat input rate

trajectory is given in ref. 26.
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The dynamic pressure i1s controlled by a
simple linear feedback of the deviation of the
dynamic pressure from the nomial value to

generate a commanded angle of attack input :

ac=K(Q—Q), Qo= 85kpa (A3—1)

Regarding Spaceplane as a mass point the

equations of motion for the flight velocity,
flight path angle and dynamic pressure (see.

eqn.(1), (2) and (3)) were linearized and written

.10

0

. . Newtonian Impact Theory
(ref.25)

N
0.0%

cY

-0.10

0. 4.0 8.0 12.0
MACH

Fig. A—5. Rotary derivatives of Space-

plane vs. Mach Number (a=0

deg., Piston Theory results)
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The matrix [A] and the vector {b} are:
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The root loci of the closed loop system, that
are the eigenvalues of the augmented system

matrix [A]*

[a)=La]+{o}s)

were computed for the seven reference condi-

(A3—8)

tions. The conjugate complex eigenvalue repre-

sents a phugoid-type motion, the nonoscillatory

2

0. 4.0 8.0 12.0
MACH

(d) Factor F (see eqn. A2—13)
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eigenvalue describes a motion which only exists
in case of an altitude dependent air density. In
case of a constant air density, that means the
characteristic length h, would be infinity (see
eqn. (5)), the first and third line in the system
matrix [A]* would become linear dependent so
only the phugoid-type solution would remain.

As an example for the computation, the root
loci for the Mach number M=T.1 reference
point are shown in fig. A-6 for different
control parameters K. As can be seen from the
location of the zeros of the open loop system,
for sufficiently large feedback constants K, all
closed loop poles can be shifted to have a
negative real part.

The factor K=0.125 [deg, kpa] which is used
for Spaceplane ascent trajectory control simu-
lation at M=7.1 in chapter 6 has only a minor
effect on the phugoid type motion but leads to
a shift of the pole of the non-oscillatory mode
towards negative real parts. Hence, by employ-
ing this feedback constant, the ascent is a

stable motion at this Mach number.

Mach =« 7.1 12

K in [deg/Pa)

x: 12514 Re [1/8]

-6 & -3 -‘2 I -i "wlofgcd

5( Im [1/8]

c1pene3 FO01

X pole Refve) VYT [T
o zero = -000 9] 7 0001

Fig. A—6 Ascent trajectory stability
analysis (root loci for Mach
Number 7.1)
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