

流束再構築法による三翼素高揚力翼型の 空力騒音解析

芳賀臣紀, 多湖和馬(宇宙航空研究開発機構), 雨宮孝(QuickMesh), 伊藤浩之(菱友システムズ), 嶋英志(宇宙航空研究開発機構)

2019/07/02

91

Objective

□ To assess the high-order FR solver for aerodynamic and aeroacoustic prediction based on the following approach:

- Kinetic energy preserving scheme for under resolved LES
- · Wall stress modeled LES for high Re number flow
- HO-mesh for curved airfoil geometry

□ Case 3-1 : Prediction of aeroacoustics (near field)

Flow conditions: $M_{\infty} = 0.17$, $Re = 1.71 \times 10^6$ Angle of attack: 5.5 [deg.]

^[1] Y. Abe, I. Morinaka, T. Haga, T. Nonomura, H. Shibata, K. Miyaji, "Stable, non-dissipative, and conservative flux-reconstruction schemes in split forms," Journal of Computational Physics 353 193-227 (2018)

[3] 芳賀臣紀,河合宗司, "高次精度流束再構築法による壁面モデルLES" 第 31 回数値流体カ学シンポジウム (2017)

^[2] T. Haga and S. Kawai, "On a robust and accurate localized artificial diffusivity scheme for the high-order flux-reconstruction method," Journal of Computational Physics 376 534-563 (2019)

Improved Robustness by Split-form

93

Taylor-Green Vortex (Re=1600, M=0.1) P15 (16th-order), 8x8x8 Cells (DOFs=128³) (Only 1/8 domain ($0 \le x, y, z \le \pi L$) is shown due to symmetry)

Inner layer model : 1D ODE (Kawai & Larsson 2012)

$$\frac{d}{dy} \left[\left(\mu + \mu_{t, WM} \right) \frac{dU_{\parallel}}{dy} \right] = 0,$$
$$\frac{d}{dy} \left[\left(\mu + \mu_{t, WM} \right) U_{\parallel} \frac{dU_{\parallel}}{dy} + c_p \left(\frac{\mu}{Pr} + \frac{\mu_{t, WM}}{Pr_{t, WM}} \right) \frac{dT}{dy} \right] = 0,$$

Linear mesh

- 6475 quad cells in 2D

- 291,375 hex cells in 3D (45 cells in span))

High-order (P2) mesh (Each cell is shrink-displayed)

- The APC workshop mesh (L2, medium) was modified (1/4 coarser in each direction)
- $\Delta x_{Wall}/c = 2 \times 10^{-4} (y^+ < 20) (\sim 0.04 \,\delta$ by assuming $\delta = 0.005 \,c$)
- HO mesh is generated by converting the linear mesh using QuickMesh

P3,18.7M DoFs

Case	$\Delta t \cdot a_{\infty}/c$	Timesteps for $10 c/U_{\infty}$	Cores (Nodes) Fujitsu FX100	Elapse time [hours] for $10 c/U_{\infty}$
P2_wm	4.0e-5	1.51E+06	480 (15)	7.32E+01
P3_wm	2.5e-5	2.41E+06	1440 (45)	1.32E+02

• "no-WM" agrees better with the experiment

• "WM" improves skin friction prediction

Too coarse mesh (in the flow direction) to resolve BL even with the wall-model
Higher order (p3) result shows some improvement

Frequency [Hz]

Frequency [Hz]

"WM" results show higher PSD level due to the spurious BL separation on the slat suction side

Summary

- Proposed approach offers robust LES even on a very coarse mesh and a high Re number condition
- The wall model (assuming fully turbulent BL) fails to predict laminar BL on the slat
 - Needs grid convergence study
 - Adopts laminar/turbulence switch with a sensor?
- Correct BL prediction on the slat is important for Cp, but its effect on the near field PSD (except for S13) may not be significant
 - Needs further investigation on far field PSD
- Overall, higher order (p3) results show better PSD in the slat cove. Also, p2 results with 7.9M DOFs were in good agreement with the experimental data.

Acknowledgments

Collaborators:

Soshi Kawai (Tohoku University) Yoshiaki Abe (Tohoku University) Taku Nonomura (Tohoku University) Koji Miyaji (Yokohama National University) Ryoji Takaki (ISAS/JAXA)

- Grant Funding: JSPS KAKENHI (15K13420, 17K18427)
- Computational Resources: JAXA Supercomputing System (JSS2)