Fifth Aerodynamics Prediction Challenge (APC-V) 1 July 2019

2次精度低散逸スキームと直交ハイブリッド 格子による30P30Nの高解像度空力音響解析

Aeroacoustic Simulation of 30P30N Airfoil using Second-Order Low-Dissipation scheme on Cartesian Hybrid Grid

Outline

- Background & Objective - Computational Setups
- Flow solver Computational grids
- Reduced dissipation approach
- Computational Results
- Summary

SAKAI Ryotaro ISHIDA Takashi MURAYAMA Mitsuhiro ITO Yasushi YAMAMOTO Kazuomi Japan Aerospace Exploration Agency

Background & Objective: Numerical simulation of slat noise

- Insufficient resolution leads to overestimation of narrow-band peaks
- 2. To treat complex geometries such as slat tracks 30th
 - Unstructured grid is promising due to its grid flexibility
 - → Improvement of numerical resolution on unstructured grid is desirable

Background & Objective: Reduced dissipation approach

- High-resolution by reducing numerical dissipation in discretization scheme
- Past studies on reduced dissipation approach
 - Large Eddy Simulation (LES) around an airfoil ^[1]
 - Airframe noise analyses
 - by Delayed Detached Eddy Simulation (DDES)
 - Flap side edge ^[2]
 - Landing gear^[3]

- [1] Dahlstroem, AIAA Paper 2003-0776, 2003.
- [2] Winkler, C. et al., AIAA Paper 2012-0570, 2012.
- [3] Winkler, C. et al., AIAA Paper 2012-2288, 2012.
 [4] Ikeda, T. et al., AIAA Paper 2018-3784, 2018.
- DDES around a cylinder with a new approach proposed in JAXA^[4]

Objective

 To apply a reduced dissipation approach to our unstructured CFD solver, and assess it in the aeroacoustic simulation for the slat noise on both structured-type grid and unstructured (Cartesian hybrid) grid

Computational Setups: Flow solver

FaSTAR (unstructured CFD code in JAXA)

4

Governing equation	3D compressible Navier-Stokes equations
Method	Cell-centered finite volume method
Turbulence model	Delayed Detached Eddy Simulation based on Spalart-Allmaras (SA-noft2-R)
Transition model	None (fully turbulent)

Numerical Schemes

Discretization of inviscid term	SLAU (Simple Low-dissipation AUSM) ^[1] with reduced dissipation approach
Reconstruction method	2 nd order Unstructured MUSCL ^[2]
Gradient calculation	GLSQ (Green-Gauss/Weighted-Least-Square hybrid) [3]
Time integration	LU-SGS with 2 nd order dual-time stepping method
	 [1] Shima et al., AIAA Journal 49 (8) pp. 1693-1709, 2011. [2] Hishida et al., JAXA-SP-10-012. [3] Shima et al., AIAA Journal 51 (11) pp. 2740-2747, 2013.

close-up at slat

Both structured-type grid and unstructured (BOXFUN) grid are used

overview

Structured-type

- provided; fine (L3)
- cubic grids in slat cove
- $\Box \quad L_z = 0.11C_{stowed}$
- **70.4** million grid points
- Verview verview Cose-up at slat Cose-up at slat Axy-0.17 mm Az-0.20 mm
- Unstructured (BOXFUN)
 - background Cartesian
 + hexahedral layer
 - cubic grids in slat cove
 - $\Box \quad L_z = \mathbf{0.11} C_{stowed}$
 - 111 million grid points

6

Discretization scheme for inviscid term: SLAU ^[1]

 $\tilde{\mathbf{F}} = \frac{m + |m|}{2} \Phi^+ + \frac{m - |m|}{2} \Phi^- + \tilde{p} \mathbf{N}$ pressure flux (incl. numerical dissipation)

momentum flux (incl. numerical dissipation)

$$\tilde{p} = \frac{p^+ + p^-}{2} + \frac{\beta_+ + \beta_-}{2} (p^+ - p^-) + (1 - \chi)(\beta_+ + \beta_- - 1)\frac{p^+ + p^-}{2}$$

- High-Resolution SLAU (HR-SLAU) ^[2]
 - $\tilde{p} = \frac{p^+ + p^-}{2} + \frac{\beta_+ + \beta_-}{2} (p^+ p^-) + \frac{\gamma_{HR}}{2} (1 \chi) (\beta_+ + \beta_- 1) \frac{p^+ + p^-}{2}$
 - $\gamma_{HR} = 1$ if the numerical dissipation is needed for computational stability
 - $\gamma_{HR} = 0$ to improve the numerical resolution
 - γ_{HR} is determined by the sign-based wiggle detector ^[3]
- In this study, reduced dissipation is applied based on the approach of HR-SLAU:
 - 1. The numerical dissipation in the momentum flux is also reduced
 - 2. Sign-based wiggle detector is replaced by diffusion-based wiggle detector [4]
 - [1] Shima et al., AIAA Journal 49 (8), pp. 1693-1709, 2011.
 - [2] Kitamura, K., Computers & Fluids 126, pp. 41-57, 2016.
 - [3] Winkler, C. et al., AIAA Paper 2012-0570, 2012.
 - [4] Ikeda, T. et al., AIAA Paper 2018-3784, 2018.

