LSD-LSC 遷移で起きていること

Transition Phenomenon of LSD to LSC

○白石 裕之(大同大)

OHiroyuki Shiraishi (Daido University)

Abstract

Laser-supported detonation (LSD) is one of the most important supersonic phenomena in laser propulsion because it can generate the required high pressures and temperatures. In this study, the stability of LSD will be discussed based on physical fluid analysis on the LSD termination when the laser intensity is reduced, that is, the phenomenon that occurs near the LSD-LSC transition.

1. はじめに

将来的に有望視されている宇宙推進システムとして、レ ーザー推進システムが挙げられる.これはレーザー等をプ ラズマ化した推進剤に照射して運動エネルギーへと変換す るものであり、化学ロケットの様に燃料によって推進性能 の制約を受ける事は無く、燃焼器を必要としないために軽 量化が見込めるなどのペイロード上の利点を持つ.

レーザー推進には、レーザー支持爆轟波(Laser-supported detonation,以下LSD)の存在が必須とされる.これは推進 に必要な高温・高圧が得られるためである.Raizer¹¹はLSD におけるエネルギー均衡について検討し、伝播が空間的に 拡がる事によって超音速伝播が終息する事を示した.この 時点でレーザーを吸収していた電離帯は弱くなって先行衝 撃波に追随出来なくなり、LSDは伝播の遅い Laser-supported combustion wave(LSC)へと遷移する²⁾.こ のLSD-LSC 遷移は、デトネーションの維持、延いては推 力を維持するためには極めて興味深い現象である.

LSD の伝播機構に関しては,著者らの数値解析による先 行研究などで概要は明らかになっている一方で,伝播速度 などの定量的な面で実験等他研究と一致を見ない²).

そこで、本研究では著者らによる1次元LSD 数値解析手 法を現実に即したレーザー照射強度変化を導入し、 LSD-LSC 遷移の兆候についての検討を試みた.

2. 物理流体数値解析模型と解析上の仮定

2.1 解析模型 図1に準1次元物理流体数値解析の概 念図を示す. 電磁ビームしては CO₂ レーザー(λ=10.6 μm) が右方からノズル内に沿って集光される様に照射され,室 温(*T*₀=300 K)の常圧アルゴンガス中を LSD・LSC が伝播す る. なお,解析する上で高い電子温度を有する Hot spot を 設定している. これは,実験において金属をターゲットと してレーザーを照射し,予め自由電子がシーディングされ た状態からスタートさせる事に相当する.

本解析では、Hot spot 1 mm を中央に設置した. Hot spot の電子温度は 15,000 K であり、サイズは 5000 points × 0.005 mm)である. なお、シーディング量は先行研究³⁻⁷⁾に 基づいて被伝播気体の1%数密度としている.

図 1 1次元解析模型

2.2 解析上の仮定 先行研究⁵⁾と同じく,以下の通りである.

- (1) 作動流体は、電気的に中性である.
- (2) 化学反応として,以下の電離過程を考慮:
- 1) $Ar + e^- \leftrightarrow Ar^+ + e^- + e^-$,
- 2) $Ar^+ + e^- \leftrightarrow Ar^{++} + e^- + e^-$

(3) 温度非平衡モデルとして、2 温度モデルを用いる.こ こで電子励起モードに関連付けられた電子温度は、他モー ドの重粒子温度とは別個に扱われる.

(4)輸送効果として,熱伝導を考慮する.また,有効拡散 係数の算出においては,両極性拡散を考慮する.

2.3 支配方程式 本解析の支配方程式は準1次 元 Navier-Stokes 方程式であり、これは各化学種及び全質量 の保存式、運動量保存式、全エネルギー保存式及び電子エ ネルギー(電子並進-電子励起エネルギー)保存式から成っ ている.輻射エネルギー項 Q_{IB}, Q_Bおよび Q_{EE} は陰的に扱 われ、TVD 差分スキームによって時間進行が施される.

