A10 高精度衛星主鏡部への適用に向けた CFRP サンドイッチパネルの成形検討

川畑健人 (明星大学大学院 理工学研究科),小山昌志 (明星大学),後藤健 (JAXA),

須藤栄一, 吉成圭午(昭和飛行機工業), 向後保雄(東京理科大学)

Kento Kawabata (Meisei University), Masahi Koyama (Meisei University), Ken Goto (JAXA), Eiichi Sudo, Keigo Yoshinari(Showa aircraft industry Co, Ltd), Yasuo Kougo(Tokyo University of Science)

1.緒言

近年,宇宙観測の分野において衛星望遠 鏡の観測能力の向上が求められている. 観 測能力を向上させる手段の一つとして衛 星望遠鏡の主鏡部の大型化が上げられる. しかし主鏡部を大型化すると重量の増加 を招き打ち上げコストが高くなる. そこで 主鏡は,低密度な構造体が求められる. この 要求を満たす構造体として軽量・高強度の CFRP(Carbon fiber reinforced Plastic)製スキ ン材,低密度・高剛性の Al 製コア材からな る CFRP/Al ハニカムコアサンドイッチパ ネル (以降, HSP) が一部の主鏡部に用いら れている.

しかし CFRP/Al HSP は軽量・高剛性な構 造体であるが,CFRP と Al は熱膨張係数(以 降,CTE)差が大きく製造時,運用時の温度変 化による熱変形により表面精度の低下が 報告されている⁽¹⁾. この問題を解決するた めに Al 製ハニカムコアを CFRP 製に変更 し CTE 差による表面精度低下を抑制する ことが考えられている⁽²⁾.

現在,CFRP ハニカムコアは海外ではオー トクレーブ成形法(詳しい成形方法は次項 で記述する)を用い製造,運用されている. 一方国内においては開発段階にあり,海外 製品を使用するにとどまっている.海外製 品を使用するにあたり,輸入のためのコス トかつ形状に制限があることが課題とな っている. これらの課題を解決するため本研究で は,国内での CFRP ハニカムコアの製造に 向け国内でのオートクレーブ成形法及び 他の成形法として低コスト化のための VaRTM 成形法による CFRP ハニカムコア の試作,それらの機械特性値の取得を行い 海外製品との比較を行った.またオートク レーブ成形法で試作した CFRP ハニカムコ アを用いた CFRP/CFRP HSP の機械特性値 の取得を行った.

2.試験片成形方法

2.1 CFRP ハニカムコア成形方法

作製プロセスの関係上,Fig. 1 のようにハニカ ムコアの壁に CFRP が二重になる部分が存在す る.本稿では CFRP が二重になる壁に対して平 行方向を L 方向,垂直方向を W 方向とする.

Fig.1 Honeycomb core structure.

オートクレーブ成形の概念図を Fig.2 に 示す.半六角柱の並ぶ定盤の上に,炭素繊維 に樹脂を含浸し半硬化させたシートであ るプリプレグを置きその上から六角柱を 重ねる.この手順を繰り返したものをバッ グフィルムで覆いバッグフィルム内を真 空にし,オートクレーブで加熱・加圧,硬化 後,脱型を行い成形した.(以降海外製品を C core,国内試作品を,S core とする)

Fig.2 Schematic of the Autoclave molding.

VaRTM 成形の概念図を Fig.3 に示す. 平織り炭素繊維の間に六角柱を並べ交互 に設置し,その後治具外周をバッグフィル ムで覆い治具片面からバッグフィルム内 の真空引き及び樹脂を流し込み繊維に含 浸させ硬化後脱型を行い成形した.(以降 VaRTM 成形法での試作品を V core とする)

Fig.3 Schematic of the VaRTM/

次に各コア材の構成材料を Table.1 に示 す. V core の母材には,C core, S core の母材 であるシアネートエステル樹脂の 90℃で の粘度と同等のエポキシ樹脂を用いた.

Table.1 Details of material and fiber orientation.			
	C Core	. S core	V Core
Moterin	Cyanate ester	Cyanate ester	Epoxy
Matrix	CE42	NM31	801PN
	Pitch based	Pitch based	Pan based
Fiber	carbon fiber	carbon fiber	carbon fiber
	YSH-50-A	YSH-60-A	T300
Basis weight	75	100	195
Orientation	±45°	±45°	±45°

各コアの密度,セルサイズ,箔厚を Table.2 に示す.

Table.2 Material properties of each core.			
	C core	S core	V core
Cell size [mm]	10	9.31	9.4
Density [kg/m ³]	31	34.2	90.9
Thickness[mm]	-	0.22	0.49

2.2 HSP 作製方法

コア材に,S core, Al,また用いたスキン材, 接着剤の詳細を Table.3 示す. これらの構 成材料を使用したスキン材とコア材に. S core を用いたもの(以降,CFRP/Score HSP)は 180[℃], 0.1[MPa], Al を用いたもの(以 降,CFRP/Al HSP)は 130[℃], 0.1[MPa]で加 熱,加圧し接着した.

Table.3 Material properties of each HSP.			
		S core	Al
		Pitch based	Pitch based
Fiber		carbon fiber	carbon fiber
Skin		YSH-60-A	YSH-50-A
	Resin	Cyanate ester	Cyanate ester
		NM31	NM31
Adh	esive	Cyanate ester NM31	Epoxy 801PN

3 CFRP ハニカムコアの機械特性評価

3.1 せん断試験

ASTMC273 に準拠して,Fig.4 に示す手法 で行った. コア材をW 方向に 145[mm], L 方向に 50[mm]厚さ方向に 12.4[mm]で切 り出しエポキシ接着剤 AF163-2 を用いて治 具プレートに接着を行い荷重負荷速度 0.2[mm/min]で試験を行った. 試験結果から 算出したW 方向の比せん断剛性,比せん断 強度を Table.4 に示す.

