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Abstract 

In this paper, we propose a new decomposition based on 

the three-component decomposition so that it can be 

applied to targets with azimuth inclination. The proposed 

method employs rotations of the scattering matrix. 

However, the rotation process is embedded to the models 

for double bounce and surface scattering, different from 

the deorientation. In addition, the new algorithm applies 

the circular polarization basis due to its simplicity to 

handle the rotation. Applying the proposed method and 

comparing it to the three-component decomposition, it is 

confirmed that azimuthally tilted slopes and skew-oriented 

buildings are more accurately decomposed into their 

corresponding scattering mechanisms. 

 

1. INTRODUCTION 

 

Decomposition techniques applied to polarimetric SAR 

data are quite important to interpret and understand 

polarimetric SAS images [1]-[4]. The three-component 

decomposition has been widely employed for polarimetric 

SAR data analysis, because it is simple and resulting 

images are easy to be understood. However, its applicable 

range is limited to the area where reflection symmetry 

condition is satisfied such as forests and grasslands. 

Consequently, if we apply it to the area where reflection 

symmetry condition does not hold, unreasonable results 

appear. For example, skew-oriented buildings and 

azimuthally inclined slopes look volume scattering by the 

three-component decomposition. This is because they 

have high stable HV reflections. In order to overcome this 

limitation, a new decomposition is proposed in this paper. 

The models of the scattering matrix to represent each 

scattering mechanism are modified so that they include 

rotation angles along the line of sight. Targets with 

azimuth inclinations can be represented by those models. 

Furthermore, the models are represented by the circular 

polarization basis due to its simplicity of the expression 

for the rotation. This scheme is essentially the same as 

deorientation [5]-[8] that employs the rotation of 

scattering matrices. The difference between the proposed 

method and the deorientation is whether the rotation 

process is embedded to the models. The models which are 

newly constructed and the entire process for the proposed 

method are described in detail in the second and the third 

sections. The forth section provides decomposition results 

and their validations by comparing the three-component 

decomposition and the proposed method. 

 

2. MODELS 

 

In this section, the polarimetric scattering properties are 

described and modeled for two targets, i.e., azimuthally 

tilted terrain slopes and skew-oriented buildings. In other 

word, we aim at the generalization of the models for 

surface and double-bounce scattering. 

First, we start from surface scattering. We assume that 

surface scattering is represented as first-order Bragg 

scattering, as assumed in the three-component 

decomposition. The scattering matrix is described as 

1 0

0
braggS



 
  
 

   

(1) 

where   is real and normalized by HH. If the normal to 

the ground is included in the incident plane, the cross-

polarization reflection is not caused as described in (1). 

The property had been well studied, if the normal deviates 

from the incident plane, in other words, if the ground 

slope is tilted azimuthally [9]. Letting the rotation angle 

be  , the scattering matrix for the azimuthally tilted 

ground surface is represented as 

_

cos sin 1 0 cos sin

sin cos 0 sin cos
az tiltedS

   

    

     
      

     
.

 (2) 

From the geometry, the PO angle is expressed as [9] 
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tan
tan

tan cos sin




  

 

  (3) 

where tan  is azimuth slope, tan  is range slope, and 

  is incident angle. The PO angle can be estimated 

accurately, by employing the circular polarization basis, as 

[9] 

 *
/ 4RR LLArg S S   

 
.  

(4) 

This approach can be easily expanded to other flat 

surfaces such as roofs and walls of buildings. 

Consequently, the scattering matrix model is represented 

by (2) for the azimuthally tilted surface. 

Next, skew-oriented buildings are considered as the model 

for general dihedral structures. These targets are known as 

reflectors causing a strong cross-polarization [10][11]. In 

order to investigate the polarimetric response of skew-

oriented buildings more carefully, we conducted a 

numerical simulation by the method of moment [12]. The 

simulation configuration is shown in Fig. 1. The target is a 

dihedral corner reflector whose faces are regarded as a 

wall of a building and the ground, respectively. The side 

length is 16.6   and the incident angle is 45 degree. The 

polarimetric response is calculated with respect to a 

variety of orientation angles. The results are shown in Fig. 