一般的な書式に従えば、具体的には次の通りである:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} = \frac{\partial \boldsymbol{F}_{\mathbf{v}}}{\partial x} + \mathbf{S} \quad , \tag{1}$$

where

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho u \\ E \\ E_{e} \\ \rho_{i} \end{pmatrix}, \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u^{2} + p \\ (E + p)u \\ E_{e} u \\ \rho_{i} u \end{pmatrix},$$
$$\mathbf{F}_{v} = \begin{pmatrix} 0 \\ 0 \\ \kappa_{tr} \frac{\partial T_{h}}{\partial x} + \kappa_{e} \frac{\partial T_{e}}{\partial x} + \sum_{j} D_{j} h_{j} \frac{\partial \rho_{j}}{\partial x} \\ \kappa_{e} \frac{\partial T_{e}}{\partial x} + \sum_{j} D_{j} h_{j} \frac{\partial \rho_{j}}{\partial x} \\ D_{i} \frac{\partial \rho_{i}}{\partial x} \end{pmatrix},$$
$$\mathbf{and} \quad \mathbf{S} = \begin{pmatrix} 0 \\ 0 \\ Q_{IB} - Q_{B} \\ Q_{EE} + Q_{IB} - Q_{B} \\ w_{i} \end{pmatrix}.$$
(2)

なお、A は断面積であり、添字 i は $Ar_{,,}Ar^{+},e^{-}$ 、また

は Ar^{++} を示している.また、比熱比 C_p と比エンタルピー

*h*は Gnoffo ら⁸⁾ や Matsuzaki⁹.による温度多項式近似によって実在気体効果が考慮されている.

$$Q_{\rm EE} = Q_{\rm T} - p_{\rm e} \frac{\partial u}{\partial x} + \frac{E_{\rm e} + p_{\rm e}}{\rho_{\rm e}} w_{\rm e}$$
(3)

で与えられる.

次に, 逆制動輻射項 Q_{IB} については, 次の様に表される: $Q_{IB} = I(x,t) \times (K_{ea} + K_{ei})$ (4) ここで, K_{ea} および K_{ei} はそれぞれ Kemp ら ¹⁰⁾と Johnston ら 11)の方法に拠る.

また,制動輻射によるエネルギー損失 *Q*_B は,振動数を 積分した形によって与えられる:

$$Q_{\rm B} = 1.426 \times 10^{-40} n_{\rm e} n_{\rm i} T_{\rm e}^{\frac{1}{2}} \left[{\rm W} / {\rm m}^3 \right]$$
(5)

差分スキームとしては、輻射吸収項 Q_{IB} , Q_B および緩 和項 Q_T は陰的に扱った, semi-implicit Harten-Yee, 非 MUSCL, 修正流束型 TVD スキームを用いている.また, 拡散および熱伝導項も陰的に扱っている.

2.4 輻射吸収モデル 局所レーザー強度 *I*(*x*, *t*)は, 次式 によって求められる:

$$\frac{dI(x,t)}{dx} = I(x,t) \times (K_{ea} + K_{ei})$$
⁽⁶⁾

照射レーザー強度に関しては,実験データに基づいて 2× (設定強度) *0.4^[(解析上の時刻)/(1µ秒)]の様に近 似を行った¹²⁾.また本研究では,先行輻射加熱による電 子生成モデルを考慮している¹³⁾.

3. 解析結果と考察

LSD において衝撃波に追随していた電離吸収帯が LSC では吸収できないのは,遷移の過程で電子エネルギーモー ドに何らかの失活が生じたためと推察できる.図2は衝撃 波面(細線)および電子加熱帯前面(太線)の走時曲線で あり,照射レー強度の減衰によって LSD から LSC に遷移 する様子が見て取れる.

図 2 走時曲線

図3は,遷移終了と考えられる時点(時刻2.14µsec.)に おける電子温度分布(太線)および重粒子温度分布(細線) である.本図によれば,確かにレーザー吸収帯は衝撃波後 方に退き始めている.

図 3 温度分布

図4は、同時点での電子・電子励起エネルギーモードの レーザー吸収による増加と電子一重粒子緩和による失活を プロットしたもの、およびその拡大図である.電子(・電 子励起)エネルギー増加は先ず電子温度の上昇に費やされ、 電子一重粒子緩和によってレーザー吸収で得られたエネル ギーは重粒子温度の上昇および運動エネルギーに移される. 注目するべきは、衝撃波後方部分に得られた電子エネル ギーを超過した重粒子エネルギーへの移動が存在する点. これによって電子エネルギーが失活し、衝撃波面座標系に おいて電離帯が減速するという構図が見える.

