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Background Q

»UTCart (The University of Tokyo Cartesian grid based automatic flow solver)

»Hierarchical Cartesian Mesh
v Automatic, rapid, robust grid generation.
v Easy to local refining.
v The Immersed Boundary Method with a wall function™.

o SA Profile
—— SA Wall Model —— Spalding's Law
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Background

»Making proper grid for HLD analysis is still difficult.
v'Low grid resolution in wake region, far region
» Compared to structured body-fitted grid"
» Cause inferior aerodynamic prediction ability?
v"Manual control require users’ experiment.

= Solution-Adaptive Mesh Refinement (AMR)

1) https://cfdws.chofu.jaxa.jp/apc/external/2D_domain.tar.gz

Objective

»AMR capability on HLD analysis is examined.
v'Influence on aerodynamic prediction ability
»>Case 1-1 (2D steady flow)

»Updates from APC-IV
v Dependency of refined region is examined.

* Wake region or acceleration/deceleration region?

v Necessity of AMR is discussed.

AMR grld from APC A
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Analysis workflow c‘,\‘
Workflow with AMR routine

Flow condition 2D Grid generation ¢
& I
Shape data fsttime | Map solution

calc.
!

Flow simulation 1 cycle
|
Calculate AMR parameters
&
Evaluate cells
|
Ciconverge | Point sources for defining
refinement regions

Results

Analysis workflow c.,\‘

Calculate AMR parameters Map solution
&
Evaluate cells

b 'l'i > O'l'
— Refinement

Feature-based parameters’ 2
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1) De Zeeuw, D. et al. AIAA Paper 92-0321.
2) Hartmann, D. et al. Computers & Fluids, 2008.
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Numerical method & conditions

»Governing equations : 2D RANS
»Turbulence model : SA-noft2
»Wall boundary condition : Immersed boundary method
+SA wall model"
»Time integration : LU-SGS
»Spatial accuracy (Inviscid) : 4th order upwind-biased scheme?

»Spatial accuracy (Viscous) : 2nd order central difference

1) Tamaki, and Imamura, AIAA J., Vol 56, 2018.
2) £&, and $17, mHN33, 2014

Computational grids

»Unstructured Cartesian grid
»Domain size :56.9C o X 56.9C ¢
>Minimum cell size : 1.09 X 10™*Cper (yib < 60)

Initial grid Wake-detected grid  DivV-detected grid
212,367 cell Using 1z, tg Using ¢
~400k cell ~350k cell |
L
Colored by cell level distribution AMRI grids
Ax = Ax,,,, X 1/2v

max
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4 cycle: 353k cell 6 cycle: 404k cell

AMR history (AoA 9.5 deg, Wake)

»Wake regions are successfully refined.
v’ Slat cusp, slat wake, flap wake

»Boundary layer is also refined.

6 cycle grid
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AMR history (AoA 9.5 deg, DivV) @

4 cycle: 325k cell 5 cycle: 373k cell

11

AMR history (AoA 9.5 deg, DivV) @

»Acceleration/deceleration regions are refined.
v’ Gap between slat-main, main-flap
v’ Leading edge of each element

»Wake regions are also refined slightly.
v'Due to the velocity variation

5 cycle grid
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C,—AO0A curve ‘L,\‘
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2 In AoA > 20 deg, calculation is restarted using previous AoAs’ flow field.
cf. Appendix

Ref. CFD: Murayama et al., AIAA 2018-3460, 2018 13

C; difference between each grid c.,\‘
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»Absolute of C; variation is < 0.05.
»No drastic difference is seen between Wake and DivV.

14

This document is provided by JAXA.



38

FHIIZEWT T B SRR AR B E B JAXA-SP-19-008

C4—AOA curve
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»C,4 variation is < 20 cnt. c
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> Absolute of C; variation is about 20 cnt.
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v'Large in AoA > 20 deg.
»DivV has larger influence than Wake.
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Velocity profile at AoA=5.5 deg
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»Wake resolution is improved slightly in some regions.

When is AMR useful?

X To avoid separation, AMR is not necessarily needed.
v Restart from lower AoA is sufficient.

17

X C; can be calculated with accuracy of < 0.05 without AMR.

O €4 can be affected by ~20 cnt using AMR.

v'DivV region is dominant rather than wake region.
O For objective to capture wake, shear layer.
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Conclusions ‘/L,\‘

»Steady flow simulation was conducted by UTCart.

v Feature-based AMR controlled spatial resolution automatically.

»Wake-detected grid and velocity variation-detected grid
were compared.
v C; did not differ larger than 0.05 between each grid.
v C4 was affected by ~20 cnt using variation-detected grid.

v"Wake resolution can be improved.

19

Appendix; impulsive start in hlgh AoA

9 Init. =22 d AN N N A B I
nit. (o = eg) — ]
Init. (a« = 24 deg) —— mEER s ]
- Wake (e =22 deg) ———
4 b Wake (a = 21 deg§ . CauBERREr

10 12 14
Ttr. # (x 104)

> Impulsive start in high AoAs require much Itr. # to get flow attached (AoA

22 deg), or flow never attach (AoA 24 deg).
20
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Appendix; wake, 3rd or 4th order?
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»>Wake resolution by 3rd order scheme is inferior to others'.

v'High wake resolution seen in Init. grid is due to 4th order scheme.
21

This document is provided by JAXA.