2. The amplitude ratio between LL and RR is 1 up to 

around 45 degree of orientation angle and the phase 

difference between them shows a linear change up to 

around 40 degree. From these results, we built a scattering 

matrix model for skew-oriented buildings in the circular 

polarization basis as 

_

1
skew building j

S
e 





 
  
 

  (5) 

where all elements are normalized by LL. The ratio of LR 

to LL is   and   is the phase difference between LL and 

RR. The amplitude of   is found to be smaller than 1 

from the simulation and the observation of the real data. 

Furthermore, we have noticed that (5) is similar to the 

scattering matrix of the double-bounce used in the three-

component decomposition by adding the rotation, that is 

 
Fig. 1 Simulated configuration for an azimuthally rotated dihedral corner reflector 

 
Amplitude ratio between LL and RR   Phase difference between LL and RR 

Fig. 2 Observed and simulated results as orientation angle of buildings changes 
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  (6) 

where cU  and R  are the transformation matrix from the 

linear to the circular polarization basis and the rotation 

matrix, respectively. This fact agrees with what was 

mentioned in [10]. Hence, we assume that the scattering 

matrix for skew-oriented buildings as (5). 

 

3. PROPOSED METHOD 

 

A new decomposition based on the three-component 

decomposition is constructed and we show how the solutions 

are derived in this section. We have the new surface and 

double-bounce scattering models applicable to azimuthally 

inclined cases, respectively. In the circular polarization basis, 

they are represented as 
2

2

d

d

j

d

double j

d

e
S

e







 

 
  

 
.   (7) 

2

2

1
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surface j

s

e
S

e







 

 
  

 
.  (8) 

where 
d  is    1 1j    , 

s  is    1 / 1j   , d  and 

s  are the polarization orientation angles for double-bounce 

and surface scattering, respectively. For volume scattering, 

we apply the randomly oriented dipole model with constant 

probability density function. The covariance matrix for 

volume scattering in the circular polarization basis is 

modeled as 

1 0 0

0 2 0

0 0 1

vC

 
 


 
  

.    (9) 

Finally, an observed covariance matrix is expressed as the 

linear combination of these matrices as 
* * *

* * *

* * *

2

2 2 2

2

LL LL LL LR LL RR

LR LL LR LR LR RR

RR LL RR LR RR RR

s surface d double v volume

S S S S S S

C S S S S S S

S S S S S S

f C f C f C

 
 
 
 
 
  

  

. (10) 

where 
Sf , 

df  and vf  are coefficients for surface, 

double-bounce and volume scattering, respectively. The 

power of each is calculated with the following equations 

 2
2 1s s sP f   .   (11a) 

 2
2 1d d dP f   .   (11b) 

4v vP f .    (11c) 

Next, we show how the unknowns are fixed. Each element 

in an observed covariance matrix is written down as 
2

co pol d s s vC f f f    .   (12a) 

2

22 2 2 2d d s vC f f f   .  (12b) 

24 4

13
d sj j

d s sC f e f e
    .  (12c) 

* 2 2

12 2 2d sj j

d d s sC e f e f
    .  (12d) 

*2 2

23 2 2d sj j

d d s sC e f e f
     .  (12e) 

For a simple description, co polC   is used in place of 
11C  

and 33C . We have five equations and seven unknowns 

here. Several assumptions are needed to solve these 

equations. The first assumption is the same as that used in 

the three-component decomposition [2]. The dominant 

scattering process is judged between surface scattering 

and double-bounce. If surface scattering is dominant,   

is assumed to be -1, i.e., 0d  . If double-bounce 

scattering is dominant,   is assumed to be +1, i.e., 

0s  . In the the three-component decomposition, the 

sign of  *Re hh vvS S  is used as the discriminator. The 

small letters in the subscripts denotes the residual after the 

removal of vf . Instead of this, we utilize the following 

discriminator.  

//

//

LR

LR

S S
k

S S





.   (13) 

where //S  is the average of LLS  and RRS . If k is over 0, 

we think that double-bounce is dominant, and vice versa. 

This criterion has the same meaning as that used in the 

three-component decomposition, if the deorientation is 

done. The second assumption is about the PO angle,  . 

 
Fig. 3 Flowchar of the proposed method 
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We assume that the PO angles for surface and double-

bounce scattering are the same as the following.
  

d s    .   (14) 

This condition is considered to be valid, if there is one 

dominant scattering mechanism in an local window. 

Under this condition, the minor scattering mechanism is 

regarded negligible, then, it is relatively acceptable that 

the PO angle of minor scattering is determined to be the 

same as that of the major scattering process. Hence, it 

should be noted that it needs attentions to apply this 

assumption to urban areas where there is a high density of 

small houses.  