Computational Setups: Reduced dissipation approach (2/3)

- High-Resolution SLAU (HR-SLAU)

 $\tilde{\mathbf{F}} = \frac{m + |m|}{2} \mathbf{\Phi}^{+} + \frac{m - |m|}{2} \mathbf{\Phi}^{-} + \tilde{p} \mathbf{N}$ $\tilde{p} = \frac{p^{+} + p^{-}}{2} + \frac{\beta_{+} + \beta_{-}}{2} (p^{+} - p^{-}) + \mathbf{\gamma}_{HR} (1 - \chi) (\beta_{+} + \beta_{-} - 1) \frac{p^{+} + p^{-}}{2}$

- γ_{HR} is introduced into the definition of χ_{UMUSCL} in U-MUSCL
 - $\chi_{UMUSCL} = 1 0.5 \gamma_{HR}$
 - $\chi_{UMUSCL} = 0.5 \text{ if } \gamma_{HR} = 1 \Rightarrow$ a third-order variable extrapolation to the cell face
 - $\chi_{UMUSCL} = 1$ if $\gamma_{HR} = 0 \Rightarrow$ the cell interface is the arithmetic average between cells .

$$\Rightarrow q^+ = q^- = \frac{1}{2} (q_{j+1} + q_j)$$

• Thus, $\gamma_{HR} = 0$ gives the following formulation without numerical dissipation

$$\tilde{\mathbf{F}} = \dot{m} \cdot \frac{1}{2} \left(\mathbf{\Phi}_{j+1} + \mathbf{\Phi}_j \right) + \tilde{p} \mathbf{N}$$

$$\tilde{p} = \frac{1}{2} \left(p_{j+1} + p_j \right)$$

γ_{HR} = 1 recovers the original SLAU scheme

$$\tilde{\mathbf{F}} = \frac{m + |m|}{2} \mathbf{\Phi}^+ + \frac{m - |m|}{2} \mathbf{\Phi}^- + \tilde{p} \mathbf{N}$$

$$\tilde{p} = \frac{p^+ + p^-}{2} + \frac{\beta_+ + \beta_-}{2} (p^+ - p^-) + (1 - \chi)(\beta_+ + \beta_- - 1)\frac{p^+ + p^-}{2}$$

Computational Setups: Reduced dissipation approach (3/3)

- Sign-based wiggle detector ^[1]: binary function that returns 0 or 1
 - $\gamma_{HR} = 1$ if a wiggle is detected
 - Otherwise, $\gamma_{HR} = 0$

Diffusion-based wiggle detector ^{[2][3]}: continuous function that returns value from 0 to 1

n = **10** is employed according to the previous study in JAXA^[2]

[1] Dahlstroem, AIAA Paper 2003-0776, 2003. [2] Ikeda, T. et al., AIAA Paper 2018-3784, 2018. [3] Shima, E., AIAA Paper 2013-2696, 2013.

8

[1] Murayama, M. et al., AIAA Paper 2018-3460, 2018.

[1] Murayama, M. et al., AIAA Paper 2018-3460, 2018.

Time-averaged Ω_z distribution around slat 10 Structured 200 150 100 50 0 -50 -100 -150 -200 200 150 100 50 0 -50 - E с С orig. SLAU present Exp. [1] orig. SLAU 200 150 100 50 0 -50 -100 -150 -200 200 150 100 50 0 -50 -100 -150 present x/c_{stowed} BOXFUN orig. SLAU present с С Qualitative similar distribution between structured grid and BOXFUN grid Exp. [1] orig. SLAU present -0.05 x/c_{stowed}

Instantaneous snapshot of γ_{HR} (upper: structured grid, lower: BOXFUN grid)

where the grid resolution is changed

12

Summary

14

- The reduced dissipation approach has been applied in an unstructured CFD code, and assessed in the slat noise simulation of the 30P30N airfoil
- The present approach improves numerical resolution at the beginning of the shear layer
 - region of the reduced dissipation is limited to the beginning of the shear layer
- The present approach shows similar tendency to grid resolution study in PSD of pressure fluctuation, which indicates improvement of numerical resolution
 - improvement by the present approach is moderate
- On the BOXFUN grid,
 - ^D flow separation occurs on the flap due to coarse mesh over the flap
 - large values of γ_{HR} appears at the boundary where the grid resolution changes