

了鳳取大学

発表内容

- 研究背景と技術的課題
- ▶ 研究目的
- プラズマアクチュエータについて
 - ▶ 概要
 - 剥離流制御への応用
- 超音速機離着陸性能改善への応用
 - 研究課題・計画
 - 現在の進捗状況

1. 三次元・非定常流れ場構造の解析

研究背景と技術的課題

- 2. 複雑な流れ場の干渉・制御
- 3. 流れの制御による空力特性の向上

- 放電により発生するプラズマによって流体に体積力を与える
 表面ジェットを発生
- 電極ペアと誘電体の複合構造
 - ▶ kV/kHz/mAオーダーの交流を使用

平成22年度 航空プログラムグループ公募型研究報告会

- 研究目的
 プラズマアクチュエータにより超音速機の 離着陸時空力性能を向上させる
 - スマートな流体制御手法の提案
 - > 実機形状模型への適用
 - プラズマアクチュエータの潜在性能を生かす
- ・期待される最終成果
 - 超音速機実用化において大きな問題となる、
 低い離着陸性能により生じる課題の解決
 - 航空機の安全性の低下
 - > 空港のインフラ整備の必要性
 - 着陸騒音(脚・高揚力装置由来)

研究のアプローチと計画

- ▶ SST空力特性の改善
 - ▶ 離着陸時の揚力傾斜、揚抗比の改善
 - ・ピッチアップなどの非線形空力特性の改善
 - 小型風洞による流体制御手法の調査
 - ▶ 2x2m風洞におけるプラズマアクチュエータ適用試験
 - □ 実験手法の確立
 - □ 基礎的な流体制御法の検討
- プラズマアクチュエータによる流体制御法の研究
 - 効率的な制御手法の開発
 - ▶ <u>パルス駆動の効果検討(既存データより)</u>
 - 高レイノルズ数適用性の検討
 - 既存アクチュエータ性能のレイノルズ数依存性調査

SST空力特性の改善

- ▶ デルタ翼およびSST主翼模型へのP/A適用
 - 空気力測定+流れの可視化試験により、提案している流体場・空力変化を生じうるか可能性調査
 - アクチュエータ位置・構成について、数多くのトライ&エラーでいくつかの有力候補を抽出する
- ▶ 進捗状況
 - > 模型製作中(デルタ翼:完成, SST:12月上旬)
 - ▶ P/A素子・駆動系は準備完了
 - ▶ 風洞試験準備中(12月中旬~予定)

Status: JAXA低速風洞試験

- ・既存SST模型(改修)に対する プラズマアクチュエータの適用試験
 - ▶ 風洞におけるP/A駆動系の構築
 - ・提案している流体場・空力変化を生じうるか可能性調査
 - レイノルズ数効果の予備検討

▶ 進捗状況

- ▶ 来週より(11/30~)風洞試験予定
- ト島取大学において、P/A駆動系準備完了

プラズマアクチュエータの 効率的な制御手法の開発

多変数が影響:最適条件を得ることが困難
 パラメータ設計による重要変数抽出:<u>モジュレーション周波数</u>

条件	
	Drag Measurement
PWM modulation freq. [Hz]	6 ~ 600
Strouhal number	0.03 ~ 4.5
Location of secondary actuator [deg]	115
Duty cycle [%]	0 ~ 45
Phase lag [deg]	0, 180
Freestream velocity [m/s]	8.0, 10, 12
Reynolds number	3.2, 4.0, 4.8 x10 ⁴
Input voltage [kV]	8.4 ~10.5
Frequency for AC input [kHz]	12.0
Thickness of the PTFE layer [mm]	0.9
Width of buried electrode [mm]	30

Impact of PWM modulation frequency

Effect of Duty Cycle (Vpp=9.6kV)

Variation of the flow pattern with PWM modulation at U=10m/s

Higher Strouhal number

- > Reduction of separated area
- > Reduction of aerodynamic drag

Variation of the flow pattern with PWM modulation at U=10m/s

Variation of the flow pattern with PWM modulation at U=10m/s

高レイノルズ数適用性の検討

スケール効果解析予備試験

実験概要

- ・種々の模型スケール・一様流速度・レイノルズ数に おけるプラズマアクチュエータの流体制御性能(抵抗 低減性能)を評価
- 二次元半円柱を対象
 - ▶ d = 60,200,400,600mm
 - ▶ U = 5.0~25m/s

$U \searrow d$	60 mm	200 mm	400 mm	600 mm
5 m/s	20	67	133	200
10 m/s	40	133	267	400
15 m/s	60	200	400	600
20 m/s	80	267	533	
25 m/s	100	333		x 10 ³

平成22年度 航空プログラムグループ公募型研究報告会

Re ~ 2×10⁵ 以上で抗力低減効果が減少
 エネルギ入力が流速・直径に対し相対的に小さくなるため
 境界層遷移によりアクチュエータの最適位置が変わるため

今日取大学

駆動方法検討に関するまとめ

- ▶ PWM(バースト)駆動のモジュレーション周波数に 対し、流体制御性能は強い依存性を持つ
 - → St=0.2: 後流渦とのロックイン→空力抵抗増加
 - > St=1.8: 剥離域の顕著な縮小→大きな抵抗低減効果
 □ パルス状駆動により流れの非定常性を緩和
- ブルートフォース的制御には性能/効率に限界がある
 - エネルギ効率は高まらない:レバレッジなし
 - ▶ アクティブ流体制御の適用
 - ・既存sDBDプラズマアクチュエータを用いる場合, 高動圧/高Re環境での性能に問題あり
 - ▶ 駆動変数の条件に応じた最適化
 - アクチュエータ構成自体の改良・変更

平成22年度 航空プログラムグループ公募型研究報告会