All the variables are determined by applying the two 

assumptions above. First, the PO angle is determined from 

(12c) and (14). Then, the coefficient of volume scattering 

is easily determined by 

13v co polf C C  .   (15) 

After removal of vf , the dominant scattering process is 

determined as between surface and double-bounce 

scattering by the first assumption. It should be noted that 

(12d) and (12e) are equal, if (14) is valid, since 
*4

12 23

jC e C   is met. By the second assumption, the 

remainings are solved as 
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   (16)
 

 

where co pol co pol vC C f 
    and 22 22 / 2 vC C f   . Finally, 

the process flow for the proposed method is shown in Fig. 

3. 

 

4. RESULTS AND VALIDATIONS 

 

The proposed methods are validated in this section. The 

proposed method improves both surface and double-

bounce scattering. Thus, we examine their improvements 

separately. First, double-bounce scattering is examined by 

employing the L-band SAR data acquired by 

ALOS/PALSAR [13]. The data were taken over 

Sendai/Japan. Figure 4(a) shows the aerial photo of the 

selected area. From this image, it is obvious that buildings 

are built densely except for the left part of the image. The 

multi-look processing was done to the acquired data. We 

show the resulting color-composite images processed by 

the three-component decomposition and the proposed 

method, respectively in Fig. 4(b) and 4(c). The range 

direction is from the left to the right. Significant 

differences appear at the center and the right part of the 

images that double bounce in the proposed method looks 

dominant than the three-component decomposition. 

However, there is not much difference at the mid-center of 

both images, though we have skew-oriented buildings 

there. This is because the buildings are relatively small, 

dense and their orientations are not constant. Thus, the 

scattering mechanisms are quite complex and the second 

assumption we employed does not hold in the area. In 

order to observe the results quantitatively, the left figure 

of Fig. 6 illustrates the relation between the orientation 

angle of the buildings and the power ratio of double-

bounce with respect to both methods. The power ratio of 

each scattering process xp  is calculated as  

x

x

d s v

P
p

P P P


 
.  (17) 

where x=d or s or v. The power ratios by the both methods 

are above 0.9 at several degrees and decrease gradually as 

the orientation angle increases. The degree of decrease for 

the proposed method is milder than that for the three-

component decomposition. The difference is about 0.2 in 

the range above 10 degree. Finally, the power ratio is kept 

at around 0.4 at 30 degree by the proposed method, 

though it is only 0.2 by the three-component 

decomposition. 

Next, we examine the improvement of surface scattering. 

The data taken over Mt. Fuji by L-band of 

PALSAR/ALOS is chosen for the validation. The ground 

slope around the summit is less-vegetated and relatively 

smooth, and mostly spreads isotropically from the summit. 

Figure 5 shows the power ratio of surface scattering 

calculated by (17) with respect to the three-component 

decomposition and the proposed method, respectively. 

The azimuthally tilted mountain slope which is our main 

target is distributed around the top and bottom part of the 

summit. From the images, we can see that the power ratio 

of surface scattering is larger in the proposed method. 

Around the area, the azimuth tilt angle of the slope is 

estimated to be around 25-30 degree from the DEM [14]. 

The histogram for the power ratio of the surface scattering 

calculated in the area are shown in the right figure of Fig. 

6 comparing the three-component decomposition and the 

proposed method. From the image, we can see the 

increase of the power ratio from 0.55 to 0.77 due to the 

application of the proposed method. These results show 

the usefulness of the proposed method. 

 

5. CONCLUSION 

 

The method for an improvement of the three-component 

decomposition was proposed to overcome the problem 

that azimuthally inclined objects look volume scattering in 

the three-component decomposition. The new method 
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introduced the rotation along the line of sight to the 

models used in the three-component decomposition so that 

they include the azimuth inclination. The method was 

applied to real data and it was confirmed that the power 

ratio of surface scattering and double-bounce scattering 

returned from the azimuthally inclined objects such as 

azimuthally tilted ground slopes and skew-oriented 

buildings increases, respectively. Consequently, the 

proposed methods provide a means of obtaining better 

observations of polarimetric SAR images. 
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Fig. 6 Power ratios of the double bounce and the surface scattering in the analyzed areas. The left image shows the 

relation between the double-bounce power ratio and orientation angle of buildings.  The right image shows the 

power ratio of the surface scattering. 
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