多磁極磁気圏を利用した磁気プラズマセイルに関する実験室実験

○村山裕輝(総研大・院),上野一磨(中京大学),大塩裕哉(龍谷大学), 堀澤秀之(東海大学),船木一幸(ISAS/JAXA)

Laboratory Experiments on Magnetoplasma Sail using Multi-pole Magnetosphere

Yuki Murayama (SOKENDAI, the graduate university of advanced studies), Kazuma Ueno (Chukyo University), Yuya Oshio (Ryukoku University), Hideyuki Horisawa (Tokai University) and Ikkoh Funaki (ISAS/JAXA)

1. 研究目的

磁気セイル (マグセイル) は,太陽から惑星間空間 に定常的に噴出するプラズマ流である太陽風と宇宙 機に搭載されるコイルの発生させた磁場の相互干渉 を利用した宇宙機のプロペラントレス推進方法とし て 1991 年に Zubrin により提案された^[1].磁気セイ ルの推進原理は図 1 に示される.宇宙機側が発生さ せた磁場が太陽風中の水素イオン(プロトン)との干 渉で磁気圏を作り,水素イオンを阻害し,受け止める ことで推力を得る.発生推力Fは以下の式で表される.

$$F = \frac{1}{2} C_d \rho_{SW} u_{SW}^2 \pi L^2 \tag{1}$$

ただし、 C_d は推力係数、 $\rho_{SW} \ge u_{SW}^2$ は太陽風の密度と 流速、 πL^2 は磁気圏が太陽風を受け止める面積である. ここで、Lは磁気圏代表長であり、搭載コイル中心と 磁気圏境界面までの距離である.この式から磁気セ イルは磁気圏が太陽風を阻害する面積に比例して推 力が大きくなることが分かる.

また,式(1)における推力係数 C_d は磁気セイルの推力のスケール則に関わる係数であり, r_{L_i}/L によって決定される^[2].ここで, r_{L_i} は太陽風中のイオンのラーマ半径である. $r_{L_i}/L \ll 1$ のスケールのとき,イオンは磁気圏内部に侵入することはできないので,磁気圏内部の磁場構造は推力に影響を与えない.また,イオンの粒子的な運動は無視でき,太陽風を MHD 近似できる.この条件下ならば,磁気セイルは大推力(0.5N以上)を発生させうる^[3].しかし, r_{L_i} は太陽風の動圧のみによって決まる.太陽から1AUの位置である地球近傍では約72kmであり, $r_{L_i}/L \ll 1$ の条件を満たすには代表長Lを大きくしなければならない.すな

わち,磁気圏代表長Lは数百 km 以上という大きさで あり,このサイズの磁気圏を作るためにはそれに応 じたサイズのコイルや電源が必要であり,搭載重量 や容積の限られる衛星や探査機にそれらを搭載する ことは技術的に難しい.よって,実際の磁気セイルで は $r_{L_i}/L > 1$ の条件での運用が想定される.この条件 では,太陽風中のイオンの磁気圏内部へ侵入するた め,磁気圏内部のイオンの粒子的な運動を無視する ことができない.したがって,磁気圏内部の磁場構造 が推力に影響を及ぼすことが考えられる.

ISAS/JAXA では, MPD アークジェットをクラスタ 化させた大口径模擬太陽風プラズマ[45]を用いた磁気 セイルの地上シミュレーション実験を行っている[69]. 先行研究[1012]において、ソレノイドコイル単体の磁気 セイルの実験モデルではなく,3つのコイルが剛体接 続されたマルチコイル型磁気セイルによる推力計測 が行われた. その実験結果は通常のソレノイドコイ ルの磁気セイルと同じ磁気モーメントの下において 発生推力の増大が認められた.また,同じ磁気モーメ ント下のソレノイドコイルの磁気セイルに対し、磁 気圏サイズの拡大も観測された[1216].また,数値計算 によるマルチポール型磁気セイルの推進性能の検討 や磁気圏現象の解明も行われている[17,18].その原因と してソレノイドコイル単体のコイルで発生する磁場 のダイポール近似が成り立つが、マルチコイル型磁 気セイルの発生磁場ではダイポール近似は成り立た ないため、2種のタイプの違うコイルで発生する磁場 の磁気圏内部構造が異なるため、磁気圏内部へ侵入 したイオンの軌跡に影響を与え、異なる推力特性を 持つことが予想される.

