

1. はじめに ・ 自己紹介

2. 超音速旅客機の研究について (1)自然層流翼設計概念実証(NEXST-1プロジェクト) (2)低ソニックブーム設計概念実証(D-SENDプロジェクト)

- 3. 空気力学の研究について
 - (1)ヘリブレード先端形状
 - (2)2次元翼(翼型)の失速特性と最大揚力のRe数特性
 - (3)3次元翼(単純後退翼)の最大揚力のRe数特性
- 4. まとめ

·挑戦課題、他

2. SST: コンコルドの抗力特性

2. SST: ソニックブームの低減原理

2. SST: 遷移とレイノルズ数の関係

45 (出典:吉田憲司、"JAXA超音速実験機プロジェクトに関するRe数効果の考察"、日本航空宇宙学科誌、Vol.67, 22 No.1, pp.24-30, 2019)

50

約30%の層流化 ⇒ コンコルドに対して約13%のL/D向上

55

60

65

0.2

0.0

25

30

35

40

70 X(m)

2. SST: D-SEND#2第2回飛行試験結果の分析

2. SST: D-SEND#2空力特性モデルの評価									
〇空弾変形及び突起物効果を考慮したCFD解析によるC _D 内訳の分析									
CD(model) = CDp + ΔCDs + CDmisc + CDf + CDflex									
Drag[cts]	pressure stabilator Bump, Gap friction elastic								
引起こし	CL	CD	CDp	∆CDs	CDmisc (Bump)	CDmisc (Gap)	CDf	CDflex	
Model CFD FLT	0.287	551	448	-22	14	13	89(PH)	7	
	0.300	479	444	-55	5	0	87(SA)	-2	
	0.298	459							
計測	CL	CD	CDp	∆CDs	CDmisc (Bump)	CDmisc (Gap)	CDf	CDflex	
Model CFD FLT	0.116	253	134	6	14	14	82(PH)	2	
	0.125	222	135	-4	5	0	82(SA)	4	
	0.121	213							

C_Dを一律-30ctsし、ΔCLs, ΔCDs, ΔCmsをCFD結果から線形補間

(出典:牧野、二宮、"**D-SEND#2**空力特性モデルの評価"、日本航空宇宙学会第47回年会講演会、2A6、2016)

2. SST: D-SEND#2空力特性モデルの評価

本日の講演内容

47

- 1. はじめに
 - ·自己紹介、他
- 2. 超音速旅客機の研究について

 (1)自然層流翼設計概念実証(NEXST-1プロジェクト)
 (2)低ソニックブーム設計概念実証(D-SENDプロジェクト)

3. 空気力学の研究について

(1)ヘリブレード先端形状(2)2次元翼(翼型)の失速特性と最大揚力のRe数特性

(3)3次元翼(単純後退翼)の最大揚力のRe数特性

4. まとめ

·挑戦課題、他

3. 空力: 高速ヘリブレード先端形状の研究

3. 空力: 高速ヘリブレード先端形状の研究

(出典:吉田、他、"ヘリコプタ・ブレード先端形状の空力的改善効果について"、日本航空宇宙学会第20回年会、1989)37

3. 空力: 2次元翼(翼型)の揚力特性

(出典:①日本機械学会編、写真集「流れ」、丸善、1984、②李家、「航空機設計法」、コロナ社、2011、③Tani, I., Low-Speed Flows Involving Bubble Separation, Progress in Aeronautical Sciences, 5, Pergamon, pp.70-103, 1964) 38

3. 空力: 2次元翼(翼型)の揚力特性

(3)最大揚力のRe数効果: 代表的翼型のC_{lmax}のRe数挙動

(出典: Jacobs, E.N., and Shermann, A.: Airfoil Section Characteristics as Affected by Variations of the Reynolds Number, NACA Report No. 586, 1936)

3. 空力: 2次元翼(翼型)の揚力特性

(3)最大揚力とRe数効果: 境界層解析と逆Re数効果の識別

(出典: Yoshida, K., Ogoshi, H.: Study for Reynolds Number Effect on Clmax of 2-Dimensional Airfoils, ICAS-96-2.1.2. 1996)

