

117

Aerodynamics and Aeroacoustics Prediction Using High-Order Schemes in Structured Grid CFD Solver, UPACS

高次精度スキームを用いた構造格子UPACSによる空力・音響予測

TANAKA Kentaro(Ryoyu Systems)AMEMIYA Kazuhisa(ASIRI)IKEDA Tomoaki, MURAYAMA Mitsuhiro,YAMAMOTO Kazuomi(JAXA)HIRAI Tohru(Ryoyu Systems)

Fifth Aerodynamics Prediction Challenge (APC-V) Jul. 1, 2019 @ WASEDA Univ.

Objectives

- Aerodynamic simulations:
 - \rightarrow To evaluate turbulence and transition models other than SA
- Aeroacoustic simulations:
 - \rightarrow To evaluate the influence of span width of computational domains
 - Previous predictions did not capture the noise level of exp. below about 1 kHz
 Possibilities were explored other than <u>fluctuations from main-cove</u>
 - → Provided grids could not resolve it because of insufficient resolutions
 Influence of periodic BC with 2" span width at lower frequency
 - \rightarrow May not be enough span width 2"

Fifth Aerodynamics Prediction Challenge (APC-V) Jul. 1, 2019 @ WASEDA Univ.

-2-

Numerical method • Flow solver: UPACS (developed in JAXA)								
	Aerodynamic simulations	Aeroacoustic simulations						
Governing Eq.	3-D compres	ssive NS Eq.						
Discretization	Multi-block st Cell-centered finit	tructured grid te volume method						
Convection term	SLAU 3rd-order MUSCL	SLAU 5th-order upwind + wiggle sensor (skew symmetric form) → Ikeda et al., AIAA-2018-3784						
Flux limiter	w/o li	imiter						
Turbulence model (performed fully turb.)	 SA-noft2 SA-noft2-R (<i>C_{rot}</i> = 1) SA-noft2-strain SST-V 	DDES based on SA-noft2 <u>-strain</u> (used strain rate instead of vorticity)						
Transition model	 SST-V-LM2009 (γ-Re_θ) 							
Time integration	LU-SGS implicit, local timestep	2nd-order Euler implicit (sub-iter = 5)						

• Farfield sound pressure evaluation: UPACS-Acoustics

Governing Eq.	Ffowcs Williams-Hawkings Eq.	
FW-H surface	Solid surface of airfoil	
	Fifth Aerodynamics Prediction Challenge (APC-V)	-3-

Jul. 1, 2019 @ WASEDA Univ.

Cases calculated		L2 (<u>M</u> edium) & L3 (<u>F</u> ine)							THE REAL
Scheme	Turb. Model	1-1	1-2	1-3	2-1	2-2	2-3	3-1	3-2
SLAU 3rd	SA-noft2	M,F			M,F				
	SA-noft2-R (C _{rot} =1)	М							
	SA-noft2-strain	М							
	SST-V	M,F			М				
	SST-V-LM2009	M,F							
SLAU 5th + wiggle sensor			M (1")					M	(1")
	SA-noft2-strain		M,F (2")					M,F	(2")
			M (4″)					M	(4")
			М	(6")				M	(6")

Fifth Aerodynamics Prediction Challenge (APC-V) Jul. 1, 2019 @ WASEDA Univ.

-4-

Cases calculated		L2 (<u>M</u> edium) & L3 (<u>F</u> ine)							×
Scheme	Turb. Model	1-1	1-2	1-3	2-1	2-2	2-3	3-1	3-2
SLAU 3rd	SA-noft2	M,F			M,F				
	SA-noft2-R (C _{rot} =1)	М							
	SA-noft2-strain	М							
	SST-V	M,F			Μ				
	SST-V-LM2009	M,F							
SLAU 5th + wiggle sensor	SA-noft2-strain		M (1")					M	(1")
			M,F (2")					M,F	(2")
			M	(4")				M	(4")
			M	(6")				M	

Forces & moment (L2)

- SA variants predicted similar results
 - Excluding drag at α < 10°

- Oscillating results at $\alpha \leq 12^{\circ}$
- SST-V-LM2009 predicted good agreement in lift curve with SA at $\alpha \leq 20^{\circ}$
 - □ Lower drag, lower stall angle
 - Oscillating results the whole of α-sweep

Jul. 1, 2019 @ WASEDA Univ.

<u> </u>	SA-noft2
0	SA-noft2-R
0	SA-noft2-strain
	SST-V
~	CCT VIM2000

Surface pressure:

□ SST-V predicted large flow separation on the flap

- Skin friction:
 - SST-V-LM2009 □ LM2009 predicted laminar separation and transition to turbulence
 - □ SST-V predicted similar distribution to laminar (LM2009) at x/c < 0.89

SA-noft2-R

SA-noft2-strain SST-V

Cases calculated		L2 (<u>M</u> edium) & L3 (<u>F</u> ine)							X
Scheme	Turb. Model	1-1	1-2	1-3	2-1	2-2	2-3	3-1	3-2
SLAU 3rd	SA-noft2	M,F			M,F				
	SA-noft2-R (C _{rot} =1)	Μ							
	SA-noft2-strain	Μ							
	SST-V	M,F			Μ				
	SST-V-LM2009	M,F							
SLAU 5th + wiggle sensor			M (1")					M	(1")
	SA poff2 straip		M,F (2")					M,F	(2")
	SA-NUILZ-SURIN		M (4″)					M	(4")
			М	(6")				M	(6")

-9-

□ Similar flow structures were obtained

Fifth Aerodynamics Prediction Challenge (APC-V) Jul. 1, 2019 @ WASEDA Univ.

-14-

-16-

- Aerodynamic simulations:
 - SST-V predicted significantly different characteristics with SA because of large flow separation on the flap
 - SST-V-LM2009 predicted similar characteristics to SA, except near-stall conditions, because flow separation on the flap was suppressed
- Aeroacoustic simulations:
 - □ As the span of the computational domain was larger,
 - flow separation on the flap became prominent if grid resolutions were insufficient for DDES
 - predicted spanwise coherence of surface pressure on the lower surface of the main-LE became close to that of experiment
 - predicted farfield PSD levels became close to experimental results at lower frequencies

Future work

- Aerodynamic simulations:
 - □ Continue evaluation of SST turbulence & transition models
- Aeroacoustic simulations:
 - □ Evaluation of results by zonal DDES/RANS
 - to remove influences of flow separation on the flap (especially 6" span width)

Fifth Aerodynamics Prediction Challenge (APC-V) Jul. 1, 2019 @ WASEDA Univ.

-17-

Acknowledgments

- The authors would like to thank
 - Dr. Junichi KAZAWA (JAXA) and Mr. Susumu KATO (VINAS) for their technical support in analysis using SST turbulence & transition models.
- These calculations were performed on JAXA Supercomputer System generation 2 (JSS2).

Thank you for your attention!

Fifth Aerodynamics Prediction Challenge (APC-V) Jul. 1, 2019 @ WASEDA Univ.

-18-