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Background & Objective:
Numerical simulation of slat noise 2

= Slat has been recognized as the primal low resolution

source of airframe noise
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= Challenges in slat noise simulation [
1. To resolve shear layer from the slat cusp

« Insufficient resolution leads to overestimation of
narrow-band peaks
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PSD of pressure fluctuation
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2. To treat complex geometries such as slat tracks 30 L

« Unstructured grid is promising due to its grid

flexibility Slat tracks behind slat
(backside view)

— Improvement of numerical resolution on
unstructured grid is desirable
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Background & Objective:
Reduced dissipation approach 3

= High-resolution by reducing numerical dissipation in discretization scheme

= Past studies on reduced dissipation approach
- Large Eddy Simulation (LES) around an airfoil [']

- Airframe noise analyses

by Delayed Detached Eddy Simulation (DDES) [ Dahlstroem, AIAA Paper 2003-0776, 2003.
[2] Winkler, C. et al., AIAA Paper 2012-0570, 2012.

» Flap side edge [?! [3] Winkler, C. et al, AIAA Paper 2012-2288, 2012.
. Landing gear [31 [4] Ikeda, T. et al.,, AIAA Paper 2018-3784, 2018.

- DDES around a cylinder with a new approach proposed in JAXA 4]

= Objective
- To apply a reduced dissipation approach to our unstructured CFD solver,
and assess it in the aeroacoustic simulation for the slat noise on both
structured-type grid and unstructured (Cartesian hybrid) grid

Computational Setups:

Flow solver 4
s FaSTAR (unstructured CFD code in JAXA) FaosSTAIR
- Fast Unstructured CFD Code -
Governing equation 3D compressible Navier-Stokes equations
Method Cell-centered finite volume method
Delayed Detached Eddy Simulation
ULl 12 late based on Spalart-Allmaras (SA-noft2-R)
Transition model None (fully turbulent)

= Numerical Schemes

SLAU (Simple Low-dissipation AUSM) [

Discretization of inviscid term with reduced dissipation approach

Reconstruction method 2nd order Unstructured MUSCL [21
Gradient calculation GLSQ (Green-Gauss/Weighted-Least-Square hybrid) 3]
Time integration LU-SGS with 2" order dual-time stepping method

[1] Shima et al,, AIAA Journal 49 (8) pp. 1693-1709, 2011.
[2] Hishida et al., JAXA-SP-10-012.
[3] Shima et al., AIAA Journal 51 (11) pp. 2740-2747, 2013.
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Computational Setups: K/Q/f
Computational grids Cstowea = 457.2 mm 5

= Both structured-type grld and unstructured (BOXFUN) grld are used

s Structured- type : cl(ose up at slat
o provided; fine (L3)
s cubic grids in slat cove
o Ly = 0.11Csowed
s 70.4 million grid points

» Unstructured (BOXFUN). s : :
- background Cartesian 1 e : coseup 2t st
+ hexahedral layer :
= cubic grids in slat cove
5 L, =0.11Cg0wea
5 111 million grid points -
-

Computational Setups:
Reduced dissipation approach (1/3) 6

= Discretization scheme for inviscid term: SLAU [1]

o BTt 4 Mol N

pressure flux (incl. numerical dissipation)

momentum flux (incl. numerical dissipation)

o P Bty (- (B + B~ DI

= High-Resolution SLAU (HR-SLAU) 2]

+ + 40—
o P B p) (- (B + B - DI

o yur = 1if the numerlcal dissipation is needed for computational stability
o Yur = 0 to improve the numerical resolution

o Yur is determined by the sign-based wiggle detector 3!

= In this study, reduced dissipation is applied based on the approach of HR-SLAU:
1. The numerical dissipation in the momentum flux is also reduced
2. Sign-based wiggle detector is replaced by diffusion-based wiggle detector 4]

[1] Shima et al.,, AIAA Journal 49 (8), pp. 1693-1709, 2011.
[2] Kitamura, K., Computers & Fluids 126, pp. 41-57, 2016.
[3] Winkler, C. et al., AIAA Paper 2012-0570, 2012.