図1. 磁気セイルの原理

2. 研究目的

磁気セイルの磁気帆生成時の推力増大のために, ソレノイドコイル単体の生成する磁気圏と内部構造 の異なるマルチポール型磁気セイルの磁気圏の詳細 な構造を解明する.

3. 実験方法

3.1. 太陽風シミュレータ

太陽風シミュレータ(Solar Wind Simulator, SWS)と は、ISAS の先端プラズマ推進チャンバ($\phi 2 \times 3m$) の内部に設置された 3 基の MPD アークジェットで 構成される大口径プラズマ源である. (図 2) このプ ラズマ源を長手方向に稼働できるように車輪を備え たアルミ性のスタンドにマウントした. このプラズ マ源は真空チャンバ内の直径 1200 mm の範囲に一様 な密度と流速の水素プラズマ流を生成できる^[5]. 作動 ガスである水素は、小型高速電磁弁により貯気槽か ら作動時間のみ MPD のガスポートへ供給される. 貯 気槽は真空チャンバ内のプラズマ源の付近に設置さ れ、その内部圧力はチャンバ外より監視と制御が可 能である.これにより、ガス流量を制御できる.SWS の動作には数 kA もの大電流を必要とするため、コ ンデンサを組み合わせたキャパシタバンク (PFN 電 源)を作成し、約0.8msの準定常作動を行う^[46].

図 2. チャンバ内部に設置された SWS を構成 する 3 基の MPD アークジェット

3.2. マルチコイル型磁気セイルの実験モデル

太陽風シミュレータとマルチコイル型磁気セイル の実験概略図を図 3 に示す.マルチコイル型磁気セ イルは,直径 2 mm の銅線を 20 巻きのコイル(外径 30 mm,内径 22 mm,高さ 20 mm)を 3 つ結合させて 制作した.(図 4)各コイルはコイル電流がコイル上 部から見て右回りに流れるように直列に接続した.

(図 5) このような形状のコイルの磁場は,外縁部の コイル電流が作る磁場の影響を大きく受けた磁場形 状となるが、3つのコイルが近接する中央部では各コ イル電流による磁場が互いに打ち消される特徴的な 磁場となる^[1016]. コイルに強い磁場を発生させるため には,コイルに大電流を流す必要があるため, SWS と同様にコイル用キャパシタバンクを制作し,約1 msの間,最大 1.8 kA の大電流を流すことが可能であ る.また,このコイル高速高密度プラズマ流中に晒さ れるため絶縁シートにより保護されている.

図 3. 実験セットアップ

図4. マルチポール磁気セイル実験モデル外観

図 5. マルチポール磁気セイルの電流の向きと 磁場出力

3.3. 磁場計測

磁場計測は、互いに直交する 3 方向に巻かれたサ ーチコイル型磁気プローブを用いた.この磁気プロ ーブは、各辺が 10 mm のアクリル製の直方体に直径 0.2 mm のホルマル線を各軸 20 回巻いて作成した. 実際の信号は微弱で、磁場の微分波形なので、測定さ れた信号を差動アンプ、100 倍ゲインアンプを通した ものを取得し、これに数値積分処理を行い、磁気プロ ーブに流れる微小電流から磁場を算出した.この磁 場を 3 方向の二乗平均をとり、磁場強度とした.な お、プローブは可動ステージ上に設置され、チャンバ の長手方向(太陽風の向き)と水平方向に対して移動 できるようにされている.また、プラズマとプローブ の信号線が直接触れないようにプローブ先端は絶縁 シートやテープで保護されている.(図6左)

磁気セイルにおいて,磁気圏内部では太陽風とコ イル磁場の干渉により磁場強度は大きくなる.一方, 磁気圏の外の空間では磁場強度は小さくなる.その ため,磁場計測により磁気圏磁場の変化率を計測す ることで磁気圏代表長を算出することができる.