Fig.4 Test configuration of shear test.

Table .4 Shear properties of each core (w unection).
--

1	1	· · · · · · · · · · · · · · · · · · ·	,
	C Core	. S core	V Core
Specific modulus [MPa/(kg/m ³)]	2.9	4.85	3.29
Specific strength [MPa/(kg/m ³)]	1.29×10 ⁻²	1.44×10 ⁻²	2.68×10 ⁻²

比せん断剛性は S core, 比せん断強度は V core が最も高い値を示した. S core の比 せん断剛性が最も高い値を示した要因と してコア材に用いた繊維の弾性率の違い だと考えられる. V core が最も高い比せん 断強度示した要因は,コア材に用いた繊維 目付量の違いと考えられる. Fig.5 に示すよ うに S core, C core は V core と比較して繊維 の目付量が低い場合樹脂未充填の空孔部 が多く発生し破壊の起点となり低密度を 示すと考えられる.

(a)S Core

Fig.5 Molding condition photographs of test piece.

3.2 エッジワイズ引張試験

ASTM C363 に準拠し Fig.6 に示す手法で 行った. 各コアをW 方向に 80[mm], L 方向 に 55[mm], 厚さ方向に 12.7[mm]に切り出 したものを治具に固定し,荷重負荷速度 1.0[mm/min]とし試験を行った. 試験結果よ り算出したリボン部のエッジワイズ引張 強度を Table.5 に示す.

Fig.6 Test configuration of node tensile test.

Table.5 Tensile node strength.

	S core	V Core
Tensile node strength (W direction)[MPa]	9.498×10 ⁻³	76.925×10 ⁻³
Tensile node strength (L direction)[MPa]	59.704×10 ⁻³	257.354×10 ⁻³

引張強度はL方向,W方向共にV core が. S core に対して高い値を示した.V core の 値が高くなった要因として接着面積の大 きさが挙げられる.Fig.5 に示すようにコア 材に用いた繊維の目付量の違いからなる リボン部の接着面積の差によるものだと 考えられる.

4.HSPの機械特性評価

4.1 フラットワイズ引張試験

ASTM C365 に準拠して Fig.7 に示す手法 で行った. 各試験片をL,W 方向共に 70[mm] 厚さ方向にコア材に CFRP/Score HSP は 12.9[mm], CFRP/Al HSP は 20.2[mm]に切り 出しエポキシ系接着剤アラルダイトを用 い治具に接着を行い荷重負荷速度 1.0[mm/min]で試験を行った. 試験結果より 算出したフラットワイズ引張強度を Table.6,破壊挙動を Fig.8 に示す.

Fig.7 Test configuration of flatwise tensile test.

Fig.8 Load curve of flatwise tensile test.

フラットワイズ引張強度は CFRP/S core HSP が高い値を示し, また Fig.8 より最大 耐荷重は CFRP/Al HSP と比較して値が安 定していることが分かった.

4.2 4 点曲げ試験

ASTM C393 に準拠し Fig.9 に示す手法で 行った. W 方向に 62[mm], L 方向に 350[mm], 厚さ方向に 12.9[mm]に切り出し たものを支点間距離 L=300[mm],荷重負荷 速度 1.0[mm/min]とし試験を行った. 試験 結果より算出した曲げ剛性,曲げ強度を Table.7 に示す.

Fig.9 Test configuration of four point flexural test.

Table.7 Flexural property.			
	S core	Al	
Flexural stiffness [N · mm ²]	5.32×10^{-7}	3.58×10^{-7}	
Flexural strength [MPa]	103.98	126.12	

Fig.10 Load curve of four point flexural test.

CFRP/S core HSPは **CFRP/Al HSP**と比較 して曲げ剛性は高く,曲げ強度は低い値を 示した.このような値を示した要因として Fig.10 より CFRP/S core HSP は CFRP/Al HSP に対して低荷重負荷時にスキン材と コア材の剥離が進展し早期に破壊が起き たためだと考えられる.結果より CFRP/S core HSP は剛性設計に適していることが分 かった.

5.結言

本研究では,国内での CFRP ハニカムコ ア,CFRP/CFRP HSP の製造を目指し国内,海 外においてのオートクレーブ成形 法,VaRTM 成形法でのハニカムコア,HSP の 試作及び機械特性値の取得,比較を行った.

ハニカムコアにおいては,国内での試作 品は使用する繊維の弾性率を考慮すると 海外製品と同等程度の機械特性値を有す ることが分かった. HSP においては, CFRP/S core HSP が CFRP/Al HSP に対して 剛性設計に適していることが分かった.

以上のことから国内における CFRP ハニ カムコアの製造の可能性が示唆され,HSP において CFRP/S core HSP は,CFRP/Al HSP と比較して優れた機械特性値を有するこ とが確認された.また今後は,表面精度に影 響を及ぼす HSP の熱変形測定を行ってい く.

参考文献

 小松敬治 et al., "サンドイッチパネルに よる剛性低下について", 第 56 回宇宙科学 技術連合講演会講演集,2012.

2) Kazuya Saito et al.,"Manufacture of arbitrary cross-section composite honeycomb cores based on origamitechniques",

Journal of machanical design, Vol. 136,2014.