この様な電子エネルギー失活現象が起こる理由としては 図5の数密度分布を御覧頂きたい.失活位置は2価電離イ オンが減少していく箇所との一致が見られる事から,この 現象は多価電離イオンの再結合開始によって引き起こされ ていると考えられる.レーザー強度の更なる低下のために 電子エネルギーが衝撃波に追随出来る様な要素は無く,あ とは波面座標系において停留出来る様な準安定的な間隙す ら存在しないまま電離帯は後退していくのみとなる.

図 5 数密度分布

4. おわりに

本研究では、1次元 LSD 数値解析手法に現実に即した レーザー照射強度変化(単調減少)を導入し,LSD-LSC 遷 移付近の様子を CFD 手法に基づいて確認を行った.

LSD 伝播が継続する状態から照射強度を減ずると、電子・電子励起モードにおいてレーザー吸収(逆制動輻射) によって得られるよりも失われるエネルギーの方が過多に なる箇所が衝撃波後方に発生する.

この現象は、多価電離イオンの再結合によって起こると 考えられる.そして,一旦それが生じると電離帯は失活し, 先行衝撃波面への追随が維持出来なくなってたちまちLSC に至る.すなわち,一旦遷移が起これば安定した LSD-LSC の中間的現象は存在せず,電離帯は衝撃波面から離され続 ける事になるという様な遷移のメカニズムが存在するもの と考えられる.

謝 辞

本研究の一部は,科学研究費補助金(15H05770)の助成 を受けたものである.ここに謝意を表する.

参考文献

- 1)Raizer, Y. P.: Laser-induced Discharge Phenomena, Consultants Bureau, New York, 1977.
- 2)Keisuke Kanda, Kohei Matsui, Theo Rousell, Kimiya Komurasaki, Hiroshi Katsurayama, Hiroyuki Shiraishi, "Comparison of Measured and Computed Plasma Densities at Laser Supported Detonation Waves," The 26th Annual Meeting of IAPS, Naha, Japan, Mar. 2019.
- 3) Shiraishi, H. and Kumagai. Y.: Numerical Analysis of Threshold between Laser-Supported Detonation and Combustion Wave Using Thermal Non-Equilibrium and Multi-Charged Ionization Model, *Trans. Japan Soc. Aero. Space Sci.*, **10** (2012), pp. Pb_59 - Pb_63.
- 4) Shiraishi, H.: Numerical Analysis on Thermal Non-equilibrium and Multidimensional Laser-Supported Detonation Wave Using Multiply-Charged Ionization Model, *Proceed. 27th ISTS*, 2009, b-34, pp. 1 - 4.
- Shiraishi, H.: Fundamental Properties of Non-Equilibrium Laser-Supported Detonation Wave, *Proceed. 2nd Int. Symp. on Beamed Energy Propulsion*, 2003, pp. 68 - 79.
- 6) Shiraishi, H.: Numerical Analysis on Laser-Supported Plasma for Laser Propulsion Systems, J. Space Tech. Science, 23 (2007), pp. 20 - 29.
- 7)照射強度変化を考慮した BSW (Beam-supported Wave) 特性の数値的検討, 第62回宇宙科学技術連合講演会, 2018年10月.
- 8) Gnoffo, P. A., Gupta, R. N. and Shinn, J. L.: Conservation Equations and Physical Models for Hypersonic Air Flows

in Thermal and Chemical Nonequilibrium, *NASA Technical Paper* 2867, 1989, pp. 1 - 57.

- 9) Matsuzaki, R.: Specific Heat and Isentropic Exponent of High Temperature Gases. Exact Analytical Expressions, *AIAA Paper* 80-1532, 1980, pp. 1 - 11.
- 10)Kemp, N. H. and Lewis, P. F.: Laser-Heated Thruster Interim Report, NASA Contractor Report, NASA CR-161665, 1980.
- 11) Johnston, T. W. and Dawson: Correct Values for High-Frequency Power Absorption by Inverse Bremsstrahlung in Plasmas, J. M. Phys. Fluids, 16 (1973), p. 722.
- 12)Keisuke Kanda, Kohei Matsui, Theo Rousell, Kimiya Komurasaki, Hiroshi Katsurayama, Hiroyuki Shiraishi, "Comparison of Measured and Computed Plasma Densities at Laser Supported Detonation Waves," The 26th Annual Meeting of IAPS, Naha, Japan, Mar. 2019.
- 13)Katsurayama, et al.,: Preliminary Investigation of Thermochemical Nonequilibrium behind a Strong Shock Wave with Precursor Photoionization in Argon, AIAA 2007-4552, (2007).