[4] lkeda, T. et al.,, AIAA Paper 2018-3784, 2018.
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Computational Setups:
Reduced dissipation approach (2/3) 7

= High-Resolution SLAU (HR-SLAU)
o F=Ter g @~ + pN

m— |m|

+ - -
o p=EF4 ++'B'(p —p7) + V(1 = DBy + - - DEE-

Y ur is introduced into the definition of y;ysc. in U-MUSCL

= Xumusct =1 —0.5Vhr
«  xumuscr = 0.5if yyr = 1 = athird-order variable extrapolation to the cell face

»  Xumusc, = 1if yur = 0 = the cell interface is the arithmetic average between cells
=q" =q =5(qjs1+9))
= Thus, yz = 0 gives the following formulation without numerical dissipation
o F=i 2 (@ + @) + PN
o p= %(Pj+1 +p;)
Yur = 1 recovers the original SLAU scheme
e+ + M@~ 4 pN

- ImI

™
||

o

e p“’ ﬁ”ﬁ'(p —p )+ (A= (B + o~ DI

Computational Setups:

Reduced dissipation approach (3/3) 8
= Sign-based wiggle detector [']: = Diffusion-based wiggle detector [213];
binary function that returns 0 or 1 continuous function that returns
- vugr = 1if awiggle is detected value from 0 to 1
5 Otherwise, yyr = 0 s 0 < yyr <1 according to the wiggle
frequency Yur ~ 1 for
high freq. wiggle
1 -
wiggle (saw-toothed variation) = —a-a Il
is detected at [ + 1/2 I o T
Yur = 1 S
! E §11.6 ;
T T % h‘? 0.4 //,
.‘? [ 2 < / \
E [0} ! g' 0.2 /‘/ > 0 f
(] 1 1 1 O ; YHR or
& | . X X i = , ) low freq. wiggle
3T 21T -1 T 171 T 12 T 143 0 02 0.4 0.6 0.8 1
1 1 1 1 1 kAz /7
grid points | | | Lo (1] [2] wavenumber
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

o n =10 is employed according to the
previous study in JAXA 2]
wiggle is not detected elsewhere

Yug = 0 [1] Dahlstroem, AIAA Paper 2003-0776, 2003.

[2] Ikeda, T. et al., AIAA Paper 2018-3784, 2018.
[3] Shima, E., AIAA Paper 2013-2696, 2013.
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[1]1 Murayama, M. et al., AIAA Paper 2018-3460, 2018.
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Time-averaged 2, distribution around slat
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= Structured grid shows agreement with the
experimental result

o Both the original SLAU and present scheme show
almost the same result

= Flow separation occurs on the BOXFUN grid
at the flap, due to coarse mesh over there

[1]1 Murayama, M. et al., AIAA Paper 2018-3460, 2018.

10

= Qualitative similar distribution between
structured grid and BOXFUN grid
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Q-isosurface (colored by Mach number)
(upper: structured grid, lower: BOXFUN grid) 1
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Improvement is not
obvious when compared
with the structured mesh

Instantaneous snapshot of yyp
(upper: structured grid, lower: BOXFUN grid) 12
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7 Central difference Original upwind
% g : (w/o dissipation) (w/ dissipation)

Dissipation is reduced at the

: downstream of the slat cusp
close-up
at slat cusp

= The present approach
improves numerical
resolution in the shear
layer
s Region of the reduced
dissipation is limited to just
the beginning of the shear

close-up layer
e = st
0 010203040506070809 1

.\- Large values of y,; appears at the boundary
where the grid resolution is changed
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[1]1 Murayama, M. et al., AIAA Paper 2018-3460, 2018.

PSD of pressure fluctuation @ M1 13
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= In grid resolution study, high grid resolution
gives

o Decreased narrow band peaks
o Increased high-frequency peak

orig. SLAU

present

= Similar tendency to grid resolution study can
be observed in both grids

s However, improvement by the present approach is
moderate

Summary 14

= The reduced dissipation approach has been applied in an unstructured
CFD code, and assessed in the slat noise simulation of the 30P30N
airfoil

= The present approach improves numerical resolution at the beginning
of the shear layer

- region of the reduced dissipation is limited to the beginning of the shear layer

The present approach shows similar tendency to grid resolution study
in PSD of pressure fluctuation, which indicates improvement of
numerical resolution

- improvement by the present approach is moderate

On the BOXFUN grid,
- flow separation occurs on the flap due to coarse mesh over the flap
- large values of yyr appears at the boundary where the grid resolution changes
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