3.4. 磁気圏誘導電流の直接計測

磁気圏の詳細を計測するにあたり,磁気圏内部及 び磁気圏境界面の空間を流れる電流を直接計測する ために,先行研究^[19,20]を参考に電流プローブを製作し た.プローブの先端にはフェライトコアにホルマル 銅線を 20-30 回巻き付けて外部積分型ロゴウスキー コイルを製作した^[21]. ロゴウスキーコイルの出力は 微分波形なので,磁場プローブと同様の増幅回路を 通して波形を取得したのち,数値積分を行って電流 波形を取得した.(図6右)

図 6. 磁場プローブ(左)とロゴウスキーコイ ル電流プローブ(右)

4. 実験結果と考察

太陽風流れ方向におけるコイル単独,太陽風,磁気 セイル(コイル+太陽風)の3条件での磁場計測の 結果を図7に示す.また,規格化された磁束密度と 直接計測された電流分布をコイル中心からの距離に 対してプロットしたものを図8に示す.

図 7. マルチポール磁気セイルの磁場計測(赤 道面)

図 8. マルチポール磁気セイルの磁気圏変化率 と誘導電流分布

5. まとめと今後の予定

推進性能向上の期待される複数の磁極を持つマル チポール磁気セイルの地上実験を行った.ソレノイ ドコイル単体が生成する磁場形状と異なる磁場構造 を持つマルチポール型磁気セイルの赤道面を太陽風 上流方向へ磁場と誘導電流を計測した.磁場計測の 結果から磁気圏変化率を算出したところ,コイル中 心から 340mm の位置で磁気圏変化率が 0.5 となった ので,340mm 付近が磁気圏境界面であると考えられ る.ロゴウスキーコイルによる空間電流の直接計測 により,コイル近傍の 150mm 位置のリングカレント (コイル電流と同相)と,その電流と逆向きの電流で

ある磁気圏境界面電流が270mmの位置に発生するの を確認した.

今年度の研究により,磁場計測による磁気圏代表 長の同定と磁気圏境界面を跨ぐ範囲で行った電流の 直接計測により電流分布の計測を行った.今後は,磁 気圏内部ヘイオンが侵入する条件での磁気セイルの 地上シミュレーション実験を行う.このような粒子 の効果の大きい条件の磁気セイルでは限定的にしか 数値計算が行われていない^[22,23].プラズマ源の作動条 件などの実験パラメータの調整^[24]や磁気セイルを模 擬するコイルモデルの改良を行い,磁気圏構造が推 力へ与える影響を評価していく.

謝辞

磁気セイル/MPS 研究は、宇宙航空研究開発機構宇 宙科学研究所スペースプラズマ共同研究設備にて実 施した. 旧 MPS ワーキンググループの様々な助言 とご支援に深く感謝いたします.

参考文献

- Zubrin, R. M., Andrews, D. G.: "Magnetic Sails and Interplanetary Travel", Journal of Spacecraft and Rockets, Vol. 28, No. 2, 1991, pp. 197-203.
- Fujita, K.: "Particle Simulation of Moderately-Sized Magnetic Sails", *Journal of Space Technology and Science*, Vol. 20, No. 2, 2004, pp. 26-31.
- Khazanov, G., Delamere, P. and Kabin, K.: "Fundamental of the Plasma Sail Concept: MHD and Kinetic Studies", *Journal of Propulsion and Power*, Vol. 21, No. 5, 2005, pp. 853-861.
- 船木一幸,小嶋秀典,山川宏,清水幸夫,都木恭 一郎,中山宣典,藤田和央,小川博之,篠原季次, 磁気セイルシミュレータの開発,日本航空宇宙 学会論文集,vol. 54, No. 634, pp. 501-509, 2006.
- 5) 堀江優之,上野一磨,大塩裕哉,河偉華,船木一 幸,山川宏,大口径模擬太陽風プラズマの高速・ 高密度化と磁気セイル実験,平成25年度宇宙輸 送シンポジウム,STEP-2013-003,2014年1月16-17日,相模原.
- Ueno, K., Kimura, T., Ayabe, T., Funaki, I., Horisawa, H. and Yamakawa, H.:"Laboratory Experiment of Magnetoplasma Sail, Part 1: Pure Magnetic Sail", 30th International Electric Propulsion Conference, IEPC-2007-61, 2007.
- Ueno, K., Kimura, T., Ayabe, T., Funaki, I., Yamakawa, H. and Horisawa, H.: "Thrust Measurement of Pure Magnetic Sail", *Trans. JSASS Space Tech, Japan*, vol. 7, No. ists26, pp. Pb_65-Pb_69, 2009.
- と野一磨,大塩裕哉,船木一幸,山川宏,堀澤秀 之,磁気セイルの推力特性に関する実験研究,日 本航空宇宙学会論文集,vol. 59, No. 692, pp. 229-235, 2011.
- Ueno, K., Oshio, Y., Funaki, I., Horisawa, H. and Yamakawa, H: "Thrust Measurement of Magnetic Sail for Various Tilt Angles", *Trans. JSASS Space Tech, Japan*, vol.10, No. ists28, pp. Tb 13 - Tb 16, 2012.
- 上野一磨,堀江優之,大塩裕哉,船木一幸,複数 コイル型磁気セイルの推力計測,第60回宇宙科 学技術連合講演会,JSASS-2016-4653,2016年9月 6日-9日,函館.
- Ueno, K., Oshio, Y., Funaki, I. and Yamakawa, H.: "Multi-Coil Magnetic Sail Experiment in Laboratory", *31st International Symposium on Space Technology and Science*, Matsuyama, 2017-b-39, 2017.
- 12) 村山裕輝, 上野一磨, 大塩裕哉, 堀澤秀之, 船木

