A05 ハニカムサンドイッチフィン及び CFRP 製フィンステーの開発

武川和洋, 萩原 圭, 高野 敦, 喜多村 竜太(神奈川大)

Kazuhiro Mukawa, Kei Hagihara, Atushi Takano and Ryuta Kitamura (Kanagawa University)

1. はじめに

近年,超小型人工衛星開発を安価かつ迅速に打ち上 げるための研究開発が活発に行われれている.当研究室 では超小型ハイブリットロケットの開発に取り組んで おり,機体の高高度到達を目指して,機体の大型化に取 り組んでいるが,飛翔速度と重量が増大するといった 問題に直面した.

そこで本研究では、フィン、フィンステー、カプラの素 材を CFRP(Carbon Fiber Reinforced Plastics) にすること で機体の軽量化を目指した.また、飛行シミュレーショ ンを用いて今年度機体の最高高度及び最高速度を計算 するとともに、空力弾性に着目し、飛翔中に機体がフラ ッタを起こさないような設計を行った.

2. 機体全体概要

図1に機体概要図を示す.図2の黒色部がフィンであり,飛翔中の機体を安定させる役割がある.また,水色部 がフィンステーであり,フィンと機体胴体を接続する役 割がある.緑部はカプラであり,機体同士を接合させる 役割がある.図 2-2 はフィンフィンステーの拡大図であ る.フィンは,表皮を CFRP を積層構成(

45/45/45/45)s の 8 層で積層し,コアにアルミニウムハ ニカムコアを用いたダイヤモンド翼である.フィンステ ーは CFRP を積層構成(-45/0/452/0/-45)s の 12 層で積層 した.フィンとフィンステーと胴体はエポキシ接着材と ねじで接合接着している.その概略図を以下の図 3 に示 す.

図3 フィン・フィンステー・胴体の接着概略図

3. フィンの設計

ロケットの飛行姿勢を安定させるため,機体下部には 4枚のフィンが取り付けられている.2018年度は中実構 造のCFRPを使用していたが,機体の大型化に伴い,フィ ンの軽量化と製作時間短縮を目指し,今年度はアルミニ ウムのハニカムコアを CFRP 表皮でサンドイッチした ものを使用した.

今年度機体のフィンの設計では,昨年度と同形状^{III}で 強度計算を行った,また,フラッタを起こさないような 高度剛性係数^{II}A を算出したところ A=8.8 となり,昨年 度のA=3.1 よりも向上した.以上を踏まえ,フィンの形状 は厚さ 12[mm]の中空ダイヤモンド形状で,コア材のア ルミニウムハニカムコアを積層構成(45/-45/45/-45)s の CFRP(HyEj12M65PD, 繊維弾性率 3800[GPa])でサンド イッチしたものを採用することとした.

フィンのフィンの製作は以下の手順で行った.まず、 ハニカムコアの加工では、コアをアクリル棒とアルミ板 で潰してクランプし,ダイヤモンド形状に切削した.切 削が終わったコアを洗浄し,コアを広げ,ハニカムコア と 2 枚の CFRP 表皮をエポキシ接着剤の AW106 と HV953Uを使用して接着した.当初は、ハニカムコアと フィン表皮のみで製作していたが、加圧が不十分だと考 え,中空になっている箇所に CFRP を積層した帯を入れ ることでフィン表皮がより均一に加圧できるようにし、 曲げ剛性を向上させた.その後,電気炉を用いて,温度 130℃で2時間で加熱成型したなお最初にフィンを製 作した際に,金型の温度が上がりきらずに,長時間加熱 してしまった.そのため、電気炉のヒーターを2系統から 4 系統に改修し、温度が目標温度に達するようにした.加 熱成型後、ダイヤモンドカッター等を用いて、図2のよ うな形状に切断した.昨年度のフィンの重量は約485[g]、 今年度は約144[g]であり、大幅な軽量化に成功した.