(出典: Yoshida, K., Ogoshi, H.: Study for Reynolds Number Effect on Clmax of 2-Dimensional Airfoils, ICAS-96-2.1.2. 1996)

3. 空力: 2次元翼(翼型)の揚力特性

(出典: Yoshida, K., Ogoshi, H.: Study for Reynolds Number Effect on Clmax of 2-Dimensional Airfoils, ICAS-96-2.1.2. 1996)

(出典: Yoshida, K., Ogoshi, H.: Study for Reynolds Number Effect on Clmax of 2-Dimensional Airfoils, ICAS-96-2.1.2. 1996)

3. 空力: 3次元翼(単純後退翼)の揚力特性

53

3. 空力: 3次元翼(単純後退翼)の揚力特性

(2)Swept taper翼のC_{Lmax}のRe数効果: 局所C_lの最大位置

(出展:東昭:航空工学I、裳華房、1989)

3. 空力: 3次元翼(単純後退翼)の揚力特性

(Ref.: Pettersson, K., and Rizzi, A.: Aerodynamic scaling to free flight conditions: Past and present, Progress in Aerospace Sciences, Vol.44, pp.295-313, 2008)

本日の講演内容

- 1. はじめに
 - ·自己紹介、他
- 2. 超音速旅客機の研究について (1) 自然層流翼設計概念実証(NEXST-1プロジェクト)
 - (2) 低ソニックブーム設計概念実証(D-SENDプロジェクト)
- 3. 空気力学の研究について
 - (1)ヘリブレード先端形状
 - (2)2次元翼(翼型)の失速特性と最大揚力のRe数特性

(3)3次元翼(単純後退翼)の最大揚力のRe数特性

4. まとめ

•挑戦課題、他

53

3次元翼(単純後退翼)の揚力特性 3. 空力:

4. まとめ: 残った挑戦課題

4. まとめ: 空気力学の研究課題の一例(私案)

No.	課題(研究テーマ等)						
1	遷移予測法の高精度化(主流乱れ、表面粗さの影響も考慮)						
2	Supercritical 翼型の更なる高M _{DD} 化						
3	空力騒音における伝播特性の解析精度の検証 ^{本航空宇宙字会第50期年会講演会、2B05、}						
4	デルタ翼等の前縁剥離渦の崩壊機構の解明と予測法の開発						
5	高性能高揚力装置コンセプトの創出						
6	超高Re数状態(粘性作用がほぼ消失)における流れ場特性の推測(超流動Heに						
	よる実験的検討)						
7	極超音速境界層における遷移メカニズムの解明と予測法の開発						
8	高Re数における摩擦抵抗法則の挙動(Prandtl則の適用可能性の評価)						
9	2D/3D翼の最大揚力と失速特性に関するRe数効果の予測法の高精度化						
10	Bluff Bodyの抵抗特性の現象解明と予測法(Re数効果を含む)の構築						
11	円柱/球の高Re数実験データの取得(物体後方の流れ場の高精度計測含む)と 抵抗特性の理解						
12	CFDをコアとした実機Re数補正法の開発						
13	乱流境界層の高Re数挙動の理解(対数法則、カルマン定数の妥当性検証)						
14	予言的な乱流理論の開発(柘植理論の発展を含む) 58						

4. まとめ: プロジェクトからの教訓

(1)実験機は2機必要!最初に失敗しても次に繋げられる!

(2) 空力担当は、真値追求より誤差幅の信頼性向上を!

(3)誘導制御担当は、システム屋の意識を!

(4) 空力計測は、地上試験で徹底的な機能確認を!

(5)WBS主義は要注意!

(6) 各担当リーダーは、他の領域にも首を突っ込むこと!

(7)チームプレイは会話から!(メールによる作業指示と確認には落とし穴が!)

これまでにJAXA超音速実験機プロジェクトに関わって 頂いたメーカー及び大学の方々に感謝申し上げます。