ー幸,山川宏,複数コイル型磁気セイルの磁気圏 境界面磁場計測,第61回宇宙科学技術連合講演 会,3E09,2017年10月25日-27日,新潟.

- 13) Murayama, Y., Ueno, K, Oshio, Y., Horisawa, H. and Funaki, I.: "Preliminary Result of Magnetic Field Measurements on Multi-coil Magnetic Sail in Laboratory Experiment", *Vacuum*, vol. 167, 2019, pp. 509513.
- 14)村山裕輝、マルチポール型磁気セイルの磁気圏 構造に関する実験的研究、東海大学2018年度修 士論文、東海大学工学研究科機械工学専攻、2019.
- 15) Murayama, Y., Ueno, K, Oshio, Y., Horisawa, H. and Funaki, I.: "Evaluation of Magnetospheric Structure around Multi-pole Magnetic Sail in Scale Model Experiment", 32nd International Symposium on Space Technology and Science, 2019-b-078, Fukui, 2019.
- 16) 村山裕輝,上野一磨,大塩裕哉,堀澤秀之,船木 一幸,複数コイル型磁気セイルの磁気圏構造と 推力の関係,第62回宇宙科学技術連合講演会, 1E04,2019年11月6日-8日,徳島.
- 17) 馬場拓真,西田浩之,船木一幸,マルチポール型 磁気セイルの推力向上に向けたコイル配置の数 値解析的検討,第58回宇宙科学連合講演会講演 集,1L21,2014.
- 18) Wada, A., Takahashi, M. and Ohnishi, N.: Twodimensional Particle-In-Cell Simulation of Magnetic Sails in Formation Flight, 36th International Electric Propulsion Conference, IEPC-2019-A829, 2011.
- 19) 上野一磨,大塩裕哉,矢守章,船木一幸,MPDア ークジェットを利用した磁気プラズマセイルの スケールモデル実験,平成22年度スペースプラ ズマ研究会,2011年3月34日,相模原.
- 20) Oshio, Y., Ueno, K. and Funaki, I.: "Experimental Investigation of Magnetoplasma Sail: Magnetosphere Inflation by Equatorial Ring Current", 32nd International Electric Propulsion Conference, IEPC-2011-186, 2011.
- 21) 村山裕輝,上野一磨,大塩裕哉,堀澤秀之,船木 一幸,複数磁極磁気圏が磁気セイルの推進性能 へ与える影響,令和元年度宇宙輸送シンポジウ ム,STEP-2019-038,2019年,相模原.
- 22) Ashida, Y., Funaki, I., Yamakawa, H. Usui, H., Kajimura, Y. and Kojima, H.: "Two-Dimensional Particle-In-Cell Simulation of Magnetic Sails", *Journal of Propulsion and Power*, Vol. 30, No. 1, pp.

233245, 2014.

- 23) Ashida, Y., Yamakawa, H., Usui, H., Kajimura, Y. and Kojima, H.: "Thrust Evaluation of small-Scale Magnetic Sail Spacecraft by Three-Dimensional Particle-in-Cell Simulation", *Journal of Propulsion* and Power, Vol. 30, No. 1, pp. 186196, 2014.
- 24) 村山裕輝,上野一磨,大塩裕哉,堀澤秀之,船木 一幸,地球周回・惑星間軌道以遠ミッションを想 定した磁気セイルのスケールモデル実験のため の検討,第62回宇宙科学技術連合講演会,1E22, 2018年10月,久留米.