図4 フィン模式図

図5 アルミニウムハニカムコアフィン

4. フィンステーの設計 4.1 フィンステーの強度計算

前述のフィンをロケット胴体に接続するため,CFRP 製のフィンステーを用いた.今年度のフィンステー素材 は作業の効率化を図るため,,圧縮強度が高く,さらに 1 枚あたりの厚さが0.0813[mm]のCFRP(TR350J75S)を採 用した.金型は 2018 年度に作製されたものを使用した. また,飛行シミュレーションで得られた最大速度 (408m/s)やフィンの面積(0.1006m²)などを用いて揚 力,曲げモーメントを算出した.その結果,最大揚力は 827.2[N]となり,この最大揚力時の曲げモーメントを求 めたところ結果 124 [N·m]となった.

4.2 フィンステーの試作

フィンステーを試作し,強度試験を行った.フィンス テーの積層構成は[-45/0/452/0/-45]。の12層,厚さ 0.9765[mm]とした.また,昨年度のフィンステー706[g]に 対し,今年度は368[g]となり軽量化に成功した.

4.3 フィンステーの強度試験

フィンは 2018 年度に試作されたハニカムコア入り のものを用いた.また,フィンを取り付けた逆側にアル ミ板を3枚1セットとしたものを取り付けた.そして,フ ィンの根元に最大揚力時の曲げモーメント 124 [N·m] がかかるようにフィンの端に荷重を負荷した.その結 果,124[N·m]までフィン及びフィンステーは破壊しな いことを確認した.しかし,フィンステー-胴体間でピー ル破壊が確認できた.これは,フィン・フィンステー・胴 体をはエポキシ樹脂接着剤とねじ(フィンステー・胴 体をはエポキシ樹脂接着剤とねじ(フィンステーの各 4 隅,計8 個のねじ)で固定していたため,ねじから遠い 部分の接着が不十分であっためであると考えられた.そ こで,図 6,7 のように接着剤をフィンステー全体に塗り 込み,さらにフィンステーの胴体側の端部とフィン側の 端部のねじを 2 つから 3 つに増やし,計 10 個のねじで 固定することで接着強度を高める事にした.

図6 ねじ追加後のフィンステー(黒丸が追加したねじ)

図7 ねじ追加後のフィンステーの模式図(側面図)

5. カプラの設計

カプラは機体の胴体同士を接合させるためのリング である.2017 年度までの設計ではカプラと胴体の間に 隙間ができていたため,その隙間を埋めるため,機軸方 向のスリットを図 4 に示すように製作した.また,2018 年度はアルミ合金を使用していたが,今年度は軽量化の ために CFRP を採用した.

2018 年度^[1]と同様に外形Φ148[mm]で,材料は圧縮強 度が高く,1 枚当たりの厚さが 0.24[mm]と厚い CFRP (TR380G250S)を使用することで製作時間を短縮した. また,積層構成[-45/0/45/90]s,厚さ 2[mm]で強度計算を行 ったところ,安全余裕は 1.28 となった.

このようにカプラ用のマンドレルを設計した円筒を 立フライス盤で図8のように溝と穴を加工した.また,円 筒内部からカレイナットでかしめ,接着を行った.穴寸 法 φ 6.0 と φ 6.5 に手で荷重をかけ比較したところ,外れ にくくなった φ 6.5 を採用した.

分離部カプラは昨年度 234.5[g]から今年度 101.5[g]に なり,タンク部カプラは 158.8[g]から 78.5[g]への軽量化 に成功した.

図8 CFRP 化したカプラ (左: タンク部 ,右: 分離部)

6. フィン・フィンステー・胴体の接着

フィン,フィンステー,胴体の接着を行った.接着には 4.3 節に述べたエポキシ樹脂接着剤,ねじおよび固定方 法を用いた.接着手順としては,最初にフィンとフィン ステーを接着,仮止めした.次にフィンステーと胴体を 接着,仮止めした.最後にねじを本締めして接着を完了 させた.また,接着強度を高めるために接着面端部に図6 のようなフィレットを形成した.その後,温度25℃で約 12時間放置し、接着剤を硬化させた.

7. フィンの剛性試験 7.1 剛性試験

実機のフラッタ速度を求めるためにフィンステー及 び胴体を含めた剛性試験を行った。

図 10 に剛性試験概略図を示す.荷重を 0[N]から 100[N]まで徐々に負荷させて、1から6の番号の箇所を レーザー変位計で変位を測定した.荷重点をフィン端部 に2箇所,重心周りに1箇所設置した.フラッタ速度はフ ィンのねじり剛性が支配的と思われるが安全側の評価 として機体の変形も含め測定をした.全機重心固定での フィン翼端回転角からねじり剛性を計算した.

フィン周りの剛性試験簡易図 図 10

試験で得られたねじり剛性からねじりの固有振動数 を算出し高度剛性係数(2)で評価した.

高度剛性係数
$$\frac{b_r\omega_a}{a}\sqrt{\mu_e}$$

高度剛性係数とは、低アスペクト比、後退角付きの片 持平板翼の音速前後におけるフラッタを高速風洞試験 の結果から得られた値である.高度剛性係数 y[-],マッハ 数を M[-]として以下の関係式がある.

> y = 0.5217M + 0.4018(1)

このときのマッハ数 M-]がフラッタ速度となる.

7.2 実験結果

剛性試験の結果を以下の図1に示す.また試験結果か

らフラッタ速度を7.1節で示した高度剛性係数を用い て算出した.表1にフラッタ速度昨年度に比べフラッタ 速度は上昇した.飛行シミュレーションでは2019年度 機体の最高速度は410[m/s]である.

表1 フラッタ速度比較表		
	フラッタ速度[m/s]	
設計値	5193	
2018 年度 フィンステイ考慮	2526	
2018 年度 胴体考慮	2105	
2019 年度 フィンステイ考慮	3813	
2019 年度 胴体考慮	4122	

7.3 フラッタ速度について

フラッタ速度が要求されている値よりも大幅に大きい 理由として、設計開始当初は安定性の要求および最高速 度が不明瞭だったため,下表の左側の値を用いていた. 設計の結果表の右側の値に確定したので,現在のフラ

ッタ速度となった.

また来年度以降の機体の大型化、高速化などに使用で きる可能性がある.

衣2 設計に用いた個				
	2018	2019	2019	
		(当初)	(最終)	
翼幅 [mm]	150	300	131	
速度 [m/s]	344	502	410	
フラッタ速度 [m/s]	2105	2153	4122	

8. 重量比較

表 8-1 にフィン,フィンステーおよびカプラの重量比 較を示す.表 8-1 に示すように,2018 年度から約 2220 [g] の軽量化に成功した.また,軽量化した各部品を用いて 飛行シミュレーションを行ったところ、軽量化によって 到達高度が約250[m]上昇した.

	2018 年度	2019 年度	
フィン	1940[g]	566[g]	
フィンステー	706[g]	368[g]	
カプラー全体	789.5[g]	281.5[g]	
合計	3436[g]	1216[g]	
到達高度	12468[m]	12718[m]	

表 8-1 重量および到達高度の比較

8. 結論

・本年度の機体の大型化に伴い,フィン・フィンステー・ カプラの素材をCFRPで作製し,軽量化を図った.その結 果,フィン・フィンステー・カプラ全体で昨年度より約 2220[g]軽量化した.

・フィン,フィンステー及び昨年度に比べ強度が向上したことが確認できた.またフィンステーの強度試験を行い最大揚力をかけても破壊しなかったため,フライト中の破壊は起こらないと判断した.

・剛性が昨年度に比べ約 1.5 倍上がりフラッタも向上 した.

参考文献

- (1) 島崎拓己,鈴木理史,超小型ハイブリッドロケットの空力弾性,宇宙構造材料シンポジウム,2018年
- (2) 中井暎一, 森田甫野, 菊池考男, 高橋実, 東久保 正年, NAL TR-288, 航空宇宙技術研究所, 1967 年